WO2018165629A1 - Cytosine to guanine base editor - Google Patents
Cytosine to guanine base editor Download PDFInfo
- Publication number
- WO2018165629A1 WO2018165629A1 PCT/US2018/021878 US2018021878W WO2018165629A1 WO 2018165629 A1 WO2018165629 A1 WO 2018165629A1 US 2018021878 W US2018021878 W US 2018021878W WO 2018165629 A1 WO2018165629 A1 WO 2018165629A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- acid sequence
- fusion protein
- seq
- domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2497—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing N- glycosyl compounds (3.2.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/02—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2)
- C12Y302/02027—Uracil-DNA glycosylase (3.2.2.27)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/04—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
- C12Y305/04001—Cytosine deaminase (3.5.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/04—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
- C12Y305/04005—Cytidine deaminase (3.5.4.5)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/095—Fusion polypeptide containing a localisation/targetting motif containing a nuclear export signal
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/80—Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
Definitions
- Targeted editing of nucleic acid sequences is a highly promising approach for the study of gene function and also has the potential to provide new therapies for human genetic diseases. Since many genetic diseases in principle can be treated by affecting a specific nucleotide change at a specific location in the genome (for example, a C to G or a G to C change in a specific codon of a gene associated with a disease), the development of a programmable way to achieve such precise gene editing represents both a powerful new research tool, as well as a potential new approach to gene editing-based therapeutics.
- compositions, kits, and methods of modifying a polynucleotide for example, generating a cytosine to guanine mutation in a polynucleotide.
- base editing e.g., C to G editing
- C cytosine
- the nucleobase opposite the abasic site e.g., guanine
- is then replaced with a different nucleobase e.g., cytosine
- Base editing fusion proteins described herein are capable of generating specific mutations (e.g., C to G mutations), within a nucleic acid (e.g., genomic DNA), which can be used, for example, to treat diseases involving nucleic acid mutations, e.g., C to G or G to C mutations.
- a nucleic acid e.g., genomic DNA
- a C to G base editor includes a fusion protein containing a nucleic acid programmable DNA binding protein (e.g., a Cas9 domain), a uracil DNA glycosylase (UDG) domain, and a cytidine deaminase.
- a base editing fusion protein is capable of binding to a specific nucleic acid sequence (e.g., via the Cas9 domain), deaminating a cytosine within the nucleic acid sequence to a uridine, which can then be excised from the nucleic acid molecule by UDG.
- the nucleobase opposite the abasic site can then be replaced with another base (e.g., cytosine), for example by an endogenous translesion polymerase.
- base repair machinery e.g., in a cell
- replaces a nucleobase opposite an abasic site with a cytosine although other bases (e.g., adenine, guanine, or thymine) may replace a nucleobase opposite an abasic site.
- bases e.g., adenine, guanine, or thymine
- base editors were engineered to incorporate various translesion polymerases to improve base editing efficiency.
- Translesion polymerases that increase the preference for C integration opposite an abasic site can improve C to G nucleobase editing. It should be appreciated that other translesion polymerases that preferentially integrate non-C nucleobases (e.g., adenine, guanine, and thymine), may be used to generate alternative mutations (e.g., C to A mutations).
- non-C nucleobases e.g., adenine, guanine, and thymine
- base editing fusion proteins may include a nucleic acid programmable DNA binding protein (e.g., a Cas9 domain), and a base excision enzyme that removes a nucleobase (e.g., a cytosine).
- a base editor may include a base excision enzyme that recognizes and removes a nucleobase such as a cytosine or a thymine without first deaminating it.
- base editors e.g., C to G base editors
- a nucleic acid programmable DNA binding protein e.g., a Cas9 domain
- translesion polymerases were incorporated into this base editor to increase the cytosine incorporation opposite an abasic site generated by the base excision enzyme of the base editor.
- Exemplary base editing proteins and schematic representations outlining base editing strategies can be seen, for example, in figures 1-6, 33-36, 40, and 52.
- the disclosure provides fusion proteins that are capable of base editing.
- Exemplary base editing fusion proteins include the following.
- the fusion protein includes (i) a nucleic acid programmable DNA binding protein (napDNAbp), (ii) a cytidine deaminase domain, and (iii) a uracil binding protein (UBP).
- the fusion protein further comprises (iv) a nucleic acid polymerase domain (NAP).
- a fusion protein may comprise (i) a nucleic acid programmable DNA binding protein (napDNAbp), (ii) a cytidine deaminase domain, and (iii) a nucleic acid polymerase (NAP) domain.
- a fusion protein may comprise (i) a nucleic acid programmable DNA binding protein (napDNAbp), and (ii) a base excision enzyme (BEE).
- the fusion protein further includes (iii) a nucleic acid polymerase (NAP) domain. Base editors and methods of using base editors are described below in further detail. BRIEF DESCRIPTION OF THE DRAWINGS
- Figure 1 shows a general schematic illustrating C to T and C to G base editing.
- Certain DNA polymerases e.g., translesion polymerases
- One strategy to achieve C to G base editing is to induce the creation of an abasic site, then recruit or tether such a polymerase to replace the G opposite the abasic site with a C.
- Figure 2 shows a general schematic illustrating base editing via abasic site generation and base-specific repair for C to G editing.
- Figure 3 shows a schematic illustrating scheme 1 from figure 1, where an abasic site is formed, for C to G base editing. If the abasic is generated efficiently, this can increase the total flux through C to G editing pathway.
- Figure 4 shows a schematic illustrating approach 1 for C to G base editing where an increase in abasic site formation is used. If the abasic is generated efficiently, for example by using a UDG domain and a translesion polymerase, this can increase the total flux through C to G editing pathway.
- FIG. 5 shows a schematic illustrating the effect of UdgX on base editing.
- UdgX an orthologue of UDG identified to bind tightly to Uracil with minimal uracil excising activity, increases the amount of C to G editing.
- UdgX* is a variant of UDG which was determined to lack uracil binding activity via an in vitro assay.
- UdgX_On is a variant which was shown to increase uracil excision through an in vitro assay.
- UDG direct fusion excises uracil.
- FIG. 6 shows a schematic (on the left) illustrating an exemplary C to T base editor (e.g., BE3), which contains a uracil glycosylase inhibitor (UGI), a Cas9 domain (e.g., nCas9), and a cytidine deaminase.
- a C to G base editor which contains a uracil DNA glycosylase (UDG) (or variants thereof), a Cas9 domain (e.g., nCas9), and a cytidine deaminase.
- UDG uracil DNA glycosylase
- Figure 7 shows total editing percentages at the HEK2 site in WT Hap1 cells using seven base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On; BE3_UdgX_On; BE2_UDG; and BE3_UDG).
- Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 8 shows total editing percentages at the HEK2 site with additional C to G base editors (BE3; BE3_UdgX; BE3_REV7; and SMUG1, where BE3 and BE3_UdgX are repeated from Figure 4) in WT Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 9 shows the editing specificity ratio at the HEK2 site with various C to G base editors (BE3; BE3_UdgX; BE3_UdgX*; BE3_REV7; BE2_UDG; BE3_UDG BE2_UdgX_On; BE3_UdgX_On; and SMUG1) in WT Hap1 cells.
- the top pane shows the total percentage of edits and the ratio of edits that have been made from G to A, C, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 10 shows total editing percentages at the RNF2 site in WT Hap1 cells using seven base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On; BE3_UdgX_On; BE2_UDG; and BE3_UDG).
- Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 11 shows total editing percentages at the RNF2 site with additional C to G base editors (BE3; BE3_UdgX; BE3_REV7; and SMUG1, where BE3 and BE3_UdgX are repeated from Figure 7) in WT Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 12 shows editing specificity ratio at the RNF2 site with various C to G base editors (BE3; BE3_UdgX; BE3_UdgX*; BE3_REV7; BE2_UDG; BE3_UDG
- the top pane shows the total percentage of edits and the ratio of edits that have been made from G to A, C, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 13 shows total editing percentages at the FANCF site in WT Hap1 cells using seven base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On;
- BE3_UdgX_On; BE2_UDG; and BE3_UDG Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by filled bars (C) going to dotted bars (G).
- Figure 14 shows total editing percentages at the FANCF site with additional C to G base editors (BE3; BE3_UdgX; BE3_REV7; and SMUG1, where BE3 and BE3_UdgX are repeated from Figure 10) in WT Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by filled bars (C) going to dotted bars (G).
- Figure 15 shows the editing specificity ratio at the FANCF site with various C to G base editors (BE3; BE3_UdgX; BE3_UdgX*; BE3_REV7; BE2_UDG; BE3_UDG BE2_UdgX_On; BE3_UdgX_On; and SMUG1) in WT Hap1 cells.
- the top pane shows the total percentage of edits and the ratio of edits that have been made from C to A, G, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 16 shows total editing percentages at the HEK2 site in UDG -/- Hap1 cells using seven base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On;
- BE3_UdgX_On; BE2_UDG; and BE3_UDG Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 17 shows total editing percentages at the HEK2 site with additional C to G base editors (BE3; BE3_UdgX; BE3_REV7; and SMUG1, where BE3 and BE3_UdgX are repeated from Figure 13) in UDG -/- Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 18 shows editing specificity ratio at the HEK2 site with various C to G base editors (BE3; BE3_UdgX; BE3_UdgX*; BE3_REV7; BE2_UDG; BE3_UDG
- the top pane shows the total percentage of edits and the ratio of edits that have been made from G to A, C, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 19 shows total editing percentages at the RNF2 site in UDG -/- Hap1 cells using seven base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On;
- BE3_UdgX_On; BE2_UDG; and BE3_UDG Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 20 shows total editing percentages at the RNF2 site with additional C to G base editors (BE3; BE3_UdgX; BE3_REV7; and SMUG1, where BE3 and BE3_UdgX are repeated from Figure 16) in UDG -/- Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 21 shows the editing specificity ratio at the RNF2 site with various C to G base editors (BE3; BE3_UdgX; BE3_UdgX*; BE3_REV7; BE2_UDG; BE3_UDG BE2_UdgX_On; BE3_UdgX_On; and SMUG1) in UDG -/- Hap1 cells.
- the top pane shows the total percentage of edits and the ratio of edits that have been made from G to A, C, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 22 shows total editing percentages at the FANCF site in UDG -/- Hap1 cells using seven base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On;
- BE3_UdgX_On; BE2_UDG; and BE3_UDG Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by filled bars (C) going to dotted bars (G).
- Figure 23 shows total editing percentages at the FANCF site with additional C to G base editors (BE3; BE3_UdgX; BE3_REV7; and SMUG1, where BE3 and BE3_UdgX are repeated from Figure 19) in UDG -/- Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by filled bars (C) going to dotted bars (G).
- Figure 24 shows the editing specificity ratio at the FANCF site with various C to G base editors (BE3; BE3_UdgX; BE3_UdgX*; BE3_REV7; BE2_UDG; BE3_UDG BE2_UdgX_On; BE3_UdgX_On; and SMUG1) in UDG -/- Hap1 cells.
- the top pane shows the total percentage of edits and the ratio of edits that have been made from C to A, G, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 25 shows total editing percentages at the HEK2 site with various C to G base editors (BE3; BE3_UdgX; BE2_UNG; BE3_UNG; BE2UdgX_On; BE3UdgX_On; and SMUG1) in REV1 -/- Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 26 shows editing specificity ratio at the HEK2 site with various C to G base editors (BE3; BE3_UdgX; BE2_UNG; BE3_UNG; BE2UdgX_On; BE3UdgX_On; and SMUG1) in REV1 -/- Hap1 cells.
- the top pane shows the total percentage of edits and the ratio of edits that have been made from G to A, C, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 27 shows total editing percentages at the RNF2 site with various C to G base editors (BE3; BE3_UdgX; BE2_UNG; BE3_UNG; BE2UdgX_On; BE3UdgX_On; and SMUG1) in REV1 -/- Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C), as sequencing was performed on the DNA strand opposite of the strand containing the edited C.
- Figure 28 shows editing specificity ratio at the RNF2 site with various C to G base editors (BE3; BE3_UdgX; BE2_UNG; BE3_UNG; BE2UdgX_On; BE3UdgX_On; and SMUG1) in REV1 -/- Hap1 cells.
- the top pane shows the total percentage of edits and the ratio of edits that have been made from G to A, C, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 29 shows total editing percentages at the FANCF site with various C to G base editors (BE3; BE3_UdgX; BE2_UNG; BE3_UNG; BE2UdgX_On; BE3UdgX_On; and SMUG1) in REV1 -/- Hap1 cells.
- the top panel shows the raw editing values.
- the bottom panel shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by filled bars (C) going to dotted bars (G).
- Figure 30 shows editing specificity ratio at the FANCF site with various C to G base editors (BE3; BE3_UdgX; BE2_UNG; BE3_UNG; BE2UdgX_On; BE3UdgX_On; and SMUG1) in REV1 -/- Hap1 cells.
- the top pane shows the total percentage of edits and the ratio of edits that have been made from C to A, G, or T.
- the bottom panel is a graphical representation of the specificity ratio values.
- Figure 31 shows a graphical representation of the raw editing values for the percent of total editing at the HEK2, RNF2, and FANCF sites using the indicated C to G base editors.
- Figure 32 shows a graphical representation of the specificity ratio for the percent of total editing at the HEK2, RNF2, and FANCF sites.
- Figure 33 shows a schematic illustrating an approach to increase in the incorporation of C opposite an abasic site, for C to G base editing. If the preference for C integration opposite an abasic site is increased, for example by using a polymerase (e.g., a translesion polymerase), the total C to G base editing will also be increased.
- Figure 34 shows a schematic illustrating an approach to increase in the incorporation of C opposite an abasic site, for C to G base editing. If the preference for C integration opposite an abasic site is increased, for example by incorporating a translesion polymerase into the base editor, the total C to G base editing may also be increased.
- a polymerase e.g., a translesion polymerase
- Figure 35 shows a schematic illustrating the different polymerases that can be used in the C to G base editing approach of Figures 33 and 34.
- Figure 36 shows a schematic (on the left) illustrating an exemplary C to T base editor (e.g., BE3), which contains a uracil glycosylase inhibitor (UGI), a Cas9 domain (e.g., nCas9), and a cytidine deaminase.
- a C to G base editor which contains a translesion polymerase, a Cas9 domain (e.g., nCas9), and a cytidine deaminase.
- Figure 37 shows base editing at the HEK2 site in WT cells using base editors tethered to REV1, Pol Kappa, Pol Eta, and Pol Iota.
- C to G editing is graphically shown by dotted bars (G) going to filled bars (C) in the graphical representation on the right panel.
- Pol Kappa tethering dramatically increases the efficiency of C to G editing.
- Raw editing values are shown on the left panel.
- Figure 38 shows base editing at the RNF2 site in WT cells using base editors tethered to REV1, Pol Kappa, Pol Eta, and Pol Iota.
- C to G editing is graphically shown by dotted bars (G) going to filled bars (C) in the graphical representation on the right panel.
- Pol Kappa tethering dramatically increases the efficiency of C to G editing.
- Raw editing values are shown on the left panel.
- Figure 39 shows base editing at the FANCF site in WT cells using base editors tethered to REV1, Pol Kappa, Pol Eta, and Pol Iota.
- C to G editing is graphically shown by filled bars (C) going to dotted bars (G) in the graphical representation on the right panel.
- Pol Kappa tethering dramatically increases the efficiency of C to G editing.
- Raw editing values are shown on the left panel.
- Figure 40 shows a schematic (on the left) illustrating an exemplary C to G base editor, which contains a uracil DNA glycosylase (UDG), a translesion polymerase, a Cas9 domain (e.g., nCas9), and a cytidine deaminase.
- UDG uracil DNA glycosylase
- Cas9 domain e.g., nCas9
- a cytidine deaminase On the right is a schematic illustrating a C to G base editor, which contains a translesion polymerase, a Cas9 domain (e.g., nCas9), and a base excision enzyme (e.g., a UDG variant capable of excising a C or T residue).
- UDG uracil DNA glycosylase
- Cas9 domain e.g., nCas9
- a base excision enzyme e.g., a UDG variant
- Figure 41 shows C to G base editing using the base editor illustrated in the left panel of Figure 40 (base editor containing a uracil DNA glycosylase (UDG), a translesion polymerase, a Cas9 domain, and a cytidine deaminase) at HEK2, RNF2, and FANCF sites using either Pol Kappa or Pol Iota tethered constructs.
- base editor containing a uracil DNA glycosylase (UDG), a translesion polymerase, a Cas9 domain, and a cytidine deaminase
- C to G editing is graphically shown by dotted bars (G) going to filled bars (C) for HEK2 and RNF2, and filled bars (C) going to dotted bars (G) for FANCF.
- Figure 42 shows base editing at the HEK2 site in WT cells using base editors tethered to either Pol Kappa, Pol Eta, Pol Iota, and REV1, which are shown in the right panel of Figure 40 (base editor containing a translesion polymerase, a Cas9 domain, and base excision enzyme (UDG 147) which excises T).
- the amount C to G is graphically illustrated at specific residues in the HEK2 site.
- UDG 147 is a UDG variant that directly removes T.
- Figure 43 shows base editing at the RNF2 site in WT cells using base editors tethered to either Pol Kappa, Pol Eta, Pol Iota, and REV1, which are shown in the right panel of Figure 40 (base editor containing a translesion polymerase, a Cas9 domain, and base excision enzyme (UDG 147) which excises T).
- the amount C to G is graphically illustrated at specific residues in the HEK2 site.
- UDG 147 is a UDG variant that directly removes T.
- Figure 44 shows base editing at the FANCF site in WT cells using base editors tethered to either Pol Kappa, Pol Eta, Pol Iota, and REV1, which are shown in the right panel of Figure 40 (base editor containing a translesion polymerase, a Cas9 domain, and base excision enzyme (UDG 147) which excises T).
- the amount C to G is graphically illustrated at specific residues in the HEK2 site.
- UDG 147 is a UDG variant that directly removes T.
- Figure 45 shows base editing at the HEK2 site in WT cells using base editors tethered to either Pol Kappa, Pol Eta, Pol Iota, and REV1, which are shown in the right panel of Figure 40 (base editor containing a translesion polymerase, a Cas9 domain, and base excision enzyme (UDG 204) which excises C).
- the amount C to G is graphically illustrated at specific residues in the HEK2 site.
- UDG 204 is a UDG variant that directly removes C.
- Figure 46 shows base editing at the RNF2 site in WT cells using base editors tethered to either Pol Kappa, Pol Eta, Pol Iota, and REV1, which are shown in the right panel of Figure 40 (base editor containing a translesion polymerase, a Cas9 domain, and base excision enzyme (UDG 204) which excises C).
- the amount C to G is graphically illustrated at specific residues in the HEK2 site.
- UDG 204 is a UDG variant that directly removes C.
- Figure 47 shows base editing at the FANCF site in WT cells using base editors tethered to either Pol Kappa, Pol Eta, Pol Iota, and REV1, which are shown in the right panel of Figure 40 (base editor containing a translesion polymerase, a Cas9 domain, and base excision enzyme (UDG 204) which excises C).
- the amount C to G is graphically illustrated at specific residues in the HEK2 site.
- UDG 204 is a UDG variant that directly removes C.
- Figure 48 shows a schematic illustrating a role of MSH2 in base repair, where MSH2 may facilitate the conversion of a uracil (U) to a cytosine (C) in DNA.
- Figure 49 shows base editing at the HEK2 site in MSH2-/- cells using six base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On; BE3_UdgX_On; and BE3_UDG).
- Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C).
- Figure 50 shows base editing at the RNF2 site in MSH2-/- cells using six base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On; BE3_UdgX_On; and BE3_UDG).
- Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by dotted bars (G) going to filled bars (C).
- Figure 51 shows base editing at the FANCF site in MSH2-/- cells using six base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On; BE3_UdgX_On; and
- Raw editing values are shown in the left panel.
- the panel on the right shows a graphical representation of the raw editing values, where C to G base editing is graphically shown by filled bars (C) going to dotted bars (G).
- Figure 52 shows a schematic illustrating a base editing approach where a C to G base editor containing a UDG (or a UDG variant), a Cas9 (e.g., nCas9) domain, and a cytidine deaminase is expressed in trans with a translesion polymerase.
- a C to G base editor containing a UDG (or a UDG variant), a Cas9 (e.g., nCas9) domain, and a cytidine deaminase is expressed in trans with a translesion polymerase.
- Figure 53 shows base editing at the HEK2 site in HEK293 cells using five base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On; and BE3_UDG) expressed, in trans, with various polymerases (Pol Kappa, Pol Eta, Pol Iota, REV1, Pol Beta, and Pol Delta).
- C to G base editing is graphically shown by dotted bars (G) going to filled bars (C).
- Figure 54 shows base editing at the RNF2 site in HEK293 cells using five base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On; and BE3_UDG) expressed, in trans, with various polymerases (Pol Kappa, Pol Eta, Pol Iota, REV1, Pol Beta, and Pol Delta).
- C to G base editing is graphically shown by dotted bars (G) going to filled bars (C).
- Figure 55 shows base editing at the FANCF site in HEK293 cells using five base editors (BE3; BE3_UdgX; BE3_UdgX*; BE2_UdgX_On; and BE3_UDG) expressed, in trans, with various polymerases (Pol Kappa, Pol Eta, Pol Iota, REV1, Pol Beta, and Pol Delta).
- C to G base editing is graphically shown by filled bars (C) going to dotted bars (G).
- deaminase or“deaminase domain,” as used herein, refers to a protein or enzyme that catalyzes a deamination reaction.
- the deaminase or deaminase domain is a cytidine deaminase, catalyzing the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively.
- the deaminase or deaminase domain is a cytidine deaminase domain, catalyzing the hydrolytic deamination of cytosine to uracil.
- the deaminase or deaminase domain is a naturally-occurring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase or deaminase domain is a variant of a naturally-occurring deaminase from an organism that does not occur in nature.
- the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase from an organism.
- base editor or“nucleobase editor (NBE)” refers to an agent comprising a polypeptide that is capable of making a modification to a base (e.g., A, T, C, G, or U) within a nucleic acid sequence (e.g., DNA or RNA).
- a base e.g., A, T, C, G, or U
- a nucleic acid sequence e.g., DNA or RNA
- the base editor is capable of deaminating a base within a nucleic acid.
- the base editor is capable of deaminating a base within a DNA molecule.
- the base editor is capable of deaminating a cytosine (C) in DNA.
- the base editor is capable of excising a base within a DNA molecule.
- the base editor is capable of excising an adenine, guanine, cytosine, thymine or uracil within a nucleic acid (e.g., DNA or RNA) molecule.
- the base editor is a protein (e.g., a fusion protein) comprising a nucleic acid programmable DNA binding protein (napDNAbp) fused to a cytidine deaminase.
- napDNAbp nucleic acid programmable DNA binding protein
- UBP uracil binding protein
- UDG uracil DNA glycosylase
- the base editor is fused to a nucleic acid polymerase (NAP) domain.
- the NAP domain is a translesion DNA polymerase.
- the base editor comprises a napDNAbp, a cytidine deaminase and a UBP (e.g., UDG).
- the base editor comprises a napDNAbp, a cytidine deaminase and a nucleic acid polymerase (e.g., a translesion DNA polymerase).
- the base editor comprises a napDNAbp, a cytidine deaminase, a UBP (e.g., UDG), and a nucleic acid polymerase (e.g., a translesion DNA polymerase).
- the napDNAbp of the base editor is a Cas9 domain.
- the base editor comprises a Cas9 protein fused to a cytidine deaminase.
- the base editor comprises a Cas9 nickase (nCas9) fused to a cytidine deaminase.
- the Cas9 nickase comprises a D10A mutation and comprises a histidine at residue 840 of SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as any one of SEQ ID NOs: 4-26, which renders Cas9 capable of cleaving only one strand of a nucleic acid duplex.
- the base editor comprises a nuclease-inactive Cas9 (dCas9) fused to a cytidine deaminase.
- the dCas9 domain comprises a D10A and a H840A mutation of SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as any one of SEQ ID NOs: 4-26, which inactivates the nuclease activity of the Cas9 protein.
- linker refers to a bond (e.g., covalent bond), chemical group, or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid- editing domain (e.g., an cytidine deaminase).
- a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and the catalytic domain of a nucleic-acid editing protein.
- a linker joins a dCas9 and a nucleic-acid editing protein.
- the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two.
- the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein).
- the linker is an organic molecule, group, polymer, or chemical moiety.
- the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.
- a linker comprises the amino acid sequence
- a linker comprises the amino acid sequence SGGS (SEQ ID NO: 103).
- a linker comprises (SGGS) n (SEQ ID NO: 103), (GGGS) n (SEQ ID NO: 104), (GGGGS) n (SEQ ID NO: 105), (G) n (SEQ ID NO: 121), (EAAAK) n (SEQ ID NO: 106), (GGS) n (SEQ ID NO: 122), SGSETPGTSESATPES (SEQ ID NO: 102), (XP) n motif (SEQ ID NO: 123), SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 107), SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 108),
- n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.
- mutant refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual (4 th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).
- uracil binding protein refers to a protein that is capable of binding to uracil.
- the uracil binding protein is a uracil modifying enzyme.
- the uracil binding protein is a uracil base excision enzyme.
- the uracil binding protein is a uracil DNA glycosylase (UDG).
- a uracil binding protein binds uracil with an affinity that is at least 1%, 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or at least 95% of the affinity that a wild type UDG (e.g., a human UDG) binds to uracil.
- a wild type UDG e.g., a human UDG
- base excision enzyme refers to a protein that is capable of removing a base (e.g., A, T, C, G, or U) from a nucleic acid molecule (e.g., DNA or RNA).
- a BEE is capable of removing a cytosine from DNA.
- a BEE is capable of removing a thymine from DNA.
- Exemplary BEEs include, without limitation UDG Tyr147Ala, and UDG Asn204Asp as described in Sang et al.,“A Unique Uracil-DNA binding protein of the uracil DNA glycosylase superfamily,” Nucleic Acids Research, Vol.43, No.172015; the entire contents of which are hereby incorporated by reference.
- nucleic acid polymerase refers to an enzyme that synthesizes nucleic acid molecules (e.g., DNA and RNA) from nucleotides (e.g., deoxyribonucleotides and ribonucleotides).
- the NAP is a DNA polymerase.
- the NAP is a translesion polymerase. Translesion polymerases play a role in mutagenesis, for example, by restarting replication forks or filling in gaps that remain in the genome due to the presence of DNA lesions.
- translesion polymerases include, without limitation, Pol Beta, Pol Lambda, Pol Eta, Pol Mu, Pol Iota, Pol Kappa, Pol Alpha, Pol Delta, Pol Gamma, and Pol Nu.
- nuclear localization sequence refers to an amino acid sequence that promotes import of a protein into the cell nucleus, for example, by nuclear transport. Nuclear localization sequences are known in the art and would be apparent to the skilled artisan.
- the NLS is a monopartite NLS.
- the NLS is a bipartite NLS.
- Bipartite NLSs are separated by a relatively short spacer sequence (e.g., from 2-20 amino acids, from 5-15 amino acids, or from 8-12 amino acids).
- a relatively short spacer sequence e.g., from 2-20 amino acids, from 5-15 amino acids, or from 8-12 amino acids.
- NLS sequences are described in Plank et al., international PCT application, PCT/EP2000/011690, filed November 23, 2000, published asWO/2001/038547 on May 31, 2001; and Kethar, K.M.V., et al.,“Applicationof bioinformatics-coupled experimental analysis reveals a new transport-competent nuclear localization signal in the nucleoptotein of Influenza A virus strain” BMC Cell Biol, 2008, 9: 22; the contents of each of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences.
- a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 41), MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 42), KRTADGSEFESPKKKRKV (SEQ ID NO: 43), KRGINDRNFWRGENGRKTR (SEQ ID NO: 44), KKTGGPIYRRVDGKWRR (SEQ ID NO: 45), RRELILYDKEEIRRIWR (SEQ ID NO: 46), or AVSRKRKA (SEQ ID NO: 47).
- nucleic acid programmable DNA binding protein refers to a protein that associates with a nucleic acid (e.g., DNA or RNA), such as a guide nuclic acid, that guides the napDNAbp to a specific nucleic acid sequence.
- a Cas9 protein can associate with a guide RNA that guides the Cas9 protein to a specific DNA sequence that has complementary to the guide RNA.
- the napDNAbp is a class 2 microbial CRISPR-Cas effector.
- the napDNAbp is a Cas9 domain, for example a nuclease active Cas9, a Cas9 nickase (nCas9), or a nuclease inactive Cas9 (dCas9).
- nucleic acid programmable DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute. It should be appreciated, however, that nucleic acid programmable DNAbinding proteins also include nucleic acid programmable proteins that bind RNA.
- the napDNAbp may be associated with a nucleic acid that guides the napDNAbp to an RNA.
- Other nucleic acid programmable DNA binding proteins are also within the scope of this disclosure, though they may not be specifically listed in this disclosure.
- Cas9 or“Cas9 domain” refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof (e.g., a protein comprising an active, inactive, or partially active DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9).
- a Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease.
- CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids).
- CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently,
- Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer.
- the target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically.
- DNA-binding and cleavage typically requires protein and both RNAs.
- single guide RNAs (“sgRNA”, or simply“gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E.
- Cas9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self.
- Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti et al., J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B
- Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier,“The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems” (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference.
- a Cas9 nuclease has an inactive (e.g., an inactivated) DNA cleavage domain, that is, the Cas9 is a nickase.
- a nuclease-inactivated Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9).
- Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science.337:816-821(2012); Qi et al.,“Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression” (2013) Cell.28;152(5):1173-83, the entire contents of each of which are incorporated herein by reference).
- the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand
- a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9.
- proteins comprising Cas9 or fragments thereof are referred to as“Cas9 variants.”
- a Cas9 variant shares homology to Cas9, or a fragment thereof.
- a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to wild type Cas9.
- the Cas9 variant may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid changes compared to wild type Cas9.
- the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9.
- a fragment of Cas9 e.g., a gRNA binding domain or a DNA-cleavage domain
- the fragment is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9.
- the fragment is at least 100 amino acids in length. In some embodiments, the fragment is at least 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, or 1300 amino acids in length.
- wild type Cas9 corresponds to Cas9 from
- nucleotide SEQ ID NO: 4 (amino acid)
- wild type Cas9 corresponds to, or comprises SEQ ID NO: 2 (nucleotide) and/or SEQ ID NO: 5 (amino acid):
- wild type Cas9 corresponds to Cas9 from
- NCBI Ref NC_017861.1
- Spiroplasma taiwanense NCBI Ref: NC_021846.1
- Streptococcus iniae NCBI Ref: NC_021314.1
- Belliella baltica NCBI Ref: NC_018010.1
- Psychroflexus torquisI NCBI Ref: NC_018721.1
- Streptococcus thermophilus NCBI Ref: YP_820832.1
- Listeria innocua NCBI Ref: NP_472073.1
- Campylobacter jejuni NCBI Ref: YP_002344900.1
- Neisseria. meningitidis NCBI Ref: YP_002342100.1 or to a Cas9 from any other organism.
- dCas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease activity.
- a dCas9 domain comprises D10A and an H840A mutation of SEQ ID NO: 6 or corresponding mutations in another Cas9.
- the dCas9 comprises the amino acid sequence of SEQ ID NO: 7
- the Cas9 domain comprises a D10A mutation, while the residue at position 840 remains a histidine in the amino acid sequence provided in SEQ ID NO: 6, or at corresponding positions in another Cas9, such as a Cas9 set forth in any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the presence of the catalytic residue H840 maintains the activity of the Cas9 to cleave the non-edited (e.g., non-deaminated) strand containing a T opposite the targeted A.
- H840 e.g., from A840 of a dCas9
- Such Cas9 variants are able to generate a single-strand DNA break (nick) at a specific location based on the gRNA-defined target sequence, leading to repair of the non-edited strand, ultimately resulting in a T to C change on the non-edited strand.
- dCas9 variants having mutations other than D10A and H840A are provided, which, e.g., result in nuclease inactivated Cas9 (dCas9).
- Such mutations include other amino acid substitutions at D10 and H840, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvC1 subdomain).
- variants or homologues of dCas9 are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to SEQ ID NO: 6, 7, 8, 9, or 22.
- variants of dCas9 are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 7, 8, 9, or 22, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids or more.
- Cas9 fusion proteins as provided herein comprise the full-length amino acid sequence of a Cas9 protein, e.g., one of the Cas9 sequences provided herein. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length Cas9 sequence, but only a fragment thereof.
- a Cas9 fusion protein provided herein comprises a Cas9 fragment, wherein the fragment binds crRNA and tracrRNA or sgRNA, but does not comprise a functional nuclease domain, e.g., in that it comprises only a truncated version of a nuclease domain or no nuclease domain at all.
- Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs:
- NCBI Ref NC_017861.1
- Spiroplasma taiwanense NCBI Ref: NC_021846.1
- Streptococcus iniae NCBI Ref: NC_021314.1
- Belliella baltica NCBI Ref: NC_018010.1
- Psychroflexus torquisI NCBI Ref: NC_018721.1
- Streptococcus thermophilus NCBI Ref: YP_820832.1
- Listeria innocua NCBI Ref: NP_472073.1
- NCBI Ref Campylobacter jejuni
- NCBI Ref Neisseria. meningitidis
- Cas9 proteins e.g., a nuclease dead Cas9 (dCas9), a Cas9 nickase (nCas9), or a nuclease active Cas9), including variants and homologs thereof, are within the scope of this disclosure.
- Exemplary Cas9 proteins include, without limitation, those provided below.
- the Cas9 protein is a nuclease dead Cas9 (dCas9).
- the dCas9 comprises the amino acid sequence (SEQ ID NO: 7, 8, 9, or 22).
- the Cas9 protein is a Cas9 nickase (nCas9).
- the nCas9 comprises the amino acid sequence (SEQ ID NO: 10, 13, 16, or 21).
- the Cas9 protein is a nuclease active Cas9.
- the nuclease active Cas9 comprises the amino acid sequence (SEQ ID NO: 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, or 26).
- Cas9 nickase refers to a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule).
- a Cas9 nickase comprises a D10A mutation and has a histidine at position H840 of SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided, such as any one of SEQ ID NOs: 4-26.
- a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 10, 13, 16, or 21.
- Such a Cas9 nickase has an active HNH nuclease domain and is able to cleave the non-targeted strand of DNA, i.e., the strand bound by the gRNA. Further, such a Cas9 nickase has an inactive RuvC nuclease domain and is not able to cleave the targeted strand of the DNA, i.e., the strand where base editing is desired.
- Cas9 refers to a Cas9 from arehaea (e.g. nanoarchaea), which constitute a domain and kingdom of single-celled prokaryotic microbes.
- Cas9 refers to CasX or CasY, which have been described in, for example, Burstein et al.,“New CRISPR–Cas systems from uncultivated microbes.” Cell Res.2017 Feb 21. doi: 10.1038/cr.2017.21, the entire contents of which is hereby incorporated by reference.
- genome-resolved metagenomics a number of CRISPR–Cas systems were identified, including the first reported Cas9 in the archaeal domain of life.
- Cas9 refers to CasX, or a variant of CasX. In some embodiments, Cas9 refers to a CasY, or a variant of CasY. It should be appreciated that other RNA-guided DNA binding proteins may be used as a nucleic acid programmable DNA binding protein (napDNAbp), and are within the scope of this disclosure.
- napDNAbp nucleic acid programmable DNA binding protein
- the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein may be a CasX or CasY protein.
- the napDNAbp is a CasX protein.
- the CasX protein is a nuclease inactive CasX protein (dCasX), a CasX nickase (CasXn), or a nuclease active CasX.
- the napDNAbp is a CasY protein.
- the CasY protein is a nuclease inactive CasY protein (dCasY), a CasY nickase (CasYn), or a nuclease active CasY.
- the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to a naturally-occurring CasX or CasY protein.
- the napDNAbp is a naturally-occurring CasX or CasY protein.
- the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 27-29.
- the napDNAbp comprises an amino acid sequence of any one SEQ ID NOs: 27-29. It should be appreciated that CasX and CasY from other bacterial species may also be used in accordance with the present disclosure.
- an effective amount refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response.
- an effective amount of a nucleobase editor may refer to the amount of the nucleobase editor that is sufficient to induce a mutation of a target site specifically bound by the nucleobase editor.
- an effective amount of a fusion protein provided herein e.g., of a fusion protein comprising a nucleic acid
- programmable DNA binding protein and a deaminase domain may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein.
- an agent e.g., a fusion protein, a nucleobase editor, a deaminase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide
- an agent e.g., a fusion protein, a nucleobase editor, a deaminase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide
- the desired biological response e.g., on the specific allele, genome, or target site to be edited, on the cell or tissue being targeted, and on the agent being used.
- nucleic acid and“nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides.
- polymeric nucleic acids e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage.
- “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides).
- “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues.
- the terms“oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides).
- “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA.
- Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule.
- a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides.
- nucleic acid examples include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone.
- Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated.
- a nucleic acid is or comprises natural nucleosides (e.g.
- nucleoside analogs e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7- deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, and 2-thiocytidine
- proliferative disease refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate.
- Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases.
- Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasias. Malignant neoplasia is also referred to as cancer.
- protein refers to a polymer of amino acid residues linked together by peptide (amide) bonds.
- the terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long.
- a protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins.
- One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc.
- a protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex.
- a protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide.
- a protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof.
- fusion protein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins.
- One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an“amino-terminal fusion protein” or a“carboxy-terminal fusion protein,” respectively.
- a protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein.
- a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent.
- a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA.
- Any of the proteins provided herein may be produced by any method known in the art.
- the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker.
- RNA-programmable nuclease and“RNA-guided nuclease” are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA(s) that is not a target for cleavage.
- an RNA-programmable nuclease when in a complex with an RNA, may be referred to as a nuclease:RNA complex.
- the bound RNA(s) is referred to as a guide RNA (gRNA).
- gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule.
- gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though“gRNA” is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules.
- gRNAs that exist as single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a Cas9 complex to the target); and (2) a domain that binds a Cas9 protein.
- domain (2) corresponds to a sequence known as a tracrRNA, and comprises a stem-loop structure.
- domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), the entire contents of which is incorporated herein by reference.
- gRNAs e.g., those including domain 2
- a gRNA comprises two or more of domains (1) and (2), and may be referred to as an“extended gRNA.”
- an extended gRNA will, e.g., bind two or more Cas9 proteins and bind a target nucleic acid at two or more distinct regions, as described herein.
- the gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex.
- the RNA- programmable nuclease is the (CRISPR-associated system) Cas9 endonuclease, for example, Cas9 (Csn1) from Streptococcus pyogenes (see, e.g.,“Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A., McLaughlin R.E., Proc.
- Cas9 endonuclease for example, Ca
- RNA-programmable nucleases such as Cas9
- site-specific cleavage e.g., to modify a genome
- Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage are known in the art (see e.g., Cong, L. et al., Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al., RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W.Y. et al., Efficient genome editing in zebrafish using a CRISPR-Cas system.
- the term“subject,” as used herein, refers to an individual organism, for example, an individual mammal.
- the subject is a human.
- the subject is a non-human mammal.
- the subject is a non-human primate.
- the subject is a rodent.
- the subject is a sheep, a goat, a cattle, a cat, or a dog.
- the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode.
- the subject is a research animal.
- the subject is genetically engineered, e.g., a genetically engineered non-human subject.
- the subject may be of either sex and at any stage of development.
- target site refers to a sequence within a nucleic acid molecule that is modified by a base editor, such as a fusion protein comprising a cytidine deaminase, (e.g., a dCas9-cytidine deaminase fusion protein provided herein).
- a base editor such as a fusion protein comprising a cytidine deaminase, (e.g., a dCas9-cytidine deaminase fusion protein provided herein).
- treatment refers to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein.
- the terms“treatment,” “treat,” and“treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein.
- treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed.
- treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease.
- treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.
- recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence.
- napDNAbp Nucleic Acid Programmable DNA Binding Proteins
- nucleic acid programmable DNA binding proteins which may be used to guide a protein, such as a base editor, to a specific nucleic acid (e.g., DNA or RNA) sequence.
- Nucleic acid programmable DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute.
- Cas9 e.g., dCas9 and nCas9
- CasX CasY
- Cpf1 Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1
- Cpf1 is also a class 2 CRISPR effector. It has been shown that Cpf1mediates robust DNA interference with features distinct from Cas9.
- Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif (TTN, TTTN, or YTN).
- Cpf1 cleaves DNA via a staggered DNA double-stranded break.
- Cpf1- family proteins two enzymes from Acidaminococcus and Lachnospiraceae are shown to have efficient genome-editing activity in human cells.
- Cpf1 proteins are known in the art and have been described previously, for example Yamano et al.,“Crystal structure of Cpf1 in complex with guide RNA and target DNA.” Cell (165) 2016, p.949-962; the entire contents of which is hereby incorporated by reference.
- nuclease-inactive Cpf1 (dCpf1) variants that may be used as a guide nucleotide sequence-programmable DNA- binding protein domain.
- the Cpf1 protein has a RuvC-like endonuclease domain that is similar to the RuvC domain of Cas9 but does not have a HNH endonuclease domain, and the N-terminal of Cpf1 does not have the alfa-helical recognition lobe of Cas9.
- the RuvC-like domain of Cpf1 is responsible for cleaving both DNA strands and inactivation of the RuvC-like domain inactivates Cpf1 nuclease activity.
- mutations corresponding to D917A, E1006A, or D1255A in Francisella novicida Cpf1 inactivates Cpf1 nuclease activity.
- the dCpf1 of the present disclosure comprises mutations corresponding to D917A, E1006A, D1255A,
- any mutations e.g., substitution mutations, deletions, or insertions that inactivate the RuvC domain of Cpf1, may be used in accordance with the present disclosure.
- the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein may be a Cpf1 protein.
- the Cpf1 protein is a Cpf1 nickase (nCpf1).
- the Cpf1 protein is a nuclease inactive Cpf1 (dCpf1).
- the Cpf1, the nCpf1, or the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 30-37.
- the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 30-37, and comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A,
- the dCpf1 comprises an amino acid sequence of any one SEQ ID NOs: 30-37. It should be appreciated that Cpf1 from other bacterial species may also be used in accordance with the present disclosure. [00102] Wild type Francisella novicida Cpf1 (SEQ ID NO: 30) (D917, E1006, and D1255 are bolded and underlined)
- the napDNAbp is an argonaute protein.
- a nucleic acid programmable DNA binding protein is an Argonaute protein from Natronobacterium gregoryi (NgAgo).
- NgAgo is a ssDNA-guided endonuclease.
- NgAgo binds 5′ phosphorylated ssDNA of ⁇ 24 nucleotides (gDNA) to guide it to its target site and will make DNA double-strand breaks at the gDNA site.
- gDNA ⁇ 24 nucleotides
- the NgAgo–gDNA system does not require a protospacer-adjacent motif (PAM).
- PAM protospacer-adjacent motif
- NgAgo nuclease inactive NgAgo
- the napDNAbp is a Marinitoga piezophila Argunaute (MpAgo) protein.
- the CRISPR-associated Marinitoga piezophila Argunaute (MpAgo) protein cleaves single-stranded target sequences using 5’- phosphorylated guides.
- the 5’ guides are used by all known Argonautes.
- the crystal structure of an MpAgo-RNA complex shows a guide strand binding site comprising residues that block 5’ phosphate interactions.
- This data suggests the evolution of an Argonaute subclass with noncanonical specificity for a 5’-hydroxylated guide. See, e.g., Kaya et al.,“A bacterial Argonaute with noncanonical guide RNA specificity”, Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4057-62, the entire contents of which are hereby incorporated by reference). It should be appreciated that other argonaute proteins may be used, and are within the scope of this disclosure.
- the nucleic acid programmable DNA binding protein is a single effector of a microbial CRISPR-Cas system.
- Single effectors of microbial CRISPR-Cas systems include, without limitation, Cas9, Cpf1, C2c1, C2c2, and C2c3.
- microbial CRISPR-Cas systems are divided into Class 1 and Class 2 systems. Class 1 systems have multisubunit effector complexes, while Class 2 systems have a single protein effector.
- Cas9 and Cpf1 are Class 2 effectors.
- C2c1, C2c2, and C2c3 Three distinct Class 2 CRISPR-Cas systems (C2c1, C2c2, and C2c3) have been described by Shmakov et al.,“Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems”, Mol. Cell, 2015 Nov 5; 60(3): 385–397, the entire contents of which is hereby incorporated by reference. Effectors of two of the systems, C2c1 and C2c3, contain RuvC-like endonuclease domains related to Cpf1. A third system, C2c2 contains an effector with two predicated HEPN RNase domains.
- C2c1 depends on both CRISPR RNA and tracrRNA for DNA cleavage.
- Bacterial C2c2 has been shown to possess a unique RNase activity for CRISPR RNA maturation distinct from its RNA-activated single- stranded RNA degradation activity. These RNase functions are different from each other and from the CRISPR RNA-processing behavior of Cpf1.
- the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein may be a C2c1, a C2c2, or a C2c3 protein.
- the napDNAbp is a C2c1 protein.
- the napDNAbp is a C2c2 protein.
- the napDNAbp is a C2c3 protein.
- the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to a naturally-occurring C2c1, C2c2, or C2c3 protein.
- the napDNAbp is a naturally-occurring C2c1, C2c2, or C2c3 protein.
- the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 39-40. It should be appreciated that C2c1, C2c2, or C2c3 from other bacterial species may also be used in accordance with the present disclosure.
- C2c1 (uniprot.org/uniprot/T0D7A2#) sp
- C2c1 OS Alicyclobacillus acidoterrestris (strain ATCC 49025 / DSM 3922 / CIP 106132 / NCIMB 13137 / GD3B)
- C2c2 OS Leptotrichia shahii (strain DSM 19757 / CCUG 47503 / CIP 107916 / JCM 16776 / LB37)
- SV 1
- nucleic acid programmable DNA binding protein [00125] In some aspects, a nucleic acid programmable DNA binding protein
- the Cas9 domain is a nuclease active Cas9 domain, a nuclease inactive Cas9 domain, or a Cas9 nickase.
- the Cas9 domain is a nuclease active domain.
- the Cas9 domain may be a Cas9 domain that cuts both strands of a duplexed nucleic acid (e.g., both strands of a duplexed DNA molecule).
- the Cas9 domain comprises any one of the amino acid sequences as set forth in SEQ ID NOs: 4-29.
- the Cas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any Cas9 provided herein, or to one of the amino acid sequences set forth in SEQ ID NOs: 4-29.
- the Cas9 domain comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more mutations compared to any Cas9 provided herein, or to any one of the amino acid sequences set forth in SEQ ID NOs: 4-29.
- the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any Cas9 provided herein or any one of the amino acid sequences set forth in SEQ ID NOs: 4-29.
- the Cas9 domain is a nuclease-inactive Cas9 domain (dCas9).
- the dCas9 domain may bind to a duplexed nucleic acid molecule (e.g., via a gRNA molecule) without cleaving either strand of the duplexed nucleic acid molecule.
- the nuclease-inactive dCas9 domain comprises a D10X mutation and a H840X mutation of the amino acid sequence set forth in SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as one of the amino acid sequences provided in SEQ ID NOs: 4-26, wherein X is any amino acid change.
- the nuclease-inactive dCas9 domain comprises a D10A mutation and a H840A mutation of the amino acid sequence set forth in SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as any one of the amino acid sequences provided in SEQ ID NOs: 4-26.
- a nuclease-inactive Cas9 domain comprises the amino acid sequence set forth in SEQ ID NO: 9 (Cloning vector pPlatTET-gRNA2, Accession No. BAV54124).
- SEQ ID NO: 9 Codoning vector pPlatTET-gRNA2, Accession No. BAV54124.
- nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure.
- Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and
- D10A/D839A/H840A/N863A mutant domains See, e.g., Prashant et al., CAS9
- the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the dCas9 domains provided herein.
- the Cas9 domain comprises an amino acid sequences that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 7, 8, 9, or 22.
- the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 7, 8, 9, or 22.
- the Cas9 domain is a Cas9 nickase.
- the Cas9 nickase may be a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule).
- the Cas9 nickase cleaves the target strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is base paired to (complementary to) a gRNA (e.g., an sgRNA) that is bound to the Cas9.
- a gRNA e.g., an sgRNA
- a Cas9 nickase comprises a D10A mutation and has a histidine at position 840 of SEQ ID NO: 6, or a mutation in any Cas9 provided herein, such as any one of SEQ ID NOs: 4-26.
- a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 10, 13, 16, or 21.
- the Cas9 nickase cleaves the non-target, non-base-edited strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is not base paired to a gRNA (e.g., an sgRNA) that is bound to the Cas9.
- a Cas9 nickase comprises an H840A mutation and has an aspartic acid residue at position 10 of SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as any one of SEQ ID NOs: 4-26.
- the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 nickases provided herein. Additional suitable Cas9 nickases will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Cas9 domains with reduced PAM exclusivity
- Cas9 domains that have different PAM specificities.
- Cas9 proteins such as Cas9 from S. pyogenes (spCas9)
- spCas9 require a canonical NGG PAM sequence to bind a particular nucleic acid region, where the“N” in “NGG” is adenine (A), thymine (T), guanine (G), or cytosine (C), and the G is guanine. This may limit the ability to edit desired bases within a genome.
- the base editing fusion proteins provided herein need to be positioned at a precise location, for example, where a target base is within a 4 base region (e.g., a“deamination window”), which is approximately 15 bases upstream of the PAM. See Komor, A.C., et al.,“Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage” Nature 533, 420-424 (2016), the entire contents of which are hereby incorporated by reference.
- the deamination window is within a 2, 3, 4, 5, 6, 7, 8, 9, or 10 base region.
- any of the fusion proteins provided herein may contain a Cas9 domain that is capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence.
- Cas9 domains that bind to non-canonical PAM sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B.
- the Cas9 domain is a Cas9 domain from
- the SaCas9 domain is a nuclease active SaCas9, a nuclease inactive SaCas9 (SaCas9d), or a SaCas9 nickase (SaCas9n).
- the SaCas9 comprises the amino acid sequence SEQ ID NO: 12.
- the SaCas9 comprises a N579X mutation of SEQ ID NO: 12, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 13-14, wherein X is any amino acid except for N.
- the SaCas9 comprises a N579A mutation of SEQ ID NO: 12, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 13-14.
- the SaCas9 domain comprises one or more of E781X, N967X, and R1014X mutation of SEQ ID NO: 12, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 13-14, wherein X is any amino acid.
- the SaCas9 domain comprises one or more of a E781K, a N967K, and a R1014H mutation of SEQ ID NO: 12, or one or more corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 13-14.
- the SaCas9 domain comprises a E781K, a N967K, or a R1014H mutation of SEQ ID NO: 12, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 13- 14.
- the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 12-14.
- the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 12-14. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 12-14. [00134] Exemplary SaCas9 sequence
- Exemplary SaCas9n sequence KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSK RGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSA ALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGE VRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPF GWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEKLE YYEKFQIIENVFKQKKKPTLKQIAKEILV
- Residues K781, K967, and H1014 of SEQ ID NO: 14, which can be mutated from E781, N967, and R1014 of SEQ ID NO: 12 to yield a SaKKH Cas9 are underlined and in italics.
- the Cas9 domain is a Cas9 domain from Streptococcus pyogenes (SpCas9).
- the SpCas9 domain is a nuclease active SpCas9, a nuclease inactive SpCas9 (SpCas9d), or a SpCas9 nickase (SpCas9n).
- the SpCas9 comprises the amino acid sequence SEQ ID NO: 15.
- the SpCas9 comprises a D9X mutation of SEQ ID NO: 15, or a corresponding mutation in any Cas9, such as any of the amino acid sequences provided in SEQ ID NOs: 4- 26, wherein X is any amino acid except for D.
- the SpCas9 comprises a D9A mutation of SEQ ID NO: 15, or a corresponding mutation in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a NGG, a NGA, or a NGCG PAM sequence.
- the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 15, or a corresponding mutation in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26, wherein X is any amino acid.
- the SpCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation of SEQ ID NO: 15, or a corresponding mutation in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the SpCas9 domain comprises a D1134E, a R1334Q, and a T1336R mutation of SEQ ID NO: 15, or corresponding mutations in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 15, or a corresponding mutation in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26, wherein X is any amino acid.
- the SpCas9 domain comprises one or more of a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 15, or a corresponding mutation in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the SpCas9 domain comprises a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 15, or corresponding mutations in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the SpCas9 domain comprises one or more of a D1134X, a G1217X, a R1334X, and a T1336X mutation of SEQ ID NO: 15, or a corresponding mutation in any Cas9 provided herein, such as any one of the amino acid sequences provided in SEQ ID NOs: 4-26, wherein X is any amino acid.
- the SpCas9 domain comprises one or more of a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 15, or a corresponding mutation in any Cas9 provided herin, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the SpCas9 domain comprises a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 15, or corresponding mutations in any Cas9 provided herein, such as any one of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 15-19.
- the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 15-19.
- the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 15-19.
- Residues E1134, Q1334, and R1336 of SEQ ID NO: 17, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 15 to yield a SpEQR Cas9, are underlined and in bold.
- Residues V1134, Q1334, and R1336 of SEQ ID NO: 18, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 15 to yield a SpVQR Cas9, are underlined and in bold.
- high fidelity Cas9 domains are engineered Cas9 domains comprising one or more mutations that decrease electrostatic interactions between the Cas9 domain and the sugar-phosphate backbone of DNA, as compared to a corresponding wild-type Cas9 domain.
- high fidelity Cas9 domains that have decreased electrostatic interactions with the sugar-phosphate backbone of DNA may have less off-target effects.
- the Cas9 domain e.g., a wild type Cas9 domain
- a Cas9 domain comprises one or more mutations that decreases the association between the Cas9 domain and the sugar-phosphate backbone of DNA by at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, or more.
- any of the Cas9 fusion proteins provided herein comprise one or more of N497X, R661X, Q695X, and/or Q926X mutation of the amino acid sequence provided in SEQ ID NO: 6, or corresponding mutation(s) in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26, wherein X is any amino acid.
- any of the Cas9 fusion proteins provided herein comprise one or more of N497A, R661A, Q695A, and/or Q926A mutation of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the Cas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26.
- the Cas9 domain (e.g., of any of the fusion proteins provided herein) comprises the amino acid sequence as set forth in SEQ ID NO: 20.
- the Cas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to SEQ ID NO: 20.
- Cas9 domains with high fidelity are known in the art and would be apparent to the skilled artisan.
- any of the base editors provided herein may be converted into high fidelity base editors by modifying the Cas9 domain as described herein to generate high fidelity base editors, for example, a high fidelity C to G base editor.
- the high fidelity Cas9 domain is a dCas9 domain.
- the high fidelity Cas9 domain is a nCas9 domain.
- the disclosure also provides fragments of napDNAbps, such as truncations of any of the napDNAbps provided herein.
- the napDNAbp is an N- terminal truncation, where one or more amino acids are absent from the N-terminus of the napDNAbp.
- the napDNAbp is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the N-terminus of the napDNAbp.
- the N-terminal truncation of the napDNAbp may be an N- terminal truncation of any napDNAbp provided herein, such as any one of the napDNAbps provided in any one of SEQ ID NOs: 4-40.
- the napDNAbp is a C- terminal truncation, where one or more amino acids are absent from the C-terminus of the napDNAbp.
- the napDNAbp is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the C-terminus of the napDNAbp.
- the C-terminal truncation of the napDNAbp may be a C-terminal truncation of any napDNAbp provided herein, such as any one of the NAPs provided in any one of SEQ ID NOs: 4-40.
- any of the napDNAbps provided herein have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid changes compared to any napDNAbp provided herein, such as any one of the napDNAbps provided in SEQ ID NOs: 4-40.
- Uracil binding proteins Uracil binding proteins
- a uracil binding protein refers to a protein that is capable of binding to uracil.
- the uracil binding protein is a uracil modifying enzyme.
- the uracil binding protein is a uracil base excision enzyme.
- the uracil binding protein is a uracil DNA glycosylase (UDG).
- a uracil binding protein binds uracil with an affinity that is at least 1%, 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or at least 95% of the affinity that a wild type UDG (e.g., a human UDG) binds to uracil.
- a wild type UDG e.g., a human UDG
- the uracil binding protein may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid changes compared to wild type uracil binding protein such as a wild type UDG (e.g., a human UDG) binds to uracil.
- a wild type UDG e.g., a human UDG
- the UBP is a uracil modifying enzyme. In some embodiments, the UBP is a uracil base excision enzyme. In some embodiments, the UBP is a uracil DNA glycosylase. In some embodiments, the UBP is any of the uracil binding proteins provided herein.
- the UBP may be a UDG, a UdgX, a UdgX*, a UdgX_On, or a SMUG1.
- the UBP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a uracil binding protein, a uracil base excision enzyme or a uracil DNA glycosylase (UDG) enzyme.
- the UBP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any of the uracil binding proteins provided herein, for example, any of the UBP and UBP variants provided below.
- the UBP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 48-53. In some embodiments, the UBP comprises the amino acid sequence of any one of SEQ ID NOs: 48-53.
- the uracil binding protein has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid changes compared to any UBP provided herein, such as any one of SEQ ID NOs: 48-53.
- the disclosure also provides fragments of UBPs, such as truncations of any of the UBPs provided herein.
- the UBP is an N-terminal truncation, where one or more amino acids are absent from the N-terminus of the UBP.
- the UBP is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the N-terminus of the UBP.
- the N- terminal truncation of the UBP may be an N-terminal truncation of any UBP provided herein, such as any one of the UBPs provided in any one of SEQ ID NOs: 48-53.
- the UBP is a C-terminal truncation, where one or more amino acids are absent from the C-terminus of the UBP.
- the UBP is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the C- terminus of the UBP.
- the C-terminal truncation of the UBP may be a C- terminal truncation of any UBP provided herein, such as any one of the UBPs provided in any one of SEQ ID NOs: 48-53.
- UBPs have been described previously in Sang et al.,“A Unique Uracil-DNA binding protein of the uracil DNA glycosylase superfamily,” Nucleic Acids Research, Vol.43, No.172015; the entire contents of which are hereby incorporated by reference.
- a nucleic acid polymerase refers to an enzyme that synthesizes nucleic acid molecules (e.g., DNA and RNA) from nucleotides (e.g., deoxyribonucleotides and ribonucleotides).
- the NAP is a DNA polymerase.
- the NAP is a translesion polymerase. Translesion polymerases play a role in mutagenesis, for example, by restarting replication forks or filling in gaps that remain in the genome due to the presence of DNA lesions.
- translesion polymerases include, without limitation, Pol Beta, Pol Lambda, Pol Eta, Pol Mu, Pol Iota, Pol Kappa, Pol Alpha, Pol Delta, Pol Gamma, and Pol Nu.
- the NAP is a eukaryotic nucleic acid polymerase. In some embodiments, the NAP is a DNA polymerase. In some embodiments, the NAP has translesion polymerase activity. In some embodiments, the NAP is a translesion DNA polymerase. In some embodiments, the NAP is a Rev7, Rev1 complex, polymerase iota, polymerase kappa, or polymerase eta. In some embodiments, the NAP is a eukaryotic polymerase alpha, beta, gamma, delta, epsilon, gamma, eta, iota, kappa, lambda, mu, or nu.
- the NAP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a naturally occurring nucleic acid polymerase (e.g., a translesion DNA polymerase). In some embodiments, the NAP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any of the nucleic acid polymerases provided herein, e.g., below.
- the NAP may comprise an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 54-64.
- the NAP comprises the amino acid sequence of any one of SEQ ID NOs: 54-64. It should be appreciated that other NAPs would be apparent to the skilled artisan and are within the scope of this disclosure.
- the NAP comprises the amino acid sequence of any one of SEQ ID NOs: 54-64.
- the nucleic acid polymerase has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid changes compared to any NAP provided herein, such as any one of SEQ ID NOs: 54-64.
- the disclosure also provides fragments of NAPs, such as truncations of any of the NAPs provided herein.
- the NAP is an N-terminal truncation, where one or more amino acids are absent from the N-terminus of the NAP.
- the NAP is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the N-terminus of the NAP.
- the N- terminal truncation of the NAP may be an N-terminal truncation of any NAP provided herein, such as any one of the NAPs provided in any one of SEQ ID NOs: 54-64.
- the NAP is a C-terminal truncation, where one or more amino acids are absent from the C-terminus of the NAP.
- the NAP is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the C- terminus of the NAP.
- the C-terminal truncation of the NAP may be a C- terminal truncation of any NAP provided herein, such as any one of the NAPs provided in any one of SEQ ID NOs: 54-64.
- Pol Beta any NAP provided herein, such as any one of the NAPs provided in any one of SEQ ID NOs: 54-64.
- a base excision enzyme refers to a protein that is capable of removing a base (e.g., A, T, C, G, or U) from a nucleic acid molecule (e.g., DNA or RNA).
- a BEE is capable of removing a cytosine from DNA.
- a BEE is capable of removing a thymine from DNA.
- Exemplary BEEs include, without limitation UDG Tyr147Ala, and UDG Asn204Asp as described in Sang et al.,“A Unique Uracil-DNA binding protein of the uracil DNA glycosylase superfamily,” Nucleic Acids Research, Vol.43, No.172015; the entire contents of which are hereby incorporated by reference.
- the base excision enzyme (BEE) is a cytosine, thymine, adenine, guanine, or uracil base excision enzyme.
- the base excision enzyme (BEE) is a cytosine base excision enzyme.
- the BEE is a thymine base excision enzyme.
- the base excision enzyme comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a naturally-occurring BEE. In some embodiments, the base excision enzyme comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any of the BEEs provided herein, e.g., UDG
- the base excision enzyme comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 65-66.
- the base excision enzyme comprises the amino acid sequence of any one of SEQ ID NOs: 65-66.
- the base excision enzyme has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid changes compared to any BEE provided herein, such as any one of SEQ ID NOs: 65-66.
- the disclosure also provides fragments of BEEs, such as truncations of any of the BEEs provided herein.
- the BEE is an N-terminal truncation, where one or more amino acids are absent from the N-terminus of the BEE.
- the BEE is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the N-terminus of the BEE.
- the N- terminal truncation of the BEE may be an N-terminal truncation of any BEE provided herein, such as any one of the BEEs provided in any one of SEQ ID NOs: 65-66.
- the BEE is a C-terminal truncation, where one or more amino acids are absent from the C-terminus of the BEE.
- the BEE is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the C- terminus of the BEE.
- the C-terminal truncation of the BEE may be a C- terminal truncation of any BEE provided herein, such as any one of the BEEs provided in any one of SEQ ID NOs: 65-66.
- BEEs would be apparent to the skilled artisan and are within the scope of this disclosure.
- BEEs have been described previously in Sang et al.,“A Unique Uracil-DNA binding protein of the uracil DNA glycosylase superfamily,” Nucleic Acids Research, Vol.43, No.172015; the entire contents of which are hereby incorporated by reference.
- UDG (Tyr147Ala) The mutated residue is indicated by bold and underlining.
- any of the fusion proteins or base editors provided herein comprise a cytidine deaminase domain.
- the cytidine deaminase domain can catalyze a C to U base change.
- the cytidine deaminase domain is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase.
- APOBEC apolipoprotein B mRNA-editing complex
- the cytidine deaminase domain is an APOBEC1 deaminase.
- the cytidine deaminase domain is an APOBEC2 deaminase.
- the cytidine deaminase domain is an APOBEC3 deaminase. In some embodiments, the cytidine deaminase domain is an APOBEC3A deaminase. In some embodiments, the cytidine deaminase domain is an APOBEC3B deaminase. In some embodiments, the cytidine deaminase domain is an APOBEC3C deaminase. In some embodiments, the cytidine deaminase domain is an APOBEC3D deaminase.
- the cytidine deaminase domain is an APOBEC3E deaminase. In some embodiments, the cytidine deaminase domain is an APOBEC3F deaminase. In some embodiments, the cytidine deaminase domain is an APOBEC3G deaminase. In some embodiments, the cytidine deaminase domain is an APOBEC3H deaminase. In some embodiments, the cytidine deaminase domain is an APOBEC4 deaminase.
- the cytidine deaminase domain is an activation-induced deaminase (AID).
- the cytidine deaminase domain is a vertebrate deaminase.
- the cytidine deaminase domain is an invertebrate deaminase.
- the cytidine deaminase domain is a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse deaminase.
- the cytidine deaminase domain is a human deaminase.
- the cytidine deaminase domain is a rat deaminase, e.g., rAPOBEC1. In some embodiments, the cytidine deaminase domain is a Petromyzon marinus cytidine deaminase 1 (pmCDA1). In some embodiments, the cytidine deaminase domain is a human APOBEC3G (SEQ ID NO: 77). In some embodiments, the cytidine deaminase domain is a fragment of the human APOBEC3G (SEQ ID NO: 100).
- the cytidine deaminase domain is a human APOBEC3G variant comprising a D316R_D317R mutation (SEQ ID NO: 99). In some embodiments, the cytidine deaminase domain is a vigment of the human APOBEC3G and comprising mutations corresponding to the D316R_D317R mutations in SEQ ID NO: 77 (SEQ ID NO: 101).
- the cytidine deaminase domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring cytidine deaminase. In some embodiments, the cytidine deaminase domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any of the cytidine deaminases provided herein.
- the cytidine deaminase domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the deaminase domain of any one of SEQ ID NOs: 67-101.
- the nucleic acid editing domain comprises the amino acid sequence of any one of SEQ ID NOs: 67-101.
- the cytidine deaminase domain has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid changes compared to any cytidine deaminase domain provided herein, such as any one of SEQ ID NOs: 67-101.
- the disclosure also provides fragments of cytidine deaminase domains, such as truncations of any of the cytidine deaminase domains provided herein.
- the cytidine deaminase domain is an N-terminal truncation, where one or more amino acids are absent from the N-terminus of the cytidine deaminase domain.
- the cytidine deaminase domain is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the N-terminus of the cytidine deaminase domain.
- the N-terminal truncation of the cytidine deaminase domain may be an N-terminal truncation of any cytidine deaminase domain provided herein, such as any one of the cytidine deaminase domains provided in any one of SEQ ID NOs: 67-101.
- the cytidine deaminase domain is a C-terminal truncation, where one or more amino acids are absent from the C-terminus of the cytidine deaminase domain.
- the cytidine deaminase domain is absent 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids from the C-terminus of the cytidine deaminase domain.
- the C-terminal truncation of the cytidine deaminase domain may be a C-terminal truncation of any cytidine deaminase domain provided herein, such as any one of the cytidine deaminase domains provided in any one of SEQ ID NOs: 67-101.
- Some exemplary cytidine deaminase domains include, without limitation, those provided below. It should be understood that, in some embodiments, the active domain of the respective sequence can be used, e.g., the domain without a localizing signal (nuclear localization sequence, without nuclear export signal, cytoplasmic localizing signal).
- Dog AID MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGC HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFAAR LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENREKTFKAWEGLHEN SVRLSRQLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 69)
- Bovine AID [00183]
- Green monkey APOBEC-3G [00189] Green monkey APOBEC-3G:
- Rhesus macaque APOBEC-3A (italic: nucleic acid editing domain) [00199] Rhesus macaque APOBEC-3A:
- Bovine APOBEC-3A [00200]
- Human APOBEC-1 MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKN TTNHVEVNFIKKFTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLVIYV ARLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQY PPLWMMLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLI HPSVAWR (SEQ ID NO: 91)
- Bovine APOBEC-2 [00210]
- Some aspects of the disclosure are based on the recognition that modulating the deaminase domain catalytic activity of any of the fusion proteins provided herein, for example by making point mutations in the deaminase domain, affect the processivity of the fusion proteins (e.g., base editors). For example, mutations that reduce, but do not eliminate, the catalytic activity of a deaminase domain within a base editing fusion protein can make it less likely that the deaminase domain will catalyze the deamination of a residue adjacent to a target residue, thereby narrowing the deamination window. The ability to narrow the deaminataion window may prevent unwanted deamination of residues adjacent of specific target residues, which may decrease or prevent off-target effects.
- any of the fusion proteins provided herein comprise a deaminase domain (e.g., a cytidine deaminase domain) that has reduced catalytic deaminase activity.
- any of the fusion proteins provided herein comprise a deaminase domain (e.g., a cytidine deaminase domain) that has a reduced catalytic deaminase activity as compared to an appropriate control.
- the appropriate control may be the deaminase activity of the deaminase prior to introducing one or more mutations into the deaminase.
- the appropriate control may be a wild-type deaminase.
- the appropriate control is a wild-type apolipoprotein B mRNA-editing complex (APOBEC) family deaminase.
- APOBEC apolipoprotein B mRNA-editing complex family deaminase.
- the appropriate control is an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC
- APOBEC3B deaminase an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an
- the appropriate control is an activation induced deaminase (AID).
- the appropriate control is a cytidine deaminase 1 from Petromyzon marinus (pmCDA1).
- the deaminase domain may be a deaminase domain that has at least 1%, at least 5%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% less catalytic deaminase activity as compared to an appropriate control.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121X, H122X, R126X, R126X, R118X, W90X, W90X, and R132X of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase, wherin X is any amino acid.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121R, H122R, R126A, R126E, R118A, W90A, W90Y, and R132E of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316X, D317X, R320X, R320X, R313X, W285X, W285X, R326X of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase, wherin X is any amino acid.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316R, D317R, R320A, R320E, R313A, W285A, W285Y, R326E of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a H121R and a H122Rmutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126A mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R118A mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90A mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R132E mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R126E mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E and a R132E mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R132E mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y, R126E, and R132E mutation of rAPOBEC1 (SEQ ID NO: 93), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a D316R and a D317R mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320A mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R313A mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285A mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R326E mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R320E mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another APOBEC deaminase.
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E and a R326E mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R326E mutation of
- hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another
- any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y, R320E, and R326E mutation of hAPOBEC3G (SEQ ID NO: 77), or one or more corresponding mutations in another
- APOBEC deaminase Fusion proteins comprising a nuclease programmable DNA binding protein (napDNAbp), a cytidine deaminase, and a uracil binding protein (UBP)
- napDNAbp nuclease programmable DNA binding protein
- UBP uracil binding protein
- fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp), a cytidine deaminase, and a uracil binding protein (UBP).
- napDNAbp nucleic acid programmable DNA binding protein
- UBP uracil binding protein
- any of the fusion proteins provided herein are base editors.
- the UBP is a uracil modifying enzyme.
- the UBP is a uracil base excision enzyme.
- the UBP is a uracil DNA glycosylase.
- the UBP is any of the uracil binding proteins provided herein.
- the UBP may be a UDG, a UdgX, a UdgX*, a UdgX_On, or a SMUG1.
- the UBP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a uracil binding protein, a uracil base excision enzyme or a uracil DNA glycosylase (UDG) enzyme.
- the UBP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any of the uracil binding proteins provided herein.
- the UBP may comprise an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 48-53.
- the UBP comprises the amino acid sequence of any one of SEQ ID NOs: 48-53.
- the napDNAbp is a Cas9 domain, a Cpf1 domain, a CasX domain, a CasY domain, a C2c1 domain, a C2c2 domain, aC2c3 domain, or an
- the napDNAbp is any napDNAbp provided herein.
- the napDNAbp of any of the fusion proteins provided herein is a Cas9 domain.
- the Cas9 domain may be any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein.
- any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein may be fused with any of the cytidine deaminases provided herein.
- the fusion protein comprises the structure: NH 2 -[cytidine deaminase]-[napDNAbp]-[UBP]-COOH;
- the fusion proteins comprising a cytidine deaminase, a napDNAbp (e.g., Cas9 domain), and UBP do not include a linker sequence.
- a linker is present between the cytidine deaminase domain and the napDNAbp.
- a linker is present between the cytidine deaminase domain and the UBP.
- a linker is present between the napDNAbp and the UBP.
- the“-“ used in the general architecture above indicates the presence of an optional linker.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the UBP, and/or the napDNAbp and the UBP are fused via any of the linkers provided herein.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the UBP, and/or the napDNAbp and the UBP are fused via any of the linkers provided below in the section entitled“Linkers”.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the UBP, and/or the napDNAbp and the UBP are fused via a linker that comprises between 1 and 200 amino acids.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the UBP, and/or the napDNAbp and the UBP are fused via a linker that comprises from 1 to 5, 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 80, 1 to 100, 1 to 150, 1 to 200, 5 to 10, 5 to 20, 5 to 30, 5 to 40, 5 to 60, 5 to 80, 5 to 100, 5 to 150, 5 to 200, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 80, 10 to 100, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 80, 20 to 100, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 80, 30 to 100, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 80, 40 to 100, 40 to 150, 40 to 200, 50
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the UBP, and/or the napDNAbp and the UBP are fused via a linker that comprises 4, 16, 24, 32, 91 or 104 amino acids in length.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the UBP, and/or the napDNAbp and the UBP are fused via a linker that comprises the amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 102), SGGS (SEQ ID NO: 103),
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the UBP, and/or the napDNAbp and the UBP are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 102), which may also be referred to as the XTEN linker.
- Fusion proteins comprising a nuclease programmable DNA binding protein (napDNAbp), a cytidine deaminase, and a nucleic acid polymerase (NAP) domain
- fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp), a cytidine deaminase, and a nucleic acid polymerase (NAP) domain.
- napDNAbp nucleic acid programmable DNA binding protein
- NAP nucleic acid polymerase
- any of the fusion proteins provided herein are base editors.
- the NAP is a eukaryotic nucleic acid polymerase.
- the NAP is a DNA polymerase.
- the NAP has translesion polymerase activity.
- the NAP is a translesion DNA polymerase.
- the NAP is a Rev7, Rev1 complex, polymerase iota, polymerase kappa, or polymerase eta.
- the NAP is a eukaryotic polymerase alpha, beta, gamma, delta, epsilon, gamma, eta, iota, kappa, lambda, mu, or nu.
- the NAP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a nucleic acid polymerase (e.g., a translesion DNA polymerase).
- the NAP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any of the nucleic acid polymerases provided herein.
- the NAP may comprise an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 54-64.
- the NAP comprises the amino acid sequence of any one of SEQ ID NOs: 54-64.
- the napDNAbp is a Cas9 domain, a Cpf1 domain, a CasX domain, a CasY domain, a C2c1 domain, a C2c2 domain, aC2c3 domain, or an Argonaute domain.
- the napDNAbp is any napDNAbp provided herein.
- the napDNAbp of any of the fusion proteins provided herein is a Cas9 domain.
- the Cas9 domain may be any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein.
- any of the Cas9 domains or Cas9 proteins may be fused with any of the cytidine deaminases provided herein.
- the fusion protein comprises the structure: NH 2 -[cytidine deaminase]-[napDNAbp]-[NAP]-COOH;
- the fusion proteins comprising a cytidine deaminase, a napDNAbp (e.g., Cas9 domain), and NAP do not include a linker sequence.
- a linker is present between the cytidine deaminase domain and the napDNAbp.
- a linker is present between the cytidine deaminase domain and the NAP.
- a linker is present between the napDNAbp and the NAP.
- the“-“ used in the general architecture above indicates the presence of an optional linker.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the NAP, and/or the napDNAbp and the NAP are fused via any of the linkers provided herein.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the NAP, and/or the napDNAbp and the NAP are fused via any of the linkers provided below in the section entitled“Linkers”.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the NAP, and/or the napDNAbp and the NAP are fused via a linker that comprises between 1 and 200 amino acids.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the NAP, and/or the napDNAbp and the NAP are fused via a linker that comprises from 1 to 5, 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 80, 1 to 100, 1 to 150, 1 to 200, 5 to 10, 5 to 20, 5 to 30, 5 to 40, 5 to 60, 5 to 80, 5 to 100, 5 to 150, 5 to 200, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 80, 10 to 100, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 80, 20 to 100, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 80, 30 to 100, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 80, 40 to 100, 40 to 150, 40 to 200, 50
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the NAP, and/or the napDNAbp and the NAP are fused via a linker that comprises 4, 16, 32, or 104 amino acids in length.
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the NAP, and/or the napDNAbp and the NAP are fused via a linker that comprises the amino acid sequence of
- the cytidine deaminase and the napDNAbp, the cytidine deaminase and the NAP, and/or the napDNAbp and the NAP are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 102), which may also be referred to as the XTEN linker.
- Fusion proteins comprising a nuclease programmable DNA binding protein (napDNAbp), a cytidine deaminase, a uracil binding protein (UBP), and a nucleic acid polymerase (NAP) domain
- fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp), a cytidine deaminase, a uracil binding protein (UBP), and a nucleic acid polymerase (NAP) domain.
- napDNAbp nucleic acid programmable DNA binding protein
- UBP uracil binding protein
- NAP nucleic acid polymerase domain
- any of the fusion proteins provided herein are base editors.
- the NAP is a eukaryotic nucleic acid polymerase.
- the NAP is a DNA polymerase.
- the NAP has translesion polymerase activity.
- the NAP is a translesion DNA polymerase.
- the NAP is a Rev7, Rev1 complex, polymerase iota, polymerase kappa, or polymerase eta.
- the NAP is a eukaryotic polymerase alpha, beta, gamma, delta, epsilon, gamma, eta, iota, kappa, lambda, mu, or nu.
- the NAP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a nucleic acid polymerase (e.g., a translesion DNA polymerase).
- the NAP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any of the nucleic acid polymerases provided herein.
- the NAP may comprise an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 54-64.
- the NAP comprises the amino acid sequence of any one of SEQ ID NOs: 54-64.
- the UBP is a uracil modifying enzyme. In some embodiments, the UBP is a uracil base excision enzyme. In some embodiments, the UBP is a uracil DNA glycosylase. In some embodiments, the UBP is any of the uracil binding proteins provided herein.
- the UBP may be a UDG, a UdgX, a UdgX*, a UdgX_On, or a SMUG1.
- the UBP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a uracil binding protein, a uracil base excision enzyme or a uracil DNA glycosylase (UDG) enzyme.
- the UBP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any of the uracil binding proteins provided herein.
- the UBP may comprise an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 48-53.
- the UBP comprises the amino acid sequence of any one of SEQ ID NOs: 48-53.
- the napDNAbp is a Cas9 domain, a Cpf1 domain, a CasX domain, a CasY domain, a C2c1 domain, a C2c2 domain, aC2c3 domain, or an
- the napDNAbp is any napDNAbp provided herein.
- the napDNAbp of any of the fusion proteins provided herein is a Cas9 domain.
- the Cas9 domain may be any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein.
- any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein may be fused with any of the cytidine deaminases provided herein.
- the fusion protein comprises the structure: NH 2 -[NAP]-[cytidine deaminase]-[napDNAbp]-[UBP]-COOH;
- the fusion proteins comprising a cytidine deaminase, a napDNAbp (e.g., Cas9 domain), a UBP, and NAP do not include a linker sequence.
- a linker is present between the cytidine deaminase domain and the napDNAbp, the NAP, and/or the UBP.
- a linker is present between the napDNAbp and the cytidine deaminase domain, the NAP, and/or the UBP. In some embodiments, a linker is present between the NAP and the cytidine deaminase, the napDNAbp and/or the UBP. In some embodiments, a linker is present between the UBP and the cytidine deaminase, the napDNAbp, and the NAP. In some embodiments, the“-“ used in the general architecture above indicates the presence of an optional linker. In some embodiments, the linker is any of the linkers provided herein, for example, in the section entitled“Linkers”.
- the linker comprises between 1 and 200 amino acids. In some embodiments, the linker comprises from 1 to 5, 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 80, 1 to 100, 1 to 150, 1 to 200, 5 to 10, 5 to 20, 5 to 30, 5 to 40, 5 to 60, 5 to 80, 5 to 100, 5 to 150, 5 to 200, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 80, 10 to 100, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 80, 20 to 100, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 80, 30 to 100, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 80, 40 to 100, 40 to 150, 40 to 200, 50 to 6050 to 80, 50 to 100, 50 to 150, 50 to 200, 60 to 80, 60 to 100, 60 to 150, 60 to 200, 80 to 100,
- linker that comprises 4, 16, 32, or 104 amino acids in length.
- the linker that comprises the amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 102), SGGS (SEQ ID NO: 103), SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 107),
- the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 102), which may also be referred to as the XTEN linker.
- Fusion proteins comprising a nuclease programmable DNA binding protein (napDNAbp), and a base excision enzyme (BEE)
- fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp), and a base excision enzyme.
- any of the fusion proteins provided herein are base editors.
- the base excision enzyme (BEE) is a cytosine, thymine, adenine, guanine, or uracil base excision enzyme.
- the base excision enzyme (BEE) is a cytosine base excision enzyme.
- the BEE is a thymine base excision enzyme.
- the base excision enzyme comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a naturally-occurring BEE. In some embodiments, the base excision enzyme comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical any one of SEQ ID NOs: 65-66. In some embodiments, the base excision enzyme comprises the amino acid sequence of any one of SEQ ID NOs: 65-66.
- the napDNAbp is a Cas9 domain, a Cpf1 domain, a CasX domain, a CasY domain, a C2c1 domain, a C2c2 domain, aC2c3 domain, or an
- the napDNAbp is any napDNAbp provided herein.
- the napDNAbp of any of the fusion proteins provided herein is a Cas9 domain.
- the Cas9 domain may be any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein.
- any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein may be fused with any of the cytidine deaminases provided herein.
- the fusion protein comprises the structure: NH 2 -[BEE]-[napDNAbp]-COOH; or
- the fusion protein further comprises a nucleic acid polymerase (NAP).
- NAP nucleic acid polymerase
- the NAP is a eukaryotic nucleic acid polymerase.
- the NAP is a DNA polymerase.
- the NAP has translesion polymerase activity.
- the NAP is a translesion DNA polymerase.
- the NAP is a Rev7, Rev1 complex, polymerase iota, polymerase kappa, or polymerase eta.
- the NAP is a eukaryotic polymerase alpha, beta, gamma, delta, epsilon, gamma, eta, iota, kappa, lambda, mu, or nu.
- the NAP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to a nucleic acid polymerase (e.g., a translesion DNA polymerase).
- the NAP comprises an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any of the nucleic acid polymerases provided herein.
- the NAP may comprise an amino acid sequence that is at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 54-64.
- the NAP comprises the amino acid sequence of any one of SEQ ID NOs: 54-64.
- the fusion protein comprises the structure: NH 2 -[BEE]-[napDNAbp]-[NAP]-COOH;
- the fusion proteins comprising a napDNAbp (e.g., Cas9 domain), and a BEE do not include a linker sequence.
- the fusion proteins comprising a napDNAbp (e.g., Cas9 domain), a BEE, and a NAP do not include a linker sequence.
- a linker is present between the napDNAbp and the BEE.
- a linker is present between the BEE and the NAP and/or the napDNAbp.
- a linker is present between the NAP and the BEE and/or the napDNAbp. In some embodiments, a linker is present between the napDNAbp and the BEE, and/or the NAP. In some embodiments, the“-“ used in the general architecture above indicates the presence of an optional linker. In some embodiments, the linker is any of the linkers provided herein, for example, in the section entitled“Linkers”. In some
- the linker comprises between 1 and 200 amino acids.
- the linker comprises from 1 to 5, 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 80, 1 to 100, 1 to 150, 1 to 200, 5 to 10, 5 to 20, 5 to 30, 5 to 40, 5 to 60, 5 to 80, 5 to 100, 5 to 150, 5 to 200, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 80, 10 to 100, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 80, 20 to 100, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 80, 30 to 100, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 80, 40 to 100, 40 to 150, 40 to 200, 50 to 6050 to 80, 50 to 100, 50 to 150, 50 to 200, 60 to 80, 60 to 100, 60 to 150, 60 to 200, 80 to 100, 80 to 100, 80 to 100
- linker that comprises 4, 16, 32, or 104 amino acids in length.
- the linker that comprises the amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 102), SGGS (SEQ ID NO: 103),
- the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 102), which may also be referred to as the XTEN linker.
- Fusion proteins comprising a nuclear localization sequence (NLS) [00235] In some embodiments, any of the fusion proteins provided herein further comprise one or more nuclear targeting sequences, for example, a nuclear localization sequence (NLS).
- a NLS comprises an amino acid sequence that facilitates the importation of a protein, that comprises an NLS, into the cell nucleus (e.g., by nuclear transport).
- any of the fusion proteins provided herein further comprise a nuclear localization sequence (NLS).
- the NLS is fused to the N-terminus of the fusion protein.
- the NLS is fused to the C- terminus of the fusion protein.
- the NLS is fused to the N-terminus of the napDNAbp.
- the NLS is fused to the C-terminus of the
- the NLS is fused to the N-terminus of the NAP. In some embodiments, the NLS is fused to the C-terminus of the NAP. In some embodiments, the NLS is fused to the N-terminus of the cytidine deaminase. In some embodiments, the NLS is fused to the C-terminus of the cytidine deaminase. In some embodiments, the NLS is fused to the N-terminus of the UBP. In some embodiments, the NLS is fused to the C-terminus of the UBP. In some embodiments, the NLS is fused to the N-terminus of the BEE.
- the NLS is fused to the C-terminus of the BEE. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker. In some embodiments, the NLS comprises an amino acid sequence of any one of the NLS sequences provided or referenced herein. In some embodiments, the NLS comprises an amino acid sequence as set forth in SEQ ID NO: 41 or SEQ ID NO: 42. Additional nuclear localization sequences are known in the art and would be apparent to the skilled artisan.
- NLS sequences are described in Plank et al., PCT/EP2000/011690, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences.
- a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 41),
- KRTADGSEFESPKKKRKV (SEQ ID NO: 43), KRGINDRNFWRGENGRKTR (SEQ ID NO: 44), KKTGGPIYRRVDGKWRR (SEQ ID NO: 45), RRELILYDKEEIRRIWR (SEQ ID NO: 46), or AVSRKRKA (SEQ ID NO: 47).
- Linkers
- linkers may be used to link any of the proteins or protein domains described herein.
- the linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length.
- the linker is a polypeptide or based on amino acids. In other embodiments, the linker is not peptide-like.
- the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.).
- the linker is a carbon-nitrogen bond of an amide linkage.
- the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker.
- the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.).
- the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid.
- the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.).
- the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane,
- the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring.
- the linker may include functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the
- Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.
- the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein).
- the linker is a bond (e.g., a covalent bond), an organic molecule, group, polymer, or chemical moiety.
- the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, or 150-200 amino acids in length.
- a linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 102), which may also be referred to as the XTEN linker.
- a linker comprises the amino acid sequence SGGS (SEQ ID NO: 103).
- a linker comprises (SGGS) n (SEQ ID NO: 103), (GGGS)n (SEQ ID NO: 104), (GGGGS)n (SEQ ID NO: 105), (G)n (SEQ ID NO: 121), (EAAAK)n (SEQ ID NO: 106), (GGS)n (SEQ ID NO: 122),
- a linker comprises SGSETPGTSESATPES (SEQ ID NO: 102), SGGSGGSGGS (SEQ ID NO: 120), or (XP) n motif (SEQ ID NO: 123), or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.
- a linker comprises SGSETPGTSESATPES (SEQ ID NO: 102), and SGGS (SEQ ID NO: 103).
- a linker comprises SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 107).
- a linker comprises SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 108). In some embodiments, a linker comprises
- a linker comprises SGGSGGSGGS (SEQ ID NO: 120).
- Nucleic acid programmable DNA binding protein (napDNAbp) complexes with guide nucleic acids
- Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide nucleic acid bound to napDNAbp of the fusion protein. Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide RNA bound to a Cas9 domain (e.g., a dCas9, a nuclease active Cas9, or a Cas9 nickase) of fusion protein.
- a Cas9 domain e.g., a dCas9, a nuclease active Cas9, or a Cas9 nickase
- the guide nucleic acid e.g., guide RNA
- the guide RNA is from 15- 100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence.
- the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long.
- the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target sequence.
- the target sequence is a DNA sequence.
- the target sequence is an RNA sequence.
- the target sequence is a sequence in the genome of a mammal.
- the target sequence is a sequence in the genome of a human.
- the 3 ⁇ end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG).
- the guide nucleic acid (e.g., guide RNA) is complementary to a sequence associated with a disease or disorder. In some embodiments, the guide nucleic acid (e.g., guide RNA) is complementary to a sequence associated with a disease or disorder having a mutation in a gene associated with any of the diseases or disorders provided herein. In some embodiments, the guide nucleic acid (e.g., guide RNA) is complementary to any of the genes associated with a disease or disorder as provided herein.
- Some aspects of this disclosure provide methods of using any of the fusion proteins (e.g., base editors) provided herein, or complexes comprising a guide nucleic acid (e.g., gRNA) and a fusion protein (e.g., base editor) provided herein.
- a guide nucleic acid e.g., gRNA
- a fusion protein e.g., base editor
- some aspects of this disclosure provide methods comprising contacting a DNA, or RNA molecule with any of the fusion proteins or base editors provided herein, and with at least one guide nucleic acid (e.g., guide RNA), wherein the guide nucleic acid, (e.g., guide RNA) is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence.
- the 3’ end of the target sequence is immediately adjacent to a canonical spCas9 PAM sequence (NGG). In some embodiments, the 3’ end of the target sequence is not immediately adjacent to a spCas9 canonical PAM sequence (NGG). In some embodiments, the 3’ end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence.
- the target DNA sequence comprises a sequence associated with a disease or disorder.
- the target DNA sequence comprises a point mutation associated with a disease or disorder.
- the activity of the fusion protein e.g., comprising a napDNAbp, a cytidine deaminase, and a uracil binding protein UBP), or the complex, results in a correction of the point mutation.
- the target DNA sequence comprises a G to C, or C to G point mutation associated with a disease or disorder, and wherein deamination and/or excision of a mutant C base results in a sequence that is not associated with a disease or disorder.
- the target DNA sequence encodes a protein
- the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to the wild-type codon.
- the deamination of the mutant C results in a change of the amino acid encoded by the mutant codon.
- the deamination of the mutant C results in the codon encoding the wild-type amino acid.
- the contacting is in vivo in a subject. In some embodiments, the subject has or has been diagnosed with a disease or disorder.
- the disease or disorder is 22q13.3 deletion syndrome; 2-methyl-3-hydroxybutyric aciduria; 3 Methylcrotonyl-CoA carboxylase 1 deficiency; 3-methylcrotonyl CoA carboxylase 2 deficiency; 3- Methylglutaconic aciduria type 2; 3-Methylglutaconic aciduria type 3; 3-methylglutaconic aciduria type V; 3-Oxo-5 alpha-steroid delta 4-dehydrogenase deficiency; 46,XY sex reversal, type 1; 46,XY true hermaphroditism, SRY-related; 4-Hydroxyphenylpyruvate dioxygenase deficiency; Abnormal facial shape; Abnormal glycosylation (CDG IIa);
- Achondrogenesis type 2 Achromatopsia 2; Achromatopsia 5; Achromatopsia 6;
- Achromatopsia 7 Acquired hemoglobin H disease; Acrocephalosyndactyly type I;
- Acrodysostosis 1 with or without hormone resistance
- Acrodysostosis 2 with or without hormone resistance
- Acrofacial Dysostosis Cincinnati type
- ACTH resistance Acute neuronopathic Gaucher disease; Adams-Oliver syndrome; Adams-Oliver syndrome 2;
- Adams-Oliver syndrome 4 Adams-Oliver Syndrome 6; Adenine phosphoribosyltransferase deficiency; Adenylosuccinate lyase deficiency; Adolescent nephronophthisis;
- Adrenoleukodystrophy Childhood Adrenoleukodystrophy; Adult junctional epidermolysis bullosa; Adult neuronal ceroid lipofuscinosis; ADULT syndrome; Age-related macular degeneration 14; Age-related macular degeneration 3; Aicardi Goutieres syndrome 5; Aicardi-goutieres syndrome 6; Alexander disease; alpha Thalassemia; Alpha-B crystallinopathy; Alport syndrome, autosomal recessive; Alport syndrome, X-linked recessive; Alternating hemiplegia of childhood 2; Alzheimer disease; Alzheimer disease, type 1; Alzheimer disease, type 3;
- Amelogenesis Imperfecta Hypomaturation type, IIA3; Amelogenesis imperfecta, type 1E; Amish lethal microcephaly; AML - Acute myeloid leukemia; Amyloidogenic transthyretin amyloidosis; Amyotrophic lateral sclerosis 16, juvenile; Amyotrophic lateral sclerosis 6, autosomal recessive; Amyotrophic lateral sclerosis type 1; Amyotrophic lateral sclerosis type 10; Amyotrophic lateral sclerosis type 2; Amyotrophic lateral sclerosis type 9; Andersen Tawil syndrome; Anemia, Dyserythropoietic Congenital, Type IV; Anemia, nonspherocytic hemolytic, due to G6PD deficiency; Anemia, sideroblastic, pyridoxine-refractory, autosomal recessive; Angelman syndrome; Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps; Anhidrotic
- Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis Antley- Bixler syndrome without genital anomalies or disordered steroidogenesis
- Aplastic anemia Apolipoprotein a-i deficiency; Arginase deficiency; Arrhythmogenic right ventricular cardiomyopathy; Arrhythmogenic right ventricular cardiomyopathy, type 11;
- Arrhythmogenic right ventricular cardiomyopathy type 9; Arterial calcification of infancy; Arterial tortuosity syndrome; Arthrogryposis multiplex congenita distal type 1;
- Arthrogryposis renal dysfunction cholestasis syndrome Arthrogryposis, distal, type 5d; Arts syndrome; Aspartylglucosaminuria, finnish type; Asphyxiating thoracic dystrophy 2; Ataxia with vitamin E deficiency; Ataxia-telangiectasia syndrome; Ataxia-telangiectasia-like disorder; Atelosteogenesis type 1; Atrial fibrillation; Atrial fibrillation, familial, 10; Atrial septal defect 4; Atrophia bulborum hereditaria; ATR-X syndrome; Atypical hemolytic- uremic syndrome 1; Auditory neuropathy, autosomal recessive, 1; Auriculocondylar syndrome 1; Autoimmune disease, multisystem, infantile-onset; Autoimmune
- lymphoproliferative syndrome type 1A
- Autoimmune Lymphoproliferative Syndrome type V
- Autosomal dominant nocturnal frontal lobe epilepsy Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 2
- Bronchiectasis Brown-Vialetto-Van laere syndrome; Brown-Vialetto-Van Laere syndrome 2; Bullous ichthyosiform erythroderma; Burkitt lymphoma; Camptomelic dysplasia; Cap myopathy 2; Carbohydrate-deficient glycoprotein syndrome type I; Carbohydrate-deficient glycoprotein syndrome type II; Carcinoma of colon; Carcinoma of pancreas; Cardiac arrhythmia; Cardioencephalomyopathy, Fatal Infantile, Due To Cytochrome C Oxidase Deficiency 3; Cardiofaciocutaneous syndrome; Cardiofaciocutaneous syndrome 2;
- Cardiomyopathy cardiovascular disease; Cardiomyopathy, restrictive; Carney complex, type 1; Carnitine palmitoyltransferase I deficiency; Cataract 1; Cataracts, congenital, with sensorineural deafness, down syndrome-like facial appearance, short stature, and mental retardation;
- Catecholaminergic polymorphic ventricular tachycardia Central core disease; Central precocious puberty; Cerebellar ataxia and hypogonadotropic hypogonadism; Cerebellar ataxia infantile with progressive external ophthalmoplegia; Cerebellar ataxia, deafness, and narcolepsy; Cerebral amyloid angiopathy, APP-related; Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; Cerebral cavernous malformations 1; Cerebral palsy, spastic quadriplegic, 1; Cerebro-costo-mandibular syndrome; Ceroid lipofuscinosis neuronal 1; Ceroid lipofuscinosis neuronal 10; Ceroid lipofuscinosis neuronal 6; Ceroid lipofuscinosis neuronal 7; Ceroid lipofuscinosis neuronal 8; Ceroid lipofuscinosis
- Charcot-Marie-Tooth disease type IA
- Charcot-Marie-Tooth disease type IE
- Charcot- Marie-Tooth disease type IF
- Charcot-Marie-Tooth disease X-linked recessive, type 5;
- glycosylation type 1M Congenital disorder of glycosylation type 1t; Congenital disorder of glycosylation type 1u; Congenital disorder of glycosylation type 2C; Congenital generalized lipodystrophy type 1; Congenital generalized lipodystrophy type 2; Congenital heart defects, multiple types, 1, X-linked; Congenital lactase deficiency; Congenital long QT syndrome; Congenital muscular dystrophy-dystroglycanopathy with brain and eye anomalies, type A2; Congenital muscular dystrophy-dystroglycanopathy with brain and eye anomalies, type A7; Congenital muscular dystrophy-dystroglycanopathy with mental retardation, type B1;
- Deficiency of iodide peroxidase Deficiency of malonyl-CoA decarboxylase; Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase; Delayed speech and language development; delta Thalassemia; Dent disease 1; Desbuquois syndrome; Desmosterolosis; DFNA 2 Nonsyndromic Hearing Loss; Diabetes mellitus type 2; Diabetes mellitus, insulin- dependent, 20; Digitorenocerebral syndrome; Dilated cardiomyopathy 1FF; Dilated cardiomyopathy 1G; Dilated cardiomyopathy 1S; Dilated cardiomyopathy 1X; Dilated cardiomyopathy 3B; Disordered steroidogenesis due to cytochrome p450 oxidoreductase deficiency; Distal hereditary motor neuronopathy type 2B; Distichiasis-lymphedema syndrome; Drash syndrome; Duchenne muscular dystrophy
- Eichsfeld type congenital muscular dystrophy Elliptocytosis 3; Endometrial carcinoma; Endplate acetylcholinesterase deficiency; Enlarged vestibular aqueduct syndrome;
- Epilepsy progressive myoclonic 2b; Epileptic encephalopathy, early infantile, 1; Epileptic encephalopathy, early infantile, 24; Epileptic encephalopathy, early infantile, 28; Epileptic Encephalopathy, Early Infantile, 31; Epiphyseal chondrodysplasia, miura type; Episodic ataxia type 1; Episodic ataxia, type 6; Episodic pain syndrome, familial, 3; Erythrocytosis, familial, 2; Erythrocytosis, familial, 3; Erythrokeratodermia with ataxia; Exudative vitreoretinopathy 1; Exudative vitreoretinopathy 5; Fabry disease; Fabry disease, cardiac variant; Factor v and factor viii, combined deficiency of, 2; Familial amyloid nephropathy with urticaria AND deafness; Familial cancer of breast; Familial cold urticaria; Familial
- Frontotemporal dementia Fructose-biphosphatase deficiency; Fumarase deficiency;
- Hemochromatosis type 1 Hemochromatosis type 3
- Hemolytic anemia due to hexokinase deficiency
- Hemolytic anemia nonspherocytic, due to glucose phosphate isomerase deficiency
- Hemosiderosis systemic, due to aceruloplasminemia
- Hennekam lymphangiectasia-lymphedema syndrome Hereditary acrodermatitis enteropathica;
- Hypercholesterolaemia Hyperekplexia 3; Hyperekplexia hereditary; Hyperferritinemia cataract syndrome; Hyperlipoproteinemia, type I; Hyperlipoproteinemia, type ID;
- Hyperlysinemia Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome; Hyperproinsulinemia; Hypertelorism, severe, with midface prominence, myopia, mental retardation, and bone fragility; Hypertrophic cardiomyopathy; Hypocalcemia, autosomal dominant 1; Hypocalcemia, autosomal dominant 1, with bartter syndrome;
- Hypochondroplasia Hypochromic microcytic anemia with iron overload; Hypoglycemia with deficiency of glycogen synthetase in the liver; Hypogonadotropic hypogonadism 13 with or without anosmia; Hypohidrotic X-linked ectodermal dysplasia; Hypokalemic periodic paralysis 1; Hypomagnesemia 1, intestinal; Hypomagnesemia 5, renal, with ocular involvement; Hypomagnesemia, seizures, and mental retardation; Hypomyelinating leukodystrophy 7; Hypomyelinating leukodystrophy 8, with or without oligodontia and/or hypogonadotropic hypogonadism; Hypoproteinemia, hypercatabolic; Hypothyroidism, congenital, nongoitrous, 1; Hypothyroidism, congenital, nongoitrous, 5; Hypothyroidism, congenital, nongoitrous, 6; Hypotrichosis 6; Hypotrichosis-lymphedema-telangiectasia syndrome; I
- dyschondrosteosis Lesch-Nyhan syndrome
- Leukodystrophy hypomyelinating, 6;
- Leukoencephalopathy with ataxia Leukoencephalopathy with Brainstem and Spinal Cord Involvement and Lactate Elevation; Leukoencephalopathy with vanishing white matter; Leydig cell agenesis; Li-Fraumeni syndrome 1; Limb-girdle muscular dystrophy; Limb-girdle muscular dystrophy, type 1B; Limb-girdle muscular dystrophy, type 1C; Limb-girdle muscular dystrophy, type 1E; Limb-girdle muscular dystrophy, type 2A; Limb-girdle muscular dystrophy, type 2B; Limb-girdle muscular dystrophy, type 2E; Limb-girdle muscular dystrophy, type 2F; Limb-girdle muscular dystrophy, type 2L; Limb-girdle muscular dystrophy-dystroglycanopathy, type C1; Limb-girdle muscular dystrophy- dystroglycanopathy, type C14; Limb-girdle muscular dystrophy-dy
- Lymphoproliferative syndrome 1 Lymphoproliferative syndrome 1; Lymphoproliferative syndrome 1, X-linked; Lynch syndrome I; Lynch syndrome II; Macrothrombocytopenia, familial, Bernard-Soulier type; Macular dystrophy with central cone involvement; Majeed syndrome; Malignant tumor of esophagus; Malignant tumor of prostate; Mandibuloacral dysostosis; Maple syrup urine disease; Maple syrup urine disease type 1A; Maple syrup urine disease type 2; Marfan syndrome; Marie Unna hereditary hypotrichosis 1; Maturity-onset diabetes of the young, type 2; Maturity-onset diabetes of the young, type 3; Medium-chain acyl-coenzyme A dehydrogenase deficiency; Meier-Gorlin syndrome 5; Melnick-Fraser syndrome; MEN2 phenotype: Unclassified; MEN2 phenotype: Unknown; Menkes kinky-hair syndrome;
- Mucopolysaccharidosis MPS-I-S
- Mucopolysaccharidosis MPS-IV-A
- Mucopolysaccharidosis MPS-IV-B; Muenke syndrome; Mulibrey nanism syndrome;
- Multiple congenital anomalies Multiple endocrine neoplasia, type 1; Multiple endocrine neoplasia, type 2; Multiple endocrine neoplasia, type 2a; Multiple epiphyseal dysplasia 1; Multiple epiphyseal dysplasia 5; Multiple exostoses type 2; Multiple pterygium syndrome Escobar type; Multiple sulfatase deficiency; Mutilating keratoderma; Myasthenia, limb- girdle, familial; Myasthenic syndrome, congenital, 9, associated with acetylcholine receptor deficiency Myasthenic Syndrome, Congenital, 9, Associated With Acetylcholine Receptor Deficiency; Myasthenic syndrome, congenital, with pre- and postsynaptic defects;
- Myasthenic syndrome congenital, with tubular aggregates 2; Myasthenic syndrome, slow- channel congenital; Myoclonic epilepsy myopathy sensory ataxia; Myoclonus, familial cortical; Myofibrillar myopathy 1; Myokymia 1; Myopathy with postural muscle atrophy, X- linked; Myopathy, actin, congenital, with excess of thin myofilaments; Myopathy, centronuclear; Myopathy, distal, 1; Myopathy, isolated mitochondrial, autosomal dominant; Myopathy, reducing body, X-linked, early-onset, severe; Myotonia congenita; Nail disorder, nonsyndromic congenital, 8; Nanophthalmos 4; Narcolepsy 7; Native American myopathy; Navajo neurohepatopathy; Nemaline myopathy 3; Neonatal hypotonia; Neonatal insulin- dependent diabetes mellitus; Neonatal intrahepatic cholestasis caused by citrin deficiency; Neoplasm of
- Ornithine carbamoyltransferase deficiency Orofacial cleft 11; Orofaciodigital syndrome 6; Orotic aciduria; Osteogenesis imperfecta type 12; Osteogenesis imperfecta type 13;
- Osteogenesis imperfecta type III Osteogenesis imperfecta with normal sclerae, dominant form; Osteogenesis imperfecta, recessive perinatal lethal; Osteopetrosis autosomal dominant type 1; Osteopetrosis autosomal recessive 7; Oto-palato-digital syndrome, type I;
- Pachydermoperiostosis syndrome Pallister-Hall syndrome; Papillon-Lef ⁇ xc3 ⁇ xa8vre syndrome; Paragangliomas 1; Paragangliomas 4; Parathyroid carcinoma; Parietal foramina 2; Parkinson disease 1; Parkinson disease 7; Parkinson disease 9; Paroxysmal nocturnal hemoglobinuria 1; Partial hypoxanthine-guanine phosphoribosyltransferase deficiency;
- Peeling skin syndrome acral type; Pelger-Hu ⁇ xc3 ⁇ xabt anomaly; Pelizaeus-Merzbacher disease; Pendred syndrome; Permanent neonatal diabetes mellitus; Peroxisome biogenesis disorder 6B; Peroxisome biogenesis disorder 9B; Peutz-Jeghers syndrome; Pfeiffer syndrome; Phenylketonuria; Pheochromocytoma; Phosphoglycerate kinase 1 deficiency; Phosphoribosylpyrophosphate synthetase superactivity; Photosensitive trichothiodystrophy; Pierson syndrome; Pigmentary pallidal degeneration; Pitt-Hopkins syndrome; Pitt-Hopkins- like syndrome 2; Pituitary dependent hypercortisolism; Pituitary hormone deficiency, combined 1; Pituitary hormone deficiency, combined 4; Pituitary hormone deficiency, combined 5; Platelet-type bleeding disorder 16; Polyagglutinable erythrocyte
- predisposition syndrome 2 Rhizomelic chondrodysplasia punctata type 1; Rienhoff syndrome; Roberts-SC phocomelia syndrome; Robinow syndrome; RRM2B-related mitochondrial disease; Rubinstein-Taybi syndrome; Saethre-Chotzen syndrome;
- Scapuloperoneal myopathy X-linked dominant; Schindler disease, type 1; Schindler disease, type 3; Schnyder crystalline corneal dystrophy; Seckel syndrome 1; Seizures; Selective tooth agenesis 1; Senior-Loken Syndrome 8; Sensory ataxic neuropathy, dysarthria, and
- ophthalmoparesis SeSAME syndrome; Severe combined immunodeficiency due to ADA deficiency; Severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation; Severe congenital neutropenia; Severe congenital neutropenia 4, autosomal recessive; Severe myoclonic epilepsy in infancy; Severe X-linked myotubular myopathy; short QT syndrome; Short QT syndrome 2; Short Stature With Nonspecific Skeletal Abnormalities; Short stature, auditory canal atresia, mandibular hypoplasia, skeletal abnormalities; Short stature, idiopathic, autosomal; Short stature, idiopathic, X-linked; Short-Rib Thoracic Dysplasia 13 With Or Without Polydactyly; Short- rib thoracic dysplasia 14 with polydactyly; Short-rib thoracic dysplasi
- Spondyloepimetaphyseal dysplasia with joint laxity Spondyloepimetaphyseal dysplasia, pakistani type; Spondyloepiphyseal dysplasia congenita; Spondylometaphyseal dysplasia with cone-rod dystrophy; Squamous cell carcinoma of the head and neck; Stargardt disease 1; Stargardt Disease 3; Steel syndrome; Stickler syndrome type 1; Stiff skin syndrome; Sting- associated vasculopathy, infantile-onset; Subacute neuronopathic Gaucher disease; Succinyl- CoA acetoacetate transferase deficiency; Superoxide dismutase, elevated extracellular;
- Waardenburg syndrome type 2E without neurologic involvement; Waardenburg syndrome type 4A; Waardenburg syndrome type 4B; Waardenburg syndrome type 4C; Walker- Warburg congenital muscular dystrophy; Warburg micro syndrome 3; Warts,
- hypogammaglobulinemia infections, and myelokathexis; Werdnig-Hoffmann disease;
- Xeroderma pigmentosum group G; X-linked agammaglobulinemia; X-linked hereditary motor and sensory neuropathy; X-linked ichthyosis with steryl-sulfatase deficiency; X- Linked Mental Retardation 41; X-Linked mental retardation 90; X-linked periventricular heterotopia; Zimmermann-Laband syndrome; or Zimmermann-Laband syndrome 2.
- the target DNA sequence comprises a sequence associated with a disease or disorder. In some embodiments, the target DNA sequence comprises a point mutation associated with a disease or disorder. In some embodiments, the point mutation associated with a disease or disorder is in a gene associated with the disease or disorder.
- the gene associated with the disease or disorder is selected from the group consisting of AARS2, AASS, ABCA1, ABCA4, ABCB11, ABCB6, ABCC6, ABCC8, ABCD1, ABCG8, ABHD12, ABHD5, ACADM, ACAT1, ACE, ACO2, ACTA1, ACTB, ACTG1, ACTN2, ACVR1, ACVRL1, ADA, ADAMTS13, ADAR, ADGRG1, ADSL, AFF4, AGA, AGBL1, AGL, AGPAT2, AGRN, AGXT, AIPL1, AKR1D1, ALAD, ALAS2, ALDH3A2, ALDH7A1, ALDOB, ALG1, ALPL, ALS2, ALX3, ALX4, AMPD2, AMT, ANKS6, ANO5, APC, APOA1, APOE, APP, APRT, AQP2, AR, ARHGEF9, ARID2, ARL6, ARSA, ARSB, ARSE, ARX, ASAH1, ASB10, ASPM,
- HGSNAT HINT1, HK1, HMGCL, HNF1A, HNF1B, HOGA1, HOXA1, HPD, HPGD, HPRT1, HR, HSD17B10, HSPB1, IDS, IDUA, IFT122, IFT80, IGHMBP2, IKBKG, IL11RA, IL12RB1, IMPDH1, IMPG2, INF2, ING1, INPPL1, INSL3, INSR, IRF6, IRX5, ISPD, ITGA2B, ITGB3, ITK, JAGN1, KCNA1, KCNH1, KCNH2, KCNJ1, KCNJ10, KCNJ11, KCNJ18, KCNJ2, KCNJ5, KCNK3, KCNQ1, KCNQ2, KCNQ4, KDM5C, KIAA0196, KIAA0586, KIF11, KIF1A, KIF2A, KISS1, KISS1R, KLF1, KMT2A, KMT2D, KRAS, KRIT1, KRT1, KRT
- MMACHC MMP14, MOG, MPL, MPV17, MPZ, MRE11A, MRPL3, MSH2, MSH6, MSR1, MSX1, MT-ATP6, MTHFR, MTM1, MT-ND1, MTR, MUSK, MUT, MYBPC3, MYC, MYH7, MYL2, MYL3, MYO1E, MYOC, NAGA, NAGLU, NARS2, NBEAL2, NBN, NDP, NDUFA1, NDUFA13, NDUFAF3, NDUFS8, NEFL, NEU1, NEXN, NFIX, NHEJ1, NHLRC1, NIPA1, NIPBL, NKX2-5, NLRP3, NMNAT1, NNT, NOBOX, NOG, NOL3, NOTCH3, NPC1, NPR2, NR0B1, NR3C2, NR5A1, NRXN1, NSD1, NSDHL, NT5C3A, NYX, OAT, OCA2, OCRL, OFD1,
- POLR1D POLR3A, POLR3B, POMT1, POMT2, POR, POU1F1, PPOX, PPT1, PRKACG, PRKAG2, PRKAR1A, PRKCG, PRNP, PROC, PROK2, PROKR2, PRPF31, PRPS1, PRSS56, PSAP, PSEN1, PTEN, PTPN11, PURA, PVRL4, PYGL, PYGM, RAB18,
- the fusion protein is used to introduce a point mutation into a nucleic acid by deaminating a target nucleobase, e.g., a C residue.
- a target nucleobase e.g., a C residue.
- the fusion protein is used to deaminate a target C to U, which is then removed to create an abasic site previously occupied by the C residue.
- the deamination of the target nucleobase results in the correction of a genetic defect, e.g., in the correction of a point mutation that leads to a loss of function in a gene product.
- the methods provided herein are used to introduce a deactivating point mutation into a gene or allele that encodes a gene product that is associated with a disease or disorder.
- methods are provided herein that employ a DNA editing fusion protein to introduce a deactivating point mutation into an oncogene (e.g., in the treatment of a proliferative disease).
- a deactivating mutation may, in some embodiments, generate a premature stop codon in a coding sequence, which results in the expression of a truncated gene product, e.g., a truncated protein lacking the function of the full-length protein.
- the purpose of the methods provided herein is to restore the function of a dysfunctional gene via genome editing.
- the nucleobase editing proteins provided herein can be validated for gene editing-based human therapeutics in vitro, e.g., by correcting a disease-associated mutation in human cell culture. It will be understood by the skilled artisan that the nucleobase editing proteins provided herein, e.g., the fusion proteins comprising a nucleic acid programmable DNA binding protein (e.g., Cas9), a cytidine deaminase, and a uracil binding protein can be used to correct any single point C to G or G to C mutation.
- a nucleic acid programmable DNA binding protein e.g., Cas9
- a cytidine deaminase e.g., cytidine deaminase
- uracil binding protein e.g., uracil binding protein
- napDNAbp nucleic acid programmable DNA binding protein
- cytidine deaminase a cytidine deaminase
- uracil binding protein also have applications in“reverse” gene therapy, where certain gene functions are purposely suppressed or abolished.
- site- specifically mutating residues that lead to inactivating mutations in a protein, or mutations that inhibit function of the protein can be used to abolish or inhibit protein function in vitro, ex vivo, or in vivo.
- a method comprises administering to a subject having such a disease, e.g., a cancer associated with a point mutation as described above, an effective amount of a base editor fusion protein that corrects the point mutation (e.g., a C to G or G to C point mutation) or introduces a deactivating mutation into a disease-associated gene.
- the disease is a proliferative disease.
- the disease is a genetic disease.
- the disease is a neoplastic disease.
- the disease is a metabolic disease. In some embodiments, the disease is a lysosomal storage disease. Other diseases that can be treated by correcting a point mutation or introducing a deactivating mutation into a disease-associated gene will be known to those of skill in the art, and the disclosure is not limited in this respect.
- the instant disclosure provides lists of genes comprising pathogenic G to C or C to G mutations.
- Such pathogenic G to C or C to G mutations may be corrected using the methods and compositions provided herein, for example by mutating the C to a G, and/or the G to a C, thereby restoring gene function.
- a fusion protein recognizes canonical PAMs and therefore can correct the pathogenic G to C or C to G mutations with canonical PAMs, e.g., NGG, respectively, in the flanking sequences.
- Cas9 proteins that recognize canonical PAMs comprise an amino acid sequence that is at least 80%, 85%, 90%, 95%, 97%, 98%, or 99% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 6, or to a fragment thereof comprising the RuvC and HNH domains of SEQ ID NO: 6.
- a target site e.g., a site comprising a point mutation to be edited
- a guide RNA e.g., an sgRNA.
- a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the
- the guide RNA comprises a structure 5’-[guide sequence]- guuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuu uu-3’ (SEQ ID NO: 119), wherein the guide sequence comprises a sequence that is complementary to the target sequence.
- the guide sequence comprises a nucleic acid sequence that is complementary to a target nucleic acid. The guide sequence is typically 20 nucleotides long.
- suitable guide RNAs for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure.
- Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited.
- An“indel”, as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene.
- any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is greater than 1:1.
- the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 200:1, at least 300:1, at least 400:1, at least 500:1, at least 600:1, at least 700:1, at least 800:1, at least 900:1, or at least 1000:1, or more.
- the number of intended mutations and indels may be determined using any suitable method, for example the methods used in the below Examples.
- sequencing reads are scanned for exact matches to two 10-bp sequences that flank both sides of a window in which indels might occur. If no exact matches are located, the read is excluded from analysis. If the length of this indel window exactly matches the reference sequence the read is classified as not containing an indel. If the indel window is two or more bases longer or shorter than the reference sequence, then the sequencing read is classified as an insertion or deletion, respectively.
- the base editors provided herein are capable of limiting formation of indels in a region of a nucleic acid.
- the region is at a nucleotide targeted by a base editor or a region within 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides of a nucleotide targeted by a base editor.
- any of the base editors provided herein are capable of limiting the formation of indels at a region of a nucleic acid to less than 1%, less than 1.5%, less than 2%, less than 2.5%, less than 3%, less than 3.5%, less than 4%, less than 4.5%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 12%, less than 15%, or less than 20%.
- the number of indels formed at a nucleic acid region may depend on the amount of time a nucleic acid (e.g., a nucleic acid within the genome of a cell) is exposed to a base editor.
- an number or proportion of indels is determined after at least 1 hour, at least 2 hours, at least 6 hours, at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 3 days, at least 4 days, at least 5 days, at least 7 days, at least 10 days, or at least 14 days of exposing a nucleic acid (e.g., a nucleic acid within the genome of a cell) to a base editor.
- a nucleic acid e.g., a nucleic acid within the genome of a cell
- an intended mutation is a mutation that is generated by a specific base editor bound to a gRNA, specifically designed to generate the intended mutation.
- the intended mutation is a mutation associated with a disease or disorder.
- the intended mutation is a cytosine (C) to guanine (G) point mutation associated with a disease or disorder.
- the intended mutation is a guanine (G) to cytosine (C) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to guanine (G) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a
- the intended mutation is a point mutation that generates a stop codon, for example, a premature stop codon within the coding region of a gene. In some embodiments, the intended mutation is a mutation that eliminates a stop codon. In some embodiments, the intended mutation is a mutation that alters the splicing of a gene. In some embodiments, the intended mutation is a mutation that alters the regulatory sequence of a gene (e.g., a gene promotor or gene repressor).
- any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is greater than 1:1. In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 150:1, at least 200:1, at least 250:1, at least 500:1, or at least 1000:1, or more. It should be
- the method is a method for editing a nucleobase of a nucleic acid (e.g., a base pair of a double-stranded DNA sequence).
- the method comprises the steps of: a) contacting a target region of a nucleic acid (e.g., a double-stranded DNA sequence) with a complex comprising a base editor (e.g., a Cas9 domain fused to a cytidine deaminase and a uracil binding protein) and a guide nucleic acid (e.g., gRNA), wherein the target region comprises a targeted nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, d) excising the second nucleobase, thereby creating an abasic site, and e) replacing a third nucleobase complementary to the first nucleobase base with a fourth nucleobase that is a cytosine (C).
- a target region of a nucleic acid e.g.,
- the method results in less than 20% indel formation in the nucleic acid. It should be appreciated that in some embodiments, step b is omitted.
- the first nucleobase is a cytosine (C).
- the second nucleobase is a deaminated cytosine, or uracil.
- the third nucleobase is a guanine (G).
- the fourth nucleobase is a cytosine (C).
- a fifth nucleobase is ligated into the abasic site generated in step (d). In some embodiments the fifth nucleobase is guanine (G).
- the method results in less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation.
- at least 5% of the intended base pairs are edited.
- at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended base pairs are edited.
- the ratio of intended products to unintended products in the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more.
- the cut single strand (nicked strand) is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the base editor comprises a Cas9 domain.
- the base editor comprises nickase activity.
- the intended edited base pair is upstream of a PAM site.
- the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site.
- the intended edited basepair is downstream of a PAM site.
- the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site.
- the method does not require a canonical (e.g., NGG) PAM site.
- the nucleobase editor comprises a linker.
- the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length.
- the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1- 7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length.
- the intended edited base pair is within the target window.
- the target window comprises the intended edited base pair.
- the method is performed using any of the base editors provided herein.
- a target window is a deamination window.
- the disclosure provides methods for editing a nucleotide.
- the disclosure provides a method for editing a nucleobase pair of a double-stranded DNA sequence.
- the method comprises a) contacting a target region of the double-stranded DNA sequence with a complex comprising a base editor and a guide nucleic acid (e.g., gRNA), where the target region comprises a target nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, d) excising the second nucleobase, thereby creating an abasic site, and e) replacing a third nucleobase complementary to the first nucleobase base with a fourth nucleobase that is a cytosine (C), thereby generating an intended edited base pair, wherein the efficiency of generating the
- step b is omitted.
- at least 5% of the intended base pairs are edited.
- at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended base pairs are edited.
- the method causes less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation.
- the ratio of intended product to unintended products at the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more.
- the cut single strand is hybridized to the guide nucleic acid.
- the nucleobase editor comprises nickase activity.
- the intended edited base pair is upstream of a PAM site.
- the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site.
- the intended edited basepair is downstream of a PAM site.
- the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site.
- the method does not require a canonical (e.g., NGG) PAM site.
- the nucleobase editor comprises a linker.
- the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length.
- the linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length.
- the target region comprises a target window, wherein the target window comprises the target nucleobase pair.
- the target window comprises 1-10 nucleotides.
- the target window is 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length.
- the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length.
- the intended edited base pair occurs within the target window.
- the target window comprises the intended edited base pair.
- the nucleobase editor is any one of the base editors provided herein. Pharmaceutical Compositions
- compositions comprising any of the base editors, fusion proteins, or the fusion protein-gRNA complexes described herein.
- pharmaceutical composition refers to a composition formulated for pharmaceutical use.
- the pharmaceutical composition further comprises a pharmaceutically acceptable carrier.
- the pharmaceutical composition comprises additional agents (e.g. for specific delivery, increasing half-life, or other therapeutic compounds).
- the term“pharmaceutically-acceptable carrier” means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the compound from one site (e.g., the delivery site) of the body, to another site (e.g., organ, tissue or portion of the body).
- a pharmaceutically acceptable carrier is“acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the tissue of the subject (e.g., physiologically compatible, sterile, physiologic pH, etc.).
- materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose,
- the pharmaceutical composition is formulated for delivery to a subject, e.g., for gene editing. Suitable routes of administrating the
- composition described herein include, without limitation: topical,
- the pharmaceutical composition described herein is administered locally to a diseased site (e.g., tumor site).
- a diseased site e.g., tumor site
- the pharmaceutical composition described herein is administered to a subject by injection, by means of a catheter, by means of a suppository, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including a membrane, such as a sialastic membrane, or a fiber.
- the pharmaceutical composition described herein is delivered in a controlled release system.
- a pump may be used (see, e.g., Langer, 1990, Science 249:1527-1533; Sefton, 1989, CRC Crit. Ref. Biomed. Eng.14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med.321:574).
- polymeric materials can be used.
- the pharmaceutical composition is formulated in accordance with routine procedures as a composition adapted for intravenous or
- subcutaneous administration to a subject, e.g., a human.
- a subject e.g., a human.
- compositions for administration by injection are solutions in sterile isotonic aqueous buffer.
- the pharmaceutical can also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
- the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- the pharmaceutical is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
- an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.
- a pharmaceutical composition for systemic administration may be a liquid, e.g., sterile saline, lactated Ringer’s or Hank’s solution.
- the pharmaceutical composition can be in solid forms and re-dissolved or suspended immediately prior to use. Lyophilized forms are also contemplated.
- the pharmaceutical composition can be contained within a lipid particle or vesicle, such as a liposome or microcrystal, which is also suitable for parenteral
- the particles can be of any suitable structure, such as unilamellar or plurilamellar, so long as compositions are contained therein.
- Compounds can be entrapped in “stabilized plasmid-lipid particles” (SPLP) containing the fusogenic lipid
- lipid particles such as N-[1-(2,3-dioleoyloxi)propyl]-N,N,N- trimethyl-amoniummethylsulfate, or“DOTAP,” are particularly preferred for such particles and vesicles.
- DOTAP dioleoylphosphatidylethanolamine
- the preparation of such lipid particles is well known. See, e.g., U.S. Patent Nos. 4,880,635; 4,906,477; 4,911,928; 4,917,951; 4,920,016; and 4,921,757; each of which is incorporated herein by reference.
- the pharmaceutical composition described herein may be administered or packaged as a unit dose, for example.
- unit dose when used in reference to a pharmaceutical composition of the present disclosure refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.
- the pharmaceutical composition can be provided as a pharmaceutical kit comprising (a) a container containing a compound of the invention (e.g., a fusion protein or a base editor) in lyophilized form and (b) a second container containing a pharmaceutically acceptable diluent (e.g., sterile water) for injection.
- a pharmaceutically acceptable diluent e.g., sterile water
- the pharmaceutically acceptable diluent can be used for reconstitution or dilution of the lyophilized compound of the invention.
- Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- an article of manufacture containing materials useful for the treatment of the diseases described above comprises a container and a label.
- suitable containers include, for example, bottles, vials, syringes, and test tubes.
- the containers may be formed from a variety of materials such as glass or plastic.
- the container holds a composition that is effective for treating a disease described herein and may have a sterile access port.
- the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle.
- the active agent in the composition is a compound of the invention.
- the label on or associated with the container indicates that the composition is used for treating the disease of choice.
- the article of manufacture may further comprise a second container comprising a pharmaceutically- acceptable buffer, such as phosphate-buffered saline, Ringer's solution, or dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use. Kits, vectors, cells
- kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding any of the fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a).
- the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
- Some aspects of this disclosure provide polynucleotides encoding a napDNAbp (e.g., Cas9 protein) of a fusion protein as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.
- a napDNAbp e.g., Cas9 protein
- Some aspects of this disclosure provide cells comprising any of the fusion proteins provided herein, a nucleic acid molecule encoding any of the fusion proteins provided herein, a complex comprising any of the fusion proteins provided herein and a gRNA, and/or any of the vectors provided herein.
- Sequencing data for the HEK2, RNF2, and FANCF sites is given below. Data presented represents base editing values for the most edited C in the window. This is C6 for HEK2, C6 for RNF2, and C6 for FANCF.
- the sequences for the three different sites before and after base editing are as follows: HEK2: GAACACAAAGCATAGACTGC (SEQ ID NO: 110) (sequencing reads CTTGTGTTTCGTATCTGACG (SEQ ID NO: 111)); RNF2: GTCATCTTAGTCATTACCTG (SEQ ID NO: 112) (sequencing reads
- C to T base editing e.g., using BE3, which is a C to T base editor
- C to G base editing is shown in Figures 1 and 2.
- Certain DNA polymerases are known to replace bases opposite abasic sites with G.
- One strategy to achieve C to G base editing is to induce the creation of the abasic site, then recruit or tether such a polymerase to replace the G opposite the abasic site with a C. This could provide access to all editors, if C and T can be excised and repaired with all the polymerases based on the polymerases’ predetermined base preferences.
- UdgX is an isoform of UDG known to bind tightly to uracil with minimal uracil-excision activity.
- UdgX* is a mutated version of UdgX (Sang et al. NAR, 2015) that was observed to lack uracil excision activity by an in vitro assay in Sang et al.
- UdgX_On is another mutated version of UdgX (Sang et al. NAR, 2015) observed to have an increased uracil excision activity in the same in vitro assay reported in Sang et al.
- UDG is the enzyme responsible for the excision of uracil from DNA to create an abasic site. Rev7 is a component of the
- Rev1/Rev3/Rev7 complex known to incorporate C opposite an abasic site.
- Rev1 is the enzymatic component of the above mentioned complex.
- Polymerases Alpha, Beta, Gamma, Delta, Epsilon, Gamma, Eta, Iota, Kappa, Lambda, Mu, and Nu are eukaryotic polymerases with different preferences for base incorporation opposite an abasic site. Table 1: Construct Reference Key BE3 Published base editing construct
- B E3_UDG UGI is replaced with uracil deglycosylase (BE3)
- SMUG1 UGI replaced with SMUG1, a ssDNA uracil deglycosylase Constructs used in the Examples: BE3_Full Length– This is a C to T base editor construct comprising a cytidine deaminase, a nCas9, and a uracil glycosylase inhibitor (UGI) domain.
- The“[UGI]” indicated in the sequence below identifies the location where UDG, UDG variants (e.g., UDG, UdgX* (R107S), and UdgX_On (H109S)), Rev7, and Smug1, were inserted (rather than the UGI of BE3).
- The“[Polymerase]” indicated in the sequence below identifies the location where polymerases (e.g., Pol Beta, Pol Lambda, Pol Eta, Pol Mu, Pol Iota, Pol Kappa, Pol Alpha, Pol Delta, Pol Gamma, and Pol Nu), and Rev1 were inserted.
- The“[Polymerase]” indicated in the sequence below identifies the location where polymerases (e.g., Pol Beta, Pol Lambda, Pol Eta, Pol Mu, Pol Iota, Pol Kappa, Pol Alpha, Pol Delta, Pol Gamma, and Pol Nu), and Rev1 were inserted.
- polymerases e.g., Pol Beta, Pol Lambda, Pol Eta, Pol Mu, Pol Iota, Pol Kappa, Pol Alpha, Pol Delta, Pol Gamma, and Pol Nu
- BE3_UdgX_On; BE2_UDG; and BE3_UDG are shown in Figures 7 through 15. These figures show the results for C to G editing at the most edited position (C6) at the three representative sites that have high, medium, and low tolerance to sequence perturbation from standard C to T editing.
- BE2UdgX_On; BE3UdgX_On; and SMUG1) are shown in Figures 16 through 24.
- BE2UdgX_On; BE3UdgX_On; and SMUG1 are shown in Figures 25 through 30.
- Results of C to G base editing at HEK2, RNF2, and FANCF sites in the three respective cell types (WT, UDG-/-, and REV1-/- cells) using various C to G base editors (BE3; BE3_UdgX; BE2_UNG; BE3_UNG; BE2UdgX_On; BE3UdgX_On; and SMUG1) are summarized in Figures 31 and 32.
- Example 2 C to G Approach 2 - Increase C Incorporation Opposite an Abasic Site
- Rev1-/- knockout cell lines should lack C to G editing if this pathway is solely responsible for formation of this product.
- the fusion of various polymerases should lead to repair of the opposite strand based on polymerase preference for repair opposite an abasic sites leading to increased C to G base editing. Exemplary base editors are illustrated in Figure 36.
- FIG. 40 A schematic of a base editor for increasing both abasic site formation and C incorporation for increased C to G base editing is illustrated in Figure 40. Addition of polymerase tethered constructs, particularly Pol Kappa, increases C to G base editing.
- Results of base editing at the HEK2, RNF2, and FANCF sites using either Pol Kappa for Pol Iota tethered constructs is shown in Figure 41.
- Results of base editing using additional polymerase tethered constructs in WT cells at cytosine residues in the HEK2, RNF2, and FANCF sites are shown in Figures 42 through 47.
- UDG 147 is an enzyme that directly removes T and increases the C to G base editing ( Figures 42 through 44)
- UDG 204 is an enzyme that directly removes C and increases C to G base editing ( Figures 45 through 47).
- One way to improve C to G editing is to eliminate or downmodulate alternative repair pathways.
- eliminating the repair pathway protein MSH2 -/- may lead to an increase in C to G base editing is shown in Figure 48.
- the results of C to G base editing at HEK2, RNF2, and FANCF sites in MSH2 -/- cells using various base editors (BE3; BE3_UdgX; BE2_UdgX_On; BE3_UdgX_On; BE2_UDG; and BE3_UDG) are shown in Figures 49 through 51.
- Example 5 C to G Approach 5 - Expression of components in trans
- base editor components that function together are to express those components together in a cell, in trans.
- base editor components e.g., polymerases, uracil binding proteins, base excision enzymes, cytidine deaminases, and/or nucleic acid programmable DNA binding proteins
- base editor components e.g., polymerases, uracil binding proteins, base excision enzymes, cytidine deaminases, and/or nucleic acid programmable DNA binding proteins
- Expressed UDG and UdgX variants fused to APOBEC-Cas9 nickase and simultaneously overexpressed TLS polymerases in trans lead to C to G editing at the RNF2 site.
- the disclosure provides Cas9 variants, for example Cas9 proteins from one or more organisms, which may comprise one or more mutations (e.g., to generate dCas9 or Cas9 nickase).
- one or more of the amino acid residues, identified below by an asterek, of a Cas9 protein may be mutated.
- the D10 and/or H840 residues of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as any one of the amino acid sequences provided in SEQ ID NOs: 4-26 are mutated.
- the D10 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9 provided herein, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26 is mutated to any amino acid residue, except for D.
- the D10 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9, such as any one of the amino acid sequences provided in SEQ ID NOs: 4-26 is mutated to an A.
- the H840 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding residue in any Cas9, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26 is an H.
- the H840 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26 is mutated to any amino acid residue, except for H.
- the H840 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any Cas9, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26 is mutated to an A.
- the D10 residue of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding residue in any Cas9, such as any of the amino acid sequences provided in SEQ ID NOs: 4-26 is a D.
- Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 6 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues.
- the alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT(accessible at st- va.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties -11,-1; End-Gap penalties -5,-1.
- CDD Parameters Use RPS BLAST on; Blast E- value 0.003; Find conserveed columns and Recompute on.
- Query Clustering Parameters Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular. [00288] An exemplary alignment of four Cas9 sequences is provided below.
- sequence 1 SEQ ID NO: 23
- Sequence 2 SEQ ID NO: 24
- Sequence 3 SEQ ID NO: 25
- S4 1056 G-- 1056 (SEQ ID NO: 26) [00289]
- the alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art.
- This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 23-26 (e.g., S1, S2, S3, and S4, respectively) are mutated as described herein.
- residues D10 and H840 in Cas9 of SEQ ID NO: 6 that correspond to the residues identified in SEQ ID NOs: 23-26 by an asterisk are referred to herein as“homologous” or“corresponding” residues.
- homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue.
- mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 6 herein, e.g., mutations of residues 10, and 840 in SEQ ID NO: 6, are referred to herein as“homologous” or“corresponding” mutations.
- the mutations corresponding to the D10A mutation in SEQ ID NO: 6 or S1 (SEQ ID NO: 23) for the four aligned sequences above are D11A for S2, D10A for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 6 or S1 (SEQ ID NO: 23) are H850A for S2, H842A for S3, and H560A for S4.
- Amino acid residues homologous to residues 10, and 840 of SEQ ID NO: 6 were identified in the same manner as outlined above. The alignments are provided herein and are incorporated by reference. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences (SEQ ID NOs: 23-26). Single residues
- composition it is to be understood that methods of using the composition for any of the purposes disclosed herein are included, and methods of making the composition according to any of the methods of making disclosed herein or other methods known in the art are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
- elements are presented as lists, e.g., in Markush group format, it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It is also noted that the term“comprising” is intended to be open and permits the inclusion of additional elements or steps.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Enzymes And Modification Thereof (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201880030290.0A CN110914310A (zh) | 2017-03-10 | 2018-03-09 | 胞嘧啶至鸟嘌呤碱基编辑器 |
| KR1020197029551A KR20190127797A (ko) | 2017-03-10 | 2018-03-09 | 시토신에서 구아닌으로의 염기 편집제 |
| US16/492,553 US11542496B2 (en) | 2017-03-10 | 2018-03-09 | Cytosine to guanine base editor |
| JP2019548939A JP2020510439A (ja) | 2017-03-10 | 2018-03-09 | シトシンからグアニンへの塩基編集因子 |
| EP18718954.3A EP3592777A1 (en) | 2017-03-10 | 2018-03-09 | Cytosine to guanine base editor |
| US18/059,308 US12435331B2 (en) | 2017-03-10 | 2022-11-28 | Cytosine to guanine base editor |
| JP2023076781A JP2023113627A (ja) | 2017-03-10 | 2023-05-08 | シトシンからグアニンへの塩基編集因子 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762470175P | 2017-03-10 | 2017-03-10 | |
| US62/470,175 | 2017-03-10 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/492,553 A-371-Of-International US11542496B2 (en) | 2017-03-10 | 2018-03-09 | Cytosine to guanine base editor |
| US18/059,308 Division US12435331B2 (en) | 2017-03-10 | 2022-11-28 | Cytosine to guanine base editor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018165629A1 true WO2018165629A1 (en) | 2018-09-13 |
Family
ID=62025935
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2018/021878 Ceased WO2018165629A1 (en) | 2017-03-10 | 2018-03-09 | Cytosine to guanine base editor |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US11542496B2 (enExample) |
| EP (1) | EP3592777A1 (enExample) |
| JP (2) | JP2020510439A (enExample) |
| KR (1) | KR20190127797A (enExample) |
| CN (1) | CN110914310A (enExample) |
| WO (1) | WO2018165629A1 (enExample) |
Cited By (93)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019161251A1 (en) | 2018-02-15 | 2019-08-22 | The Broad Institute, Inc. | Cell data recorders and uses thereof |
| US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
| WO2020047164A1 (en) | 2018-08-28 | 2020-03-05 | Vor Biopharma, Inc | Genetically engineered hematopoietic stem cells and uses thereof |
| US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
| US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
| WO2020191234A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| CN111763686A (zh) * | 2019-08-20 | 2020-10-13 | 中国科学院天津工业生物技术研究所 | 实现c到a以及c到g碱基突变的碱基编辑系统及其应用 |
| WO2020237217A1 (en) | 2019-05-23 | 2020-11-26 | Vor Biopharma, Inc | Compositions and methods for cd33 modification |
| US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
| WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
| CN112280771A (zh) * | 2019-07-10 | 2021-01-29 | 中国科学院遗传与发育生物学研究所 | 双功能基因组编辑系统及其用途 |
| WO2021041971A1 (en) | 2019-08-28 | 2021-03-04 | Vor Biopharma, Inc. | Compositions and methods for cll1 modification |
| WO2021041977A1 (en) | 2019-08-28 | 2021-03-04 | Vor Biopharma, Inc. | Compositions and methods for cd123 modification |
| WO2021042047A1 (en) * | 2019-08-30 | 2021-03-04 | The General Hospital Corporation | C-to-g transversion dna base editors |
| WO2021046155A1 (en) | 2019-09-03 | 2021-03-11 | Voyager Therapeutics, Inc. | Vectorized editing of nucleic acids to correct overt mutations |
| US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| WO2021072309A1 (en) * | 2019-10-09 | 2021-04-15 | Massachusetts Institute Of Technology | Systems, methods, and compositions for correction of frameshift mutations |
| WO2021072328A1 (en) * | 2019-10-10 | 2021-04-15 | The Broad Institute, Inc. | Methods and compositions for prime editing rna |
| WO2021072250A1 (en) * | 2019-10-11 | 2021-04-15 | The Board Of Trustees Of The Leland Stanford Junior University | Recombinant polypeptides for regulatable cellular localization |
| EP3630198A4 (en) * | 2017-05-25 | 2021-04-21 | The General Hospital Corporation | USE OF CLIVED DESAMINASES TO LIMIT UNWANTED OUT-OF-TARGET DESAMINATION FROM BASE EDITING |
| US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| WO2021133261A1 (en) * | 2019-12-26 | 2021-07-01 | Agency For Science, Technology And Research | Nucleobase editors |
| US20210238598A1 (en) * | 2020-01-30 | 2021-08-05 | Pairwise Plants Services, Inc. | Compositions, systems, and methods for base diversification |
| WO2021155607A1 (zh) * | 2020-02-07 | 2021-08-12 | 辉大(上海)生物科技有限公司 | 经改造的胞嘧啶碱基编辑器及其应用 |
| WO2021183504A1 (en) * | 2020-03-11 | 2021-09-16 | North Carolina State University | Compositions, methods, and systems for genome editing technology |
| US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| WO2022047168A1 (en) | 2020-08-28 | 2022-03-03 | Vor Biopharma Inc. | Compositions and methods for cll1 modification |
| WO2022047165A1 (en) | 2020-08-28 | 2022-03-03 | Vor Biopharma Inc. | Compositions and methods for cd123 modification |
| CN114144519A (zh) * | 2019-05-22 | 2022-03-04 | 株式会社图尔金 | 单碱基置换蛋白以及包含其的组合物 |
| US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
| WO2022056489A1 (en) | 2020-09-14 | 2022-03-17 | Vor Biopharma, Inc. | Compositions and methods for cd38 modification |
| WO2022056459A1 (en) | 2020-09-14 | 2022-03-17 | Vor Biopharma, Inc. | Compositions and methods for cd5 modification |
| WO2022061115A1 (en) | 2020-09-18 | 2022-03-24 | Vor Biopharma Inc. | Compositions and methods for cd7 modification |
| WO2022067240A1 (en) | 2020-09-28 | 2022-03-31 | Vor Biopharma, Inc. | Compositions and methods for cd6 modification |
| WO2022072643A1 (en) | 2020-09-30 | 2022-04-07 | Vor Biopharma Inc. | Compositions and methods for cd30 gene modification |
| US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| WO2022093983A1 (en) | 2020-10-27 | 2022-05-05 | Vor Biopharma, Inc. | Compositions and methods for treating hematopoietic malignancy |
| WO2022094245A1 (en) | 2020-10-30 | 2022-05-05 | Vor Biopharma, Inc. | Compositions and methods for bcma modification |
| WO2022104090A1 (en) | 2020-11-13 | 2022-05-19 | Vor Biopharma Inc. | Methods and compositions relating to genetically engineered cells expressing chimeric antigen receptors |
| WO2022103935A1 (en) * | 2020-11-11 | 2022-05-19 | The Trustees Of Columbia University In The City Of New York | Multiplex epigenome editing |
| US11352623B2 (en) | 2020-03-19 | 2022-06-07 | Rewrite Therapeutics, Inc. | Methods and compositions for directed genome editing |
| WO2022147347A1 (en) | 2020-12-31 | 2022-07-07 | Vor Biopharma Inc. | Compositions and methods for cd34 gene modification |
| WO2022155532A1 (en) * | 2021-01-15 | 2022-07-21 | 4M Genomics Inc. | Polypeptide fusions or conjugates for gene editing |
| WO2022217086A1 (en) | 2021-04-09 | 2022-10-13 | Vor Biopharma Inc. | Photocleavable guide rnas and methods of use thereof |
| US20220372497A1 (en) * | 2021-05-18 | 2022-11-24 | Shanghaitech University | Base Editing Tool And Use Thereof |
| WO2022247873A1 (zh) | 2021-05-27 | 2022-12-01 | 中国科学院动物研究所 | 工程化的Cas12i核酸酶、效应蛋白及其用途 |
| WO2022261509A1 (en) | 2021-06-11 | 2022-12-15 | The Broad Institute, Inc. | Improved cytosine to guanine base editors |
| US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| WO2023283585A2 (en) | 2021-07-06 | 2023-01-12 | Vor Biopharma Inc. | Inhibitor oligonucleotides and methods of use thereof |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| US11572556B2 (en) | 2020-10-21 | 2023-02-07 | Massachusetts Institute Of Technology | Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste) |
| WO2023015182A1 (en) | 2021-08-02 | 2023-02-09 | Vor Biopharma Inc. | Compositions and methods for gene modification |
| JP2023507163A (ja) * | 2019-12-17 | 2023-02-21 | シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー | バクテロイデスにおけるゲノム編集 |
| WO2023049926A2 (en) | 2021-09-27 | 2023-03-30 | Vor Biopharma Inc. | Fusion polypeptides for genetic editing and methods of use thereof |
| US11649443B2 (en) | 2017-09-08 | 2023-05-16 | The Regents Of The University Of California | RNA-guided endonuclease fusion polypeptides and methods of use thereof |
| WO2023086422A1 (en) | 2021-11-09 | 2023-05-19 | Vor Biopharma Inc. | Compositions and methods for erm2 modification |
| US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
| US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| WO2023196816A1 (en) | 2022-04-04 | 2023-10-12 | Vor Biopharma Inc. | Compositions and methods for mediating epitope engineering |
| US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
| EP4034648A4 (en) * | 2019-09-26 | 2023-11-01 | Syngenta Crop Protection AG | METHOD AND COMPOSITIONS FOR EDITING DNA BASES |
| WO2024015925A2 (en) | 2022-07-13 | 2024-01-18 | Vor Biopharma Inc. | Compositions and methods for artificial protospacer adjacent motif (pam) generation |
| WO2024030432A1 (en) | 2022-08-01 | 2024-02-08 | Gensaic, Inc. | Therapeutic phage-derived particles |
| US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US11946040B2 (en) | 2019-02-04 | 2024-04-02 | The General Hospital Corporation | Adenine DNA base editor variants with reduced off-target RNA editing |
| WO2024073047A1 (en) * | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Cytidine deaminases and methods of use in mapping modified cytosine nucleotides |
| WO2024073751A1 (en) | 2022-09-29 | 2024-04-04 | Vor Biopharma Inc. | Methods and compositions for gene modification and enrichment |
| WO2024083883A1 (en) * | 2022-10-19 | 2024-04-25 | Dna Script | Methods and products for removal of uracil containing polynucleotides |
| US11975029B2 (en) | 2017-02-28 | 2024-05-07 | Vor Biopharma Inc. | Compositions and methods for inhibition of lineage specific proteins |
| US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US12031129B2 (en) | 2018-08-28 | 2024-07-09 | Flagship Pioneering Innovations Vi, Llc | Methods and compositions for modulating a genome |
| US12037602B2 (en) | 2020-03-04 | 2024-07-16 | Flagship Pioneering Innovations Vi, Llc | Methods and compositions for modulating a genome |
| US12043827B2 (en) | 2020-06-30 | 2024-07-23 | Pairwise Plants Services, Inc. | Compositions, systems, and methods for base diversification |
| WO2024159069A1 (en) | 2023-01-27 | 2024-08-02 | Gensaic, Inc. | Icosahedral phage derived particles |
| WO2024168312A1 (en) | 2023-02-09 | 2024-08-15 | Vor Biopharma Inc. | Methods for treating hematopoietic malignancy |
| US12133884B2 (en) | 2018-05-11 | 2024-11-05 | Beam Therapeutics Inc. | Methods of substituting pathogenic amino acids using programmable base editor systems |
| US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
| WO2025030010A1 (en) | 2023-08-01 | 2025-02-06 | Vor Biopharma Inc. | Compositions comprising genetically engineered hematopoietic stem cells and methods of use thereof |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| US12319938B2 (en) | 2020-07-24 | 2025-06-03 | The General Hospital Corporation | Enhanced virus-like particles and methods of use thereof for delivery to cells |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US12351815B2 (en) | 2019-06-13 | 2025-07-08 | The General Hospital Corporation | Engineered human-endogenous virus-like particles and methods of use thereof for delivery to cells |
| US12390514B2 (en) | 2017-03-09 | 2025-08-19 | President And Fellows Of Harvard College | Cancer vaccine |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| US12454694B2 (en) | 2018-09-07 | 2025-10-28 | Beam Therapeutics Inc. | Compositions and methods for improving base editing |
| US12473543B2 (en) | 2019-04-17 | 2025-11-18 | The Broad Institute, Inc. | Adenine base editors with reduced off-target effects |
| JP7786948B2 (ja) | 2019-03-19 | 2025-12-16 | ザ ブロード インスティテュート,インコーポレーテッド | 編集ヌクレオチド配列を編集するための方法および組成物 |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3966335A4 (en) * | 2019-05-07 | 2023-06-28 | Suzhou Qi Biodesign biotechnology Company Limited | Improved gene editing system |
| BR112023003972A2 (pt) * | 2020-09-04 | 2023-04-18 | Univ Kobe Nat Univ Corp | Complexos de um módulo de reconhecimento de sequência de ácido nucleico ligado a uma desaminase e de um fragmento amino-terminal de um módulo de reconhecimento de sequência de ácido nucleico, uma desaminase e um fragmento carboxi-terminal de um módulo de reconhecimento de sequência de ácido nucleico ligado ao mesmo, ácido nucleico, vetor, e, método para alterar um sítio alvo de um ácido desoxirribonucleico de fita dupla de uma célula |
| CN112057608B (zh) * | 2020-09-16 | 2023-09-26 | 南通大学 | Kmt2d在制备抗肿瘤药物中的应用 |
| KR102545913B1 (ko) | 2021-02-02 | 2023-06-22 | 재단법인 아산사회복지재단 | 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도 |
| CN115109798B (zh) * | 2021-03-09 | 2025-07-29 | 苏州齐禾生科生物科技有限公司 | 改进的cg碱基编辑系统 |
| CN113073094B (zh) * | 2021-03-29 | 2023-03-28 | 中山大学 | 基于胞苷脱氨酶LjCDA1L1_4a及其突变体的单碱基突变系统 |
| CN113234722B (zh) * | 2021-04-30 | 2023-03-14 | 肇庆市瑞思元生物科技有限公司 | 利用碱基编辑修复与板层状鱼鳞病相关的tgm1 c607t突变的试剂和方法 |
| US20240374759A1 (en) * | 2021-09-08 | 2024-11-14 | Flagship Pioneering Innovations Vi, Llc | Methods and compositions for modulating a genome |
| KR20240130158A (ko) | 2021-12-03 | 2024-08-28 | 더 브로드 인스티튜트, 인코퍼레이티드 | 효율적인 생체내 전달을 위한 조성물 및 방법 |
| JP2025519070A (ja) | 2022-05-17 | 2025-06-24 | エンヴェロップ セラピューティクス, インコーポレイテッド | 効率的in vivo送達のための組成物および方法 |
| CN114854723A (zh) * | 2022-05-26 | 2022-08-05 | 中国科学院分子植物科学卓越创新中心 | 水稻尿嘧啶dna糖苷酶及其在基因编辑诱导植物单碱基多样性中的应用 |
| CN115044571B (zh) * | 2022-06-22 | 2023-11-24 | 扬州大学广陵学院 | 极端嗜热古菌重组HhH-GPD蛋白及其制备方法和应用 |
| AU2024236558A1 (en) | 2023-03-15 | 2025-10-09 | Renagade Therapeutics Management Inc. | Delivery of gene editing systems and methods of use thereof |
| WO2024226156A1 (en) | 2023-04-27 | 2024-10-31 | University Of Massachusetts | Cas-embedded cytidine deaminase ribonucleoprotein complexes having improved base editing specificity and efficiency |
| CN117683755B (zh) * | 2024-01-31 | 2024-06-04 | 南京农业大学三亚研究院 | 一种C-to-G碱基编辑系统 |
| WO2025174765A1 (en) | 2024-02-12 | 2025-08-21 | Renagade Therapeutics Management Inc. | Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents |
| CN119685293B (zh) * | 2025-02-27 | 2025-06-17 | 天津科技大学 | 一种可用于甲醇芽孢杆菌碱基编辑的ung突变体及融合蛋白、碱基编辑系统和应用 |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4880635A (en) | 1984-08-08 | 1989-11-14 | The Liposome Company, Inc. | Dehydrated liposomes |
| US4906477A (en) | 1987-02-09 | 1990-03-06 | Kabushiki Kaisha Vitamin Kenkyusyo | Antineoplastic agent-entrapping liposomes |
| US4911928A (en) | 1987-03-13 | 1990-03-27 | Micro-Pak, Inc. | Paucilamellar lipid vesicles |
| US4917951A (en) | 1987-07-28 | 1990-04-17 | Micro-Pak, Inc. | Lipid vesicles formed of surfactants and steroids |
| US4920016A (en) | 1986-12-24 | 1990-04-24 | Linear Technology, Inc. | Liposomes with enhanced circulation time |
| US4921757A (en) | 1985-04-26 | 1990-05-01 | Massachusetts Institute Of Technology | System for delayed and pulsed release of biologically active substances |
| WO2001038547A2 (en) | 1999-11-24 | 2001-05-31 | Mcs Micro Carrier Systems Gmbh | Polypeptides comprising multimers of nuclear localization signals or of protein transduction domains and their use for transferring molecules into cells |
| WO2016072399A1 (ja) * | 2014-11-04 | 2016-05-12 | 国立大学法人神戸大学 | 脱塩基反応により標的化したdna配列に特異的に変異を導入する、ゲノム配列の改変方法、並びにそれに用いる分子複合体 |
| WO2017070632A2 (en) | 2015-10-23 | 2017-04-27 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
Family Cites Families (1845)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4217344A (en) | 1976-06-23 | 1980-08-12 | L'oreal | Compositions containing aqueous dispersions of lipid spheres |
| US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
| US4186183A (en) | 1978-03-29 | 1980-01-29 | The United States Of America As Represented By The Secretary Of The Army | Liposome carriers in chemotherapy of leishmaniasis |
| US4182449A (en) | 1978-04-18 | 1980-01-08 | Kozlow William J | Adhesive bandage and package |
| US4261975A (en) | 1979-09-19 | 1981-04-14 | Merck & Co., Inc. | Viral liposome particle |
| US4663290A (en) | 1982-01-21 | 1987-05-05 | Molecular Genetics, Inc. | Production of reverse transcriptase |
| US4485054A (en) | 1982-10-04 | 1984-11-27 | Lipoderm Pharmaceuticals Limited | Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV) |
| US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
| US5049386A (en) | 1985-01-07 | 1991-09-17 | Syntex (U.S.A.) Inc. | N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
| US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
| US4946787A (en) | 1985-01-07 | 1990-08-07 | Syntex (U.S.A.) Inc. | N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
| US4797368A (en) | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
| US4774085A (en) | 1985-07-09 | 1988-09-27 | 501 Board of Regents, Univ. of Texas | Pharmaceutical administration systems containing a mixture of immunomodulators |
| US5139941A (en) | 1985-10-31 | 1992-08-18 | University Of Florida Research Foundation, Inc. | AAV transduction vectors |
| US4737323A (en) | 1986-02-13 | 1988-04-12 | Liposome Technology, Inc. | Liposome extrusion method |
| US5017492A (en) | 1986-02-27 | 1991-05-21 | Life Technologies, Inc. | Reverse transcriptase and method for its production |
| JP2874751B2 (ja) | 1986-04-09 | 1999-03-24 | ジェンザイム・コーポレーション | 希望する蛋白質をミルク中へ分泌する遺伝子移植動物 |
| US5079352A (en) | 1986-08-22 | 1992-01-07 | Cetus Corporation | Purified thermostable enzyme |
| US4889818A (en) | 1986-08-22 | 1989-12-26 | Cetus Corporation | Purified thermostable enzyme |
| US5374553A (en) | 1986-08-22 | 1994-12-20 | Hoffmann-La Roche Inc. | DNA encoding a thermostable nucleic acid polymerase enzyme from thermotoga maritima |
| US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
| BR8807472A (pt) | 1987-04-23 | 1990-03-27 | Fmc Corp | Composto,composicao inseticida,processo de controle de insetos e acarideos e processo para preparacao de um composto |
| US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
| MC2115A1 (fr) | 1987-12-15 | 1991-07-05 | Gene Shears Pty Ltd | Ribozynes |
| US5244797B1 (en) | 1988-01-13 | 1998-08-25 | Life Technologies Inc | Cloned genes encoding reverse transcriptase lacking rnase h activity |
| US4965185A (en) | 1988-06-22 | 1990-10-23 | Grischenko Valentin I | Method for low-temperature preservation of embryos |
| US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
| EP1997891A1 (en) | 1988-09-02 | 2008-12-03 | Dyax Corporation | Generation and selection of recombinant varied binding proteins |
| US5047342A (en) | 1989-08-10 | 1991-09-10 | Life Technologies, Inc. | Cloning and expression of T5 DNA polymerase |
| US5270179A (en) | 1989-08-10 | 1993-12-14 | Life Technologies, Inc. | Cloning and expression of T5 DNA polymerase reduced in 3'- to-5' exonuclease activity |
| WO1991003162A1 (en) | 1989-08-31 | 1991-03-21 | City Of Hope | Chimeric dna-rna catalytic sequences |
| US5264618A (en) | 1990-04-19 | 1993-11-23 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
| US5427908A (en) | 1990-05-01 | 1995-06-27 | Affymax Technologies N.V. | Recombinant library screening methods |
| WO1991017424A1 (en) | 1990-05-03 | 1991-11-14 | Vical, Inc. | Intracellular delivery of biologically active substances by means of self-assembling lipid complexes |
| US5637459A (en) | 1990-06-11 | 1997-06-10 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: chimeric selex |
| US5580737A (en) | 1990-06-11 | 1996-12-03 | Nexstar Pharmaceuticals, Inc. | High-affinity nucleic acid ligands that discriminate between theophylline and caffeine |
| ES2134198T3 (es) | 1990-09-28 | 1999-10-01 | Hoffmann La Roche | Mutaciones en la 5' a 3' exonucleasa de las adn polimerasas. |
| DE553264T1 (de) | 1990-10-05 | 1994-04-28 | Wayne M Barnes | Thermostabile dna polymerase. |
| DE69123979T2 (de) | 1990-10-12 | 1997-04-30 | Max Planck Gesellschaft | Abgeänderte ribozyme |
| US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
| NZ314630A (en) | 1991-01-17 | 2000-11-24 | Harvard College | Use of trans-splicing ribozymes for genetic modification and cell ablation in a host cell |
| NZ241310A (en) | 1991-01-17 | 1995-03-28 | Gen Hospital Corp | Trans-splicing ribozymes |
| DE69233750D1 (de) | 1991-04-10 | 2009-01-02 | Scripps Research Inst | Bibliotheken heterodimerer Rezeptoren mittels Phagemiden |
| DE4216134A1 (de) | 1991-06-20 | 1992-12-24 | Europ Lab Molekularbiolog | Synthetische katalytische oligonukleotidstrukturen |
| US6872816B1 (en) | 1996-01-24 | 2005-03-29 | Third Wave Technologies, Inc. | Nucleic acid detection kits |
| US5652094A (en) | 1992-01-31 | 1997-07-29 | University Of Montreal | Nucleozymes |
| JPH05274181A (ja) | 1992-03-25 | 1993-10-22 | Nec Corp | ブレークポイント設定・解除方式 |
| US5587308A (en) | 1992-06-02 | 1996-12-24 | The United States Of America As Represented By The Department Of Health & Human Services | Modified adeno-associated virus vector capable of expression from a novel promoter |
| US5834247A (en) | 1992-12-09 | 1998-11-10 | New England Biolabs, Inc. | Modified proteins comprising controllable intervening protein sequences or their elements methods of producing same and methods for purification of a target protein comprised by a modified protein |
| US5496714A (en) | 1992-12-09 | 1996-03-05 | New England Biolabs, Inc. | Modification of protein by use of a controllable interveining protein sequence |
| US5434058A (en) | 1993-02-09 | 1995-07-18 | Arch Development Corporation | Apolipoprotein B MRNA editing protein compositions and methods |
| US5436149A (en) | 1993-02-19 | 1995-07-25 | Barnes; Wayne M. | Thermostable DNA polymerase with enhanced thermostability and enhanced length and efficiency of primer extension |
| AU680921B2 (en) | 1993-05-17 | 1997-08-14 | Regents Of The University Of California, The | Ribozyme gene therapy for HIV infection and AIDS |
| US5512462A (en) | 1994-02-25 | 1996-04-30 | Hoffmann-La Roche Inc. | Methods and reagents for the polymerase chain reaction amplification of long DNA sequences |
| US5651981A (en) | 1994-03-29 | 1997-07-29 | Northwestern University | Cationic phospholipids for transfection |
| US5874560A (en) | 1994-04-22 | 1999-02-23 | The United States Of America As Represented By The Department Of Health And Human Services | Melanoma antigens and their use in diagnostic and therapeutic methods |
| US5912155A (en) | 1994-09-30 | 1999-06-15 | Life Technologies, Inc. | Cloned DNA polymerases from Thermotoga neapolitana |
| US5614365A (en) | 1994-10-17 | 1997-03-25 | President & Fellow Of Harvard College | DNA polymerase having modified nucleotide binding site for DNA sequencing |
| US5449639A (en) | 1994-10-24 | 1995-09-12 | Taiwan Semiconductor Manufacturing Company Ltd. | Disposable metal anti-reflection coating process used together with metal dry/wet etch |
| US5767099A (en) | 1994-12-09 | 1998-06-16 | Genzyme Corporation | Cationic amphiphiles containing amino acid or dervatized amino acid groups for intracellular delivery of therapeutic molecules |
| US6057153A (en) | 1995-01-13 | 2000-05-02 | Yale University | Stabilized external guide sequences |
| US5795587A (en) | 1995-01-23 | 1998-08-18 | University Of Pittsburgh | Stable lipid-comprising drug delivery complexes and methods for their production |
| US5830430A (en) | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
| US5851548A (en) | 1995-06-07 | 1998-12-22 | Gen-Probe Incorporated | Liposomes containing cationic lipids and vitamin D |
| US5773258A (en) | 1995-08-25 | 1998-06-30 | Roche Molecular Systems, Inc. | Nucleic acid amplification using a reversibly inactivated thermostable enzyme |
| NO953680D0 (no) | 1995-09-18 | 1995-09-18 | Hans Prydz | Cellesyklusenzymer |
| GB9600384D0 (en) | 1996-01-09 | 1996-03-13 | Nyfotek As | Dna glycosylases |
| US5962313A (en) | 1996-01-18 | 1999-10-05 | Avigen, Inc. | Adeno-associated virus vectors comprising a gene encoding a lyosomal enzyme |
| US5840839A (en) | 1996-02-09 | 1998-11-24 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Alternative open reading frame DNA of a normal gene and a novel human cancer antigen encoded therein |
| WO1997044348A1 (en) | 1996-05-17 | 1997-11-27 | Thomas Jefferson University | Ribozyme-mediated gene replacement |
| US20040156861A1 (en) | 1996-07-11 | 2004-08-12 | Figdor Carl Gustav | Melanoma associated peptide analogues and vaccines against melanoma |
| US6887707B2 (en) | 1996-10-28 | 2005-05-03 | University Of Washington | Induction of viral mutation by incorporation of miscoding ribonucleoside analogs into viral RNA |
| GB9701425D0 (en) | 1997-01-24 | 1997-03-12 | Bioinvent Int Ab | A method for in vitro molecular evolution of protein function |
| WO1998033810A2 (en) | 1997-01-30 | 1998-08-06 | University Of Virginia Patent Foundation | Cysteine-depleted peptides recognized by a3-restricted cytotoxic lymphocytes, and uses therefor |
| US5981182A (en) | 1997-03-13 | 1999-11-09 | Albert Einstein College Of Medicine Of Yeshiva University | Vector constructs for the selection and identification of open reading frames |
| US20040203109A1 (en) | 1997-06-06 | 2004-10-14 | Incyte Corporation | Human regulatory proteins |
| US5849528A (en) | 1997-08-21 | 1998-12-15 | Incyte Pharmaceuticals, Inc.. | Polynucleotides encoding a human S100 protein |
| US6355415B1 (en) | 1997-09-29 | 2002-03-12 | Ohio University | Compositions and methods for the use of ribozymes to determine gene function |
| US6156509A (en) | 1997-11-12 | 2000-12-05 | Genencor International, Inc. | Method of increasing efficiency of directed evolution of a gene using phagemid |
| US6429301B1 (en) | 1998-04-17 | 2002-08-06 | Whitehead Institute For Biomedical Research | Use of a ribozyme to join nucleic acids and peptides |
| US6183998B1 (en) | 1998-05-29 | 2001-02-06 | Qiagen Gmbh Max-Volmer-Strasse 4 | Method for reversible modification of thermostable enzymes |
| WO1999063945A2 (en) | 1998-06-12 | 1999-12-16 | Sloan-Kettering Institute For Cancer Research | Vaccination strategy to prevent and treat cancers |
| US8097648B2 (en) | 1998-06-17 | 2012-01-17 | Eisai R&D Management Co., Ltd. | Methods and compositions for use in treating cancer |
| US6429298B1 (en) | 1998-10-13 | 2002-08-06 | Board Of Regents, The University Of Texas System | Assays for identifying functional alterations in the p53 tumor suppressor |
| EP1129064B1 (en) | 1998-11-12 | 2008-01-09 | Invitrogen Corporation | Transfection reagents |
| US6534261B1 (en) | 1999-01-12 | 2003-03-18 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
| US6599692B1 (en) | 1999-09-14 | 2003-07-29 | Sangamo Bioscience, Inc. | Functional genomics using zinc finger proteins |
| US6453242B1 (en) | 1999-01-12 | 2002-09-17 | Sangamo Biosciences, Inc. | Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites |
| US7013219B2 (en) | 1999-01-12 | 2006-03-14 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
| US20090130718A1 (en) | 1999-02-04 | 2009-05-21 | Diversa Corporation | Gene site saturation mutagenesis |
| WO2000058480A1 (en) | 1999-03-29 | 2000-10-05 | Kansai Technology Licensing Organization Co., Ltd. | Novel cytidine deaminase |
| US6365410B1 (en) | 1999-05-19 | 2002-04-02 | Genencor International, Inc. | Directed evolution of microorganisms |
| GB9920194D0 (en) | 1999-08-27 | 1999-10-27 | Advanced Biotech Ltd | A heat-stable thermostable DNA polymerase for use in nucleic acid amplification |
| CA2386341A1 (en) | 1999-11-18 | 2001-05-25 | Epimmune Inc. | Heteroclitic analogs and related methods |
| AU776576B2 (en) | 1999-12-06 | 2004-09-16 | Sangamo Biosciences, Inc. | Methods of using randomized libraries of zinc finger proteins for the identification of gene function |
| JP5047437B2 (ja) | 2000-02-08 | 2012-10-10 | サンガモ バイオサイエンシーズ, インコーポレイテッド | 薬物の発見のための細胞 |
| US7378248B2 (en) | 2000-03-06 | 2008-05-27 | Rigel Pharmaceuticals, Inc. | In vivo production of cyclic peptides for inhibiting protein-protein interaction |
| US7078208B2 (en) | 2000-05-26 | 2006-07-18 | Invitrogen Corporation | Thermostable reverse transcriptases and uses thereof |
| US6573092B1 (en) | 2000-10-10 | 2003-06-03 | Genvec, Inc. | Method of preparing a eukaryotic viral vector |
| WO2002034771A2 (en) | 2000-10-27 | 2002-05-02 | Chiron Srl | Nucleic acids and proteins from streptococcus groups a & b |
| CN101317825A (zh) | 2000-10-30 | 2008-12-10 | 欧罗赛铁克股份有限公司 | 控释氢可酮制剂 |
| US20040003420A1 (en) | 2000-11-10 | 2004-01-01 | Ralf Kuhn | Modified recombinase |
| US7067650B1 (en) | 2000-11-22 | 2006-06-27 | National Institute Of Advanced Industrial Science And Technology | Ribozymes targeting bradeion transcripts and use thereof |
| WO2002059296A2 (en) | 2001-01-25 | 2002-08-01 | Evolva Biotech A/S | Concatemers of differentially expressed multiple genes |
| US20050222030A1 (en) | 2001-02-21 | 2005-10-06 | Anthony Allison | Modified annexin proteins and methods for preventing thrombosis |
| US20040115184A1 (en) | 2001-02-27 | 2004-06-17 | Smith Harold C | Methods and compositions for modifying apolipoprotein b mrna editing |
| US7807408B2 (en) | 2001-03-19 | 2010-10-05 | President & Fellows Of Harvard College | Directed evolution of proteins |
| JP4128453B2 (ja) | 2001-03-19 | 2008-07-30 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | 新規分子機能の進化 |
| US7476500B1 (en) | 2001-03-19 | 2009-01-13 | President And Fellows Of Harvard College | In vivo selection system for enzyme activity |
| AU2002257076A1 (en) | 2001-03-19 | 2002-10-03 | President And Fellows Of Harvard College | Nucleic acid shuffling |
| US20040197892A1 (en) | 2001-04-04 | 2004-10-07 | Michael Moore | Composition binding polypeptides |
| EP1490483B1 (en) | 2001-04-19 | 2015-06-03 | The Scripps Research Institute | In vivo incorporation of unnatural amino acids |
| CA2449042A1 (en) | 2001-05-30 | 2002-12-27 | Biomedical Center | In silico screening for phenotype-associated expressed sequences |
| AU2002312624A1 (en) | 2001-07-06 | 2003-01-21 | Incyte Genomics, Inc. | Drug metabolizing enzymes |
| JP4473573B2 (ja) | 2001-07-26 | 2010-06-02 | ストラタジーン カリフォルニア | 多部位突然変異誘発 |
| US20030167533A1 (en) | 2002-02-04 | 2003-09-04 | Yadav Narendra S. | Intein-mediated protein splicing |
| FR2837837B1 (fr) | 2002-03-28 | 2006-09-29 | Roussy Inst Gustave | Epitopes peptidiques communs a des antigenes d'une meme famille multigenique |
| WO2003095636A2 (en) | 2002-05-10 | 2003-11-20 | Medical Research Council | Activation induced deaminase (aid) |
| WO2003104413A2 (en) | 2002-06-05 | 2003-12-18 | University Of Florida | Production of pseudotyped recombinant aav virions |
| US9388459B2 (en) | 2002-06-17 | 2016-07-12 | Affymetrix, Inc. | Methods for genotyping |
| AU2003251905A1 (en) | 2002-07-12 | 2004-02-02 | Affymetrix, Inc. | Synthetic tag genes |
| WO2004016767A2 (en) | 2002-08-19 | 2004-02-26 | The President And Fellows Of Harvard College | Evolving new molecular function |
| AU2003288906C1 (en) | 2002-09-20 | 2010-12-09 | Yale University | Riboswitches, methods for their use, and compositions for use with riboswitches. |
| US20090183270A1 (en) | 2002-10-02 | 2009-07-16 | Adams Thomas R | Transgenic plants with enhanced agronomic traits |
| US8017323B2 (en) | 2003-03-26 | 2011-09-13 | President And Fellows Of Harvard College | Free reactant use in nucleic acid-templated synthesis |
| ES2317016T3 (es) | 2003-04-14 | 2009-04-16 | Caliper Life Sciences, Inc. | Reduccion de la interferencia en uin ensayo de desplazamiento por migracion. |
| US8017755B2 (en) | 2003-05-23 | 2011-09-13 | President And Fellows Of Harvard College | RNA-based transcriptional regulators |
| US20050136429A1 (en) | 2003-07-03 | 2005-06-23 | Massachusetts Institute Of Technology | SIRT1 modulation of adipogenesis and adipose function |
| DE602004011789T2 (de) | 2003-07-07 | 2009-02-12 | The Scripps Research Institute, La Jolla | Zusammensetzungen der orthogonalen Lysyl-tRNA und Aminoacyl-tRNA Synthetase Paaren und ihre Verwendungen |
| EP3222715A1 (en) | 2003-08-08 | 2017-09-27 | Sangamo BioSciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| CA2548135C (en) | 2003-12-01 | 2014-04-22 | Sloan-Kettering Institute For Cancer Research | Synthetic hla binding peptide analogues and uses thereof |
| ES2616337T3 (es) | 2003-12-12 | 2017-06-12 | Government Of The United States Of America, As Repr. By The Secr. Of The Dept. Of Health And Human Services And His Successors | Un epítopo de linfocito T citotóxico humano y su epítopo agonista del número no variable de secuencias de repetición en tándem de MUC-1 |
| US7670807B2 (en) | 2004-03-10 | 2010-03-02 | East Tennessee State Univ. Research Foundation | RNA-dependent DNA polymerase from Geobacillus stearothermophilus |
| WO2005098043A2 (en) | 2004-03-30 | 2005-10-20 | The President And Fellows Of Harvard College | Ligand-dependent protein splicing |
| US7595179B2 (en) | 2004-04-19 | 2009-09-29 | Applied Biosystems, Llc | Recombinant reverse transcriptases |
| US7919277B2 (en) | 2004-04-28 | 2011-04-05 | Danisco A/S | Detection and typing of bacterial strains |
| US7476734B2 (en) | 2005-12-06 | 2009-01-13 | Helicos Biosciences Corporation | Nucleotide analogs |
| EP2332971B1 (en) | 2004-06-17 | 2016-02-17 | MannKind Corporation | Epitope analogs |
| EP1814896A4 (en) | 2004-07-06 | 2008-07-30 | Commercialisation Des Produits | TARGET-RELATED NUCLEIC ACID ADAPTER |
| WO2007008226A2 (en) | 2004-08-17 | 2007-01-18 | The President And Fellows Of Harvard College | Palladium-catalyzed carbon-carbon bond forming reactions |
| WO2006023207A2 (en) | 2004-08-19 | 2006-03-02 | The United States Of America As Represented By The Secretary Of Health And Human Services, Nih | Coacervate of anionic and cationic polymer forming microparticles for the sustained release of therapeutic agents |
| JP5101288B2 (ja) | 2004-10-05 | 2012-12-19 | カリフォルニア インスティテュート オブ テクノロジー | アプタマー調節される核酸及びその利用 |
| US9034650B2 (en) | 2005-02-02 | 2015-05-19 | Intrexon Corporation | Site-specific serine recombinases and methods of their use |
| US8178291B2 (en) | 2005-02-18 | 2012-05-15 | Monogram Biosciences, Inc. | Methods and compositions for determining hypersusceptibility of HIV-1 to non-nucleoside reverse transcriptase inhibitors |
| JP2006248978A (ja) | 2005-03-10 | 2006-09-21 | Mebiopharm Co Ltd | 新規なリポソーム製剤 |
| US7511119B2 (en) | 2005-06-17 | 2009-03-31 | Mannkind Corporation | PRAME peptide analogues |
| DE602006013134D1 (de) | 2005-06-17 | 2010-05-06 | Harvard College | Iterierte verzweigende reaktionswege über nukleinsäure-vermittelte chemie |
| WO2007011722A2 (en) | 2005-07-15 | 2007-01-25 | President And Fellows Of Harvard College | Reaction discovery system |
| US9783791B2 (en) | 2005-08-10 | 2017-10-10 | Agilent Technologies, Inc. | Mutant reverse transcriptase and methods of use |
| AU2012244264B2 (en) | 2005-08-26 | 2015-08-06 | Dupont Nutrition Biosciences Aps | Use |
| AU2015252023B2 (en) | 2005-08-26 | 2017-06-29 | Dupont Nutrition Biosciences Aps | Use |
| EP2325332B1 (en) | 2005-08-26 | 2012-10-31 | DuPont Nutrition Biosciences ApS | Use of CRISPR associated genes (CAS) |
| DE602006021587D1 (de) | 2005-09-30 | 2011-06-09 | Univ Hokkaido Nat Univ Corp | Vektor zur zuführung einer zielsubstanz in den zellkern oder die zelle |
| KR100784478B1 (ko) | 2005-12-05 | 2007-12-11 | 한국과학기술원 | 기능요소의 동시 삽입에 의한 신기능을 갖는 단백질을제조하는 방법 |
| US20080051317A1 (en) | 2005-12-15 | 2008-02-28 | George Church | Polypeptides comprising unnatural amino acids, methods for their production and uses therefor |
| JP5364574B2 (ja) | 2006-05-05 | 2013-12-11 | モレキュラー、トランスファー、インコーポレイテッド | 真核細胞のトランスフェクションのための新規試薬 |
| US9816140B2 (en) | 2006-05-19 | 2017-11-14 | Dupont Nutrition Biosciences Aps | Tagged microorganisms and methods of tagging |
| EP3045532A1 (en) | 2006-06-02 | 2016-07-20 | President and Fellows of Harvard College | Protein surface remodeling |
| WO2007142202A1 (ja) | 2006-06-06 | 2007-12-13 | Panasonic Corporation | ヌクレオチド鎖修飾方法 |
| US7572618B2 (en) | 2006-06-30 | 2009-08-11 | Bristol-Myers Squibb Company | Polynucleotides encoding novel PCSK9 variants |
| WO2008005529A2 (en) | 2006-07-07 | 2008-01-10 | The Trustees Columbia University In The City Of New York | Cell-mediated directed evolution |
| US20120322861A1 (en) | 2007-02-23 | 2012-12-20 | Barry John Byrne | Compositions and Methods for Treating Diseases |
| NZ579002A (en) | 2007-03-02 | 2012-03-30 | Danisco | Cultures with improved phage resistance |
| WO2009002418A2 (en) | 2007-06-21 | 2008-12-31 | Merck & Co., Inc. | T-cell peptide epitopes from carcinoembryonic antigen, immunogenic analogs, and uses thereof |
| FR2919804B1 (fr) | 2007-08-08 | 2010-08-27 | Erytech Pharma | Composition et vaccin therapeutique anti-tumoral |
| WO2009033027A2 (en) | 2007-09-05 | 2009-03-12 | Medtronic, Inc. | Suppression of scn9a gene expression and/or function for the treatment of pain |
| EP2188384B1 (en) | 2007-09-27 | 2015-07-15 | Sangamo BioSciences, Inc. | Rapid in vivo identification of biologically active nucleases |
| US20110014616A1 (en) | 2009-06-30 | 2011-01-20 | Sangamo Biosciences, Inc. | Rapid screening of biologically active nucleases and isolation of nuclease-modified cells |
| WO2010102257A2 (en) | 2009-03-06 | 2010-09-10 | Synthetic Genomics, Inc. | Methods for cloning and manipulating genomes |
| US9029524B2 (en) | 2007-12-10 | 2015-05-12 | California Institute Of Technology | Signal activated RNA interference |
| EP2087789A1 (en) | 2008-02-06 | 2009-08-12 | Heinrich-Heine-Universität Düsseldorf | Fto-modified non-human mammal |
| CA2714378A1 (en) | 2008-02-08 | 2009-08-13 | Sangamo Biosciences, Inc. | Treatment of chronic pain with zinc finger proteins |
| GB0806562D0 (en) | 2008-04-10 | 2008-05-14 | Fermentas Uab | Production of nucleic acid |
| WO2009146179A1 (en) | 2008-04-15 | 2009-12-03 | University Of Iowa Research Foundation | Zinc finger nuclease for the cftr gene and methods of use thereof |
| CA2725601A1 (en) | 2008-04-28 | 2009-11-05 | President And Fellows Of Harvard College | Supercharged proteins for cell penetration |
| US8394604B2 (en) | 2008-04-30 | 2013-03-12 | Paul Xiang-Qin Liu | Protein splicing using short terminal split inteins |
| WO2010011961A2 (en) | 2008-07-25 | 2010-01-28 | University Of Georgia Research Foundation, Inc. | Prokaryotic rnai-like system and methods of use |
| FR2934346B1 (fr) | 2008-07-28 | 2010-09-03 | Claude Benit | Valve pour installation sanitaire et dispositif multifonction pour appareil sanitaire comprenant une telle valve |
| JP2010033344A (ja) | 2008-07-29 | 2010-02-12 | Azabu Jui Gakuen | 核酸構成塩基の偏在性を表す方法 |
| EP2159286A1 (en) | 2008-09-01 | 2010-03-03 | Consiglio Nazionale Delle Ricerche | Method for obtaining oligonucleotide aptamers and uses thereof |
| CA3059768A1 (en) | 2008-09-05 | 2010-03-11 | President And Fellows Of Harvard College | Continuous directed evolution of proteins and nucleic acids |
| US8790664B2 (en) | 2008-09-05 | 2014-07-29 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Multimodular assembly useful for intracellular delivery |
| US8636884B2 (en) | 2008-09-15 | 2014-01-28 | Abbott Diabetes Care Inc. | Cationic polymer based wired enzyme formulations for use in analyte sensors |
| US20100076057A1 (en) | 2008-09-23 | 2010-03-25 | Northwestern University | TARGET DNA INTERFERENCE WITH crRNA |
| WO2010054108A2 (en) | 2008-11-06 | 2010-05-14 | University Of Georgia Research Foundation, Inc. | Cas6 polypeptides and methods of use |
| MX337838B (es) | 2008-11-07 | 2016-03-22 | Dupont Nutrition Biosci Aps | Secuencias de repetidos palindromicos cortos regularmente intercalados agrupados de bifidobacterias. |
| US20110016540A1 (en) | 2008-12-04 | 2011-01-20 | Sigma-Aldrich Co. | Genome editing of genes associated with trinucleotide repeat expansion disorders in animals |
| EP2370598B1 (en) | 2008-12-11 | 2017-02-15 | Pacific Biosciences Of California, Inc. | Classification of nucleic acid templates |
| US9175338B2 (en) | 2008-12-11 | 2015-11-03 | Pacific Biosciences Of California, Inc. | Methods for identifying nucleic acid modifications |
| WO2010075424A2 (en) | 2008-12-22 | 2010-07-01 | The Regents Of University Of California | Compositions and methods for downregulating prokaryotic genes |
| WO2010091122A1 (en) | 2009-02-03 | 2010-08-12 | Amunix, Inc. | Extended recombinant polypeptides and compositions comprising same |
| US20130022980A1 (en) | 2009-02-04 | 2013-01-24 | Lucigen Corporation | Rna- and dna-copying enzymes |
| US8389679B2 (en) | 2009-02-05 | 2013-03-05 | The Regents Of The University Of California | Targeted antimicrobial moieties |
| US20100305197A1 (en) | 2009-02-05 | 2010-12-02 | Massachusetts Institute Of Technology | Conditionally Active Ribozymes And Uses Thereof |
| MX2011009205A (es) | 2009-03-04 | 2011-09-30 | Univ Texas | Proteinas de fusion de transcriptasa inversa estabilizada. |
| JP2012520073A (ja) | 2009-03-10 | 2012-09-06 | ベイラー リサーチ インスティテュート | 抗原提示細胞ターゲティングワクチン |
| AU2010245304B2 (en) | 2009-04-27 | 2015-06-04 | Pacific Biosciences Of California, Inc. | Real-time sequencing methods and systems |
| JP2012525146A (ja) | 2009-04-28 | 2012-10-22 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | 細胞透過のための過剰に荷電されたタンパク質 |
| WO2010132092A2 (en) | 2009-05-12 | 2010-11-18 | The Scripps Research Institute | Cytidine deaminase fusions and related methods |
| US9063156B2 (en) | 2009-06-12 | 2015-06-23 | Pacific Biosciences Of California, Inc. | Real-time analytical methods and systems |
| US8569256B2 (en) | 2009-07-01 | 2013-10-29 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods for the delivery of therapeutic agents |
| US20120178647A1 (en) | 2009-08-03 | 2012-07-12 | The General Hospital Corporation | Engineering of zinc finger arrays by context-dependent assembly |
| NZ598457A (en) | 2009-08-03 | 2014-06-27 | Recombinetics Inc | Methods and compositions for targeted gene modification |
| GB0913681D0 (en) | 2009-08-05 | 2009-09-16 | Glaxosmithkline Biolog Sa | Immunogenic composition |
| US8889394B2 (en) | 2009-09-07 | 2014-11-18 | Empire Technology Development Llc | Multiple domain proteins |
| MX2012005069A (es) | 2009-10-30 | 2012-07-17 | Synthetic Genomics Inc | Codificar texto hacia secuencias de acido nucleico. |
| WO2011053982A2 (en) | 2009-11-02 | 2011-05-05 | University Of Washington | Therapeutic nuclease compositions and methods |
| WO2011056185A2 (en) | 2009-11-04 | 2011-05-12 | President And Fellows Of Harvard College | Reactivity-dependent and interaction-dependent pcr |
| US20110104787A1 (en) | 2009-11-05 | 2011-05-05 | President And Fellows Of Harvard College | Fusion Peptides That Bind to and Modify Target Nucleic Acid Sequences |
| US8697439B2 (en) | 2009-11-13 | 2014-04-15 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Direct protein delivery with engineered microvesicles |
| EP3403647A1 (en) | 2009-12-01 | 2018-11-21 | Translate Bio, Inc. | Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases |
| WO2011068916A1 (en) | 2009-12-01 | 2011-06-09 | Intezyne Technologies, Incorporated | Pegylated polyplexes for polynucleotide delivery |
| CA2783351C (en) | 2009-12-10 | 2021-09-07 | Regents Of The University Of Minnesota | Tal effector-mediated dna modification |
| US20130011380A1 (en) | 2009-12-18 | 2013-01-10 | Blau Helen M | Use of Cytidine Deaminase-Related Agents to Promote Demethylation and Cell Reprogramming |
| JP2013517774A (ja) | 2010-01-22 | 2013-05-20 | ダウ アグロサイエンシィズ エルエルシー | 遺伝子改変生物における導入遺伝子の切除 |
| EP2526112B1 (en) | 2010-01-22 | 2018-10-17 | Dow AgroSciences LLC | Targeted genomic alteration |
| WO2011091396A1 (en) | 2010-01-25 | 2011-07-28 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of mylip/idol gene |
| CN102939380A (zh) | 2010-03-05 | 2013-02-20 | 合成基因组股份有限公司 | 用于克隆和操作基因组的方法 |
| GB201004575D0 (en) | 2010-03-19 | 2010-05-05 | Immatics Biotechnologies Gmbh | Composition of tumor associated peptides and related anti cancer vaccine for the treatment of gastric cancer and other cancers |
| WO2011123830A2 (en) | 2010-04-02 | 2011-10-06 | Amunix Operating Inc. | Alpha 1-antitrypsin compositions and methods of making and using same |
| WO2011140284A2 (en) | 2010-05-04 | 2011-11-10 | Fred Hutchinson Cancer Research Center | Conditional superagonist ctl ligands for the promotion of tumor-specific ctl responses |
| EA024121B9 (ru) | 2010-05-10 | 2017-01-30 | Дзе Реджентс Ов Дзе Юниверсити Ов Калифорния | Композиции эндорибонуклеаз и способы их использования |
| CA2798988C (en) | 2010-05-17 | 2020-03-10 | Sangamo Biosciences, Inc. | Tal-effector (tale) dna-binding polypeptides and uses thereof |
| GB201008267D0 (en) | 2010-05-18 | 2010-06-30 | Univ Edinburgh | Cationic lipids |
| BR112012030522A2 (pt) | 2010-05-27 | 2020-10-13 | Heinrich-Pette-Institut Leibniz-Institut Fur Experimentelle Virologie - Stiftung Burgerlichen Rechts | Método para preparo de um vetor de expressão que codifica uma recombinase configurada, método para preparo de uma célula transformada, ácido nucleico, recombinase configurada codificada pelo ácido nucleico, célula transformada ecomposição farmacêutica" |
| EP2575767B1 (en) | 2010-06-04 | 2017-01-04 | Sirna Therapeutics, Inc. | Novel low molecular weight cationic lipids for oligonucleotide delivery |
| EP2392208B1 (en) | 2010-06-07 | 2016-05-04 | Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Fusion proteins comprising a DNA-binding domain of a Tal effector protein and a non-specific cleavage domain of a restriction nuclease and their use |
| AU2011265733B2 (en) | 2010-06-14 | 2014-04-17 | Iowa State University Research Foundation, Inc. | Nuclease activity of TAL effector and Foki fusion protein |
| US8975232B2 (en) | 2010-07-29 | 2015-03-10 | President And Fellows Of Harvard College | Macrocyclic kinase inhibitors and uses thereof |
| CA2807552A1 (en) | 2010-08-06 | 2012-02-09 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US8900814B2 (en) | 2010-08-13 | 2014-12-02 | Kyoto University | Variant reverse transcriptase |
| JP6173912B2 (ja) | 2010-09-20 | 2017-08-02 | エスピーアイ ファーマ,インコーポレイテッド | マイクロカプセル化プロセスおよび製品 |
| EP2630156B1 (en) | 2010-10-20 | 2018-08-22 | DuPont Nutrition Biosciences ApS | Lactococcus crispr-cas sequences |
| US9458484B2 (en) | 2010-10-22 | 2016-10-04 | Bio-Rad Laboratories, Inc. | Reverse transcriptase mixtures with improved storage stability |
| PT2635257T (pt) | 2010-11-05 | 2017-08-16 | Novavax Inc | Partículas semelhantes a vírus de glicoproteína de raiva (vlps) |
| US20140005269A1 (en) | 2010-11-26 | 2014-01-02 | University Of The Witwatersrand, Johannesburg | Polymeric matrix of polymer-lipid nanoparticles as a pharmaceutical dosage form |
| KR101255338B1 (ko) | 2010-12-15 | 2013-04-16 | 포항공과대학교 산학협력단 | 표적 세포에 대한 폴리뉴클레오티드 전달체 |
| JP6143675B2 (ja) | 2010-12-16 | 2017-06-07 | セルジーン コーポレイション | 難溶性薬物の制御放出経口剤形及びその使用 |
| JP6088438B2 (ja) | 2010-12-22 | 2017-03-01 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 連続的定向進化 |
| US9499592B2 (en) | 2011-01-26 | 2016-11-22 | President And Fellows Of Harvard College | Transcription activator-like effectors |
| KR101818126B1 (ko) | 2011-02-09 | 2018-01-15 | (주)바이오니아 | 열안정성이 증가된 역전사효소 |
| US9528124B2 (en) | 2013-08-27 | 2016-12-27 | Recombinetics, Inc. | Efficient non-meiotic allele introgression |
| US9200045B2 (en) | 2011-03-11 | 2015-12-01 | President And Fellows Of Harvard College | Small molecule-dependent inteins and uses thereof |
| US9164079B2 (en) | 2011-03-17 | 2015-10-20 | Greyledge Technologies Llc | Systems for autologous biological therapeutics |
| US20120244601A1 (en) | 2011-03-22 | 2012-09-27 | Bertozzi Carolyn R | Riboswitch based inducible gene expression platform |
| JP2012210172A (ja) | 2011-03-30 | 2012-11-01 | Japan Science & Technology Agency | 外部環境に応答して内部の物質組成を変えるリポソーム |
| US8709466B2 (en) | 2011-03-31 | 2014-04-29 | International Business Machines Corporation | Cationic polymers for antimicrobial applications and delivery of bioactive materials |
| EP2694091B1 (en) | 2011-04-05 | 2019-03-13 | Cellectis | Method for the generation of compact tale-nucleases and uses thereof |
| US20140128449A1 (en) | 2011-04-07 | 2014-05-08 | The Board Of Regents Of The University Of Texas System | Oligonucleotide modulation of splicing |
| WO2012148953A1 (en) | 2011-04-25 | 2012-11-01 | Stc.Unm | Solid compositions for pharmaceutical use |
| PT2702160T (pt) | 2011-04-27 | 2020-07-30 | Amyris Inc | Métodos para modificação genómica |
| WO2012158985A2 (en) | 2011-05-17 | 2012-11-22 | Transposagen Biopharmaceuticals, Inc. | Methods for site-specific genetic modification in spermatogonial stem cells using zinc finger nuclease (zfn) for the creation of model organisms |
| WO2012158986A2 (en) | 2011-05-17 | 2012-11-22 | Transposagen Biopharmaceuticals, Inc. | Methods for site-specific genetic modification in stem cells using xanthomonas tal nucleases (xtn) for the creation of model organisms |
| US8691750B2 (en) | 2011-05-17 | 2014-04-08 | Axolabs Gmbh | Lipids and compositions for intracellular delivery of biologically active compounds |
| WO2012164565A1 (en) | 2011-06-01 | 2012-12-06 | Yeda Research And Development Co. Ltd. | Compositions and methods for downregulating prokaryotic genes |
| US20140206753A1 (en) | 2011-06-08 | 2014-07-24 | Shire Human Genetic Therapies, Inc. | Lipid nanoparticle compositions and methods for mrna delivery |
| EP2726467A4 (en) | 2011-07-01 | 2015-01-21 | Harvard College | MACROCYCLIC INSULIN DEGRADING ENZYM (IDE) INHIBITORS AND THEIR USE |
| EP3461896B1 (en) | 2011-07-15 | 2023-11-29 | The General Hospital Corporation | Methods of transcription activator like effector assembly |
| CN103857797A (zh) | 2011-07-19 | 2014-06-11 | 帷幄生物技术公司 | 用于修复软骨损伤的非遗传修饰性重编程细胞的组合物和方法 |
| WO2013066438A2 (en) | 2011-07-22 | 2013-05-10 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| WO2013039857A1 (en) | 2011-09-12 | 2013-03-21 | modeRNA Therapeutics | Engineered nucleic acids and methods of use thereof |
| PT2755675T (pt) | 2011-09-12 | 2018-10-11 | Amunix Operating Inc | Composições de péptido semelhante a glucagão-2 e métodos para produzir e utilizar as mesmas |
| WO2013039861A2 (en) | 2011-09-12 | 2013-03-21 | modeRNA Therapeutics | Engineered nucleic acids and methods of use thereof |
| RU2633510C2 (ru) | 2011-09-28 | 2017-10-12 | Рибомик Инк. | Аптамер против ngf и его применение |
| CA2850411C (en) | 2011-09-28 | 2023-08-15 | Era Biotech, S.A. | Split inteins and uses thereof |
| CN103088008B (zh) | 2011-10-31 | 2014-08-20 | 中国科学院微生物研究所 | 胞苷脱氨酶及其编码基因和它们的应用 |
| GB2496687A (en) | 2011-11-21 | 2013-05-22 | Gw Pharma Ltd | Tetrahydrocannabivarin (THCV) in the protection of pancreatic islet cells |
| WO2013086441A2 (en) | 2011-12-08 | 2013-06-13 | Sarepta Therapeutics, Inc. | Oligonucleotide analogues targeting human lmna |
| JP2015500648A (ja) | 2011-12-16 | 2015-01-08 | ターゲットジーン バイオテクノロジーズ リミテッド | 所定の標的核酸配列を修飾するための組成物及び方法 |
| KR20140102759A (ko) | 2011-12-16 | 2014-08-22 | 모더나 세라퓨틱스, 인코포레이티드 | 변형된 뉴클레오사이드, 뉴클레오타이드 및 핵산 조성물 |
| GB201122458D0 (en) | 2011-12-30 | 2012-02-08 | Univ Wageningen | Modified cascade ribonucleoproteins and uses thereof |
| WO2013119602A1 (en) | 2012-02-06 | 2013-08-15 | President And Fellows Of Harvard College | Arrdc1-mediated microvesicles (armms) and uses thereof |
| US20150005233A1 (en) | 2012-02-08 | 2015-01-01 | Seneb Biosciences, Inc. | Treatment of hypoglycemia |
| HRP20221531T1 (hr) | 2012-02-15 | 2023-02-17 | Bioverativ Therapeutics Inc. | Pripravci faktora viii i postupci dobivanja i korištenja istih |
| CN104284669A (zh) | 2012-02-24 | 2015-01-14 | 弗雷德哈钦森癌症研究中心 | 治疗血红蛋白病的组合物和方法 |
| CN107496932A (zh) | 2012-02-27 | 2017-12-22 | 阿穆尼克斯运营公司 | Xten缀合组合物和制造其的方法 |
| BR112014021104B1 (pt) | 2012-02-29 | 2023-03-28 | Sangamo Biosciences, Inc | Proteína de fusão de ocorrência não natural compreendendo um domínio de ligação de dna de dedo de zinco manipulado que se liga a um gene htt, seu uso, método in vitro de modificação da expressão de um gene htt em uma célula, e método de geração de um sistema modelo para o estudo da doença de huntington |
| EP3692999A1 (en) | 2012-03-17 | 2020-08-12 | The Regents of the University of California | Fast diagnosis and personalized treatments for acne |
| WO2013141680A1 (en) | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
| US9637739B2 (en) | 2012-03-20 | 2017-05-02 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
| WO2013152359A1 (en) | 2012-04-06 | 2013-10-10 | The Regents Of The University Of California | Novel tetrazines and method of synthesizing the same |
| WO2013160230A1 (en) | 2012-04-23 | 2013-10-31 | Bayer Cropscience Nv | Targeted genome engineering in plants |
| UA115875C2 (uk) | 2012-05-02 | 2018-01-10 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | Рослина помідора зі зменшеною активністю малатдегідрогенази та спосіб її отримання |
| BR112014027813A2 (pt) | 2012-05-07 | 2017-08-08 | Dow Agrosciences Llc | métodos e composições para integração de transgenes direcionada mediada por nuclease |
| US11120889B2 (en) | 2012-05-09 | 2021-09-14 | Georgia Tech Research Corporation | Method for synthesizing a nuclease with reduced off-site cleavage |
| US20150017136A1 (en) | 2013-07-15 | 2015-01-15 | Cellectis | Methods for engineering allogeneic and highly active t cell for immunotherapy |
| CA3133545C (en) | 2012-05-25 | 2023-08-08 | Cellectis | Use of pre t alpha or functional variant thereof for expanding tcr alpha deficient t cells |
| FI3597749T3 (fi) | 2012-05-25 | 2023-10-09 | Univ California | Menetelmiä ja koostumuksia rna-ohjattua kohde-dna-modifikaatiota varten ja rna-ohjattua transkription modulaatiota varten |
| KR20150027756A (ko) | 2012-05-30 | 2015-03-12 | 베일러 칼리지 오브 메디신 | Dna 수복, 변경 및 대체를 위한 도구로서의 초나선 미니벡터 |
| WO2013188037A2 (en) | 2012-06-11 | 2013-12-19 | Agilent Technologies, Inc | Method of adaptor-dimer subtraction using a crispr cas6 protein |
| CN104540382A (zh) | 2012-06-12 | 2015-04-22 | 弗·哈夫曼-拉罗切有限公司 | 用于产生条件性敲除等位基因的方法和组合物 |
| EP2674501A1 (en) | 2012-06-14 | 2013-12-18 | Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail | Method for detecting and identifying enterohemorrhagic Escherichia coli |
| WO2013188638A2 (en) | 2012-06-15 | 2013-12-19 | The Regents Of The University Of California | Endoribonucleases and methods of use thereof |
| US20150225734A1 (en) | 2012-06-19 | 2015-08-13 | Regents Of The University Of Minnesota | Gene targeting in plants using dna viruses |
| US9267127B2 (en) | 2012-06-21 | 2016-02-23 | President And Fellows Of Harvard College | Evolution of bond-forming enzymes |
| PT2877490T (pt) | 2012-06-27 | 2019-02-12 | Univ Princeton | Inteínas clivadas, conjugados e suas utilizações |
| PL2867361T3 (pl) | 2012-06-29 | 2018-07-31 | Massachusetts Institute Of Technology | Masowo równoległa genetyka kombinatoryczna |
| US9125508B2 (en) | 2012-06-30 | 2015-09-08 | Seasons 4, Inc. | Collapsible tree system |
| WO2014011901A2 (en) | 2012-07-11 | 2014-01-16 | Sangamo Biosciences, Inc. | Methods and compositions for delivery of biologics |
| ES2697912T3 (es) | 2012-07-11 | 2019-01-29 | Sangamo Therapeutics Inc | Métodos y composiciones para el tratamiento de enfermedades monogénicas |
| EP2877213B1 (en) | 2012-07-25 | 2020-12-02 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
| EP2879678B1 (en) | 2012-07-31 | 2023-03-01 | Yeda Research and Development Co. Ltd. | Enoxacin for treating amyotrophic lateral sclerosis |
| US10058078B2 (en) | 2012-07-31 | 2018-08-28 | Recombinetics, Inc. | Production of FMDV-resistant livestock by allele substitution |
| EP2880171B1 (en) | 2012-08-03 | 2018-10-03 | The Regents of The University of California | Methods and compositions for controlling gene expression by rna processing |
| AU2013308770B2 (en) | 2012-08-29 | 2019-01-17 | Sangamo Therapeutics, Inc. | Methods and compositions for treatment of a genetic condition |
| AU2013312838B2 (en) | 2012-09-04 | 2018-11-29 | Cellectis | Multi-chain chimeric antigen receptor and uses thereof |
| US9937205B2 (en) | 2012-09-04 | 2018-04-10 | The Trustees Of The University Of Pennsylvania | Inhibition of diacylglycerol kinase to augment adoptive T cell transfer |
| US9902962B2 (en) | 2012-09-04 | 2018-02-27 | The Scripps Research Institute | Chimeric polypeptides having targeted binding specificity |
| CA2884162C (en) | 2012-09-07 | 2020-12-29 | Dow Agrosciences Llc | Fad3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks |
| UA119135C2 (uk) | 2012-09-07 | 2019-05-10 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | Спосіб отримання трансгенної рослини |
| US20140075593A1 (en) | 2012-09-07 | 2014-03-13 | Dow Agrosciences Llc | Fluorescence activated cell sorting (facs) enrichment to generate plants |
| WO2014039715A1 (en) | 2012-09-07 | 2014-03-13 | University Of Rochester | Methods and compositions for site-specific labeling of peptides and proteins |
| UA118090C2 (uk) | 2012-09-07 | 2018-11-26 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | Спосіб інтегрування послідовності нуклеїнової кислоти, що представляє інтерес, у ген fad2 у клітині сої та специфічний для локусу fad2 білок, що зв'язується, здатний індукувати спрямований розрив |
| WO2014043143A1 (en) | 2012-09-11 | 2014-03-20 | Life Technologies Corporation | Nucleic acid amplification |
| GB201216564D0 (en) | 2012-09-17 | 2012-10-31 | Univ Edinburgh | Genetically edited animal |
| WO2014047103A2 (en) | 2012-09-18 | 2014-03-27 | The Translational Genomics Research Institute | Isolated genes and transgenic organisms for producing biofuels |
| US9181535B2 (en) | 2012-09-24 | 2015-11-10 | The Chinese University Of Hong Kong | Transcription activator-like effector nucleases (TALENs) |
| WO2014055782A1 (en) | 2012-10-03 | 2014-04-10 | Agrivida, Inc. | Intein-modified proteases, their production and industrial applications |
| JO3470B1 (ar) | 2012-10-08 | 2020-07-05 | Merck Sharp & Dohme | مشتقات 5- فينوكسي-3h-بيريميدين-4-أون واستخدامها كمثبطات ناسخ عكسي ل hiv |
| ES2824024T3 (es) | 2012-10-10 | 2021-05-11 | Sangamo Therapeutics Inc | Compuestos modificadores de células T y usos de los mismos |
| EP2906602B1 (en) | 2012-10-12 | 2019-01-16 | The General Hospital Corporation | Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins |
| KR101656236B1 (ko) | 2012-10-23 | 2016-09-12 | 주식회사 툴젠 | 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 암호화하는 핵산 또는 Cas 단백질을 포함하는, 표적 DNA를 절단하기 위한 조성물 및 이의 용도 |
| US20140115728A1 (en) | 2012-10-24 | 2014-04-24 | A. Joseph Tector | Double knockout (gt/cmah-ko) pigs, organs and tissues |
| CA2889502A1 (en) | 2012-10-30 | 2014-05-08 | Recombinetics, Inc. | Control of sexual maturation in animals |
| AR093296A1 (es) | 2012-10-31 | 2015-05-27 | Kiss György Botond | Identificacion de un gen de resistencia a xanthomonas euvesicatoria de pimienta (capsicum annuum) y metodo para generar plantas a esa resistencia |
| US20150291967A1 (en) | 2012-10-31 | 2015-10-15 | Luc Mathis | Coupling herbicide resistance with targeted insertion of transgenes in plants |
| BR122019025681B1 (pt) | 2012-11-01 | 2023-04-18 | Factor Bioscience Inc | Método para inserir uma sequência de ácido nucleico em uma localização segura de um genoma de uma célula |
| WO2014071235A1 (en) | 2012-11-01 | 2014-05-08 | Massachusetts Institute Of Technology | Genetic device for the controlled destruction of dna |
| US20140127752A1 (en) | 2012-11-07 | 2014-05-08 | Zhaohui Zhou | Method, composition, and reagent kit for targeted genomic enrichment |
| WO2014072941A1 (en) | 2012-11-09 | 2014-05-15 | Marco Archetti | Diffusible factors and cancer cells |
| WO2014081855A1 (en) | 2012-11-20 | 2014-05-30 | Universite De Montreal | Methods and compositions for muscular dystrophies |
| CA2892012A1 (en) | 2012-11-20 | 2014-05-30 | Cold Spring Harbor Laboratory | Mutations in solanaceae plants that modulate shoot architecture and enhance yield-related phenotypes |
| KR20150085846A (ko) | 2012-11-20 | 2015-07-24 | 제이.알.심프롯캄패니 | Tal-매개 전이 DNA 삽입방법 |
| AU2013352156B2 (en) | 2012-11-27 | 2018-12-06 | Children's Medical Center Corporation | Targeting BCL11A distal regulatory elements for fetal hemoglobin reinduction |
| WO2014085261A1 (en) | 2012-11-29 | 2014-06-05 | North Carolina State University | Synthetic pathway for biological carbon dioxide sequestration |
| EP2925866B1 (en) | 2012-11-30 | 2018-07-25 | Aarhus Universitet | Circular rna for inhibition of microrna |
| US20160010154A1 (en) | 2012-11-30 | 2016-01-14 | The Parkinson's Institute | Screening assays for therapeutics for parkinson's disease |
| AU2013355327A1 (en) | 2012-12-05 | 2015-06-11 | Sangamo Therapeutics, Inc. | Methods and compositions for regulation of metabolic disorders |
| PT3363902T (pt) | 2012-12-06 | 2019-12-19 | Sigma Aldrich Co Llc | Modificação e regulação de genoma baseadas em crispr |
| US9447422B2 (en) | 2012-12-06 | 2016-09-20 | Synthetic Genomics, Inc. | Autonomous replication sequences and episomal DNA molecules |
| EP3401388B1 (en) | 2012-12-06 | 2019-07-10 | Synthetic Genomics, Inc. | Algal mutants having a locked-in high light acclimated phenotype |
| US10272163B2 (en) | 2012-12-07 | 2019-04-30 | The Regents Of The University Of California | Factor VIII mutation repair and tolerance induction |
| US9914931B2 (en) | 2012-12-07 | 2018-03-13 | Synthetic Genomics, Inc. | Nannochloropsis spliced leader sequences and uses therefor |
| WO2014093479A1 (en) | 2012-12-11 | 2014-06-19 | Montana State University | Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation |
| PT2784162E (pt) | 2012-12-12 | 2015-08-27 | Broad Inst Inc | Engenharia de sistemas, métodos e composições guia otimizadas para a manipulação de sequências |
| EP4234696A3 (en) | 2012-12-12 | 2023-09-06 | The Broad Institute Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
| EP3434776A1 (en) | 2012-12-12 | 2019-01-30 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
| ES2576126T3 (es) | 2012-12-12 | 2016-07-05 | The Broad Institute, Inc. | Modificación por tecnología genética y optimización de sistemas, métodos y composiciones enzimáticas mejorados para la manipulación de secuencias |
| EP2931898B1 (en) | 2012-12-12 | 2016-03-09 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| US20140310830A1 (en) | 2012-12-12 | 2014-10-16 | Feng Zhang | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
| EP2931899A1 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
| EP2932421A1 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
| KR20150105956A (ko) | 2012-12-12 | 2015-09-18 | 더 브로드 인스티튜트, 인코퍼레이티드 | 서열 조작 및 치료적 적용을 위한 시스템, 방법 및 조성물의 전달, 유전자 조작 및 최적화 |
| US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
| US20140173783A1 (en) | 2012-12-13 | 2014-06-19 | Dow Agrosciences Llc | Precision gene targeting to a particular locus in maize |
| BR102013032129B1 (pt) | 2012-12-13 | 2022-06-07 | Dow Agrosciences Llc | Método para identificar a presença de um polinucleotídeo de dna doador exógeno inserido dentro de um único locus genômico eucariótico alvo |
| CA2894710A1 (en) | 2012-12-13 | 2014-06-19 | Massachusetts Institute Of Technology | Recombinase-based logic and memory systems |
| EP4282970A3 (en) | 2012-12-17 | 2024-01-17 | President and Fellows of Harvard College | Rna-guided human genome engineering |
| US9708589B2 (en) | 2012-12-18 | 2017-07-18 | Monsanto Technology Llc | Compositions and methods for custom site-specific DNA recombinases |
| US20140178561A1 (en) | 2012-12-21 | 2014-06-26 | Cellectis | Potatoes with reduced cold-induced sweetening |
| JP6583918B2 (ja) | 2012-12-27 | 2019-10-02 | キージーン ナムローゼ フェンノートシャップ | 植物における遺伝連鎖を解消するための方法 |
| US9988625B2 (en) | 2013-01-10 | 2018-06-05 | Dharmacon, Inc. | Templates, libraries, kits and methods for generating molecules |
| WO2014110552A1 (en) | 2013-01-14 | 2014-07-17 | Recombinetics, Inc. | Hornless livestock |
| EP3919505B1 (en) | 2013-01-16 | 2023-08-30 | Emory University | Uses of cas9-nucleic acid complexes |
| CN103233028B (zh) | 2013-01-25 | 2015-05-13 | 南京徇齐生物技术有限公司 | 一种无物种限制无生物安全性问题的真核生物基因打靶方法及螺旋结构dna序列 |
| KR20150133695A (ko) | 2013-02-05 | 2015-11-30 | 유니버시티 오브 조지아 리서치 파운데이션, 인코포레이티드 | 바이러스 제조를 위한 세포주 및 이의 사용 방법 |
| WO2014124226A1 (en) | 2013-02-07 | 2014-08-14 | The Rockefeller University | Sequence specific antimicrobials |
| PL2963113T3 (pl) | 2013-02-14 | 2020-07-13 | Osaka University | Sposób izolowania określonych regionów genomowych z wykorzystaniem cząsteczki zdolnej do specyficznego wiązania się z endogenną sekwencją DNA |
| WO2014127287A1 (en) | 2013-02-14 | 2014-08-21 | Massachusetts Institute Of Technology | Method for in vivo tergated mutagenesis |
| JP6475172B2 (ja) | 2013-02-20 | 2019-02-27 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | ラットの遺伝子組換え |
| WO2014128659A1 (en) | 2013-02-21 | 2014-08-28 | Cellectis | Method to counter-select cells or organisms by linking loci to nuclease components |
| ES2522765B2 (es) | 2013-02-22 | 2015-03-18 | Universidad De Alicante | Método para dectectar inserciones de espaciadores en estructuras CRISPR |
| CA2901676C (en) | 2013-02-25 | 2023-08-22 | Sangamo Biosciences, Inc. | Methods and compositions for enhancing nuclease-mediated gene disruption |
| JP2016507244A (ja) | 2013-02-27 | 2016-03-10 | ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) | Cas9ヌクレアーゼによる卵母細胞における遺伝子編集 |
| US10047366B2 (en) | 2013-03-06 | 2018-08-14 | The Johns Hopkins University | Telomerator-a tool for chromosome engineering |
| US10612043B2 (en) | 2013-03-09 | 2020-04-07 | Agilent Technologies, Inc. | Methods of in vivo engineering of large sequences using multiple CRISPR/cas selections of recombineering events |
| US10329574B2 (en) | 2013-03-12 | 2019-06-25 | E I Du Pont De Nemours And Company | Methods for the identification of variant recognition sites for rare-cutting engineered double-strand-break-inducing agents and compositions and uses thereof |
| EP2970886B1 (en) | 2013-03-12 | 2018-05-23 | Sangamo Therapeutics, Inc. | Methods and compositions for modification of hla |
| US9777262B2 (en) | 2013-03-13 | 2017-10-03 | President And Fellows Of Harvard College | Mutants of Cre recombinase |
| EP3431592A1 (en) | 2013-03-14 | 2019-01-23 | Translate Bio, Inc. | Mrna therapeutic compositions and use to treat diseases and disorders |
| US20160138027A1 (en) | 2013-03-14 | 2016-05-19 | The Board Of Trustees Of The Leland Stanford Junior University | Treatment of diseases and conditions associated with dysregulation of mammalian target of rapamycin complex 1 (mtorc1) |
| US20140283156A1 (en) | 2013-03-14 | 2014-09-18 | Cold Spring Harbor Laboratory | Trans-splicing ribozymes and silent recombinases |
| AU2014235794A1 (en) | 2013-03-14 | 2015-10-22 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
| US20140273230A1 (en) | 2013-03-15 | 2014-09-18 | Sigma-Aldrich Co., Llc | Crispr-based genome modification and regulation |
| US11332719B2 (en) | 2013-03-15 | 2022-05-17 | The Broad Institute, Inc. | Recombinant virus and preparations thereof |
| US10760064B2 (en) | 2013-03-15 | 2020-09-01 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
| EP2971006A4 (en) | 2013-03-15 | 2017-02-08 | Transposagen Biopharmaceuticals, Inc. | Reproducible method for testis-mediated genetic modification (tgm) and sperm-mediated genetic modification (sgm) |
| US20140349400A1 (en) | 2013-03-15 | 2014-11-27 | Massachusetts Institute Of Technology | Programmable Modification of DNA |
| US9234213B2 (en) | 2013-03-15 | 2016-01-12 | System Biosciences, Llc | Compositions and methods directed to CRISPR/Cas genomic engineering systems |
| KR102874079B1 (ko) | 2013-03-15 | 2025-10-22 | 더 제너럴 하스피탈 코포레이션 | Rna-안내 게놈 편집을 위해 특이성을 증가시키기 위한 절단된 안내 rna(tru-grnas)의 이용 |
| US20140363561A1 (en) | 2013-03-15 | 2014-12-11 | J.R. Simplot Company | Tal-mediated transfer dna insertion |
| ES2921207T3 (es) | 2013-03-15 | 2022-08-19 | Cibus Us Llc | Procedimientos y composiciones para aumentar la eficiencia de la modificación genética direccionada utilizando la reparación genética mediada por oligonucleótidos |
| US20140273235A1 (en) | 2013-03-15 | 2014-09-18 | Regents Of The University Of Minnesota | ENGINEERING PLANT GENOMES USING CRISPR/Cas SYSTEMS |
| EP2975942B1 (en) | 2013-03-21 | 2018-08-08 | Sangamo Therapeutics, Inc. | Targeted disruption of t cell receptor genes using engineered zinc finger protein nucleases |
| WO2014161821A1 (en) | 2013-04-02 | 2014-10-09 | Bayer Cropscience Nv | Targeted genome engineering in eukaryotes |
| DK2981607T3 (da) | 2013-04-03 | 2020-11-16 | Memorial Sloan Kettering Cancer Center | Effektiv generering af tumormålrettede t-celler afledt af pluripotente stamceller |
| EP2981617B1 (en) | 2013-04-04 | 2023-07-05 | President and Fellows of Harvard College | Therapeutic uses of genome editing with crispr/cas systems |
| US11274305B2 (en) | 2013-04-04 | 2022-03-15 | Trustees Of Dartmouth College | Compositions and methods for in vivo excision of HIV-1 proviral DNA |
| WO2014165612A2 (en) | 2013-04-05 | 2014-10-09 | Dow Agrosciences Llc | Methods and compositions for integration of an exogenous sequence within the genome of plants |
| US20150056629A1 (en) | 2013-04-14 | 2015-02-26 | Katriona Guthrie-Honea | Compositions, systems, and methods for detecting a DNA sequence |
| EP3456831B1 (en) | 2013-04-16 | 2021-07-14 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
| WO2014172470A2 (en) | 2013-04-16 | 2014-10-23 | Whitehead Institute For Biomedical Research | Methods of mutating, modifying or modulating nucleic acid in a cell or nonhuman mammal |
| WO2014172458A1 (en) | 2013-04-16 | 2014-10-23 | University Of Washington Through Its Center For Commercialization | Activating an alternative pathway for homology-directed repair to stimulate targeted gene correction and genome engineering |
| WO2014176355A1 (en) | 2013-04-23 | 2014-10-30 | President And Fellows Of Harvard College | In situ interaction determination |
| EP2796558A1 (en) | 2013-04-23 | 2014-10-29 | Rheinische Friedrich-Wilhelms-Universität Bonn | Improved gene targeting and nucleic acid carrier molecule, in particular for use in plants |
| CN103224947B (zh) | 2013-04-28 | 2015-06-10 | 陕西师范大学 | 一种基因打靶系统 |
| EP3693398A1 (en) | 2013-05-10 | 2020-08-12 | Whitehead Institute for Biomedical Research | In vitro production of red blood cells with sortaggable proteins |
| EP2994531B1 (en) | 2013-05-10 | 2018-03-28 | Sangamo Therapeutics, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
| RS65484B1 (sr) | 2013-05-13 | 2024-05-31 | Cellectis | Cd19 specifični himerni antigenski receptor i njegove primene |
| AU2014266833B2 (en) | 2013-05-13 | 2020-07-02 | Cellectis | Methods for engineering highly active T cell for immunotherapy |
| AU2014265331B2 (en) | 2013-05-15 | 2019-12-05 | Sangamo Therapeutics, Inc. | Methods and compositions for treatment of a genetic condition |
| WO2014186686A2 (en) | 2013-05-17 | 2014-11-20 | Two Blades Foundation | Targeted mutagenesis and genome engineering in plants using rna-guided cas nucleases |
| US20140349405A1 (en) | 2013-05-22 | 2014-11-27 | Wisconsin Alumni Research Foundation | Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis |
| EP3004349B1 (en) | 2013-05-29 | 2018-03-28 | Cellectis S.A. | A method for producing precise dna cleavage using cas9 nickase activity |
| US11685935B2 (en) | 2013-05-29 | 2023-06-27 | Cellectis | Compact scaffold of Cas9 in the type II CRISPR system |
| US9873907B2 (en) | 2013-05-29 | 2018-01-23 | Agilent Technologies, Inc. | Method for fragmenting genomic DNA using CAS9 |
| DK3004337T3 (da) | 2013-05-29 | 2017-11-13 | Cellectis | Fremgangsmåde til konstruktion af T-celler til immunoterapi ved brug af RNA-guidet Cas nuklease-system |
| US20150067922A1 (en) | 2013-05-30 | 2015-03-05 | The Penn State Research Foundation | Gene targeting and genetic modification of plants via rna-guided genome editing |
| EP3004149B1 (en) | 2013-05-31 | 2018-12-19 | Cellectis S.A. | A laglidadg homing endonuclease cleaving the c-c chemokine receptor type-5 (ccr5) gene and uses thereof |
| AU2014273091B2 (en) | 2013-05-31 | 2019-12-12 | Cellectis | A LAGLIDADG homing endonuclease cleaving the T cell receptor alpha gene and uses thereof |
| US20140359796A1 (en) | 2013-05-31 | 2014-12-04 | Recombinetics, Inc. | Genetically sterile animals |
| RU2690935C2 (ru) | 2013-06-04 | 2019-06-06 | Президент Энд Фэллоуз Оф Харвард Коллидж | Направляемая рнк регуляция транскрипции |
| US20140356956A1 (en) | 2013-06-04 | 2014-12-04 | President And Fellows Of Harvard College | RNA-Guided Transcriptional Regulation |
| JP7085716B2 (ja) | 2013-06-05 | 2022-06-17 | デューク ユニバーシティ | Rnaガイド遺伝子編集及び遺伝子調節 |
| EP4491726A3 (en) | 2013-06-11 | 2025-03-05 | Takara Bio USA, Inc. | Protein enriched microvesicles and methods of making and using the same |
| US20150315252A1 (en) | 2013-06-11 | 2015-11-05 | Clontech Laboratories, Inc. | Protein enriched microvesicles and methods of making and using the same |
| US9982277B2 (en) | 2013-06-11 | 2018-05-29 | The Regents Of The University Of California | Methods and compositions for target DNA modification |
| WO2014199358A1 (en) | 2013-06-14 | 2014-12-18 | Cellectis | Methods for non-transgenic genome editing in plants |
| EP3011035B1 (en) | 2013-06-17 | 2020-05-13 | The Broad Institute, Inc. | Assay for quantitative evaluation of target site cleavage by one or more crispr-cas guide sequences |
| CN107995927B (zh) | 2013-06-17 | 2021-07-30 | 布罗德研究所有限公司 | 用于肝靶向和治疗的crispr-cas系统、载体和组合物的递送与用途 |
| EP3725885A1 (en) | 2013-06-17 | 2020-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof |
| CA2915795C (en) | 2013-06-17 | 2021-07-13 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components |
| EP3674411A1 (en) | 2013-06-17 | 2020-07-01 | The Broad Institute, Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
| JP6738729B2 (ja) | 2013-06-17 | 2020-08-12 | ザ・ブロード・インスティテュート・インコーポレイテッド | 分裂終了細胞の疾患および障害をターゲティングおよびモデリングするための系、方法および組成物の送達、エンジニアリングおよび最適化 |
| CN105492611A (zh) | 2013-06-17 | 2016-04-13 | 布罗德研究所有限公司 | 用于序列操纵的优化的crispr-cas双切口酶系统、方法以及组合物 |
| US20160145645A1 (en) | 2013-06-19 | 2016-05-26 | Sigma-Aldrich Co. Llc | Targeted integration |
| US10011850B2 (en) | 2013-06-21 | 2018-07-03 | The General Hospital Corporation | Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing |
| AU2014301147B2 (en) | 2013-06-25 | 2020-07-30 | Cellectis | Modified diatoms for biofuel production |
| US20160369268A1 (en) | 2013-07-01 | 2016-12-22 | The Board Of Regents Of The University Of Texas System | Transcription activator-like effector (tale) libraries and methods of synthesis and use |
| EP3019595A4 (en) | 2013-07-09 | 2016-11-30 | THERAPEUTIC USES OF A GENERIC CHANGE WITH CRISPR / CAS SYSTEMS | |
| CA2917638C (en) | 2013-07-09 | 2024-09-10 | Harvard College | RNA MULTIPLEX GUIDED GENOMIC ENGINEERING |
| SG10201800213VA (en) | 2013-07-10 | 2018-02-27 | Harvard College | Orthogonal cas9 proteins for rna-guided gene regulation and editing |
| EP3019005B1 (en) | 2013-07-10 | 2019-02-20 | EffStock, LLC | Mrap2 knockouts |
| DK3019602T3 (en) | 2013-07-10 | 2018-11-12 | Glykos Finland Oy | MULTIPLE PROTEASE-DEFECTED FILAMENTARY FUNGAL CELLS AND PROCEDURES FOR USE THEREOF |
| DK3019619T3 (da) | 2013-07-11 | 2021-10-11 | Modernatx Inc | Sammensætninger, der omfatter syntetiske polynukleotider, som koder for crispr-beslægtede proteiner, og syntetiske sgrna'er, og anvendelsesfremgangsmåder |
| WO2015007194A1 (zh) | 2013-07-16 | 2015-01-22 | 中国科学院上海生命科学研究院 | 植物基因组定点修饰方法 |
| WO2015010114A1 (en) | 2013-07-19 | 2015-01-22 | Larix Bioscience, Llc | Methods and compositions for producing double allele knock outs |
| GB201313235D0 (en) | 2013-07-24 | 2013-09-04 | Univ Edinburgh | Antiviral Compositions Methods and Animals |
| US11306328B2 (en) | 2013-07-26 | 2022-04-19 | President And Fellows Of Harvard College | Genome engineering |
| CN103388006B (zh) | 2013-07-26 | 2015-10-28 | 华东师范大学 | 一种基因定点突变的构建方法 |
| US10421957B2 (en) | 2013-07-29 | 2019-09-24 | Agilent Technologies, Inc. | DNA assembly using an RNA-programmable nickase |
| CA2920253A1 (en) | 2013-08-02 | 2015-02-05 | Enevolv, Inc. | Processes and host cells for genome, pathway, and biomolecular engineering |
| ITTO20130669A1 (it) | 2013-08-05 | 2015-02-06 | Consiglio Nazionale Ricerche | Vettore adeno-associato ricombinante muscolo-specifico e suo impiego nel trattamento di patologie muscolari |
| US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
| WO2015021426A1 (en) | 2013-08-09 | 2015-02-12 | Sage Labs, Inc. | A crispr/cas system-based novel fusion protein and its application in genome editing |
| WO2015021990A1 (en) | 2013-08-16 | 2015-02-19 | University Of Copenhagen | Rna probing method and reagents |
| WO2015024017A2 (en) | 2013-08-16 | 2015-02-19 | President And Fellows Of Harvard College | Rna polymerase, methods of purification and methods of use |
| NO3036326T3 (enExample) | 2013-08-20 | 2018-03-03 | ||
| US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| EP3611268A1 (en) | 2013-08-22 | 2020-02-19 | E. I. du Pont de Nemours and Company | Plant genome modification using guide rna/cas endonuclease systems and methods of use |
| GB201315321D0 (en) | 2013-08-28 | 2013-10-09 | Koninklijke Nederlandse Akademie Van Wetenschappen | Transduction Buffer |
| WO2015031619A1 (en) | 2013-08-28 | 2015-03-05 | Sangamo Biosciences, Inc. | Compositions for linking dna-binding domains and cleavage domains |
| AU2014312123A1 (en) | 2013-08-29 | 2016-03-17 | Temple University Of The Commonwealth System Of Higher Education | Methods and compositions for RNA-guided treatment of HIV infection |
| HRP20240856T1 (hr) | 2013-09-04 | 2024-10-11 | KWS SAAT SE & Co. KGaA | Biljke rezistentne na helminthosporium turcicum |
| WO2015033293A1 (en) | 2013-09-04 | 2015-03-12 | Csir | Site-specific nuclease single-cell assay targeting gene regulatory elements to silence gene expression |
| AU2014315335B2 (en) | 2013-09-04 | 2017-08-24 | Corteva Agriscience Llc | Rapid targeting analysis in crops for determining donor insertion |
| WO2015034872A2 (en) | 2013-09-05 | 2015-03-12 | Massachusetts Institute Of Technology | Tuning microbial populations with programmable nucleases |
| US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
| US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
| US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
| EP3988649B1 (en) | 2013-09-18 | 2024-11-27 | Kymab Limited | Methods, cells and organisms |
| WO2015040075A1 (en) | 2013-09-18 | 2015-03-26 | Genome Research Limited | Genomic screening methods using rna-guided endonucleases |
| EP3046932B1 (en) | 2013-09-20 | 2020-04-29 | President and Fellows of Harvard College | Evolved sortases and uses thereof |
| AU2014321215B2 (en) | 2013-09-23 | 2020-07-16 | Rensselaer Polytechnic Institute | Nanoparticle-mediated gene delivery, genomic editing and ligand-targeted modification in various cell populations |
| US20160237455A1 (en) | 2013-09-27 | 2016-08-18 | Editas Medicine, Inc. | Crispr-related methods and compositions |
| US10822606B2 (en) | 2013-09-27 | 2020-11-03 | The Regents Of The University Of California | Optimized small guide RNAs and methods of use |
| CA2925050A1 (en) | 2013-09-30 | 2015-04-02 | The Regents Of The University Of California | Identification of cxcr8, a novel chemokine receptor |
| WO2015048707A2 (en) | 2013-09-30 | 2015-04-02 | Regents Of The University Of Minnesota | Conferring resistance to geminiviruses in plants using crispr/cas systems |
| CN105934512A (zh) | 2013-10-02 | 2016-09-07 | 东北大学 | 用于在核基因转移的受体中产生没有发育能力的卵子的方法和组合物 |
| JP5774657B2 (ja) | 2013-10-04 | 2015-09-09 | 国立大学法人京都大学 | エレクトロポレーションを利用した哺乳類の遺伝子改変方法 |
| CA2932581A1 (en) | 2013-10-07 | 2015-04-16 | Northeastern University | Methods and compositions for ex vivo generation of developmentally competent eggs from germ line cells using autologous cell systems |
| WO2015052231A2 (en) | 2013-10-08 | 2015-04-16 | Technical University Of Denmark | Multiplex editing system |
| US20150098954A1 (en) | 2013-10-08 | 2015-04-09 | Elwha Llc | Compositions and Methods Related to CRISPR Targeting |
| DE102013111099B4 (de) | 2013-10-08 | 2023-11-30 | Eberhard Karls Universität Tübingen Medizinische Fakultät | Permanente Genkorrektur mittels nukleotidmodifizierter messenger RNA |
| JP2015076485A (ja) | 2013-10-08 | 2015-04-20 | 株式会社ジャパンディスプレイ | 表示装置 |
| AU2014333776B2 (en) | 2013-10-11 | 2021-01-28 | Cellectis | Methods and kits for detecting nucleic acid sequences of interest using DNA-binding protein domain |
| WO2015057671A1 (en) | 2013-10-14 | 2015-04-23 | The Broad Institute, Inc. | Artificial transcription factors comprising a sliding domain and uses thereof |
| KR102357968B1 (ko) | 2013-10-15 | 2022-02-03 | 더 스크립스 리서치 인스티튜트 | 키메라 항원 수용체 t 세포 스위치 및 이의 용도 |
| CA2927543C (en) | 2013-10-15 | 2021-07-20 | The California Institute For Biomedical Research | Peptidic chimeric antigen receptor t cell switches and uses thereof |
| US9957526B2 (en) | 2013-10-17 | 2018-05-01 | Sangamo Therapeutics, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
| WO2015057976A1 (en) | 2013-10-17 | 2015-04-23 | Sangamo Biosciences, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering in hematopoietic stem cells |
| US10759764B2 (en) | 2013-10-18 | 2020-09-01 | President And Fellows Of Harvard College | Fluorination of organic compounds |
| EP3060658B1 (en) | 2013-10-25 | 2020-07-15 | Cellectis | Design of rare-cutting endonucleases for efficient and specific targeting dna sequences comprising highly repetitive motives |
| WO2015065964A1 (en) | 2013-10-28 | 2015-05-07 | The Broad Institute Inc. | Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof |
| WO2015066119A1 (en) | 2013-10-30 | 2015-05-07 | North Carolina State University | Compositions and methods related to a type-ii crispr-cas system in lactobacillus buchneri |
| US10233465B2 (en) | 2013-11-04 | 2019-03-19 | Dow Agrosciences Llc | Optimal soybean loci |
| EP3862434A1 (en) | 2013-11-04 | 2021-08-11 | Dow AgroSciences LLC | Optimal soybean loci |
| AU2014341928B2 (en) | 2013-11-04 | 2017-11-30 | Corteva Agriscience Llc | A universal donor system for gene targeting |
| BR102014027442B1 (pt) | 2013-11-04 | 2022-09-27 | Dow Agrosciences Llc | Molécula de ácido nucleico recombinante, uso de uma planta de milho, parte de planta de milho ou célula de planta de milho compreendendo a mesma e método para produzir uma célula vegetal transgênica compreendendo um dna de interesse |
| WO2015066638A2 (en) | 2013-11-04 | 2015-05-07 | Dow Agrosciences Llc | Optimal maize loci |
| US10752906B2 (en) | 2013-11-05 | 2020-08-25 | President And Fellows Of Harvard College | Precise microbiota engineering at the cellular level |
| KR20230054509A (ko) | 2013-11-07 | 2023-04-24 | 에디타스 메디신, 인코포레이티드 | 지배적인 gRNA를 이용하는 CRISPR-관련 방법 및 조성물 |
| US20160282354A1 (en) | 2013-11-08 | 2016-09-29 | The Broad Institute, Inc. | Compositions and methods for selecting a treatment for b-cell neoplasias |
| CN105934524A (zh) | 2013-11-11 | 2016-09-07 | 桑格摩生物科学股份有限公司 | 用于治疗亨廷顿氏病的方法和组合物 |
| WO2015070193A1 (en) | 2013-11-11 | 2015-05-14 | Liu Oliver | Compositions and methods for targeted gene disruption in prokaryotes |
| DK3492593T3 (da) | 2013-11-13 | 2021-11-08 | Childrens Medical Center | Nukleasemedieret regulering af genekspression |
| CA2930590C (en) | 2013-11-15 | 2021-02-16 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Engineering neural stem cells using homologous recombination |
| WO2015073990A1 (en) | 2013-11-18 | 2015-05-21 | Yale University | Compositions and methods of using transposons |
| US20160298096A1 (en) | 2013-11-18 | 2016-10-13 | Crispr Therapeutics Ag | Crispr-cas system materials and methods |
| US9074199B1 (en) | 2013-11-19 | 2015-07-07 | President And Fellows Of Harvard College | Mutant Cas9 proteins |
| WO2015075056A1 (en) | 2013-11-19 | 2015-05-28 | Thermo Fisher Scientific Baltics Uab | Programmable enzymes for isolation of specific dna fragments |
| US10787684B2 (en) | 2013-11-19 | 2020-09-29 | President And Fellows Of Harvard College | Large gene excision and insertion |
| CN105960413B (zh) | 2013-11-20 | 2020-03-27 | 泰莱托恩基金会 | 人工dna-结合蛋白及其用途 |
| WO2015075195A1 (en) | 2013-11-22 | 2015-05-28 | Cellectis | Method of engineering chemotherapy drug resistant t-cells for immunotherapy |
| KR102507624B1 (ko) | 2013-11-22 | 2023-03-09 | 미나 테라퓨틱스 리미티드 | C/ebp 알파 짧은 활성화 rna 조성물 및 사용 방법 |
| AU2014351871B2 (en) | 2013-11-22 | 2020-02-13 | Cellectis | Method for generating batches of allogeneic T-cells with averaged potency |
| CN103642836A (zh) | 2013-11-26 | 2014-03-19 | 苏州同善生物科技有限公司 | 一种基于crispr基因敲除技术建立脆性x综合症灵长类动物模型的方法 |
| CN103614415A (zh) | 2013-11-27 | 2014-03-05 | 苏州同善生物科技有限公司 | 一种基于crispr基因敲除技术建立肥胖症大鼠动物模型的方法 |
| CA2928635C (en) | 2013-11-28 | 2022-06-21 | Horizon Genomics Gmbh | Somatic haploid human cell line |
| EP3757116A1 (en) | 2013-12-09 | 2020-12-30 | Sangamo Therapeutics, Inc. | Methods and compositions for genome engineering |
| MX388127B (es) | 2013-12-11 | 2025-03-19 | Regeneron Pharma | Metodos y composiciones para la modificacion dirigida de un genoma. |
| JP2017503485A (ja) | 2013-12-12 | 2017-02-02 | ザ・ブロード・インスティテュート・インコーポレイテッド | 遺伝子産物の発現、構造情報、及び誘導性モジュラーcas酵素を変更するためのcrispr−cas系並びに方法 |
| WO2015089364A1 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Crystal structure of a crispr-cas system, and uses thereof |
| SG10201804973TA (en) | 2013-12-12 | 2018-07-30 | Broad Inst Inc | Compositions and Methods of Use of Crispr-Cas Systems in Nucleotide Repeat Disorders |
| EP3080259B1 (en) | 2013-12-12 | 2023-02-01 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation |
| EP3079726B1 (en) | 2013-12-12 | 2018-12-05 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
| EP3080271B1 (en) | 2013-12-12 | 2020-02-12 | The Broad Institute, Inc. | Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems |
| BR112016013201B1 (pt) | 2013-12-12 | 2023-01-31 | The Broad Institute, Inc. | Uso de uma composição compreendendo um sistema crispr-cas no tratamento de uma doença genética ocular |
| EP3080266B1 (en) | 2013-12-12 | 2021-02-03 | The Regents of The University of California | Methods and compositions for modifying a single stranded target nucleic acid |
| US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
| EP3540051B1 (en) | 2013-12-12 | 2022-08-17 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hsv and viral diseases and disorders. |
| EP3080275B1 (en) | 2013-12-13 | 2020-01-15 | Cellectis | Method of selection of transformed diatoms using nuclease |
| EP3080256B1 (en) | 2013-12-13 | 2018-06-13 | Cellectis | Cas9 nuclease platform for microalgae genome engineering |
| US20150191744A1 (en) | 2013-12-17 | 2015-07-09 | University Of Massachusetts | Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling |
| AU2014368982B2 (en) | 2013-12-19 | 2021-03-25 | Amyris, Inc. | Methods for genomic integration |
| CA2935032C (en) | 2013-12-26 | 2024-01-23 | The General Hospital Corporation | Multiplex guide rnas |
| WO2015103057A1 (en) | 2013-12-30 | 2015-07-09 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Fusion genes associated with progressive prostate cancer |
| US9963689B2 (en) | 2013-12-31 | 2018-05-08 | The Regents Of The University Of California | Cas9 crystals and methods of use thereof |
| CN103668472B (zh) | 2013-12-31 | 2014-12-24 | 北京大学 | 利用CRISPR/Cas9系统构建真核基因敲除文库的方法 |
| AU2015204784B2 (en) | 2014-01-08 | 2021-01-28 | President And Fellows Of Harvard College | RNA-guided gene drives |
| EP3094729A1 (en) | 2014-01-14 | 2016-11-23 | Lam Therapeutics, Inc. | Mutagenesis methods |
| US10774338B2 (en) | 2014-01-16 | 2020-09-15 | The Regents Of The University Of California | Generation of heritable chimeric plant traits |
| WO2015134121A2 (en) | 2014-01-20 | 2015-09-11 | President And Fellows Of Harvard College | Negative selection and stringency modulation in continuous evolution systems |
| GB201400962D0 (en) | 2014-01-21 | 2014-03-05 | Kloehn Peter C | Screening for target-specific affinity binders using RNA interference |
| EP3097194A4 (en) | 2014-01-21 | 2017-08-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Modified plants |
| CN106164261A (zh) | 2014-01-22 | 2016-11-23 | 生命技术公司 | 适用于高温核酸合成的新颖逆转录酶 |
| EP3097212A4 (en) | 2014-01-24 | 2017-10-04 | North Carolina State University | Methods and compositions for sequences guiding cas9 targeting |
| EP3096609B1 (en) | 2014-01-24 | 2021-09-22 | Children's Medical Center Corporation | High-throughput mouse model for optimizing antibody affinities |
| US10354746B2 (en) | 2014-01-27 | 2019-07-16 | Georgia Tech Research Corporation | Methods and systems for identifying CRISPR/Cas off-target sites |
| CN104805078A (zh) | 2014-01-28 | 2015-07-29 | 北京大学 | 用于高效基因组编辑的rna分子的设计、合成及其应用 |
| US9850525B2 (en) | 2014-01-29 | 2017-12-26 | Agilent Technologies, Inc. | CAS9-based isothermal method of detection of specific DNA sequence |
| US20150291969A1 (en) | 2014-01-30 | 2015-10-15 | Chromatin, Inc. | Compositions for reduced lignin content in sorghum and improving cell wall digestibility, and methods of making the same |
| US10233456B2 (en) | 2014-01-30 | 2019-03-19 | The Board Of Trustees Of The University Of Arkansas | Method, vectors, cells, seeds and kits for stacking genes into a single genomic site |
| WO2015117021A1 (en) | 2014-01-31 | 2015-08-06 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| GB201401707D0 (en) | 2014-01-31 | 2014-03-19 | Sec Dep For Health The | Adeno-associated viral vectors |
| WO2015115903A1 (en) | 2014-02-03 | 2015-08-06 | Academisch Ziekenhuis Leiden H.O.D.N. Lumc | Site-specific dna break-induced genome editing using engineered nucleases |
| US10072066B2 (en) | 2014-02-03 | 2018-09-11 | Sangamo Therapeutics, Inc. | Methods and compositions for treatment of a beta thalessemia |
| EP4467654A3 (en) | 2014-02-04 | 2025-02-19 | Jumpcode Genomics, Inc. | Genome fractioning |
| DK3102680T3 (en) | 2014-02-07 | 2019-04-08 | Vib Vzw | INHIBITION OF NEAT1 FOR TREATMENT OF SOLID TUMORS |
| AU2015217208B2 (en) | 2014-02-11 | 2018-08-30 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
| WO2015122967A1 (en) | 2014-02-13 | 2015-08-20 | Clontech Laboratories, Inc. | Methods of depleting a target molecule from an initial collection of nucleic acids, and compositions and kits for practicing the same |
| JP6673838B2 (ja) | 2014-02-14 | 2020-04-01 | セレクティスCellectis | 免疫細胞と病的細胞の両方に存在する抗原を標的とするように操作された、免疫療法のための細胞 |
| KR20160130392A (ko) | 2014-02-18 | 2016-11-11 | 듀크 유니버시티 | 바이러스 복제의 불활성화를 위한 조성물 및 그의 제조 및 사용 방법 |
| AU2015220765A1 (en) | 2014-02-20 | 2016-09-01 | Dsm Ip Assets B.V. | Phage insensitive Streptococcus thermophilus |
| EP3107552B1 (en) | 2014-02-21 | 2018-03-28 | Cellectis | Method for in situ inhibition of regulatory t cells |
| WO2015127428A1 (en) | 2014-02-24 | 2015-08-27 | Massachusetts Institute Of Technology | Methods for in vivo genome editing |
| JP6606088B2 (ja) | 2014-02-24 | 2019-11-13 | サンガモ セラピューティクス, インコーポレイテッド | ヌクレアーゼ媒介性標的化組み込みのための方法および組成物 |
| WO2015129686A1 (ja) | 2014-02-25 | 2015-09-03 | 国立研究開発法人 農業生物資源研究所 | 標的dnaに変異が導入された植物細胞、及びその製造方法 |
| US11186843B2 (en) | 2014-02-27 | 2021-11-30 | Monsanto Technology Llc | Compositions and methods for site directed genomic modification |
| CN103820454B (zh) | 2014-03-04 | 2016-03-30 | 上海金卫生物技术有限公司 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
| CN103820441B (zh) | 2014-03-04 | 2017-05-17 | 黄行许 | CRISPR‑Cas9特异性敲除人CTLA4基因的方法以及用于特异性靶向CTLA4基因的sgRNA |
| CN111471674A (zh) | 2014-03-05 | 2020-07-31 | 国立大学法人神户大学 | 特异性转变靶向dna序列的核酸碱基的基因组序列的修饰方法、及其使用的分子复合体 |
| WO2015134812A1 (en) | 2014-03-05 | 2015-09-11 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa |
| EP3553176A1 (en) | 2014-03-10 | 2019-10-16 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating leber's congenital amaurosis 10 (lca10) |
| ES2782125T3 (es) | 2014-03-11 | 2020-09-10 | Cellectis | Método para generar linfocitos T compatibles para trasplante alogénico |
| ES2821149T3 (es) | 2014-03-12 | 2021-04-23 | Prec Biosciences Inc | Eliminación del exón del gen de la distrofina mediante nucleasas modificadas genéticamente |
| WO2015138870A2 (en) | 2014-03-13 | 2015-09-17 | The Trustees Of The University Of Pennsylvania | Compositions and methods for targeted epigenetic modification |
| CA2942407C (en) | 2014-03-14 | 2023-09-26 | Cibus Us Llc | Methods and compositions for increasing efficiency of targeted gene modification using oligonucleotide-mediated gene repair |
| WO2015138855A1 (en) | 2014-03-14 | 2015-09-17 | The Regents Of The University Of California | Vectors and methods for fungal genome engineering by crispr-cas9 |
| AU2015231353B2 (en) | 2014-03-18 | 2020-11-05 | Sangamo Therapeutics, Inc. | Methods and compositions for regulation of zinc finger protein expression |
| EP3126498A4 (en) | 2014-03-20 | 2017-08-23 | Université Laval | Crispr-based methods and products for increasing frataxin levels and uses thereof |
| CA2939847C (en) | 2014-03-21 | 2023-09-05 | The Board Of Trustees Of The Leland Stanford Junior University | Genome editing without nucleases |
| RS58337B1 (sr) | 2014-03-24 | 2019-03-29 | Translate Bio Inc | Irnk terapija za lečenje očnih oboljenja |
| PL3122766T3 (pl) | 2014-03-24 | 2021-09-13 | IMMCO Diagnostics, Inc. | Ulepszone wykrywanie i diagnostyka przeciwciał przeciwjądrowych dla układowych i nieukładowych zaburzeń autoimmunologicznych |
| CA2943622A1 (en) | 2014-03-25 | 2015-10-01 | Editas Medicine Inc. | Crispr/cas-related methods and compositions for treating hiv infection and aids |
| WO2015148680A1 (en) | 2014-03-25 | 2015-10-01 | Ginkgo Bioworks, Inc. | Methods and genetic systems for cell engineering |
| US9609415B2 (en) | 2014-03-26 | 2017-03-28 | Bose Corporation | Headphones with cable management |
| US10349639B2 (en) | 2014-03-26 | 2019-07-16 | University Of Maryland, College Park | Targeted genome editing in zygotes of domestic large animals |
| WO2015148860A1 (en) | 2014-03-26 | 2015-10-01 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating beta-thalassemia |
| EP3122880B1 (en) | 2014-03-26 | 2021-05-05 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating sickle cell disease |
| WO2015145417A1 (en) | 2014-03-28 | 2015-10-01 | Ilan Ziv | Compounds and methods for trans-membrane delivery of molecules |
| US9993563B2 (en) | 2014-03-28 | 2018-06-12 | Aposense Ltd. | Compounds and methods for trans-membrane delivery of molecules |
| WO2015153791A1 (en) | 2014-04-01 | 2015-10-08 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 2 (hsv-2) |
| WO2015153789A1 (en) | 2014-04-01 | 2015-10-08 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 1 (hsv-1) |
| WO2015153760A2 (en) | 2014-04-01 | 2015-10-08 | Sangamo Biosciences, Inc. | Methods and compositions for prevention or treatment of a nervous system disorder |
| US10507232B2 (en) | 2014-04-02 | 2019-12-17 | University Of Florida Research Foundation, Incorporated | Materials and methods for the treatment of latent viral infection |
| EP3540061A1 (en) | 2014-04-02 | 2019-09-18 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating primary open angle glaucoma |
| WO2015153940A1 (en) | 2014-04-03 | 2015-10-08 | Massachusetts Institute Of Technology | Methods and compositions for the production of guide rna |
| CN103911376B (zh) | 2014-04-03 | 2017-02-15 | 黄行许 | CRISPR‑Cas9靶向敲除乙肝病毒cccDNA及其特异性sgRNA |
| CN106460003A (zh) | 2014-04-08 | 2017-02-22 | 北卡罗来纳州立大学 | 用于使用crispr相关基因rna引导阻遏转录的方法和组合物 |
| EP3556858A3 (en) | 2014-04-09 | 2020-01-22 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating cystic fibrosis |
| WO2015157534A1 (en) | 2014-04-10 | 2015-10-15 | The Regents Of The University Of California | Methods and compositions for using argonaute to modify a single stranded target nucleic acid |
| WO2015155341A1 (en) | 2014-04-11 | 2015-10-15 | Cellectis | Method for generating immune cells resistant to arginine and/or tryptophan depleted microenvironment |
| ES2962509T3 (es) | 2014-04-14 | 2024-03-19 | Maxcyte Inc | Métodos y composiciones para modificar ADN genómico |
| CN103923911B (zh) | 2014-04-14 | 2016-06-08 | 上海金卫生物技术有限公司 | CRISPR-Cas9特异性敲除人CCR5基因的方法以及用于特异性靶向CCR5基因的sgRNA |
| WO2015159068A1 (en) | 2014-04-14 | 2015-10-22 | Nemesis Bioscience Ltd | Therapeutic |
| GB201406968D0 (en) | 2014-04-17 | 2014-06-04 | Green Biologics Ltd | Deletion mutants |
| GB201406970D0 (en) | 2014-04-17 | 2014-06-04 | Green Biologics Ltd | Targeted mutations |
| WO2015161276A2 (en) | 2014-04-18 | 2015-10-22 | Editas Medicine, Inc. | Crispr-cas-related methods, compositions and components for cancer immunotherapy |
| CN105039399A (zh) | 2014-04-23 | 2015-11-11 | 复旦大学 | 多能干细胞-遗传性心肌病心肌细胞及其制备方法 |
| US20170076039A1 (en) | 2014-04-24 | 2017-03-16 | Institute For Basic Science | A Method of Selecting a Nuclease Target Sequence for Gene Knockout Based on Microhomology |
| CA2945393C (en) | 2014-04-24 | 2021-03-23 | Board Of Regents, The University Of Texas System | Application of induced pluripotent stem cells to generate adoptive cell therapy products |
| WO2015164748A1 (en) | 2014-04-24 | 2015-10-29 | Sangamo Biosciences, Inc. | Engineered transcription activator like effector (tale) proteins |
| WO2015168158A1 (en) | 2014-04-28 | 2015-11-05 | Fredy Altpeter | Targeted genome editing to modify lignin biosynthesis and cell wall composition |
| MX2016014066A (es) | 2014-04-28 | 2017-05-03 | Recombinetics Inc | Edicion de genes multiples en cerdos. |
| AU2015253536A1 (en) | 2014-04-28 | 2016-11-17 | Dow Agrosciences Llc | Haploid maize transformation |
| WO2015167766A1 (en) | 2014-04-29 | 2015-11-05 | Seattle Children's Hospital (dba Seattle Children's Research Institute) | Ccr5 disruption of cells expressing anti-hiv chimeric antigen receptor (car) derived from broadly neutralizing antibodies |
| WO2015165276A1 (zh) | 2014-04-30 | 2015-11-05 | 清华大学 | 利用tale转录抑制子在哺乳动物细胞中模块化构建合成基因线路的试剂盒 |
| WO2015168404A1 (en) | 2014-04-30 | 2015-11-05 | Massachusetts Institute Of Technology | Toehold-gated guide rna for programmable cas9 circuitry with rna input |
| EP3156493B1 (en) | 2014-04-30 | 2020-05-06 | Tsinghua University | Use of tale transcriptional repressor for modular construction of synthetic gene line in mammalian cell |
| CN104178506B (zh) | 2014-04-30 | 2017-03-01 | 清华大学 | Taler蛋白通过空间位阻发挥转录抑制作用及其应用 |
| BR112016025519A2 (pt) | 2014-05-01 | 2018-01-16 | Univ Washington | engenharia genética in vivo com vetores de adenovírus |
| GB201407852D0 (en) | 2014-05-02 | 2014-06-18 | Iontas Ltd | Preparation of libraries od protein variants expressed in eukaryotic cells and use for selecting binding molecules |
| WO2015171603A1 (en) | 2014-05-06 | 2015-11-12 | Two Blades Foundation | Methods for producing plants with enhanced resistance to oomycete pathogens |
| RU2691102C2 (ru) | 2014-05-08 | 2019-06-11 | Сангамо Байосайенсиз, Инк. | Способы и композиции для лечения болезни хантингтона |
| US10487336B2 (en) | 2014-05-09 | 2019-11-26 | The Regents Of The University Of California | Methods for selecting plants after genome editing |
| EP3139954A4 (en) | 2014-05-09 | 2018-02-28 | Indiana University Research and Technology Corporation | Methods and compositions for treating hepatitis b virus infections |
| EP3140403A4 (en) | 2014-05-09 | 2017-12-20 | Université Laval | Prevention and treatment of alzheimer's disease by genome editing using the crispr/cas system |
| WO2015175642A2 (en) | 2014-05-13 | 2015-11-19 | Sangamo Biosciences, Inc. | Methods and compositions for prevention or treatment of a disease |
| CN104004782B (zh) | 2014-05-16 | 2016-06-08 | 安徽省农业科学院水稻研究所 | 一种延长水稻生育期的育种方法 |
| CN103981212B (zh) | 2014-05-16 | 2016-06-01 | 安徽省农业科学院水稻研究所 | 将黄色颖壳的水稻品种的颖壳颜色改为褐色的育种方法 |
| CN103981211B (zh) | 2014-05-16 | 2016-07-06 | 安徽省农业科学院水稻研究所 | 一种创制闭颖授粉水稻材料的育种方法 |
| CN104017821B (zh) | 2014-05-16 | 2016-07-06 | 安徽省农业科学院水稻研究所 | 定向编辑颖壳颜色决定基因OsCHI创制褐壳水稻材料的方法 |
| WO2015173436A1 (en) | 2014-05-16 | 2015-11-19 | Vrije Universiteit Brussel | Genetic correction of myotonic dystrophy type 1 |
| JP2017517256A (ja) | 2014-05-20 | 2017-06-29 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | 遺伝子配列を編集する方法 |
| CA2852593A1 (en) | 2014-05-23 | 2015-11-23 | Universite Laval | Methods for producing dopaminergic neurons and uses thereof |
| US10653123B2 (en) | 2014-05-27 | 2020-05-19 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for perturbing gene expression in hematopoietic stem cell lineages in vivo |
| KR101815695B1 (ko) | 2014-05-28 | 2018-01-08 | 기초과학연구원 | 표적 특이적 뉴클레아제를 이용한 표적 dna의 민감한 검출 방법 |
| US20160060655A1 (en) | 2014-05-30 | 2016-03-03 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods to treat latent viral infections |
| EP3152319A4 (en) | 2014-06-05 | 2017-12-27 | Sangamo BioSciences, Inc. | Methods and compositions for nuclease design |
| US20170198307A1 (en) | 2014-06-06 | 2017-07-13 | President And Fellows Of Harvard College | Methods for targeted modification of genomic dna |
| BR112016028564A2 (pt) | 2014-06-06 | 2018-01-30 | Regeneron Pharma | método para modificar um locus-alvo em uma célula. |
| CA2950178A1 (en) | 2014-06-06 | 2015-12-10 | The California Institute For Biomedical Research | Methods of constructing amino terminal immunoglobulin fusion proteins and compositions thereof |
| CN104004778B (zh) | 2014-06-06 | 2016-03-02 | 重庆高圣生物医药有限责任公司 | 含有CRISPR/Cas9系统的靶向敲除载体及其腺病毒和应用 |
| WO2015188135A1 (en) | 2014-06-06 | 2015-12-10 | The California Institute For Biomedical Research | Constant region antibody fusion proteins and compositions thereof |
| WO2015188191A1 (en) | 2014-06-06 | 2015-12-10 | Wong Wilson W | Dna recombinase circuits for logical control of gene expression |
| US11274302B2 (en) | 2016-08-17 | 2022-03-15 | Diacarta Ltd | Specific synthetic chimeric Xenonucleic acid guide RNA; s(XNA-gRNA) for enhancing CRISPR mediated genome editing efficiency |
| WO2015191693A2 (en) | 2014-06-10 | 2015-12-17 | Massachusetts Institute Of Technology | Method for gene editing |
| CA2951882A1 (en) | 2014-06-11 | 2015-12-17 | Tom E. HOWARD | Factor viii mutation repair and tolerance induction and related cdnas, compositions, methods and systems |
| MY203868A (en) | 2014-06-11 | 2024-07-22 | Univ Duke | Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves |
| WO2015191911A2 (en) | 2014-06-12 | 2015-12-17 | Clontech Laboratories, Inc. | Protein enriched microvesicles and methods of making and using the same |
| WO2015189693A1 (en) | 2014-06-12 | 2015-12-17 | King Abdullah University Of Science And Technology | Targeted viral-mediated plant genome editing using crispr/cas9 |
| SG10202002486QA (en) | 2014-06-16 | 2020-04-29 | Univ Johns Hopkins | Compositions and methods for the expression of crispr guide rnas using the h1 promoter |
| WO2015195547A1 (en) | 2014-06-16 | 2015-12-23 | University Of Washington | Methods for controlling stem cell potential and for gene editing in stem cells |
| EP3157328B1 (en) | 2014-06-17 | 2021-08-04 | Poseida Therapeutics, Inc. | A method for directing proteins to specific loci in the genome and uses thereof |
| CA2952906A1 (en) | 2014-06-20 | 2015-12-23 | Cellectis | Potatoes with reduced granule-bound starch synthase |
| IL286474B2 (en) | 2014-06-23 | 2023-11-01 | Massachusetts Gen Hospital | Genome-wide random identification of DSBS assessed by sequencing (guide-sequence) |
| MX384887B (es) | 2014-06-23 | 2025-03-14 | Regeneron Pharma | Ensamblaje de adn mediado por nucleasa. |
| WO2015200555A2 (en) | 2014-06-25 | 2015-12-30 | Caribou Biosciences, Inc. | Rna modification to engineer cas9 activity |
| GB201411344D0 (en) | 2014-06-26 | 2014-08-13 | Univ Leicester | Cloning |
| SG10201911411YA (en) | 2014-06-26 | 2020-02-27 | Regeneron Pharma | Methods and compositions for targeted genetic modifications and methods of use |
| SG11201610591XA (en) | 2014-06-30 | 2017-01-27 | Kao Corp | Adhesive sheet for cooling |
| JP6090535B2 (ja) | 2014-06-30 | 2017-03-08 | 日産自動車株式会社 | 内燃機関 |
| US20180187172A1 (en) | 2014-07-01 | 2018-07-05 | Board Of Regents, The University Of Texas System | Regulated gene expression from viral vectors |
| EP3164112A1 (en) | 2014-07-02 | 2017-05-10 | Shire Human Genetic Therapies, Inc. | Encapsulation of messenger rna |
| EP3167071B1 (en) | 2014-07-09 | 2020-10-07 | Gen9, Inc. | Compositions and methods for site-directed dna nicking and cleaving |
| EP2966170A1 (en) | 2014-07-10 | 2016-01-13 | Heinrich-Pette-Institut Leibniz-Institut für experimentelle Virologie-Stiftung bürgerlichen Rechts - | HBV inactivation |
| BR112017000621B1 (pt) | 2014-07-11 | 2024-03-12 | Pioneer Hi-Bred International, Inc | Método para melhorar um traço agronômico de uma planta de milho ou de soja |
| WO2016007347A1 (en) | 2014-07-11 | 2016-01-14 | E. I. Du Pont De Nemours And Company | Compositions and methods for producing plants resistant to glyphosate herbicide |
| US11254933B2 (en) | 2014-07-14 | 2022-02-22 | The Regents Of The University Of California | CRISPR/Cas transcriptional modulation |
| CN104109687A (zh) | 2014-07-14 | 2014-10-22 | 四川大学 | 运动发酵单胞菌CRISPR-Cas9系统的构建与应用 |
| MX2017000646A (es) | 2014-07-15 | 2017-04-27 | Juno Therapeutics Inc | Celulas geneticamente modificadas para terapia celular adoptiva. |
| EP3193944B1 (en) | 2014-07-17 | 2021-04-07 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Methods of treating cells containing fusion genes |
| US9944933B2 (en) | 2014-07-17 | 2018-04-17 | Georgia Tech Research Corporation | Aptamer-guided gene targeting |
| US20160053272A1 (en) | 2014-07-18 | 2016-02-25 | Whitehead Institute For Biomedical Research | Methods Of Modifying A Sequence Using CRISPR |
| US10975406B2 (en) | 2014-07-18 | 2021-04-13 | Massachusetts Institute Of Technology | Directed endonucleases for repeatable nucleic acid cleavage |
| US20160053304A1 (en) | 2014-07-18 | 2016-02-25 | Whitehead Institute For Biomedical Research | Methods Of Depleting Target Sequences Using CRISPR |
| WO2016014409A1 (en) | 2014-07-21 | 2016-01-28 | Illumina, Inc. | Polynucleotide enrichment using crispr-cas systems |
| WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
| WO2016013183A1 (ja) | 2014-07-22 | 2016-01-28 | パナソニックIpマネジメント株式会社 | 複合磁性材料とこれを用いたコイル部品ならびに複合磁性材料の製造方法 |
| EP3778867A1 (en) | 2014-07-24 | 2021-02-17 | DSM IP Assets B.V. | Phage resistant lactic acid bacteria |
| US9816074B2 (en) | 2014-07-25 | 2017-11-14 | Sangamo Therapeutics, Inc. | Methods and compositions for modulating nuclease-mediated genome engineering in hematopoietic stem cells |
| US9757420B2 (en) | 2014-07-25 | 2017-09-12 | Sangamo Therapeutics, Inc. | Gene editing for HIV gene therapy |
| EP3172316A2 (en) | 2014-07-25 | 2017-05-31 | Boehringer Ingelheim International GmbH | Enhanced reprogramming to ips cells |
| EP3194600B1 (en) | 2014-07-26 | 2019-08-28 | Consiglio Nazionale Delle Ricerche | Compositions and methods for treatment of muscular dystrophy |
| FR3024464A1 (fr) | 2014-07-30 | 2016-02-05 | Centre Nat Rech Scient | Ciblage de vecteurs integratifs non-viraux dans les sequences d'adn nucleolaires chez les eucaryotes |
| AU2015298571B2 (en) | 2014-07-30 | 2020-09-03 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
| US9616090B2 (en) | 2014-07-30 | 2017-04-11 | Sangamo Biosciences, Inc. | Gene correction of SCID-related genes in hematopoietic stem and progenitor cells |
| US9850521B2 (en) | 2014-08-01 | 2017-12-26 | Agilent Technologies, Inc. | In vitro assay buffer for Cas9 |
| US20160076093A1 (en) | 2014-08-04 | 2016-03-17 | University Of Washington | Multiplex homology-directed repair |
| EP2982758A1 (en) | 2014-08-04 | 2016-02-10 | Centre Hospitalier Universitaire Vaudois (CHUV) | Genome editing for the treatment of huntington's disease |
| CN106536721B (zh) | 2014-08-06 | 2020-12-04 | 车医科学大学校产学协力团 | 核酸酶介导的编辑编码hla的基因所产生的免疫相容性细胞 |
| WO2016021973A1 (ko) | 2014-08-06 | 2016-02-11 | 주식회사 툴젠 | 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 |
| WO2016022931A1 (en) | 2014-08-07 | 2016-02-11 | The Rockefeller University | Compositions and methods for transcription-based crispr-cas dna editing |
| US9932566B2 (en) | 2014-08-07 | 2018-04-03 | Agilent Technologies, Inc. | CIS-blocked guide RNA |
| EP3180034B1 (en) | 2014-08-11 | 2022-04-20 | The Board of Regents of The University of Texas System | Prevention of muscular dystrophy by crispr/cas9-mediated gene editing |
| US10513711B2 (en) | 2014-08-13 | 2019-12-24 | Dupont Us Holding, Llc | Genetic targeting in non-conventional yeast using an RNA-guided endonuclease |
| CN104178461B (zh) | 2014-08-14 | 2017-02-01 | 北京蛋白质组研究中心 | 携带cas9的重组腺病毒及其应用 |
| CN107429241B (zh) | 2014-08-14 | 2025-10-24 | 百奥赛图(北京)医药科技股份有限公司 | Dna敲入系统 |
| US9879270B2 (en) | 2014-08-15 | 2018-01-30 | Wisconsin Alumni Research Foundation | Constructs and methods for genome editing and genetic engineering of fungi and protists |
| EP3180426B1 (en) | 2014-08-17 | 2019-12-25 | The Broad Institute, Inc. | Genome editing using cas9 nickases |
| CA2958292A1 (en) | 2014-08-19 | 2016-02-25 | President And Fellows Of Harvard College | Rna-guided systems for probing and mapping of nucleic acids |
| EP3183367B1 (en) | 2014-08-19 | 2019-06-26 | Pacific Biosciences Of California, Inc. | Compositions and methods for enrichment of nucleic acids |
| US20190045758A1 (en) | 2014-08-20 | 2019-02-14 | Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences | Biomarker and Therapeutic Target for Triple Negative Breast Cancer |
| KR101946180B1 (ko) | 2014-08-25 | 2019-02-08 | 지니위브 바이오사이언시스, 인코포레이티드 | 비-복제 형질도입 입자 및 형질도입 입자-기반 리포터 시스템 |
| BR112017003528A2 (pt) | 2014-08-26 | 2018-07-10 | Univ California | receptores de aba hipersensíveis. |
| US9970030B2 (en) | 2014-08-27 | 2018-05-15 | Caribou Biosciences, Inc. | Methods for increasing CAS9-mediated engineering efficiency |
| WO2016033298A1 (en) | 2014-08-28 | 2016-03-03 | North Carolina State University | Novel cas9 proteins and guiding features for dna targeting and genome editing |
| US10570418B2 (en) | 2014-09-02 | 2020-02-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification |
| WO2016037157A2 (en) | 2014-09-05 | 2016-03-10 | The Johns Hopkins University | Targeting capn9/capns2 activity as a therapeutic strategy for the treatment of myofibroblast differentiation and associated pathologies |
| EP3189140B1 (en) | 2014-09-05 | 2019-10-23 | Vilnius University | Programmable rna shredding by the type iii-a crispr-cas system of streptococcus thermophilus |
| KR20160029247A (ko) | 2014-09-05 | 2016-03-15 | 한국외국어대학교 연구산학협력단 | 신규한 융합체 및 이의 제조 방법 |
| US20170298450A1 (en) | 2014-09-10 | 2017-10-19 | The Regents Of The University Of California | Reconstruction of ancestral cells by enzymatic recording |
| WO2016040030A1 (en) | 2014-09-12 | 2016-03-17 | E. I. Du Pont De Nemours And Company | Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use |
| CN106795488B (zh) | 2014-09-16 | 2021-03-30 | 桑格摩治疗股份有限公司 | 用于造血干细胞中核酸酶介导的基因组工程化和校正的方法和组合物 |
| US9738646B2 (en) | 2014-09-16 | 2017-08-22 | Gilead Sciences, Inc. | Solid forms of a toll-like receptor modulator |
| WO2016049163A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder |
| WO2016049024A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo |
| EP3800260A1 (en) | 2014-09-24 | 2021-04-07 | City of Hope | Adeno-associated virus vector variants for high efficiency genome editing and methods thereof |
| WO2016049251A1 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes |
| WO2016049258A2 (en) | 2014-09-25 | 2016-03-31 | The Broad Institute Inc. | Functional screening with optimized functional crispr-cas systems |
| WO2016046635A1 (en) | 2014-09-25 | 2016-03-31 | Institut Pasteur | Methods for characterizing human papillomavirus associated cervical lesions |
| US20160090603A1 (en) | 2014-09-30 | 2016-03-31 | Sandia Corporation | Delivery platforms for the domestication of algae and plants |
| WO2016054326A1 (en) | 2014-10-01 | 2016-04-07 | The General Hospital Corporation | Methods for increasing efficiency of nuclease-induced homology-directed repair |
| EP3204513A2 (en) | 2014-10-09 | 2017-08-16 | Life Technologies Corporation | Crispr oligonucleotides and gene editing |
| ES3015369T3 (en) | 2014-10-09 | 2025-05-05 | Seattle Childrens Hospital Dba Seattle Childrens Res Inst | Long poly (a) plasmids and methods for introduction of long poly (a) sequences into the plasmid |
| EP3204496A1 (en) | 2014-10-10 | 2017-08-16 | Editas Medicine, Inc. | Compositions and methods for promoting homology directed repair |
| CA2964234A1 (en) | 2014-10-10 | 2016-04-14 | Massachusetts Eye And Ear Infirmary | Efficient delivery of therapeutic molecules in vitro and in vivo |
| WO2016061073A1 (en) | 2014-10-14 | 2016-04-21 | Memorial Sloan-Kettering Cancer Center | Composition and method for in vivo engineering of chromosomal rearrangements |
| CA2963315A1 (en) | 2014-10-15 | 2016-04-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for generating or maintaining pluripotent cells |
| CN104342457A (zh) | 2014-10-17 | 2015-02-11 | 杭州师范大学 | 一种将外源基因定点整合到靶标基因的方法 |
| EP3207139B1 (en) | 2014-10-17 | 2025-05-07 | The Penn State Research Foundation | Methods and compositions for multiplex rna guided genome editing and other rna technologies |
| EP3207131B1 (en) | 2014-10-17 | 2022-09-28 | Howard Hughes Medical Institute | Genomic probes |
| US10793922B2 (en) | 2014-10-20 | 2020-10-06 | Envirologix Inc. | Compositions and methods for detecting an RNA virus |
| WO2016077052A2 (en) | 2014-10-22 | 2016-05-19 | President And Fellows Of Harvard College | Evolution of proteases |
| US20170306306A1 (en) | 2014-10-24 | 2017-10-26 | Life Technologies Corporation | Compositions and Methods for Enhancing Homologous Recombination |
| EP3212788A2 (en) | 2014-10-27 | 2017-09-06 | The Broad Institute, Inc. | Compositions, methods and use of synthetic lethal screening |
| CN107075491B (zh) | 2014-10-28 | 2021-07-06 | 谷万达公司 | 用于稳定反式剪接的内含肽修饰的蛋白酶的方法和组合物 |
| WO2016069910A1 (en) | 2014-10-29 | 2016-05-06 | Massachusetts Eye And Ear Infirmary | Methods for efficient delivery of therapeutic molecules in vitro and in vivo |
| EP4434997A3 (en) | 2014-10-30 | 2025-01-01 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| MA40880A (fr) | 2014-10-30 | 2017-09-05 | Temple Univ Of The Commonwealth | Éradication guidée par l'arn du virus jc humain et d'autres polyomavirus |
| JP6788584B2 (ja) | 2014-10-31 | 2020-11-25 | マサチューセッツ インスティテュート オブ テクノロジー | Crisprについての超並列コンビナトリアル遺伝学 |
| EP4427809A3 (en) | 2014-10-31 | 2024-12-04 | The Trustees of The University of Pennsylvania | Altering gene expression in car-t cells and uses thereof |
| US9816080B2 (en) | 2014-10-31 | 2017-11-14 | President And Fellows Of Harvard College | Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs) |
| CN104504304B (zh) | 2014-11-03 | 2017-08-25 | 深圳先进技术研究院 | 一种成簇的规律间隔的短回文重复序列识别方法及装置 |
| CN104404036B (zh) | 2014-11-03 | 2017-12-01 | 赛业(苏州)生物科技有限公司 | 基于CRISPR/Cas9技术的条件性基因敲除方法 |
| US10435697B2 (en) | 2014-11-03 | 2019-10-08 | Nanyang Technological University | Recombinant expression system that senses pathogenic microorganisms |
| WO2016073559A1 (en) | 2014-11-05 | 2016-05-12 | The Regents Of The University Of California | Methods for autocatalytic genome editing and neutralizing autocatalytic genome editing |
| KR102424721B1 (ko) | 2014-11-06 | 2022-07-25 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Rna-유도 엔도뉴클레아제의 세포 내로의 펩티드 매개성 전달 |
| AU2015342749B2 (en) | 2014-11-07 | 2022-01-27 | Editas Medicine, Inc. | Methods for improving CRISPR/Cas-mediated genome-editing |
| ES2706531T3 (es) | 2014-11-11 | 2019-03-29 | Illumina Inc | Amplificación de polinucleótidos empleando sistemas CRISPR-Cas |
| US20170369848A1 (en) | 2014-11-11 | 2017-12-28 | Q Therapeutics, Inc. | Engineering mesenchymal stem cells using homologous recombination |
| JP6621820B2 (ja) | 2014-11-14 | 2019-12-18 | インスティチュート フォー ベーシック サイエンスInstitute For Basic Science | ゲノムでプログラマブルヌクレアーゼの非標的位置を検出する方法 |
| US10752674B2 (en) | 2014-11-15 | 2020-08-25 | Zumutor Biologics Inc. | DNA-binding domain of CRISPR system, non-fucosylated and partially fucosylated proteins, and methods thereof |
| JP6190995B2 (ja) | 2014-11-17 | 2017-09-06 | 国立大学法人 東京医科歯科大学 | 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法 |
| US10858662B2 (en) | 2014-11-19 | 2020-12-08 | Institute For Basic Science | Genome editing with split Cas9 expressed from two vectors |
| WO2016081924A1 (en) | 2014-11-20 | 2016-05-26 | Duke University | Compositions, systems and methods for cell therapy |
| US10227661B2 (en) | 2014-11-21 | 2019-03-12 | GeneWeave Biosciences, Inc. | Sequence-specific detection and phenotype determination |
| CA3176380A1 (en) | 2014-11-21 | 2016-05-26 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide rnas |
| US20180334732A1 (en) | 2014-11-25 | 2018-11-22 | Drexel University | Compositions and methods for hiv quasi-species excision from hiv-1-infected patients |
| WO2016084088A1 (en) | 2014-11-26 | 2016-06-02 | Ramot At Tel-Aviv University Ltd. | Targeted elimination of bacterial genes |
| GB201421096D0 (en) | 2014-11-27 | 2015-01-14 | Imp Innovations Ltd | Genome editing methods |
| CN105695485B (zh) | 2014-11-27 | 2020-02-21 | 中国科学院上海生命科学研究院 | 一种用于丝状真菌Crispr-Cas系统的Cas9编码基因及其应用 |
| US10883111B2 (en) | 2014-11-27 | 2021-01-05 | Danziger Innovations Ltd. | Nucleic acid constructs for genome editing |
| US20180105834A1 (en) | 2014-11-27 | 2018-04-19 | Institute Of Animal Sciences, Chinese Academy Of Agrigultural Sciences | A method of site-directed insertion to h11 locus in pigs by using site-directed cutting system |
| WO2016089866A1 (en) | 2014-12-01 | 2016-06-09 | President And Fellows Of Harvard College | Rna-guided systems for in vivo gene editing |
| WO2016089883A1 (en) | 2014-12-01 | 2016-06-09 | Novartis Ag | Compositions and methods for diagnosis and treatment of prostate cancer |
| CN107250148B (zh) | 2014-12-03 | 2021-04-16 | 安捷伦科技有限公司 | 具有化学修饰的指导rna |
| CN104450774A (zh) | 2014-12-04 | 2015-03-25 | 中国农业科学院作物科学研究所 | 一种大豆CRISPR/Cas9体系的构建及其在大豆基因修饰中的应用 |
| CN107208079B (zh) | 2014-12-05 | 2021-06-29 | 应用干细胞有限公司 | 整合转基因的位点定向crispr/重组酶组合物和方法 |
| CN104531705A (zh) | 2014-12-09 | 2015-04-22 | 中国农业大学 | 利用CRISPR-Cas9系统敲除动物myostatin基因的方法 |
| CN104531704B (zh) | 2014-12-09 | 2019-05-21 | 中国农业大学 | 利用CRISPR-Cas9系统敲除动物FGF5基因的方法 |
| AU2015360502A1 (en) | 2014-12-10 | 2017-06-29 | Regents Of The University Of Minnesota | Genetically modified cells, tissues, and organs for treating disease |
| WO2016094872A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
| CN104480144B (zh) | 2014-12-12 | 2017-04-12 | 武汉大学 | 用于艾滋病基因治疗的CRISPR/Cas9重组慢病毒载体及其慢病毒 |
| CN107532162A (zh) | 2014-12-12 | 2018-01-02 | 托德·M·伍尔夫 | 用于利用寡核苷酸编辑细胞中核酸的组合物和方法 |
| WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
| WO2016094880A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs) |
| JP6814155B2 (ja) | 2014-12-12 | 2021-01-13 | ジュー,ジェイムズ | 対象とする細胞を選択的に除去する方法及び組成物 |
| EP3889260A1 (en) | 2014-12-12 | 2021-10-06 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
| JP6842417B2 (ja) | 2014-12-16 | 2021-03-17 | シー3ジェイ セラピューティクス インコーポレイテッド | インビトロウイルスゲノム工学のための組成物及びその方法 |
| US11427829B2 (en) | 2014-12-16 | 2022-08-30 | Danisco Us Inc | Fungal genome modification systems and methods of use |
| DK3234134T3 (da) | 2014-12-17 | 2020-07-27 | Proqr Therapeutics Ii Bv | Målrettet rna-redigering |
| CA2969384A1 (en) | 2014-12-17 | 2016-06-23 | Cellectis | Inhibitory chimeric antigen receptor (icar or n-car) expressing non-t cell transduction domain |
| ES2865268T3 (es) | 2014-12-17 | 2021-10-15 | Dupont Us Holding Llc | Composiciones y métodos para la edición eficaz de genes en E. coli utilizando sistemas de ARN guía/endonucleasa CAS en combinación con moldes de modificación de polinucleótido circulares |
| WO2016097751A1 (en) | 2014-12-18 | 2016-06-23 | The University Of Bath | Method of cas9 mediated genome engineering |
| EP3234133B1 (en) | 2014-12-18 | 2020-11-11 | Integrated DNA Technologies, Inc. | Crispr-based compositions and methods of use |
| CN104745626B (zh) | 2014-12-19 | 2018-05-01 | 中国航天员科研训练中心 | 一种条件性基因敲除动物模型的快速构建方法及应用 |
| EP3234192B1 (en) | 2014-12-19 | 2021-07-14 | The Broad Institute, Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
| CA2971444A1 (en) | 2014-12-20 | 2016-06-23 | Arc Bio, Llc | Compositions and methods for targeted depletion, enrichment, and partitioning of nucleic acids using crispr/cas system proteins |
| US10190106B2 (en) | 2014-12-22 | 2019-01-29 | Univesity Of Massachusetts | Cas9-DNA targeting unit chimeras |
| CN104560864B (zh) | 2014-12-22 | 2017-08-11 | 中国科学院微生物研究所 | 利用CRISPR‑Cas9系统构建的敲除IFN‑β基因的293T细胞系 |
| WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
| US11053271B2 (en) | 2014-12-23 | 2021-07-06 | The Regents Of The University Of California | Methods and compositions for nucleic acid integration |
| EP3237615B2 (en) | 2014-12-24 | 2023-07-26 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
| CN104651398A (zh) | 2014-12-24 | 2015-05-27 | 杭州师范大学 | 利用CRISPR-Cas9特异敲出microRNA基因家族的方法 |
| AU2015101792A4 (en) | 2014-12-24 | 2016-01-28 | Massachusetts Institute Of Technology | Engineering of systems, methods and optimized enzyme and guide scaffolds for sequence manipulation |
| WO2016103233A2 (en) | 2014-12-24 | 2016-06-30 | Dana-Farber Cancer Institute, Inc. | Systems and methods for genome modification and regulation |
| EP3239298A4 (en) | 2014-12-26 | 2018-06-13 | Riken | Gene knockout method |
| WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
| WO2016109255A1 (en) | 2014-12-30 | 2016-07-07 | University Of South Florida | Methods and compositions for cloning into large vectors |
| CN104498493B (zh) | 2014-12-30 | 2017-12-26 | 武汉大学 | CRISPR/Cas9特异性敲除乙型肝炎病毒的方法以及用于特异性靶向HBV DNA的gRNA |
| CA2972454C (en) | 2014-12-31 | 2024-09-10 | Synthetic Genomics Inc | Compositions and methods for high efficiency in vivo genome editing |
| CN104651399B (zh) | 2014-12-31 | 2018-11-16 | 广西大学 | 一种利用CRISPR/Cas系统在猪胚胎细胞中实现基因敲除的方法 |
| CN104651392B (zh) | 2015-01-06 | 2018-07-31 | 华南农业大学 | 一种利用CRISPR/Cas9系统定点突变P/TMS12-1获得温敏不育系的方法 |
| WO2016110511A1 (en) | 2015-01-06 | 2016-07-14 | Dsm Ip Assets B.V. | A crispr-cas system for a lipolytic yeast host cell |
| US11396665B2 (en) | 2015-01-06 | 2022-07-26 | Dsm Ip Assets B.V. | CRISPR-CAS system for a filamentous fungal host cell |
| WO2016110512A1 (en) | 2015-01-06 | 2016-07-14 | Dsm Ip Assets B.V. | A crispr-cas system for a yeast host cell |
| EP3243529B1 (en) | 2015-01-06 | 2020-09-23 | Industry-Academic Cooperation Foundation Yonsei University | Endonuclease targeting blood coagulation factor viii gene and composition for treating hemophilia comprising same |
| US20180155708A1 (en) | 2015-01-08 | 2018-06-07 | President And Fellows Of Harvard College | Split Cas9 Proteins |
| CN104593422A (zh) | 2015-01-08 | 2015-05-06 | 中国农业大学 | 一种抗蓝耳病克隆猪的制备方法 |
| WO2016112351A1 (en) | 2015-01-09 | 2016-07-14 | Bio-Rad Laboratories, Inc. | Detection of genome editing |
| WO2016114972A1 (en) | 2015-01-12 | 2016-07-21 | The Regents Of The University Of California | Heterodimeric cas9 and methods of use thereof |
| EP3245294A4 (en) | 2015-01-12 | 2018-05-30 | Massachusetts Institute of Technology | Gene editing through microfluidic delivery |
| WO2016112963A1 (en) | 2015-01-13 | 2016-07-21 | Riboxx Gmbh | Delivery of biomolecules into cells |
| MA41349A (fr) | 2015-01-14 | 2017-11-21 | Univ Temple | Éradication de l'herpès simplex de type i et d'autres virus de l'herpès associés guidée par arn |
| PT3244909T (pt) | 2015-01-14 | 2020-01-15 | Inst Nat Sante Rech Med | Inibidores de proteassoma no tratamento de um distúrbio relacionado com a acumulação de uma proteína anormal não degradada ou um cancro |
| CN107429263A (zh) | 2015-01-15 | 2017-12-01 | 斯坦福大学托管董事会 | 调控基因组编辑的方法 |
| CN104611370A (zh) | 2015-01-16 | 2015-05-13 | 深圳市科晖瑞生物医药有限公司 | 一种剔除β2-微球蛋白基因片段的方法 |
| WO2016116032A1 (en) | 2015-01-19 | 2016-07-28 | Institute Of Genetics And Developmental Biology,Chinese Academy Of Sciences | A method for precise modification of plant via transient gene expression |
| CN104725626B (zh) | 2015-01-22 | 2016-06-29 | 漳州亚邦化学有限公司 | 一种适用于人造石英石的不饱和树脂的制备方法 |
| CN105821072A (zh) | 2015-01-23 | 2016-08-03 | 深圳华大基因研究院 | 用于DNA组装的CRISPR-Cas9系统及DNA组装方法 |
| WO2016123071A1 (en) | 2015-01-26 | 2016-08-04 | Cold Spring Harbor Laboratory | Methods of identifying essential protein domains |
| US10059940B2 (en) | 2015-01-27 | 2018-08-28 | Minghong Zhong | Chemically ligated RNAs for CRISPR/Cas9-lgRNA complexes as antiviral therapeutic agents |
| CN104561095B (zh) | 2015-01-27 | 2017-08-22 | 深圳市国创纳米抗体技术有限公司 | 一种能够生产人神经生长因子的转基因小鼠的制备方法 |
| WO2016123243A1 (en) | 2015-01-28 | 2016-08-04 | The Regents Of The University Of California | Methods and compositions for labeling a single-stranded target nucleic acid |
| RU2713328C2 (ru) | 2015-01-28 | 2020-02-04 | Пайонир Хай-Бред Интернэшнл, Инк. | Гибридные днк/рнк-полинуклеотиды crispr и способы применения |
| WO2016120480A1 (fr) | 2015-01-29 | 2016-08-04 | Meiogenix | Procede pour induire des recombinaisons meiotiques ciblees |
| ES2880473T5 (es) | 2015-01-30 | 2024-05-09 | Univ California | Suministro de proteínas en células hematopoyéticas primarias |
| RS61924B1 (sr) | 2015-02-02 | 2021-06-30 | Meiragtx Uk Ii Ltd | Regulacija genske ekspresije putem aptamerom posredovane modulacije alternativnog splajsovanja |
| CN104593418A (zh) | 2015-02-06 | 2015-05-06 | 中国医学科学院医学实验动物研究所 | 一种人源化大鼠药物评价动物模型建立的方法 |
| EP3256487A4 (en) | 2015-02-09 | 2018-07-18 | Duke University | Compositions and methods for epigenome editing |
| KR101584933B1 (ko) | 2015-02-10 | 2016-01-13 | 성균관대학교산학협력단 | 항생제 내성 억제용 재조합 벡터 및 이의 용도 |
| WO2016130697A1 (en) | 2015-02-11 | 2016-08-18 | Memorial Sloan Kettering Cancer Center | Methods and kits for generating vectors that co-express multiple target molecules |
| CN104928321B (zh) | 2015-02-12 | 2018-06-01 | 中国科学院西北高原生物研究所 | 一种由Crispr/Cas9诱导的鳞片缺失斑马鱼模式及建立方法 |
| CN104726494B (zh) | 2015-02-12 | 2018-10-23 | 中国人民解放军第二军医大学 | CRISPR-Cas9技术构建染色体易位干细胞及动物模型的方法 |
| EP3256170B1 (en) | 2015-02-13 | 2020-09-23 | University of Massachusetts | Compositions and methods for transient delivery of nucleases |
| US20160244784A1 (en) | 2015-02-15 | 2016-08-25 | Massachusetts Institute Of Technology | Population-Hastened Assembly Genetic Engineering |
| WO2016132122A1 (en) | 2015-02-17 | 2016-08-25 | University Of Edinburgh | Assay construct |
| CN107406846A (zh) | 2015-02-19 | 2017-11-28 | 国立大学法人德岛大学 | 通过电穿孔将Cas9 mRNA导入到哺乳动物的受精卵的方法 |
| US12129471B2 (en) | 2015-02-23 | 2024-10-29 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of human genetic diseases including hemoglobinopathies |
| AU2016225178B2 (en) | 2015-02-23 | 2022-05-05 | Crispr Therapeutics Ag | Materials and methods for treatment of hemoglobinopathies |
| US20180245073A1 (en) | 2015-02-23 | 2018-08-30 | Voyager Therapeutics, Inc. | Regulatable expression using adeno-associated virus (aav) |
| US20160244829A1 (en) | 2015-02-25 | 2016-08-25 | University-Industry Foundation, Yonsei University | Method for target dna enrichment using crispr system |
| CN107406858A (zh) | 2015-02-25 | 2017-11-28 | 先锋国际良种公司 | 用于指导rna/cas内切核酸酶复合物的调节型表达的组合物和方法 |
| WO2016135507A1 (en) | 2015-02-27 | 2016-09-01 | University Of Edinburgh | Nucleic acid editing systems |
| CN104805099B (zh) | 2015-03-02 | 2018-04-13 | 中国人民解放军第二军医大学 | 一种安全编码Cas9蛋白的核酸分子及其表达载体 |
| KR102598856B1 (ko) | 2015-03-03 | 2023-11-07 | 더 제너럴 하스피탈 코포레이션 | 변경된 PAM 특이성을 갖는 조작된 CRISPR-Cas9 뉴클레아제 |
| CN104651401B (zh) | 2015-03-05 | 2019-03-08 | 东华大学 | 一种mir-505双等位基因敲除的方法 |
| CN104673816A (zh) | 2015-03-05 | 2015-06-03 | 广东医学院 | 一种pCr-NHEJ载体及其构建方法及其用于细菌基因定点敲除的应用 |
| US20180271891A1 (en) | 2015-03-11 | 2018-09-27 | The Broad Institute Inc. | Selective treatment of prmt5 dependent cancer |
| US20160264934A1 (en) | 2015-03-11 | 2016-09-15 | The General Hospital Corporation | METHODS FOR MODULATING AND ASSAYING m6A IN STEM CELL POPULATIONS |
| GB201504223D0 (en) | 2015-03-12 | 2015-04-29 | Genome Res Ltd | Biallelic genetic modification |
| WO2016141893A1 (zh) | 2015-03-12 | 2016-09-15 | 中国科学院遗传与发育生物学研究所 | 一种提高植物对入侵的dna病毒的抵御能力的方法 |
| CA2979567C (en) | 2015-03-13 | 2020-10-13 | The Jackson Laboratory | A three-component crispr/cas complex system and uses thereof |
| AU2016239037B2 (en) | 2015-03-16 | 2022-04-21 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method of applying non-genetic substance to perform site-directed reform of plant genome |
| CN106032540B (zh) | 2015-03-16 | 2019-10-25 | 中国科学院上海生命科学研究院 | CRISPR/Cas9核酸内切酶体系的腺相关病毒载体构建及其用途 |
| WO2016149484A2 (en) | 2015-03-17 | 2016-09-22 | Temple University Of The Commonwealth System Of Higher Education | Compositions and methods for specific reactivation of hiv latent reservoir |
| CN113846144B (zh) | 2015-03-17 | 2023-09-26 | 生物辐射实验室股份有限公司 | 检测基因组编辑 |
| WO2016150855A1 (en) | 2015-03-20 | 2016-09-29 | Danmarks Tekniske Universitet | Crispr/cas9 based engineering of actinomycetal genomes |
| MA41382A (fr) | 2015-03-20 | 2017-11-28 | Univ Temple | Édition génique basée sur le système crispr/endonucléase à induction par tat |
| CN104726449A (zh) | 2015-03-23 | 2015-06-24 | 国家纳米科学中心 | 一种用于预防和/或治疗HIV的CRISPR-Cas9系统及其制备方法和用途 |
| CN106148416B (zh) | 2015-03-24 | 2019-12-17 | 华东师范大学 | Cyp基因敲除大鼠的培育方法及其肝微粒体的制备方法 |
| WO2016154596A1 (en) | 2015-03-25 | 2016-09-29 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
| EP3274453B1 (en) | 2015-03-26 | 2021-01-27 | Editas Medicine, Inc. | Crispr/cas-mediated gene conversion |
| CA2981509A1 (en) | 2015-03-30 | 2016-10-06 | The Board Of Regents Of The Nevada System Of Higher Educ. On Behalf Of The University Of Nevada, La | Compositions comprising talens and methods of treating hiv |
| EP4600366A3 (en) | 2015-03-31 | 2025-10-22 | SOHM, Inc. | Cas 9 retroviral integrase systems for targeted incorporation of a dna sequence into a genome of a cell |
| EP3748004A1 (en) | 2015-04-01 | 2020-12-09 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating duchenne muscular dystrophy and becker muscular dystrophy |
| CA3000187A1 (en) | 2015-04-02 | 2016-10-06 | Agenovir Corporation | Gene delivery methods and compositions |
| US20170166928A1 (en) | 2015-04-03 | 2017-06-15 | Whitehead Institute For Biomedical Research | Compositions And Methods For Genetically Modifying Yeast |
| CN106434737A (zh) | 2015-04-03 | 2017-02-22 | 内蒙古中科正标生物科技有限责任公司 | 基于CRISPR/Cas9技术的单子叶植物基因敲除载体及其应用 |
| EP4335918A3 (en) | 2015-04-03 | 2024-04-17 | Dana-Farber Cancer Institute, Inc. | Composition and methods of genome editing of b-cells |
| ES2884838T3 (es) | 2015-04-06 | 2021-12-13 | Univ Leland Stanford Junior | ARN guía químicamente modificados para la regulación génica mediada por CRISPR/CAS |
| RS61907B1 (sr) | 2015-04-06 | 2021-06-30 | Subdomain Llc | Polipeptidi koji sadrže de novo vezujući domen i njihova primena |
| WO2016164797A1 (en) | 2015-04-08 | 2016-10-13 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Activatable crispr/cas9 for spatial and temporal control of genome editing |
| EP3284749B1 (en) | 2015-04-13 | 2024-08-14 | The University of Tokyo | Set of polypeptides exhibiting nuclease activity or nickase activity with dependence on light or in presence of drug or suppressing or activating expression of target gene |
| US10155938B2 (en) | 2015-04-14 | 2018-12-18 | City Of Hope | Coexpression of CAS9 and TREX2 for targeted mutagenesis |
| GB201506509D0 (en) | 2015-04-16 | 2015-06-03 | Univ Wageningen | Nuclease-mediated genome editing |
| US11299729B2 (en) | 2015-04-17 | 2022-04-12 | President And Fellows Of Harvard College | Vector-based mutagenesis system |
| EP3286322A1 (en) | 2015-04-21 | 2018-02-28 | Novartis AG | Rna-guided gene editing system and uses thereof |
| CN104805118A (zh) | 2015-04-22 | 2015-07-29 | 扬州大学 | 一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法 |
| CN104762321A (zh) | 2015-04-22 | 2015-07-08 | 东北林业大学 | 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 |
| WO2016172722A1 (en) | 2015-04-23 | 2016-10-27 | Nantomics, Llc | Cancer neoepitopes |
| JP2018522249A (ja) | 2015-04-24 | 2018-08-09 | エディタス・メディシン、インコーポレイテッド | Cas9分子/ガイドrna分子複合体の評価 |
| US20180298340A1 (en) | 2015-04-24 | 2018-10-18 | The Regents Of The University Of California | Systems for detecting, monitoring or treating diseases or conditions using engineered cells and methods for making and using them |
| US11268158B2 (en) | 2015-04-24 | 2022-03-08 | St. Jude Children's Research Hospital, Inc. | Assay for safety assessment of therapeutic genetic manipulations, gene therapy vectors and compounds |
| EP3289081B1 (en) | 2015-04-27 | 2019-03-27 | Genethon | Compositions and methods for the treatment of nucleotide repeat expansion disorders |
| WO2016176191A1 (en) | 2015-04-27 | 2016-11-03 | The Trustees Of The University Of Pennsylvania | Dual aav vector system for crispr/cas9 mediated correction of human disease |
| EP3087974A1 (en) | 2015-04-29 | 2016-11-02 | Rodos BioTarget GmbH | Targeted nanocarriers for targeted drug delivery of gene therapeutics |
| EP4008780A1 (en) | 2015-04-30 | 2022-06-08 | The Trustees of Columbia University in the City of New York | Gene therapy for autosomal dominant diseases |
| WO2016176404A1 (en) | 2015-04-30 | 2016-11-03 | The Brigham And Women's Hospital, Inc. | Methods and kits for cloning-free genome editing |
| WO2016179112A1 (en) | 2015-05-01 | 2016-11-10 | Precision Biosciences, Inc. | Precise deletion of chromoscomal sequences in vivo and treatment of nucleotide repeat expansion disorders using engineered nucleases |
| WO2016179038A1 (en) | 2015-05-01 | 2016-11-10 | Spark Therapeutics, Inc. | ADENO-ASSOCIATED VIRUS-MEDIATED CRISPR-Cas9 TREATMENT OF OCULAR DISEASE |
| US11845928B2 (en) | 2015-05-04 | 2023-12-19 | Tsinghua University | Methods and kits for fragmenting DNA |
| CN104894068A (zh) | 2015-05-04 | 2015-09-09 | 南京凯地生物科技有限公司 | 一种利用CRISPR/Cas9制备CAR-T细胞的方法 |
| GB2531454A (en) | 2016-01-10 | 2016-04-20 | Snipr Technologies Ltd | Recombinogenic nucleic acid strands in situ |
| DE112016002056T5 (de) | 2015-05-06 | 2018-02-08 | Snipr Technologies Limited | Verändern mikrobieller Populationen und Modifizieren von Mikrobiomen |
| WO2016182893A1 (en) | 2015-05-08 | 2016-11-17 | Teh Broad Institute Inc. | Functional genomics using crispr-cas systems for saturating mutagenesis of non-coding elements, compositions, methods, libraries and applications thereof |
| JP7288302B2 (ja) | 2015-05-08 | 2023-06-07 | ザ チルドレンズ メディカル センター コーポレーション | 胎児型ヘモグロビン再誘導のための、bcl11aエンハンサー機能性領域を標的とする方法 |
| EP3294888A1 (en) | 2015-05-11 | 2018-03-21 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating hiv infection and aids |
| EP3294896A1 (en) | 2015-05-11 | 2018-03-21 | Editas Medicine, Inc. | Optimized crispr/cas9 systems and methods for gene editing in stem cells |
| KR101785847B1 (ko) | 2015-05-12 | 2017-10-17 | 연세대학교 산학협력단 | 선형 이중가닥 DNA를 활용한 CRISPR/Cas9 시스템을 이용한 표적 유전체 교정 |
| KR20170141217A (ko) | 2015-05-12 | 2017-12-22 | 상가모 테라퓨틱스, 인코포레이티드 | 유전자 발현의 뉴클레아제-매개된 조절 |
| CN105886498A (zh) | 2015-05-13 | 2016-08-24 | 沈志荣 | CRISPR-Cas9特异性敲除人PCSK9基因的方法以及用于特异性靶向PCSK9基因的sgRNA |
| US10920221B2 (en) | 2015-05-13 | 2021-02-16 | President And Fellows Of Harvard College | Methods of making and using guide RNA for use with Cas9 systems |
| US10563226B2 (en) | 2015-05-13 | 2020-02-18 | Seattle Children's Hospital | Enhancing endonuclease based gene editing in primary cells |
| JP6587696B2 (ja) | 2015-05-13 | 2019-10-09 | ズムトール バイオロジクス、インコーポレイテッド | アフコシル化タンパク質、前記タンパク質を発現する細胞、及び関連する方法 |
| WO2016183448A1 (en) | 2015-05-14 | 2016-11-17 | University Of Southern California | Optimized gene editing utilizing a recombinant endonuclease system |
| US20180291372A1 (en) | 2015-05-14 | 2018-10-11 | Massachusetts Institute Of Technology | Self-targeting genome editing system |
| EP3294877A1 (en) | 2015-05-15 | 2018-03-21 | Pioneer Hi-Bred International, Inc. | Rapid characterization of cas endonuclease systems, pam sequences and guide rna elements |
| CN107709555A (zh) | 2015-05-15 | 2018-02-16 | 达尔马科恩有限公司 | 用于Cas9介导的基因编辑的合成的单向导RNA |
| CN107849547B (zh) | 2015-05-16 | 2022-04-19 | 建新公司 | 深内含子突变的基因编辑 |
| CN104846010B (zh) | 2015-05-18 | 2018-07-06 | 安徽省农业科学院水稻研究所 | 一种删除转基因水稻筛选标记基因的方法 |
| US10662437B2 (en) | 2015-05-18 | 2020-05-26 | King Abdullah University Of Science And Technology | Method of inhibiting plant virus pathogen infections by CRISPR/Cas9-mediated interference |
| EP3095870A1 (en) | 2015-05-19 | 2016-11-23 | Kws Saat Se | Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom |
| CN106011104B (zh) | 2015-05-21 | 2019-09-27 | 清华大学 | 利用拆分Cas系统进行基因编辑和表达调控方法 |
| CN105518135B (zh) | 2015-05-22 | 2020-11-24 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA |
| WO2016187904A1 (zh) | 2015-05-22 | 2016-12-01 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA |
| US20160340622A1 (en) | 2015-05-22 | 2016-11-24 | Nabil Radi Abdou | Bar Soap Anchoring Core |
| WO2016187717A1 (en) | 2015-05-26 | 2016-12-01 | Exerkine Corporation | Exosomes useful for genome editing |
| HK1253403A1 (zh) | 2015-05-28 | 2019-06-14 | Coda Biotherapeutics | 基因組編輯載體 |
| CN105624146B (zh) | 2015-05-28 | 2019-02-15 | 中国科学院微生物研究所 | 基于CRISPR/Cas9和酿酒酵母细胞内源的同源重组的分子克隆方法 |
| CN104894075B (zh) | 2015-05-28 | 2019-08-06 | 华中农业大学 | CRISPR/Cas9和Cre/lox系统编辑伪狂犬病毒基因组制备疫苗方法和应用 |
| US20160346362A1 (en) | 2015-05-29 | 2016-12-01 | Agenovir Corporation | Methods and compositions for treating cytomegalovirus infections |
| WO2016196283A1 (en) | 2015-05-29 | 2016-12-08 | Agenovir Corporation | Antiviral methods and compositions |
| WO2016196499A1 (en) | 2015-05-29 | 2016-12-08 | Clark Atlanta University | Human cell lines mutant for zic2 |
| EP3303607A4 (en) | 2015-05-29 | 2018-10-10 | North Carolina State University | Methods for screening bacteria, archaea, algae, and yeast using crispr nucleic acids |
| US20160348074A1 (en) | 2015-05-29 | 2016-12-01 | Agenovir Corporation | Methods and compositions for treating cells for transplant |
| CA3000155A1 (en) | 2015-05-29 | 2016-12-08 | Agenovir Corporation | Compositions and methods for cell targeted hpv treatment |
| CA3000189A1 (en) | 2015-05-29 | 2016-12-08 | Agenovir Corporation | Compositions and methods to treat viral infections |
| US10117911B2 (en) | 2015-05-29 | 2018-11-06 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
| WO2016191869A1 (en) | 2015-06-01 | 2016-12-08 | The Hospital For Sick Children | Delivery of structurally diverse polypeptide cargo into mammalian cells by a bacterial toxin |
| KR102553518B1 (ko) | 2015-06-01 | 2023-07-07 | 템플 유니버시티-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 | Hiv 감염의 rna-가이드된 치료를 위한 방법 및 조성물 |
| CN105112445B (zh) | 2015-06-02 | 2018-08-10 | 广州辉园苑医药科技有限公司 | 一种基于CRISPR-Cas9基因敲除技术的miR-205基因敲除试剂盒 |
| EP3303634B1 (en) | 2015-06-03 | 2023-08-30 | The Regents of The University of California | Cas9 variants and methods of use thereof |
| EP3303585A4 (en) | 2015-06-03 | 2018-10-31 | Board of Regents of the University of Nebraska | Dna editing using single-stranded dna |
| WO2016197132A1 (en) | 2015-06-04 | 2016-12-08 | Protiva Biotherapeutics Inc. | Treating hepatitis b virus infection using crispr |
| WO2016197133A1 (en) | 2015-06-04 | 2016-12-08 | Protiva Biotherapeutics, Inc. | Delivering crispr therapeutics with lipid nanoparticles |
| CN105039339B (zh) | 2015-06-05 | 2017-12-19 | 新疆畜牧科学院生物技术研究所 | 一种以RNA介导的特异性敲除绵羊FecB基因的方法及其专用sgRNA |
| EP3334823B1 (en) | 2015-06-05 | 2024-05-22 | The Regents of The University of California | Method and kit for generating crispr/cas guide rnas |
| WO2016201047A1 (en) | 2015-06-09 | 2016-12-15 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for improving transplantation |
| US20160362667A1 (en) | 2015-06-10 | 2016-12-15 | Caribou Biosciences, Inc. | CRISPR-Cas Compositions and Methods |
| EP3726218B1 (en) | 2015-06-10 | 2023-08-09 | Firmenich Sa | Cell lines for screening odorant and aroma receptors |
| US10913787B2 (en) | 2015-06-10 | 2021-02-09 | Firmenich Sa | Method of identifying musk compounds |
| WO2016198500A1 (en) | 2015-06-10 | 2016-12-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for rna-guided treatment of human cytomegalovirus (hcmv) infection |
| CN105593367A (zh) | 2015-06-11 | 2016-05-18 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA |
| CN105492608B (zh) | 2015-06-11 | 2021-07-23 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪PDX1基因的方法及用于特异性靶向PDX1基因的sgRNA |
| WO2016197361A1 (zh) | 2015-06-11 | 2016-12-15 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪GGTA1基因的方法及用于特异性靶向GGTA1基因的sgRNA |
| CN106414740A (zh) | 2015-06-11 | 2017-02-15 | 深圳市第二人民医院 | CRISPR‑Cas9特异性敲除猪SLA‑3基因的方法及用于特异性靶向SLA‑3基因的sgRNA |
| WO2016197356A1 (zh) | 2015-06-11 | 2016-12-15 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪SLA-2基因的方法及用于特异性靶向SLA-2基因的sgRNA |
| WO2016197362A1 (zh) | 2015-06-11 | 2016-12-15 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪vWF基因的方法及用于特异性靶向vWF基因的sgRNA |
| WO2016197355A1 (zh) | 2015-06-11 | 2016-12-15 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪SALL1基因的方法及用于特异性靶向SALL1基因的sgRNA |
| WO2016197360A1 (zh) | 2015-06-11 | 2016-12-15 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪GFRA1基因的方法及用于特异性靶向GFRA1基因的sgRNA |
| WO2016197358A1 (zh) | 2015-06-11 | 2016-12-15 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪FGL2基因的方法及用于特异性靶向FGL2基因的sgRNA |
| US20180142222A1 (en) | 2015-06-12 | 2018-05-24 | The Regents Of The University Of California | Reporter cas9 variants and methods of use thereof |
| US20180187190A1 (en) | 2015-06-12 | 2018-07-05 | Erasmus University Medical Center Rotterdam | New crispr assays |
| GB201510296D0 (en) | 2015-06-12 | 2015-07-29 | Univ Wageningen | Thermostable CAS9 nucleases |
| CN107922918B (zh) | 2015-06-15 | 2022-10-21 | 北卡罗来纳州立大学 | 用于有效递送核酸和基于rna的抗微生物剂的方法和组合物 |
| WO2016205703A1 (en) | 2015-06-17 | 2016-12-22 | The Uab Research Foundation | Crispr/cas9 complex for genomic editing |
| WO2016205680A1 (en) | 2015-06-17 | 2016-12-22 | The Uab Research Foundation | Crispr/cas9 complex for introducing a functional polypeptide into cells of blood cell lineage |
| WO2016205623A1 (en) | 2015-06-17 | 2016-12-22 | North Carolina State University | Methods and compositions for genome editing in bacteria using crispr-cas9 systems |
| WO2016205728A1 (en) | 2015-06-17 | 2016-12-22 | Massachusetts Institute Of Technology | Crispr mediated recording of cellular events |
| CN109536474A (zh) | 2015-06-18 | 2019-03-29 | 布罗德研究所有限公司 | 降低脱靶效应的crispr酶突变 |
| CA3012631A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
| US9790490B2 (en) | 2015-06-18 | 2017-10-17 | The Broad Institute Inc. | CRISPR enzymes and systems |
| US10954513B2 (en) | 2015-06-18 | 2021-03-23 | University Of Utah Research Foundation | RNA-guided transcriptional regulation and methods of using the same for the treatment of back pain |
| WO2016205759A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation |
| US9957501B2 (en) | 2015-06-18 | 2018-05-01 | Sangamo Therapeutics, Inc. | Nuclease-mediated regulation of gene expression |
| WO2016205745A2 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Cell sorting |
| AU2016279062A1 (en) | 2015-06-18 | 2019-03-28 | Omar O. Abudayyeh | Novel CRISPR enzymes and systems |
| AU2016282731B2 (en) | 2015-06-22 | 2020-07-02 | Bayer Cropscience Aktiengesellschaft | New alkynyl-substituted 3-phenylpyrrolidine-2,4-diones and use thereof as herbicides |
| GB201511191D0 (en) | 2015-06-25 | 2015-08-12 | Immatics Biotechnologies Gmbh | T-cell epitopes for the immunotherapy of myeloma |
| CA2990699A1 (en) | 2015-06-29 | 2017-01-05 | Ionis Pharmaceuticals, Inc. | Modified crispr rna and modified single crispr rna and uses thereof |
| GB201511376D0 (en) | 2015-06-29 | 2015-08-12 | Ecolab Usa Inc | Process for the treatment of produced water from chemical enhanced oil recovery |
| US11279928B2 (en) | 2015-06-29 | 2022-03-22 | Massachusetts Institute Of Technology | Compositions comprising nucleic acids and methods of using the same |
| US20180171298A1 (en) | 2015-06-30 | 2018-06-21 | Cellectis | Methods for improving functionality in nk cell by gene inactivation using specific endonuclease |
| CN108350446A (zh) | 2015-07-02 | 2018-07-31 | 约翰霍普金斯大学 | 基于crispr/cas9的治疗 |
| US20170009242A1 (en) | 2015-07-06 | 2017-01-12 | Whitehead Institute For Biomedical Research | CRISPR-Mediated Genome Engineering for Protein Depletion |
| CN108026523B (zh) | 2015-07-06 | 2021-11-30 | 帝斯曼知识产权资产管理有限公司 | 向导rna组装载体 |
| CN105132451B (zh) | 2015-07-08 | 2019-07-23 | 电子科技大学 | 一种CRISPR/Cas9单一转录单元定向修饰骨架载体及其应用 |
| US20170014449A1 (en) | 2015-07-13 | 2017-01-19 | Elwha LLC, a limited liability company of the State of Delaware | Site-specific epigenetic editing |
| WO2017009399A1 (en) | 2015-07-13 | 2017-01-19 | Institut Pasteur | Improving sequence-specific antimicrobials by blocking dna repair |
| WO2017011519A1 (en) | 2015-07-13 | 2017-01-19 | Sangamo Biosciences, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
| EP3323890A4 (en) | 2015-07-14 | 2019-01-30 | Fukuoka University | METHOD OF INDUSTRYING SITE-SPECIFIC RNA MUTATIONS, TARGETED EDITING GUIDE RNA USED IN THE METHOD AND TARGET RNA TARGET EDITING GUIDE RNA COMPLEX |
| MA42895A (fr) | 2015-07-15 | 2018-05-23 | Juno Therapeutics Inc | Cellules modifiées pour thérapie cellulaire adoptive |
| EP3322804B1 (en) | 2015-07-15 | 2021-09-01 | Rutgers, The State University of New Jersey | Nuclease-independent targeted gene editing platform and uses thereof |
| US20170020922A1 (en) | 2015-07-16 | 2017-01-26 | Batu Biologics Inc. | Gene editing for immunological destruction of neoplasia |
| WO2017015101A1 (en) | 2015-07-17 | 2017-01-26 | University Of Washington | Methods for maximizing the efficiency of targeted gene correction |
| WO2017015015A1 (en) | 2015-07-17 | 2017-01-26 | Emory University | Crispr-associated protein from francisella and uses related thereto |
| WO2017015545A1 (en) | 2015-07-22 | 2017-01-26 | President And Fellows Of Harvard College | Evolution of site-specific recombinases |
| WO2017015637A1 (en) | 2015-07-22 | 2017-01-26 | Duke University | High-throughput screening of regulatory element function with epigenome editing technologies |
| EP3325668B1 (en) | 2015-07-23 | 2021-01-06 | Mayo Foundation for Medical Education and Research | Editing mitochondrial dna |
| ES2948559T3 (es) | 2015-07-25 | 2023-09-14 | Habib Frost | Un sistema, un dispositivo y un método para proporcionar una terapia o una cura para el cáncer y otros estados patológicos |
| CN106399360A (zh) | 2015-07-27 | 2017-02-15 | 上海药明生物技术有限公司 | 基于crispr技术敲除fut8基因的方法 |
| WO2017019867A1 (en) | 2015-07-28 | 2017-02-02 | Danisco Us Inc | Genome editing systems and methods of use |
| CN105063061B (zh) | 2015-07-28 | 2018-10-30 | 华南农业大学 | 一种水稻千粒重基因tgw6突变体及其制备方法与应用 |
| CN106701808A (zh) | 2015-07-29 | 2017-05-24 | 深圳华大基因研究院 | Dna聚合酶i缺陷型菌株及其构建方法 |
| WO2017019895A1 (en) | 2015-07-30 | 2017-02-02 | President And Fellows Of Harvard College | Evolution of talens |
| GB2557123B (en) | 2015-07-31 | 2021-11-03 | Univ Minnesota | Modified cells and methods of therapy |
| US20200123533A1 (en) | 2015-07-31 | 2020-04-23 | The Trustees Of Columbia University In The City Of New York | High-throughput strategy for dissecting mammalian genetic interactions |
| WO2017023974A1 (en) | 2015-08-03 | 2017-02-09 | President And Fellows Of Harvard College | Cas9 genome editing and transcriptional regulation |
| WO2017024047A1 (en) | 2015-08-03 | 2017-02-09 | Emendobio Inc. | Compositions and methods for increasing nuclease induced recombination rate in cells |
| EP3331905B1 (en) | 2015-08-06 | 2022-10-05 | Dana-Farber Cancer Institute, Inc. | Targeted protein degradation to attenuate adoptive t-cell therapy associated adverse inflammatory responses |
| CN104962523B (zh) | 2015-08-07 | 2018-05-25 | 苏州大学 | 一种测定非同源末端连接修复活性的方法 |
| US9580727B1 (en) | 2015-08-07 | 2017-02-28 | Caribou Biosciences, Inc. | Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides |
| AU2016305490B2 (en) | 2015-08-07 | 2022-07-14 | Commonwealth Scientific And Industrial Research Organisation | Method for producing an animal comprising a germline genetic modification |
| WO2017025323A1 (en) | 2015-08-11 | 2017-02-16 | Cellectis | Cells for immunotherapy engineered for targeting cd38 antigen and for cd38 gene inactivation |
| CA2994883A1 (en) | 2015-08-14 | 2017-02-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Scnces | Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution |
| CN105255937A (zh) | 2015-08-14 | 2016-01-20 | 西北农林科技大学 | 一种真核细胞III型启动子表达CRISPR sgRNA的方法及其应用 |
| CA2995983A1 (en) | 2015-08-19 | 2017-02-23 | Arc Bio, Llc | Capture of nucleic acids using a nucleic acid-guided nuclease-based system |
| CN105112519A (zh) | 2015-08-20 | 2015-12-02 | 郑州大学 | 一种基于crispr的大肠杆菌o157:h7菌株检测试剂盒及检测方法 |
| US11339408B2 (en) | 2015-08-20 | 2022-05-24 | Applied Stemcell, Inc. | Nuclease with enhanced efficiency of genome editing |
| CN105177126B (zh) | 2015-08-21 | 2018-12-04 | 东华大学 | 一种利用荧光pcr技术对小鼠的分型鉴定方法 |
| JP6905755B2 (ja) | 2015-08-25 | 2021-07-21 | デューク ユニバーシティ | Rnaガイド型エンドヌクレアーゼを使用してゲノム工学における特異性を改善する組成物および方法 |
| CN106480083B (zh) | 2015-08-26 | 2021-12-14 | 中国科学院分子植物科学卓越创新中心 | CRISPR/Cas9介导的大片段DNA拼接方法 |
| AU2016316845B2 (en) | 2015-08-28 | 2022-03-10 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
| CN105087620B (zh) | 2015-08-31 | 2017-12-29 | 中国农业大学 | 一种过表达猪共刺激受体4‑1bb载体及其应用 |
| US10526590B2 (en) | 2015-08-31 | 2020-01-07 | Agilent Technologies, Inc. | Compounds and methods for CRISPR/Cas-based genome editing by homologous recombination |
| US20170058272A1 (en) | 2015-08-31 | 2017-03-02 | Caribou Biosciences, Inc. | Directed nucleic acid repair |
| AU2016316027B2 (en) | 2015-09-01 | 2022-04-07 | Dana-Farber Cancer Institute Inc. | Systems and methods for selection of gRNA targeting strands for Cas9 localization |
| EP3344756B1 (en) | 2015-09-02 | 2025-11-05 | University of Massachusetts | Detection of gene loci with crispr arrayed repeats and/or polychromatic single guide ribonucleic acids |
| WO2017040786A1 (en) | 2015-09-04 | 2017-03-09 | Massachusetts Institute Of Technology | Multilayer genetic safety kill circuits based on single cas9 protein and multiple engineered grna in mammalian cells |
| CN105400810B (zh) | 2015-09-06 | 2019-05-07 | 吉林大学 | 采用敲除技术建立低磷性佝偻病模型的方法 |
| EP3347464B1 (en) | 2015-09-08 | 2024-01-24 | University of Massachusetts | Dnase h activity of neisseria meningitidis cas9 |
| SG11201801809VA (en) | 2015-09-09 | 2018-04-27 | Univ Kobe Nat Univ Corp | Method for modifying genome sequence that specifically converts nucleobase of targeted dna sequence, and molecular complex used in said method |
| JP6664693B2 (ja) | 2015-09-09 | 2020-03-13 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換する、グラム陽性菌のゲノム配列の変換方法、及びそれに用いる分子複合体 |
| US20170072025A1 (en) | 2015-09-10 | 2017-03-16 | Youhealth Biotech, Limited | Methods and compositions for the treatment of glaucoma |
| WO2017044776A1 (en) | 2015-09-10 | 2017-03-16 | Texas Tech University System | Single-guide rna (sgrna) with improved knockout efficiency |
| CN105274144A (zh) | 2015-09-14 | 2016-01-27 | 徐又佳 | 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法 |
| US10301613B2 (en) | 2015-09-15 | 2019-05-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Targeted remodeling of prokaryotic genomes using CRISPR-nickases |
| US10109551B2 (en) | 2015-09-15 | 2018-10-23 | Intel Corporation | Methods and apparatuses for determining a parameter of a die |
| CN105210981B (zh) | 2015-09-15 | 2018-09-28 | 中国科学院生物物理研究所 | 建立可应用于人类疾病研究的雪貂模型的方法及其应用 |
| CN105112422B (zh) | 2015-09-16 | 2019-11-08 | 中山大学 | 基因miR408和UCL在培育高产水稻中的应用 |
| WO2017049129A2 (en) | 2015-09-18 | 2017-03-23 | President And Fellows Of Harvard College | Methods of making guide rna |
| EP3352795B1 (en) | 2015-09-21 | 2020-08-12 | The Regents of The University of California | Compositions and methods for target nucleic acid modification |
| CN105132427B (zh) | 2015-09-21 | 2019-01-08 | 新疆畜牧科学院生物技术研究所 | 一种以RNA介导的特异性敲除双基因获得基因编辑绵羊的方法及其专用sgRNA |
| EP3353298B1 (en) | 2015-09-21 | 2023-09-13 | Arcturus Therapeutics, Inc. | Allele selective gene editing and uses thereof |
| SI3352776T1 (sl) | 2015-09-23 | 2025-08-29 | Sangamo Therapeutics, Inc. | Represorji Htt in njihove uporabe |
| CA2999500A1 (en) | 2015-09-24 | 2017-03-30 | Editas Medicine, Inc. | Use of exonucleases to improve crispr/cas-mediated genome editing |
| JP2018532402A (ja) | 2015-09-24 | 2018-11-08 | クリスパー セラピューティクス アーゲー | Rnaプログラム可能エンドヌクレアーゼの新規のファミリーならびにゲノム編集および他の適用におけるそれらの使用 |
| WO2017053762A1 (en) | 2015-09-24 | 2017-03-30 | Sigma-Aldrich Co. Llc | Methods and reagents for molecular proximity detection using rna-guided nucleic acid binding proteins |
| KR101795999B1 (ko) | 2015-09-25 | 2017-11-09 | 전남대학교산학협력단 | Crispr/cas9 시스템을 이용한 베타2-마이크로글로불린 유전자 제거용 시발체 |
| WO2017053729A1 (en) | 2015-09-25 | 2017-03-30 | The Board Of Trustees Of The Leland Stanford Junior University | Nuclease-mediated genome editing of primary cells and enrichment thereof |
| KR101745863B1 (ko) | 2015-09-25 | 2017-06-12 | 전남대학교산학협력단 | Crispr/cas9 시스템을 이용한 프로히비틴2 유전자 제거용 시발체 |
| US20180258411A1 (en) | 2015-09-25 | 2018-09-13 | Tarveda Therapeutics, Inc. | Compositions and methods for genome editing |
| EP3147363B1 (en) | 2015-09-26 | 2019-10-16 | B.R.A.I.N. Ag | Activation of taste receptor genes in mammalian cells using crispr-cas-9 |
| JP2018527943A (ja) | 2015-09-28 | 2018-09-27 | テンプル ユニバーシティー オブ ザ コモンウェルス システム オブ ハイヤー エデュケーション | Rna誘導性の、hiv感染の処置のための、方法および組成物 |
| JP2018532403A (ja) | 2015-09-29 | 2018-11-08 | アジェノビア コーポレーション | 送達方法および組成物 |
| US20170088587A1 (en) | 2015-09-29 | 2017-03-30 | Agenovir Corporation | Antiviral fusion proteins and genes |
| US20170088828A1 (en) | 2015-09-29 | 2017-03-30 | Agenovir Corporation | Compositions and methods for treatment of latent viral infections |
| CN105177038B (zh) | 2015-09-29 | 2018-08-24 | 中国科学院遗传与发育生物学研究所 | 一种高效定点编辑植物基因组的CRISPR/Cas9系统 |
| US20170087225A1 (en) | 2015-09-29 | 2017-03-30 | Agenovir Corporation | Compositions and methods for latent viral transcription regulation |
| CN105331627B (zh) | 2015-09-30 | 2019-04-02 | 华中农业大学 | 一种利用内源CRISPR-Cas系统进行原核生物基因组编辑的方法 |
| WO2017059241A1 (en) | 2015-10-02 | 2017-04-06 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Lentiviral protein delivery system for rna-guided genome editing |
| CA3004710A1 (en) | 2015-10-06 | 2017-04-13 | The Children's Hospital Of Philadelphia | Compositions and methods for treating fragile x syndrome and related syndromes |
| US10760081B2 (en) | 2015-10-07 | 2020-09-01 | New York University | Compositions and methods for enhancing CRISPR activity by POLQ inhibition |
| WO2017062886A1 (en) | 2015-10-08 | 2017-04-13 | Cellink Corporation | Battery interconnects |
| IL297017A (en) | 2015-10-08 | 2022-12-01 | Harvard College | Multiplexed genome editing |
| WO2017062855A1 (en) | 2015-10-09 | 2017-04-13 | Monsanto Technology Llc | Novel rna-guided nucleases and uses thereof |
| CA3004713A1 (en) | 2015-10-09 | 2017-04-13 | The Children's Hospital Of Philadelphia | Compositions and methods for treating huntington's disease and related disorders |
| FI4144844T3 (fi) | 2015-10-12 | 2025-11-24 | Dupont Us Holding Llc | Suojatut dna-templaatit geenimuokkaukseen ja homologisen rekombinaation lisäämiseen soluissa ja niiden käyttömenetelmät |
| EP4089175A1 (en) | 2015-10-13 | 2022-11-16 | Duke University | Genome engineering with type i crispr systems in eukaryotic cells |
| US10829787B2 (en) | 2015-10-14 | 2020-11-10 | Life Technologies Corporation | Ribonucleoprotein transfection agents |
| CN105400779A (zh) | 2015-10-15 | 2016-03-16 | 芜湖医诺生物技术有限公司 | 嗜热链球菌CRISPR-Cas9系统识别的人CCR5基因的靶序列和sgRNA及其应用 |
| CN108431225A (zh) | 2015-10-16 | 2018-08-21 | 阿斯特拉捷利康股份公司 | 细胞基因组的诱导型修饰 |
| DK3362461T3 (da) | 2015-10-16 | 2022-05-09 | Modernatx Inc | Mrna-cap-analoger med modificeret phosphatbinding |
| CN108778343A (zh) | 2015-10-16 | 2018-11-09 | 天普大学-联邦高等教育系统 | 利用cpf1进行rna向导的基因编辑的方法和组合物 |
| FR3042506B1 (fr) | 2015-10-16 | 2018-11-30 | IFP Energies Nouvelles | Outil genetique de transformation de bacteries clostridium |
| CN105331607A (zh) | 2015-10-19 | 2016-02-17 | 芜湖医诺生物技术有限公司 | 嗜热链球菌CRISPR-Cas9系统识别的人CCR5基因的靶序列和sgRNA及其应用 |
| WO2017070169A1 (en) | 2015-10-19 | 2017-04-27 | The Methodist Hospital | Crispr-cas9 delivery to hard-to-transfect cells via membrane deformation |
| JP7059179B2 (ja) | 2015-10-20 | 2022-04-25 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | 遺伝子操作のための方法及び製品 |
| KR20180069832A (ko) | 2015-10-20 | 2018-06-25 | 파이어니어 하이 부렛드 인터내쇼날 인코포레이팃드 | 유도 cas 시스템을 통한 비기능성 유전자 산물에 대한 기능 회복 및 이용 방법 |
| CN105316337A (zh) | 2015-10-20 | 2016-02-10 | 芜湖医诺生物技术有限公司 | 嗜热链球菌CRISPR-Cas9系统识别的人CXCR4基因的靶序列和sgRNA及其应用 |
| CN105331608A (zh) | 2015-10-20 | 2016-02-17 | 芜湖医诺生物技术有限公司 | 脑膜炎双球菌CRISPR-Cas9系统识别的人CXCR4基因的靶序列和sgRNA及其应用 |
| CN105316324A (zh) | 2015-10-20 | 2016-02-10 | 芜湖医诺生物技术有限公司 | 嗜热链球菌CRISPR-Cas9系统识别的人CXCR4基因的靶序列和sgRNA及其应用 |
| CN105331609A (zh) | 2015-10-20 | 2016-02-17 | 芜湖医诺生物技术有限公司 | 脑膜炎双球菌CRISPR-Cas9系统识别的人CCR5基因的靶序列和sgRNA及其应用 |
| ES3036774T3 (en) | 2015-10-20 | 2025-09-24 | Inst Nat Sante Rech Med | Methods and products for genetic engineering |
| AU2016341919A1 (en) | 2015-10-21 | 2018-04-19 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating hepatitis b virus |
| KR102761827B1 (ko) | 2015-10-22 | 2025-02-03 | 더 브로드 인스티튜트, 인코퍼레이티드 | 타입 vi-b crispr 효소 및 시스템 |
| CN105219799A (zh) | 2015-10-22 | 2016-01-06 | 天津吉诺沃生物科技有限公司 | 一种基于CRISPR/Cas系统的多年生黑麦草的育种方法 |
| EP3350327B1 (en) | 2015-10-23 | 2018-09-26 | Caribou Biosciences, Inc. | Engineered crispr class 2 cross-type nucleic-acid targeting nucleic acids |
| EP3159407A1 (en) | 2015-10-23 | 2017-04-26 | Silence Therapeutics (London) Ltd | Guide rnas, methods and uses |
| TW201715041A (zh) | 2015-10-26 | 2017-05-01 | 國立清華大學 | 細菌基因編輯方法 |
| US9988637B2 (en) | 2015-10-26 | 2018-06-05 | National Tsing Hua Univeristy | Cas9 plasmid, genome editing system and method of Escherichia coli |
| EP3673732A3 (en) | 2015-10-27 | 2020-07-29 | Recombinetics, Inc. | Engineering of humanized car t-cells and platelets by genetic complementation |
| US10280411B2 (en) | 2015-10-27 | 2019-05-07 | Pacific Biosciences of California, In.c | Methods, systems, and reagents for direct RNA sequencing |
| MY189674A (en) | 2015-10-28 | 2022-02-24 | Sangamo Therapeutics Inc | Liver-specific constructs, factor viii expression cassettes and methods of use thereof |
| ES3040945T3 (en) | 2015-10-28 | 2025-11-06 | Vertex Pharma | Materials and methods for treatment of duchenne muscular dystrophy |
| EP3368054A4 (en) | 2015-10-28 | 2019-07-03 | Voyager Therapeutics, Inc. | REGULATORY EXPRESSION USING THE ADENO-ASSOCIATED VIRUS (AAV) |
| CA3001711A1 (en) | 2015-10-30 | 2017-05-04 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus |
| WO2017074962A1 (en) | 2015-10-30 | 2017-05-04 | Brandeis University | Modified cas9 compositions and methods of use |
| CN105238806B (zh) | 2015-11-02 | 2018-11-27 | 中国科学院天津工业生物技术研究所 | 一种用于微生物的CRISPR/Cas9基因编辑载体的构建及其应用 |
| CN105316327B (zh) | 2015-11-03 | 2019-01-29 | 中国农业科学院作物科学研究所 | 小麦TaAGO4a基因CRISPR/Cas9载体及其应用 |
| WO2017079428A1 (en) | 2015-11-04 | 2017-05-11 | President And Fellows Of Harvard College | Site specific germline modification |
| KR20250141836A (ko) | 2015-11-04 | 2025-09-29 | 페이트 세러퓨틱스, 인코포레이티드 | 만능 세포의 유전자 조작 |
| EP3370741B1 (en) | 2015-11-04 | 2025-10-08 | The Trustees of the University of Pennsylvania | Methods and compositions for gene editing in hematopoietic stem cells |
| GB2544270A (en) | 2015-11-05 | 2017-05-17 | Fundació Centre De Regulació Genòmica | Nucleic acids, peptides and methods |
| AU2016348782A1 (en) | 2015-11-05 | 2018-05-31 | Cellectis | Process of gene-editing of cells isolated from a subject suffering from a metabolic disease affecting the erythroid lineage, cells obtained by said process and uses thereof. |
| WO2017078751A1 (en) | 2015-11-06 | 2017-05-11 | The Methodist Hospital | Micoluidic cell deomailiy assay for enabling rapid and efficient kinase screening via the crispr-cas9 system |
| CA3004497A1 (en) | 2015-11-06 | 2017-05-11 | The Jackson Laboratory | Large genomic dna knock-in and uses thereof |
| WO2017081097A1 (en) | 2015-11-09 | 2017-05-18 | Ifom Fondazione Istituto Firc Di Oncologia Molecolare | Crispr-cas sgrna library |
| EP3374501B1 (en) | 2015-11-11 | 2023-07-12 | Lonza Ltd | Crispr-associated (cas) proteins with reduced immunogenicity |
| EP3374494A4 (en) | 2015-11-11 | 2019-05-01 | Coda Biotherapeutics, Inc. | CRISPR COMPOSITIONS AND METHODS OF USE FOR GENE THERAPY |
| WO2017083368A1 (en) | 2015-11-12 | 2017-05-18 | Pfizer Inc. | Tissue-specific genome engineering using crispr-cas9 |
| US20170191047A1 (en) | 2015-11-13 | 2017-07-06 | University Of Georgia Research Foundation, Inc. | Adenosine-specific rnase and methods of use |
| KR101885901B1 (ko) | 2015-11-13 | 2018-08-07 | 기초과학연구원 | 5' 말단의 인산기가 제거된 rna를 포함하는 리보핵산단백질 전달용 조성물 |
| ES2905558T3 (es) | 2015-11-13 | 2022-04-11 | Avellino Lab Usa Inc | Procedimientos para el tratamiento de las distrofias corneales |
| US11306308B2 (en) | 2015-11-13 | 2022-04-19 | Massachusetts Institute Of Technology | High-throughput CRISPR-based library screening |
| KR102877920B1 (ko) | 2015-11-16 | 2025-10-30 | 더 리서치 인스티튜트 앳 네이션와이드 칠드런스 하스피탈 | 티틴-기반 근증 및 다른 티틴성병증의 치료를 위한 물질 및 방법 |
| US11905521B2 (en) | 2015-11-17 | 2024-02-20 | The Chinese University Of Hong Kong | Methods and systems for targeted gene manipulation |
| AU2016359629B2 (en) | 2015-11-23 | 2023-03-09 | Ranjan BATRA | Tracking and manipulating cellular RNA via nuclear delivery of CRISPR/Cas9 |
| CN105602987A (zh) | 2015-11-23 | 2016-05-25 | 深圳市默赛尔生物医学科技发展有限公司 | 一种高效的dc细胞xbp1基因敲除方法 |
| US20170145438A1 (en) | 2015-11-24 | 2017-05-25 | University Of South Carolina | Viral Vectors for Gene Editing |
| US10240145B2 (en) | 2015-11-25 | 2019-03-26 | The Board Of Trustees Of The Leland Stanford Junior University | CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer |
| WO2017090724A1 (ja) | 2015-11-25 | 2017-06-01 | 国立大学法人 群馬大学 | Dnaメチル化編集用キットおよびdnaメチル化編集方法 |
| WO2017091510A1 (en) | 2015-11-27 | 2017-06-01 | The Regents Of The University Of California | Compositions and methods for the production of hydrocarbons, hydrogen and carbon monoxide using engineered azotobacter strains |
| CN105505979A (zh) | 2015-11-28 | 2016-04-20 | 湖北大学 | 一种以CRISPR/Cas9基因编辑技术打靶Badh2基因获得香稻品系的方法 |
| WO2017095111A1 (ko) | 2015-11-30 | 2017-06-08 | 기초과학연구원 | F. novicida 유래 Cas9을 포함하는 유전체 교정용 조성물 |
| CN106811479B (zh) | 2015-11-30 | 2019-10-25 | 中国农业科学院作物科学研究所 | 利用CRISPR/Cas9系统定点修饰ALS基因获得抗除草剂水稻的系统及其应用 |
| CN105296518A (zh) | 2015-12-01 | 2016-02-03 | 中国农业大学 | 一种用于CRISPR/Cas9技术的同源臂载体构建方法 |
| RU2634395C1 (ru) | 2015-12-01 | 2017-10-26 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Балтийский Федеральный Университет имени Иммануила Канта" (БФУ им. И. Канта) | Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, специфически импортируемую в митохондрии клеток человека |
| EP3383168A4 (en) | 2015-12-02 | 2019-05-08 | Ceres, Inc. | METHOD FOR THE GENETIC MODIFICATION OF PLANTS |
| WO2017096041A1 (en) | 2015-12-02 | 2017-06-08 | The Regents Of The University Of California | Compositions and methods for modifying a target nucleic acid |
| WO2017093370A1 (en) | 2015-12-03 | 2017-06-08 | Technische Universität München | T-cell specific genome editing |
| CN105779449B (zh) | 2015-12-04 | 2018-11-27 | 新疆农业大学 | 一种棉花启动子GbU6-5PS及应用 |
| JP2018536436A (ja) | 2015-12-04 | 2018-12-13 | ノバルティス アーゲー | 免疫腫瘍学のための組成物および方法 |
| CN105779448B (zh) | 2015-12-04 | 2018-11-27 | 新疆农业大学 | 一种棉花启动子GbU6-7PS及应用 |
| CN106845151B (zh) | 2015-12-07 | 2019-03-26 | 中国农业大学 | CRISPR-Cas9系统sgRNA作用靶点的筛选方法及装置 |
| CN105462968B (zh) | 2015-12-07 | 2018-10-16 | 北京信生元生物医学科技有限公司 | 一种靶向apoCⅢ的CRISPR-Cas9系统及其应用 |
| RU2018124657A (ru) | 2015-12-09 | 2020-01-09 | Эксижн Биотерапевтикс, Инк. | Способы редактирования генов и композиции для устранения риска активации вируса jc и пмл (прогрессирующая мультифокальная лейкоэнцефалопатия) во время иммуносупрессивной терапии |
| EP3387134B1 (en) | 2015-12-11 | 2020-10-14 | Danisco US Inc. | Methods and compositions for enhanced nuclease-mediated genome modification and reduced off-target site effects |
| CN105463003A (zh) | 2015-12-11 | 2016-04-06 | 扬州大学 | 一种消除卡那霉素耐药基因活性的重组载体及其构建方法 |
| CN105296537A (zh) | 2015-12-12 | 2016-02-03 | 西南大学 | 一种基于睾丸内注射的基因定点编辑技术 |
| WO2017105350A1 (en) | 2015-12-14 | 2017-06-22 | Cellresearch Corporation Pte Ltd | A method of generating a mammalian stem cell carrying a transgene, a mammalian stem cell generated by the method and pharmaceuticals uses of the mammalian stem cell |
| CN105400773B (zh) | 2015-12-14 | 2018-06-26 | 同济大学 | 应用于大规模筛选癌症基因的CRISPR/Cas9富集测序方法 |
| NO343153B1 (en) | 2015-12-17 | 2018-11-19 | Hydra Systems As | A method of assessing the integrity status of a barrier plug |
| WO2017106616A1 (en) | 2015-12-17 | 2017-06-22 | The Regents Of The University Of Colorado, A Body Corporate | Varicella zoster virus encoding regulatable cas9 nuclease |
| CN105463027A (zh) | 2015-12-17 | 2016-04-06 | 中国农业大学 | 一种高肌肉量及肥厚型心肌病模型克隆猪的制备方法 |
| FI3390632T3 (fi) | 2015-12-18 | 2025-11-25 | Danisco Us Inc | Menetelmät ja koostumukset polymeraasi ii (pol-ii) -pohjaisen opas-rna:n ilmentämiseen |
| ES2983043T3 (es) | 2015-12-18 | 2024-10-21 | Sangamo Therapeutics Inc | Alteración dirigida del receptor de células T |
| CN108699132B (zh) | 2015-12-18 | 2023-08-11 | 桑格摩生物治疗股份有限公司 | Mhc细胞受体的靶向破坏 |
| WO2017106569A1 (en) | 2015-12-18 | 2017-06-22 | The Regents Of The University Of California | Modified site-directed modifying polypeptides and methods of use thereof |
| EP3390631B1 (en) | 2015-12-18 | 2020-04-08 | Danisco US Inc. | Methods and compositions for t-rna based guide rna expression |
| US11761007B2 (en) | 2015-12-18 | 2023-09-19 | The Scripps Research Institute | Production of unnatural nucleotides using a CRISPR/Cas9 system |
| US12110490B2 (en) | 2015-12-18 | 2024-10-08 | The Broad Institute, Inc. | CRISPR enzymes and systems |
| CN109072218B (zh) | 2015-12-18 | 2023-04-18 | 国立研究开发法人科学技术振兴机构 | 基因修饰非人生物、卵细胞、受精卵以及目的基因的修饰方法 |
| US11684665B2 (en) | 2015-12-22 | 2023-06-27 | CureVac SE | Method for producing RNA molecule compositions |
| WO2017112620A1 (en) | 2015-12-22 | 2017-06-29 | North Carolina State University | Methods and compositions for delivery of crispr based antimicrobials |
| US20210260219A1 (en) | 2015-12-23 | 2021-08-26 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration |
| CN105543270A (zh) | 2015-12-24 | 2016-05-04 | 中国农业科学院作物科学研究所 | 双抗性CRISPR/Cas9载体及应用 |
| CN105543266A (zh) | 2015-12-25 | 2016-05-04 | 安徽大学 | 一种维吉尼亚链霉菌IBL14中的CRISPR-Cas系统及应用其进行基因编辑的方法 |
| CN105505976A (zh) | 2015-12-25 | 2016-04-20 | 安徽大学 | 一种维吉尼亚链霉菌ibl14产青霉素重组菌株的构建方法 |
| EA201891532A1 (ru) | 2015-12-28 | 2019-01-31 | Новартис Аг | Композиции и способы лечения гемоглобинопатий |
| AU2016380351B2 (en) | 2015-12-29 | 2023-04-06 | Monsanto Technology Llc | Novel CRISPR-associated transposases and uses thereof |
| CN105441451B (zh) | 2015-12-31 | 2019-03-22 | 暨南大学 | 一种特异靶向人ABCB1基因的sgRNA导向序列及应用 |
| CN105567735A (zh) | 2016-01-05 | 2016-05-11 | 华东师范大学 | 一种凝血因子基因突变的定点修复载体系统及方法 |
| WO2017118720A1 (en) | 2016-01-08 | 2017-07-13 | Novozymes A/S | Genome editing in bacillus host cells |
| US11441146B2 (en) | 2016-01-11 | 2022-09-13 | Christiana Care Health Services, Inc. | Compositions and methods for improving homogeneity of DNA generated using a CRISPR/Cas9 cleavage system |
| CN105647922A (zh) | 2016-01-11 | 2016-06-08 | 中国人民解放军疾病预防控制所 | 基于一种新gRNA序列的CRISPR-Cas9系统在制备乙肝治疗药物中的应用 |
| US11427837B2 (en) | 2016-01-12 | 2022-08-30 | The Regents Of The University Of California | Compositions and methods for enhanced genome editing |
| CA3011458A1 (en) | 2016-01-14 | 2017-07-20 | The Brigham And Women's Hospital, Inc. | Genome editing for treating glioblastoma |
| CA3011484A1 (en) | 2016-01-14 | 2017-07-20 | Memphis Meats, Inc. | Methods for extending the replicative capacity of somatic cells during an ex vivo cultivation process |
| WO2017124086A1 (en) | 2016-01-15 | 2017-07-20 | The Jackson Laboratory | Genetically modified non-human mammals by multi-cycle electroporation of cas9 protein |
| CN105567734A (zh) | 2016-01-18 | 2016-05-11 | 丹弥优生物技术(湖北)有限公司 | 一种基因组dna序列精准编辑方法 |
| WO2017126987A1 (ru) | 2016-01-18 | 2017-07-27 | Анатолий Викторович ЗАЗУЛЯ | Эритроциты для направленного транспорта лекарственного средства |
| CN105567738A (zh) | 2016-01-18 | 2016-05-11 | 南开大学 | 使用基因组编辑技术CRISPR-Cas9诱导CCR5Δ32缺失的方法 |
| SE540921C2 (en) | 2016-01-20 | 2018-12-27 | Apr Tech Ab | Electrohydrodynamic control device |
| WO2017127612A1 (en) | 2016-01-21 | 2017-07-27 | Massachusetts Institute Of Technology | Novel recombinases and target sequences |
| WO2017127807A1 (en) | 2016-01-22 | 2017-07-27 | The Broad Institute Inc. | Crystal structure of crispr cpf1 |
| CN105543228A (zh) | 2016-01-25 | 2016-05-04 | 宁夏农林科学院 | 一种快速将水稻转化为香稻的方法 |
| CN105567689B (zh) | 2016-01-25 | 2019-04-09 | 重庆威斯腾生物医药科技有限责任公司 | CRISPR/Cas9靶向敲除人TCAB1基因及其特异性gRNA |
| JP2019506156A (ja) | 2016-01-25 | 2019-03-07 | エクシジョン バイオセラピューティクス インコーポレイテッド | Hiv感染症のrna誘導型治療のための方法及び組成物 |
| CN108603196A (zh) | 2016-01-25 | 2018-09-28 | 酶切生物技术公司 | Rna向导的对人类jc病毒和其他多瘤病毒的根除 |
| EP3199632A1 (en) | 2016-01-26 | 2017-08-02 | ACIB GmbH | Temperature-inducible crispr/cas system |
| CN105567688A (zh) | 2016-01-27 | 2016-05-11 | 武汉大学 | 一种可用于艾滋病基因治疗的CRISPR/SaCas9系统 |
| AU2017211395B2 (en) | 2016-01-29 | 2024-04-18 | The Trustees Of Princeton University | Split inteins with exceptional splicing activity |
| CA3013179A1 (en) | 2016-01-30 | 2017-08-03 | Bonac Corporation | Artificial single guide rna and use thereof |
| CN105647968B (zh) | 2016-02-02 | 2019-07-23 | 浙江大学 | 一种CRISPR/Cas9工作效率快速测试系统及其应用 |
| CN107022562B (zh) | 2016-02-02 | 2020-07-17 | 中国种子集团有限公司 | 利用CRISPR/Cas9系统对玉米基因定点突变的方法 |
| CN105671083B (zh) | 2016-02-03 | 2017-09-29 | 安徽柯顿生物科技有限公司 | PD‑1基因重组病毒质粒及构建、重组逆转录病毒Lenti‑PD‑1‑Puro及包装与应用 |
| US11845933B2 (en) | 2016-02-03 | 2023-12-19 | Massachusetts Institute Of Technology | Structure-guided chemical modification of guide RNA and its applications |
| US11208652B2 (en) | 2016-02-04 | 2021-12-28 | President And Fellows Of Harvard College | Mitochondrial genome editing and regulation |
| WO2017136629A1 (en) | 2016-02-05 | 2017-08-10 | Regents Of The University Of Minnesota | Vectors and system for modulating gene expression |
| WO2017139264A1 (en) | 2016-02-09 | 2017-08-17 | President And Fellows Of Harvard College | Dna-guided gene editing and regulation |
| RU2016104674A (ru) | 2016-02-11 | 2017-08-16 | Анатолий Викторович Зазуля | Устройство модификации эритроцита с механизмом направленного транспорта лекарственного средства для функций генной терапии crispr/cas9 |
| JP6998313B2 (ja) | 2016-02-11 | 2022-02-04 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 細胞のゲノムにおける変異ジストロフィン遺伝子を修飾する方法及び組成物 |
| US9896696B2 (en) | 2016-02-15 | 2018-02-20 | Benson Hill Biosystems, Inc. | Compositions and methods for modifying genomes |
| EP3417062B1 (en) | 2016-02-15 | 2024-06-26 | Temple University - Of The Commonwealth System of Higher Education | Excision of retroviral nucleic acid sequences |
| CN105647962A (zh) | 2016-02-15 | 2016-06-08 | 浙江大学 | 运用CRISPR-Cas9系统敲除水稻MIRNA393b茎环序列的基因编辑方法 |
| CN105647969B (zh) | 2016-02-16 | 2020-12-15 | 湖南师范大学 | 一种基因敲除选育stat1a基因缺失型斑马鱼的方法 |
| US11274288B2 (en) | 2016-02-16 | 2022-03-15 | Emendobio Inc. | Compositions and methods for promoting homology directed repair mediated gene editing |
| CA3014792A1 (en) | 2016-02-16 | 2017-08-24 | Carnegie Mellon University | Compositions for enhancing targeted gene editing and methods of use thereof |
| CN105594664B (zh) | 2016-02-16 | 2018-10-02 | 湖南师范大学 | 一种基因敲除选育stat1a基因缺失型斑马鱼的方法 |
| CN105624187A (zh) | 2016-02-17 | 2016-06-01 | 天津大学 | 酿酒酵母基因组定点突变的方法 |
| US11326161B2 (en) | 2016-02-18 | 2022-05-10 | President And Fellows Of Harvard College | Methods and systems of molecular recording by CRISPR-Cas system |
| EP3653709B1 (en) | 2016-02-22 | 2020-12-09 | Caribou Biosciences, Inc. | Methods for modulating dna repair outcomes |
| CN105646719B (zh) | 2016-02-24 | 2019-12-20 | 无锡市妇幼保健院 | 一种高效定点转基因的工具及其应用 |
| US20170275665A1 (en) | 2016-02-24 | 2017-09-28 | Board Of Regents, The University Of Texas System | Direct crispr spacer acquisition from rna by a reverse-transcriptase-cas1 fusion protein |
| WO2017147278A1 (en) | 2016-02-25 | 2017-08-31 | The Children's Medical Center Corporation | Customized class switch of immunoglobulin genes in lymphoma and hybridoma by crispr/cas9 technology |
| US20170246260A1 (en) | 2016-02-25 | 2017-08-31 | Agenovir Corporation | Modified antiviral nuclease |
| WO2017147446A1 (en) | 2016-02-25 | 2017-08-31 | Agenovir Corporation | Viral and oncoviral nuclease treatment |
| US20170247703A1 (en) | 2016-02-25 | 2017-08-31 | Agenovir Corporation | Antiviral nuclease methods |
| EP3420089B1 (en) | 2016-02-26 | 2021-12-29 | LanzaTech NZ, Inc. | Crispr/cas systems for c-1 fixing bacteria |
| US10538750B2 (en) | 2016-02-29 | 2020-01-21 | Agilent Technologies, Inc. | Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins |
| US11447768B2 (en) | 2016-03-01 | 2022-09-20 | University Of Florida Research Foundation, Incorporated | Molecular cell diary system |
| CN105671070B (zh) | 2016-03-03 | 2019-03-19 | 江南大学 | 一种用于枯草芽孢杆菌基因组编辑的CRISPRCas9系统及其构建方法 |
| SG11201807538PA (en) | 2016-03-04 | 2018-09-27 | Editas Medicine Inc | Crispr-cpf1-related methods, compositions and components for cancer immunotherapy |
| CN107177591A (zh) | 2016-03-09 | 2017-09-19 | 北京大学 | 利用CRISPR技术编辑CCR5基因的sgRNA序列及其用途 |
| CN105821040B (zh) | 2016-03-09 | 2018-12-14 | 李旭 | 联合免疫基因抑制高危型HPV表达的sgRNA、基因敲除载体及其应用 |
| CN105821039B (zh) | 2016-03-09 | 2020-02-07 | 李旭 | 联合免疫基因抑制HBV复制的特异性sgRNA、表达载体及其应用 |
| CN105861547A (zh) | 2016-03-10 | 2016-08-17 | 黄捷 | 身份证号码永久嵌入基因组的方法 |
| EP3699280A3 (en) | 2016-03-11 | 2020-11-18 | Pioneer Hi-Bred International, Inc. | Novel cas9 systems and methods of use |
| US20180112234A9 (en) | 2016-03-14 | 2018-04-26 | Intellia Therapeutics, Inc. | Methods and compositions for gene editing |
| IL313038A (en) | 2016-03-14 | 2024-07-01 | Editas Medicine Inc | Methods and preparations related to CRISPR/CAS - for the treatment of diseases in the hemoglobin cell |
| CA3029735A1 (en) | 2016-03-15 | 2017-09-21 | University Of Massachusetts | Anti-crispr compounds and methods of use |
| EP3430332B1 (en) | 2016-03-15 | 2020-01-01 | Carrier Corporation | Refrigerated sales cabinet |
| EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
| US20200291370A1 (en) | 2016-03-18 | 2020-09-17 | President And Fellows Of Harvard College | Mutant Cas Proteins |
| WO2017165741A1 (en) | 2016-03-24 | 2017-09-28 | Karim Aftab S | Reverse transcriptase dependent conversion of rna templates into dna |
| EP3433363A1 (en) | 2016-03-25 | 2019-01-30 | Editas Medicine, Inc. | Genome editing systems comprising repair-modulating enzyme molecules and methods of their use |
| EP3433364A1 (en) | 2016-03-25 | 2019-01-30 | Editas Medicine, Inc. | Systems and methods for treating alpha 1-antitrypsin (a1at) deficiency |
| CN106047803A (zh) | 2016-03-28 | 2016-10-26 | 青岛市胶州中心医院 | CRISPR/Cas9靶向敲除兔BMP2基因的细胞模型及其应用 |
| WO2017172644A2 (en) | 2016-03-28 | 2017-10-05 | The Charles Stark Draper Laboratory, Inc. | Bacteria identification and antibiotic susceptibility profiling device |
| JP6727325B2 (ja) | 2016-03-30 | 2020-07-22 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 改善されたソルターゼ |
| WO2017173004A1 (en) | 2016-03-30 | 2017-10-05 | Mikuni Takayasu | A method for in vivo precise genome editing |
| LT3436077T (lt) | 2016-03-30 | 2025-06-25 | Intellia Therapeutics, Inc. | Lipidų nanodalelių vaisto formos, skirtos crispr/cas komponentams |
| GB2565461B (en) | 2016-03-31 | 2022-04-13 | Harvard College | Methods and compositions for the single tube preparation of sequencing libraries using Cas9 |
| US20190093128A1 (en) | 2016-03-31 | 2019-03-28 | The Regents Of The University Of California | Methods for genome editing in zygotes |
| US10301619B2 (en) | 2016-04-01 | 2019-05-28 | New England Biolabs, Inc. | Compositions and methods relating to synthetic RNA polynucleotides created from synthetic DNA oligonucleotides |
| CN106167525B (zh) | 2016-04-01 | 2019-03-19 | 北京康明百奥新药研发有限公司 | 筛选超低岩藻糖细胞系的方法和应用 |
| KR20180132705A (ko) | 2016-04-04 | 2018-12-12 | 에테하 취리히 | 단백질 생산 및 라이브러리(Library) 생성을 위한 포유동물 세포주 |
| WO2017176529A1 (en) | 2016-04-06 | 2017-10-12 | Temple Univesity-Of The Commonwealth System Of Higher Education | Compositions for eradicating flavivirus infections in subjects |
| CN105802980A (zh) | 2016-04-08 | 2016-07-27 | 北京大学 | Gateway兼容性CRISPR/Cas9系统及其应用 |
| CN106399306B (zh) | 2016-04-12 | 2019-11-05 | 西安交通大学第一附属医院 | 靶向人lncRNA-UCA1抑制膀胱癌的sgRNA、基因载体及其应用 |
| EP4047092B1 (en) | 2016-04-13 | 2025-07-30 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
| WO2017180711A1 (en) | 2016-04-13 | 2017-10-19 | Editas Medicine, Inc. | Grna fusion molecules, gene editing systems, and methods of use thereof |
| WO2017180915A2 (en) | 2016-04-13 | 2017-10-19 | Duke University | Crispr/cas9-based repressors for silencing gene targets in vivo and methods of use |
| EP3442596A1 (en) | 2016-04-14 | 2019-02-20 | Université de Lausanne | Treatment and/or prevention of dna-triplet repeat diseases or disorders |
| EP3443085B1 (en) | 2016-04-14 | 2022-09-14 | BOCO Silicon Valley, Inc. | Genome editing of human neural stem cells using nucleases |
| CN105821116A (zh) | 2016-04-15 | 2016-08-03 | 扬州大学 | 一种绵羊mstn基因定向敲除及其影响成肌分化的检测方法 |
| US12065667B2 (en) | 2016-04-16 | 2024-08-20 | Ohio State Innovation Foundation | Modified Cpf1 MRNA, modified guide RNA, and uses thereof |
| EP3445852A1 (en) | 2016-04-18 | 2019-02-27 | Ruprecht-Karls-Universität Heidelberg | Means and methods for inactivating therapeutic dna in a cell |
| WO2017184334A1 (en) | 2016-04-18 | 2017-10-26 | The Board Of Regents Of The University Of Texas System | Generation of genetically engineered animals by crispr/cas9 genome editing in spermatogonial stem cells |
| WO2017189308A1 (en) | 2016-04-19 | 2017-11-02 | The Broad Institute Inc. | Novel crispr enzymes and systems |
| CN106086062A (zh) | 2016-04-19 | 2016-11-09 | 上海市农业科学院 | 一种获得番茄基因组定点敲除突变体的方法 |
| KR102424476B1 (ko) | 2016-04-19 | 2022-07-25 | 더 브로드 인스티튜트, 인코퍼레이티드 | 신규한 crispr 효소 및 시스템 |
| US11286478B2 (en) | 2016-04-19 | 2022-03-29 | The Broad Institute, Inc. | Cpf1 complexes with reduced indel activity |
| CN105886616B (zh) | 2016-04-20 | 2020-08-07 | 广东省农业科学院农业生物基因研究中心 | 一种用于猪基因编辑的高效特异性sgRNA识别位点引导序列及其筛选方法 |
| EP3235908A1 (en) | 2016-04-21 | 2017-10-25 | Ecole Normale Superieure De Lyon | Methods for selectively modulating the activity of distinct subtypes of cells |
| CN105821075B (zh) | 2016-04-22 | 2017-09-12 | 湖南农业大学 | 一种茶树咖啡因合成酶CRISPR/Cas9基因组编辑载体的构建方法 |
| CN107304435A (zh) | 2016-04-22 | 2017-10-31 | 中国科学院青岛生物能源与过程研究所 | 一种Cas9/RNA系统及其应用 |
| CN105861552B (zh) | 2016-04-25 | 2019-10-11 | 西北农林科技大学 | 一种T7 RNA聚合酶介导的CRISPR/Cas9基因编辑系统的构建方法 |
| US11248216B2 (en) | 2016-04-25 | 2022-02-15 | The Regents Of The University Of California | Methods and compositions for genomic editing |
| CN107326046A (zh) | 2016-04-28 | 2017-11-07 | 上海邦耀生物科技有限公司 | 一种提高外源基因同源重组效率的方法 |
| CN105821049B (zh) | 2016-04-29 | 2019-06-04 | 中国农业大学 | 一种Fbxo40基因敲除猪的制备方法 |
| US11608499B2 (en) | 2016-04-29 | 2023-03-21 | Basf Plant Science Company Gmbh | Methods for modification of target nucleic acids |
| CN109477109B (zh) | 2016-04-29 | 2022-09-23 | 萨勒普塔医疗公司 | 靶向人lmna的寡核苷酸类似物 |
| CN105886534A (zh) | 2016-04-29 | 2016-08-24 | 苏州溯源精微生物科技有限公司 | 一种抑制肿瘤转移的方法 |
| SG11201810755TA (en) | 2016-05-01 | 2019-01-30 | Neemo Inc | Harnessing heterologous and endogenous crispr-cas machineries for efficient markerless genome editing in clostridium |
| WO2017192573A1 (en) | 2016-05-02 | 2017-11-09 | Massachusetts Institute Of Technology | Nanoparticle conjugates of highly potent toxins and intraperitoneal administration of nanoparticles for treating or imaging cancer |
| WO2017191210A1 (en) | 2016-05-04 | 2017-11-09 | Novozymes A/S | Genome editing by crispr-cas9 in filamentous fungal host cells |
| EP3452101A2 (en) | 2016-05-04 | 2019-03-13 | CureVac AG | Rna encoding a therapeutic protein |
| CN105950639A (zh) | 2016-05-04 | 2016-09-21 | 广州美格生物科技有限公司 | 金黄色葡萄球菌CRISPR/Cas9系统的制备及其在构建小鼠模型中的应用 |
| WO2017190664A1 (zh) | 2016-05-05 | 2017-11-09 | 苏州吉玛基因股份有限公司 | 化学合成的crRNA和修饰crRNA在CRISPR/Cpf1基因编辑系统中的应用 |
| ES2957660T3 (es) | 2016-05-05 | 2024-01-23 | Univ Duke | Composiciones relacionadas con crispr/cas para tratar la distrofia muscular de duchenne |
| WO2017192172A1 (en) | 2016-05-05 | 2017-11-09 | Temple University - Of The Commonwealth System Of Higher Education | Rna guided eradication of varicella zoster virus |
| CN105907785B (zh) | 2016-05-05 | 2020-02-07 | 苏州吉玛基因股份有限公司 | 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用 |
| CN106244591A (zh) | 2016-08-23 | 2016-12-21 | 苏州吉玛基因股份有限公司 | 修饰crRNA在CRISPR/Cpf1基因编辑系统中的应用 |
| CN105985985B (zh) | 2016-05-06 | 2019-12-31 | 苏州大学 | Crispr技术编辑并用igf优化的异体间充质干细胞的制备方法及在治疗心梗中应用 |
| CA3022319A1 (en) | 2016-05-06 | 2017-11-09 | Tod M. Woolf | Improved methods for genome editing with and without programmable nucleases |
| US20190161743A1 (en) | 2016-05-09 | 2019-05-30 | President And Fellows Of Harvard College | Self-Targeting Guide RNAs in CRISPR System |
| JP2019519250A (ja) | 2016-05-10 | 2019-07-11 | ユナイテッド ステイツ ガバメント アズ リプレゼンテッド バイ ザ デパートメント オブ ベテランズ アフェアーズUnited States Government As Represented By The Department Of Veterans Affairs | Hiv−1感染と複製に必須な遺伝子を切断するcrispr/casの構築物のレンチウィルスによる送達 |
| CN105861554B (zh) | 2016-05-10 | 2020-01-31 | 华南农业大学 | 一种基于对Rbmy基因进行编辑来实现动物性别控制的方法和应用 |
| CN107365786A (zh) | 2016-05-12 | 2017-11-21 | 中国科学院微生物研究所 | 一种将spacer序列克隆至CRISPR-Cas9系统中的方法及其应用 |
| US20190345483A1 (en) | 2016-05-12 | 2019-11-14 | President And Fellows Of Harvard College | AAV Split Cas9 Genome Editing and Transcriptional Regulation |
| US20200325483A1 (en) | 2016-05-12 | 2020-10-15 | Brian P. Hanley | Safe delivery of crispr and other gene therapies to large fractions of somatic cells in humans and animals |
| KR101922989B1 (ko) | 2016-05-13 | 2018-11-28 | 연세대학교 산학협력단 | CRISPR/Retron 시스템을 이용한 유전체상의 치환 변이 생성과 추적 방법 |
| CN105907758B (zh) | 2016-05-18 | 2020-06-05 | 世翱(上海)生物医药科技有限公司 | CRISPR-Cas9引导序列及其引物、转基因表达载体及其构建方法 |
| CN105838733A (zh) | 2016-05-18 | 2016-08-10 | 云南省农业科学院花卉研究所 | Cas9 介导的香石竹基因编辑载体和应用 |
| CN106011171B (zh) | 2016-05-18 | 2019-10-11 | 西北农林科技大学 | 一种利用CRISPR/Cas9技术基于SSA修复的基因无缝编辑方法 |
| WO2017201476A1 (en) | 2016-05-20 | 2017-11-23 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide rnas |
| CN106446600B (zh) | 2016-05-20 | 2019-10-18 | 同济大学 | 一种基于CRISPR/Cas9的sgRNA的设计方法 |
| US20190300867A1 (en) | 2016-05-23 | 2019-10-03 | The Trustees Of Columbia University In The City Of New York | Bypassing the pam requirement of the crispr-cas system |
| US20190201551A1 (en) | 2016-05-23 | 2019-07-04 | Washington University | Pulmonary targeted cas9/crispr for in vivo editing of disease genes |
| CN105950560B (zh) | 2016-05-24 | 2019-07-23 | 苏州系统医学研究所 | 人源化pd-l1肿瘤细胞系及具有该细胞系的动物模型与应用 |
| CN106011167B (zh) | 2016-05-27 | 2019-11-01 | 上海交通大学 | 雄性不育基因OsDPW2的应用及水稻育性恢复的方法 |
| WO2017207589A1 (en) | 2016-06-01 | 2017-12-07 | Kws Saat Se | Hybrid nucleic acid sequences for genome engineering |
| CA3026321C (en) | 2016-06-02 | 2023-10-03 | Sigma-Aldrich Co. Llc | Using programmable dna binding proteins to enhance targeted genome modification |
| US20190100732A1 (en) | 2016-06-02 | 2019-04-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Assay for the removal of methyl-cytosine residues from dna |
| US11140883B2 (en) | 2016-06-03 | 2021-10-12 | Auburn University | Gene editing of reproductive hormones to sterilize aquatic animals |
| EP3463290A4 (en) | 2016-06-03 | 2019-10-30 | Temple University - Of The Commonwealth System of Higher Education | REGULATION OF THE NEGATIVE RECONSTITUTION OF HIV-1 BY GENETIZATION STRATEGY |
| US20190256844A1 (en) | 2016-06-07 | 2019-08-22 | Temple University - Of The Commonwealth System Of Higher Education | Rna guided compositions for preventing and treating hepatitis b virus infections |
| CN106119275A (zh) | 2016-06-07 | 2016-11-16 | 湖北大学 | 基于CRISPR/Cas9技术将非糯性水稻株系改造成糯性株系的打靶载体和方法 |
| US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
| US11779657B2 (en) | 2016-06-10 | 2023-10-10 | City Of Hope | Compositions and methods for mitochondrial genome editing |
| CN106086008B (zh) | 2016-06-10 | 2019-03-12 | 中国农业科学院植物保护研究所 | 烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用 |
| AU2017286122A1 (en) | 2016-06-14 | 2018-11-22 | Pioneer Hi-Bred International, Inc. | Use of Cpf1 endonuclease for plant genome modifications |
| CN106434752A (zh) | 2016-06-14 | 2017-02-22 | 南通大学附属医院 | 敲除Wnt3a基因的过程及其验证方法 |
| CN106167821A (zh) | 2016-06-16 | 2016-11-30 | 郑州大学 | 一种金黄色葡萄球菌crispr位点检测试剂盒及检测方法 |
| CN105950633B (zh) | 2016-06-16 | 2019-05-03 | 复旦大学 | 基因OsARF4在控制水稻粒长和千粒重中的应用 |
| CN106167808A (zh) | 2016-06-16 | 2016-11-30 | 郑州大学 | 一种基于CRISPR/Cas9技术消除mecA质粒的方法 |
| WO2017216771A2 (en) | 2016-06-17 | 2017-12-21 | Genesis Technologies Limited | Crispr-cas system, materials and methods |
| WO2017219033A1 (en) | 2016-06-17 | 2017-12-21 | Montana State University | Bidirectional targeting for genome editing |
| JP7267013B2 (ja) | 2016-06-17 | 2023-05-01 | ザ・ブロード・インスティテュート・インコーポレイテッド | Vi型crisprオルソログ及び系 |
| CN105950626B (zh) | 2016-06-17 | 2018-09-28 | 新疆畜牧科学院生物技术研究所 | 基于CRISPR/Cas9获得不同毛色绵羊的方法及靶向ASIP基因的sgRNA |
| WO2017223107A1 (en) | 2016-06-20 | 2017-12-28 | Unity Biotechnology, Inc. | Genome modifying enzyme therapy for diseases modulated by senescent cells |
| CA3018430A1 (en) | 2016-06-20 | 2017-12-28 | Pioneer Hi-Bred International, Inc. | Novel cas systems and methods of use |
| US20170362635A1 (en) | 2016-06-20 | 2017-12-21 | University Of Washington | Muscle-specific crispr/cas9 editing of genes |
| IL263595B2 (en) | 2016-06-20 | 2023-11-01 | Keygene Nv | A method for targeted modification of DNA in plant cells |
| CN106148370A (zh) | 2016-06-21 | 2016-11-23 | 苏州瑞奇生物医药科技有限公司 | 肥胖症大鼠动物模型和构建方法 |
| WO2017220751A1 (en) | 2016-06-22 | 2017-12-28 | Proqr Therapeutics Ii B.V. | Single-stranded rna-editing oligonucleotides |
| EP3475416A4 (en) | 2016-06-22 | 2020-04-29 | Icahn School of Medicine at Mount Sinai | VIRAL DELIVERY OF RNA USING SELF-CLeavING RIBOZYMES AND CRISPR-BASED APPLICATIONS |
| CN105925608A (zh) | 2016-06-24 | 2016-09-07 | 广西壮族自治区水牛研究所 | 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法 |
| CN106047877B (zh) | 2016-06-24 | 2019-01-11 | 中山大学附属第一医院 | 一种靶向敲除FTO基因的sgRNA及CRISPR/Cas9慢病毒系统与应用 |
| CN106119283A (zh) | 2016-06-24 | 2016-11-16 | 广西壮族自治区水牛研究所 | 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法 |
| WO2018005691A1 (en) | 2016-06-29 | 2018-01-04 | The Regents Of The University Of California | Efficient genetic screening method |
| US20210222164A1 (en) | 2016-06-29 | 2021-07-22 | The Broad Institute, Inc. | Crispr-cas systems having destabilization domain |
| EP3478840A1 (en) | 2016-06-29 | 2019-05-08 | Crispr Therapeutics AG | Compositions and methods for gene editing |
| CN106148286B (zh) | 2016-06-29 | 2019-10-29 | 牛刚 | 一种用于检测热原的细胞模型的构建方法和细胞模型及热原检测试剂盒 |
| US10927383B2 (en) | 2016-06-30 | 2021-02-23 | Ethris Gmbh | Cas9 mRNAs |
| US20180004537A1 (en) | 2016-07-01 | 2018-01-04 | Microsoft Technology Licensing, Llc | Molecular State Machines |
| US10892034B2 (en) | 2016-07-01 | 2021-01-12 | Microsoft Technology Licensing, Llc | Use of homology direct repair to record timing of a molecular event |
| US10669558B2 (en) | 2016-07-01 | 2020-06-02 | Microsoft Technology Licensing, Llc | Storage through iterative DNA editing |
| MX2019000262A (es) | 2016-07-05 | 2019-05-27 | Univ Johns Hopkins | Composiciones basadas en crispr/cas9 y metodos para el tratamiento de degeneraciones retinianas. |
| CN109312353A (zh) | 2016-07-06 | 2019-02-05 | 诺维信公司 | 通过crispr-抑制来改善微生物 |
| CN106191057B (zh) | 2016-07-06 | 2018-12-25 | 中山大学 | 一种用于敲除人CYP2E1基因的sgRNA序列、CYP2E1基因缺失细胞株的构建方法及其应用 |
| CN106051058A (zh) | 2016-07-07 | 2016-10-26 | 上海格昆机电科技有限公司 | 用于航天贮箱和粒子治疗仪的旋转机架及其传动机构 |
| WO2018009822A1 (en) | 2016-07-08 | 2018-01-11 | Ohio State Innovation Foundation | Modified nucleic acids, hybrid guide rnas, and uses thereof |
| CN107586777A (zh) | 2016-07-08 | 2018-01-16 | 上海吉倍生物技术有限公司 | 人PDCD1基因sgRNA的用途及其相关药物 |
| CN106047930B (zh) | 2016-07-12 | 2020-05-19 | 北京百奥赛图基因生物技术有限公司 | 一种PS1基因条件性敲除flox大鼠的制备方法 |
| JP2019520069A (ja) | 2016-07-13 | 2019-07-18 | ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. | 藻類宿主細胞用のcrispr−casシステム |
| US11674158B2 (en) | 2016-07-15 | 2023-06-13 | Salk Institute For Biological Studies | Methods and compositions for genome editing in non-dividing cells |
| US20190330659A1 (en) | 2016-07-15 | 2019-10-31 | Zymergen Inc. | Scarless dna assembly and genome editing using crispr/cpf1 and dna ligase |
| CN106191061B (zh) | 2016-07-18 | 2019-06-18 | 暨南大学 | 一种特异靶向人ABCG2基因的sgRNA导向序列及其应用 |
| CN106191062B (zh) | 2016-07-18 | 2019-06-14 | 广东华南疫苗股份有限公司 | 一种tcr-/pd-1-双阴性t细胞及其构建方法 |
| CN106190903B (zh) | 2016-07-18 | 2019-04-02 | 华中农业大学 | 鸭疫里氏杆菌Cas9基因缺失突变株及其应用 |
| EP3487523B1 (en) | 2016-07-19 | 2023-09-06 | Duke University | Therapeutic applications of cpf1-based genome editing |
| CN106434651B (zh) | 2016-07-19 | 2021-05-18 | 广西大学 | 根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用 |
| JP2019520844A (ja) | 2016-07-21 | 2019-07-25 | マックスサイト インコーポレーティッド | ゲノムdnaを改変するための方法および組成物 |
| WO2018015444A1 (en) | 2016-07-22 | 2018-01-25 | Novozymes A/S | Crispr-cas9 genome editing with multiple guide rnas in filamentous fungi |
| CN106191064B (zh) | 2016-07-22 | 2019-06-07 | 中国农业大学 | 一种制备mc4r基因敲除猪的方法 |
| CN106191107B (zh) | 2016-07-22 | 2020-03-20 | 湖南农业大学 | 一种降低水稻籽粒落粒性的分子改良方法 |
| EP3488001A1 (en) | 2016-07-25 | 2019-05-29 | Mayo Foundation for Medical Education and Research | Treating cancer |
| WO2018018979A1 (zh) | 2016-07-26 | 2018-02-01 | 浙江大学 | 植物重组载体及无转基因成分的基因编辑植株的筛选方法 |
| CN106222193B (zh) | 2016-07-26 | 2019-09-20 | 浙江大学 | 一种重组载体及无转基因基因编辑植株的筛选方法 |
| EP3491133A4 (en) | 2016-07-26 | 2020-05-06 | The General Hospital Corporation | VARIANTS OF CRISPR OF PREVOTELLA AND FRANCISELLA 1 (CPF1) |
| CN106191099A (zh) | 2016-07-27 | 2016-12-07 | 苏州泓迅生物科技有限公司 | 一种基于CRISPR‑Cas9系统的酿酒酵母基因组并行多重编辑载体及其应用 |
| CN106086061A (zh) | 2016-07-27 | 2016-11-09 | 苏州泓迅生物科技有限公司 | 一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用 |
| KR101828958B1 (ko) | 2016-07-28 | 2018-02-13 | 주식회사 비엠티 | 옥외 배관용 히팅재킷 |
| CN106434748A (zh) | 2016-07-29 | 2017-02-22 | 中国科学院重庆绿色智能技术研究院 | 一种热激诱导型 Cas9 酶转基因斑马鱼的研制及应用 |
| CN106191114B (zh) | 2016-07-29 | 2020-02-11 | 中国科学院重庆绿色智能技术研究院 | 利用CRISPR-Cas9系统敲除鱼类MC4R基因的育种方法 |
| CN106191124B (zh) | 2016-07-29 | 2019-10-11 | 中国科学院重庆绿色智能技术研究院 | 一种利用鱼卵保存液提高CRISPR-Cas9基因编辑和传代效率的鱼类育种方法 |
| CN106191113B (zh) | 2016-07-29 | 2020-01-14 | 中国农业大学 | 一种mc3r基因敲除猪的制备方法 |
| GB201613135D0 (en) | 2016-07-29 | 2016-09-14 | Medical Res Council | Genome editing |
| CN106011150A (zh) | 2016-08-01 | 2016-10-12 | 云南纳博生物科技有限公司 | 一种水稻穗粒数Gn1a基因人工定点突变体及其应用 |
| CN106434688A (zh) | 2016-08-01 | 2017-02-22 | 云南纳博生物科技有限公司 | 一种水稻直立密穗dep1基因人工定点突变体及其应用 |
| WO2018026723A1 (en) | 2016-08-01 | 2018-02-08 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Human induced pluripotent stem cells for high efficiency genetic engineering |
| WO2018026976A1 (en) | 2016-08-02 | 2018-02-08 | Editas Medicine, Inc. | Compositions and methods for treating cep290 associated disease |
| WO2018025206A1 (en) | 2016-08-02 | 2018-02-08 | Kyoto University | Method for genome editing |
| KR20250103795A (ko) | 2016-08-03 | 2025-07-07 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | 아데노신 핵염기 편집제 및 그의 용도 |
| CN106282241A (zh) | 2016-08-05 | 2017-01-04 | 无锡市第二人民医院 | 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法 |
| CN109804066A (zh) | 2016-08-09 | 2019-05-24 | 哈佛大学的校长及成员们 | 可编程cas9-重组酶融合蛋白及其用途 |
| CN106222203A (zh) | 2016-08-10 | 2016-12-14 | 云南纳博生物科技有限公司 | 利用CRISPR/Cas技术获得家蚕丝素重链基因突变体及突变方法和应用 |
| KR101710026B1 (ko) | 2016-08-10 | 2017-02-27 | 주식회사 무진메디 | Cas9 단백질 및 가이드 RNA의 혼성체를 함유하는 나노 리포좀 전달체 조성물 |
| CN106172238B (zh) | 2016-08-12 | 2019-01-22 | 中南大学 | miR-124基因敲除小鼠动物模型的构建方法和应用 |
| US11827876B2 (en) | 2016-08-12 | 2023-11-28 | Oxitec Ltd. | Self-limiting, sex-specific gene and methods of using |
| CN106222177B (zh) | 2016-08-13 | 2018-06-26 | 江苏集萃药康生物科技有限公司 | 一种靶向人STAT6的CRISPR-Cas9系统及其用于治疗过敏性疾病的应用 |
| US12431216B2 (en) | 2016-08-17 | 2025-09-30 | Broad Institute, Inc. | Methods for identifying class 2 crispr-cas systems |
| US11810649B2 (en) | 2016-08-17 | 2023-11-07 | The Broad Institute, Inc. | Methods for identifying novel gene editing elements |
| US20210000091A1 (en) | 2016-08-17 | 2021-01-07 | The Regents Of The University Of California | Split Trans-Complementing Gene-Drive System for Suppressing Aedes Aegypti Mosquitos |
| IL264872B2 (en) | 2016-08-18 | 2025-02-01 | Univ California | CRISPR-CAS genome engineering using a modular AAV delivery system |
| WO2018035423A1 (en) | 2016-08-19 | 2018-02-22 | Bluebird Bio, Inc. | Genome editing enhancers |
| US20190185850A1 (en) | 2016-08-20 | 2019-06-20 | Avellino Lab Usa, Inc. | Single guide rna/crispr/cas9 systems, and methods of use thereof |
| CN106191071B (zh) | 2016-08-22 | 2018-09-04 | 广州资生生物科技有限公司 | 一种CRISPR-Cas9系统及其用于治疗乳腺癌疾病的应用 |
| CN106191116B (zh) | 2016-08-22 | 2019-10-08 | 西北农林科技大学 | 基于CRISPR/Cas9的外源基因敲入整合系统及其建立方法和应用 |
| CN106086028B (zh) | 2016-08-23 | 2019-04-23 | 中国农业科学院作物科学研究所 | 一种通过基因组编辑提高水稻抗性淀粉含量的方法及其专用sgRNA |
| CN106244555A (zh) | 2016-08-23 | 2016-12-21 | 广州医科大学附属第三医院 | 一种提高基因打靶的效率的方法及β‑球蛋白基因位点的碱基原位修复方法 |
| SG11201901531TA (en) | 2016-08-24 | 2019-03-28 | Sangamo Therapeutics Inc | Regulation of gene expression using engineered nucleases |
| CN106109417A (zh) | 2016-08-24 | 2016-11-16 | 李因传 | 一种肝细胞膜仿生脂质体药物载体、制作方法及其应用 |
| CN106244609A (zh) | 2016-08-24 | 2016-12-21 | 浙江理工大学 | 一种调节pi3k‑akt信号通路的非编码基因的筛选系统及筛选方法 |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US10975393B2 (en) | 2016-08-24 | 2021-04-13 | Sangamo Therapeutics, Inc. | Engineered target specific nucleases |
| KR101856345B1 (ko) | 2016-08-24 | 2018-06-20 | 경상대학교산학협력단 | CRISPR/Cas9 시스템을 이용하여 APOBEC3H 및 APOBEC3CH 이중-넉아웃 고양이를 제조하는 방법 |
| CN106544357B (zh) | 2016-08-25 | 2018-08-21 | 湖南杂交水稻研究中心 | 一种培育镉低积累籼稻品种的方法 |
| CN106318973B (zh) | 2016-08-26 | 2019-09-13 | 深圳市第二人民医院 | 一种基于CRISPR-Cas9的基因调控装置及基因调控方法 |
| CN106350540A (zh) | 2016-08-26 | 2017-01-25 | 苏州系统医学研究所 | 一种由慢病毒介导的高效可诱导型CRISPR/Cas9基因敲除载体及其应用 |
| CN107784200B (zh) | 2016-08-26 | 2020-11-06 | 深圳华大生命科学研究院 | 一种筛选新型CRISPR-Cas系统的方法和装置 |
| CN106244557B (zh) | 2016-08-29 | 2019-10-25 | 中国农业科学院北京畜牧兽医研究所 | 定点突变ApoE基因与LDLR基因的方法 |
| CN106399375A (zh) | 2016-08-31 | 2017-02-15 | 南京凯地生物科技有限公司 | 利用CRISPR/Cas9敲除人PD‑1基因构建靶向CD19CAR‑T细胞的方法 |
| CN106399367A (zh) | 2016-08-31 | 2017-02-15 | 深圳市卫光生物制品股份有限公司 | 提高crispr介导的同源重组效率的方法 |
| CN106480097A (zh) | 2016-10-13 | 2017-03-08 | 南京凯地生物科技有限公司 | 利用CRISPR/Cas9技术敲除人PD‑1基因构建可靶向MSLN新型CAR‑T细胞的方法及其应用 |
| CN107794272B (zh) | 2016-09-06 | 2021-10-12 | 中国科学院上海营养与健康研究所 | 一种高特异性的crispr基因组编辑体系 |
| CN106399311A (zh) | 2016-09-07 | 2017-02-15 | 同济大学 | 用于Chip‑seq全基因组结合谱的内源蛋白标记的方法 |
| CN106367435B (zh) | 2016-09-07 | 2019-11-08 | 电子科技大学 | 一种水稻miRNA定向敲除的方法 |
| US20180105806A1 (en) | 2016-09-07 | 2018-04-19 | Massachusetts Institute Of Technology | Method for rna-guided endonuclease-based dna assembly |
| CN106399377A (zh) | 2016-09-07 | 2017-02-15 | 同济大学 | 一种基于CRISPR/Cas9高通量技术筛选药物靶点基因的方法 |
| WO2018049075A1 (en) | 2016-09-07 | 2018-03-15 | Flagship Pioneering, Inc. | Methods and compositions for modulating gene expression |
| WO2018049168A1 (en) | 2016-09-09 | 2018-03-15 | The Board Of Trustees Of The Leland Stanford Junior University | High-throughput precision genome editing |
| CN107574179B (zh) | 2016-09-09 | 2018-07-10 | 康码(上海)生物科技有限公司 | 一种为克鲁维酵母优化的CRISPR/Cas9高效基因编辑系统 |
| WO2018051347A1 (en) | 2016-09-14 | 2018-03-22 | Yeda Research And Development Co. Ltd. | Crisp-seq, an integrated method for massively parallel single cell rna-seq and crispr pooled screens |
| CN106318934B (zh) | 2016-09-21 | 2020-06-05 | 上海交通大学 | 胡萝卜β(1,2)木糖转移酶的基因全序列及用于转染双子叶植物的CRISPR/CAS9的质粒构建 |
| US9580698B1 (en) | 2016-09-23 | 2017-02-28 | New England Biolabs, Inc. | Mutant reverse transcriptase |
| US20180127786A1 (en) | 2016-09-23 | 2018-05-10 | Casebia Therapeutics Limited Liability Partnership | Compositions and methods for gene editing |
| CN106957858A (zh) | 2016-09-23 | 2017-07-18 | 西北农林科技大学 | 一种利用CRISPR/Cas9系统共同敲除绵羊MSTN、ASIP、BCO2基因的方法 |
| EP3516056B1 (en) | 2016-09-23 | 2024-11-27 | DSM IP Assets B.V. | A guide-rna expression system for a host cell |
| US11319546B2 (en) | 2016-09-28 | 2022-05-03 | Cellivery Therapeutics, Inc. | Cell-permeable (CP)-Cas9 recombinant protein and uses thereof |
| JP7306696B2 (ja) | 2016-09-30 | 2023-07-11 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Rna誘導型核酸修飾酵素及びその使用方法 |
| CN106480027A (zh) | 2016-09-30 | 2017-03-08 | 重庆高圣生物医药有限责任公司 | CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA |
| CN107880132B (zh) | 2016-09-30 | 2022-06-17 | 北京大学 | 一种融合蛋白及使用其进行同源重组的方法 |
| CN107881184B (zh) | 2016-09-30 | 2021-08-27 | 中国科学院分子植物科学卓越创新中心 | 一种基于Cpf1的DNA体外拼接方法 |
| CN110023494A (zh) | 2016-09-30 | 2019-07-16 | 加利福尼亚大学董事会 | Rna指导的核酸修饰酶及其使用方法 |
| WO2018064516A1 (en) | 2016-09-30 | 2018-04-05 | Monsanto Technology Llc | Method for selecting target sites for site-specific genome modification in plants |
| EP3518981A4 (en) | 2016-10-03 | 2020-06-10 | President and Fellows of Harvard College | THERAPEUTIC RNA DELIVERY THROUGH ARRDC1 MICROVESICLES |
| WO2018067846A1 (en) | 2016-10-05 | 2018-04-12 | President And Fellows Of Harvard College | Methods of crispr mediated genome modulation in v. natriegens |
| US10669539B2 (en) | 2016-10-06 | 2020-06-02 | Pioneer Biolabs, Llc | Methods and compositions for generating CRISPR guide RNA libraries |
| CA3039409A1 (en) | 2016-10-07 | 2018-04-12 | Integrated Dna Technologies, Inc. | S. pyogenes cas9 mutant genes and polypeptides encoded by same |
| CN106479985A (zh) | 2016-10-09 | 2017-03-08 | 上海吉玛制药技术有限公司 | 病毒介导的Cpf1蛋白在CRISPR/Cpf1基因编辑系统中的应用 |
| IT201600102542A1 (it) | 2016-10-12 | 2018-04-12 | Univ Degli Studi Di Trento | Plasmide e sistema lentivirale contenente un circuito autolimitante della Cas9 che ne incrementa la sicurezza. |
| CN106434663A (zh) | 2016-10-12 | 2017-02-22 | 遵义医学院 | CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA |
| US20190365862A1 (en) | 2016-10-12 | 2019-12-05 | Temple University - Of The Commonwealth System Of Higher Education | Combination therapies for eradicating flavivirus infections in subjects |
| US20190330620A1 (en) | 2016-10-14 | 2019-10-31 | Emendobio Inc. | Rna compositions for genome editing |
| AU2017342543B2 (en) | 2016-10-14 | 2024-06-27 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| CN106434782B (zh) | 2016-10-14 | 2020-01-10 | 南京工业大学 | 一种产顺式-4-羟脯氨酸的方法 |
| KR20240064734A (ko) | 2016-10-14 | 2024-05-13 | 더 제너럴 하스피탈 코포레이션 | 후성적으로 조절되는 부위-특이적 뉴클레아제 |
| SG10201913505WA (en) | 2016-10-17 | 2020-02-27 | Univ Nanyang Tech | Truncated crispr-cas proteins for dna targeting |
| US10640810B2 (en) | 2016-10-19 | 2020-05-05 | Drexel University | Methods of specifically labeling nucleic acids using CRISPR/Cas |
| WO2018081504A1 (en) | 2016-10-28 | 2018-05-03 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus |
| US20180119141A1 (en) | 2016-10-28 | 2018-05-03 | Massachusetts Institute Of Technology | Crispr/cas global regulator screening platform |
| US20180127759A1 (en) | 2016-10-28 | 2018-05-10 | Massachusetts Institute Of Technology | Dynamic genome engineering |
| WO2018079134A1 (ja) | 2016-10-31 | 2018-05-03 | 株式会社江口高周波 | リアクトル |
| WO2018081728A1 (en) | 2016-10-31 | 2018-05-03 | Emendobio Inc. | Compositions for genome editing |
| WO2018085288A1 (en) | 2016-11-01 | 2018-05-11 | President And Fellows Of Harvard College | Inhibitors of rna guided nucleases and uses thereof |
| WO2018083606A1 (en) | 2016-11-01 | 2018-05-11 | Novartis Ag | Methods and compositions for enhancing gene editing |
| WO2018085414A1 (en) | 2016-11-02 | 2018-05-11 | President And Fellows Of Harvard College | Engineered guide rna sequences for in situ detection and sequencing |
| GB201618507D0 (en) | 2016-11-02 | 2016-12-14 | Stichting Voor De Technische Wetenschappen And Wageningen Univ | Microbial genome editing |
| CN106544353A (zh) | 2016-11-08 | 2017-03-29 | 宁夏医科大学总医院 | 一种利用CRISPR‑Cas9清除鲍曼不动杆菌耐药性基因的方法 |
| CN106755088A (zh) | 2016-11-11 | 2017-05-31 | 广东万海细胞生物科技有限公司 | 一种自体car‑t细胞制备方法及应用 |
| WO2018089664A1 (en) | 2016-11-11 | 2018-05-17 | The Regents Of The University Of California | Variant rna-guided polypeptides and methods of use |
| CN106566838B (zh) | 2016-11-14 | 2019-11-01 | 上海伯豪生物技术有限公司 | 一种基于CRISPR-Cas9技术的miR-126全长基因敲除试剂盒及其应用 |
| EP3538661A4 (en) | 2016-11-14 | 2020-04-15 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | METHOD FOR BASIC PROCESSING IN PLANTS |
| CN106554969A (zh) | 2016-11-15 | 2017-04-05 | 陕西理工学院 | 基于抑菌杀菌的多靶点CRISPR/Cas9表达载体 |
| CN106754912B (zh) | 2016-11-16 | 2019-11-08 | 上海交通大学 | 一类定向清除肝细胞中HBVcccDNA的质粒及制剂 |
| US11485760B2 (en) | 2016-11-16 | 2022-11-01 | The Regents Of The University Of California | Inhibitors of CRISPR-Cas9 |
| US20180282722A1 (en) | 2016-11-21 | 2018-10-04 | Massachusetts Institute Of Technology | Chimeric DNA:RNA Guide for High Accuracy Cas9 Genome Editing |
| CN106480067A (zh) | 2016-11-21 | 2017-03-08 | 中国农业科学院烟草研究所 | 烟草NtNAC096基因控制烟草衰老的应用 |
| JP2019535287A (ja) | 2016-11-22 | 2019-12-12 | インテグレイテツド・デイー・エヌ・エイ・テクノロジーズ・インコーポレイテツド | Crispr/cpf1システム及び方法 |
| CA3044531A1 (en) | 2016-11-28 | 2018-05-31 | The Board Of Regents Of The University Of Texas System | Prevention of muscular dystrophy by crispr/cpf1-mediated gene editing |
| CN106755091A (zh) | 2016-11-28 | 2017-05-31 | 中国人民解放军第三军医大学第附属医院 | 基因敲除载体,mh7a细胞nlrp1基因敲除方法 |
| CN106480036B (zh) | 2016-11-30 | 2019-04-09 | 华南理工大学 | 一种具有启动子功能的dna片段及其应用 |
| CN107043779B (zh) | 2016-12-01 | 2020-05-12 | 中国农业科学院作物科学研究所 | 一种CRISPR/nCas9介导的定点碱基替换在植物中的应用 |
| US20200056206A1 (en) | 2016-12-01 | 2020-02-20 | UNIVERSITé LAVAL | Crispr-based treatment of friedreich ataxia |
| CN106834323A (zh) | 2016-12-01 | 2017-06-13 | 安徽大学 | 一种基于维吉尼亚链霉菌IBL14基因cas7‑5‑3的基因编辑方法 |
| US9816093B1 (en) | 2016-12-06 | 2017-11-14 | Caribou Biosciences, Inc. | Engineered nucleic acid-targeting nucleic acids |
| WO2018103686A1 (zh) | 2016-12-07 | 2018-06-14 | 中国科学院上海生命科学研究院 | 叶绿体基因组编辑方法 |
| CN106701830B (zh) | 2016-12-07 | 2020-01-03 | 湖南人文科技学院 | 一种敲除猪胚胎p66shc基因的方法 |
| CN106544351B (zh) | 2016-12-08 | 2019-09-10 | 江苏省农业科学院 | CRISPR-Cas9体外敲除耐药基因mcr-1的方法及其专用细胞穿透肽 |
| US11192929B2 (en) | 2016-12-08 | 2021-12-07 | Regents Of The University Of Minnesota | Site-specific DNA base editing using modified APOBEC enzymes |
| CN110291198B (zh) | 2016-12-08 | 2024-11-26 | 因特利亚治疗公司 | 经修饰的指导rna |
| JP7228514B2 (ja) | 2016-12-09 | 2023-02-24 | ザ・ブロード・インスティテュート・インコーポレイテッド | Crisprエフェクターシステムベースの診断法 |
| WO2018107103A1 (en) | 2016-12-09 | 2018-06-14 | The Broad Institute, Inc. | Crispr-systems for modifying a trait of interest in a plant |
| WO2018111947A1 (en) | 2016-12-12 | 2018-06-21 | Integrated Dna Technologies, Inc. | Genome editing enhancement |
| WO2018111946A1 (en) | 2016-12-12 | 2018-06-21 | Integrated Dna Technologies, Inc. | Genome editing detection |
| CN107893074A (zh) | 2016-12-13 | 2018-04-10 | 广东赤萌医疗科技有限公司 | 一种用于敲除CXCR4基因的gRNA、表达载体、敲除系统、试剂盒 |
| CA3046824A1 (en) | 2016-12-14 | 2018-06-21 | Wageningen Universiteit | Thermostable cas9 nucleases |
| WO2018109101A1 (en) | 2016-12-14 | 2018-06-21 | Wageningen Universiteit | Thermostable cas9 nucleases |
| KR101748575B1 (ko) | 2016-12-16 | 2017-06-20 | 주식회사 엠젠플러스 | Ins 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법 |
| WO2018112336A1 (en) | 2016-12-16 | 2018-06-21 | Ohio State Innovation Foundation | Systems and methods for dna-guided rna cleavage |
| CN106755026A (zh) | 2016-12-18 | 2017-05-31 | 吉林大学 | sgRNA表达载体的构建及牙釉质钙化不全模型的建立 |
| WO2018112446A2 (en) | 2016-12-18 | 2018-06-21 | Selonterra, Inc. | Use of apoe4 motif-mediated genes for diagnosis and treatment of alzheimer's disease |
| GB2572918B (en) | 2016-12-23 | 2023-02-15 | Harvard College | Gene editing of PCSK9 |
| WO2018119359A1 (en) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Editing of ccr5 receptor gene to protect against hiv infection |
| CN106755424B (zh) | 2016-12-26 | 2020-11-06 | 郑州大学 | 一种基于crispr的大肠杆菌st131系菌株检测引物、试剂盒及检测方法 |
| CN107354173A (zh) | 2016-12-26 | 2017-11-17 | 浙江省医学科学院 | 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法 |
| CN106834347A (zh) | 2016-12-27 | 2017-06-13 | 安徽省农业科学院畜牧兽医研究所 | 一种山羊cdk2基因敲除载体及其构建方法 |
| CN106755097A (zh) | 2016-12-27 | 2017-05-31 | 安徽省农业科学院畜牧兽医研究所 | 一种山羊tlr4基因敲除载体及其构建方法 |
| CN108243575B (zh) | 2016-12-27 | 2020-04-17 | Bgt材料有限公司 | 聚合物印刷电路板的制造方法 |
| CN106597260B (zh) | 2016-12-29 | 2020-04-03 | 合肥工业大学 | 基于连续小波分析和elm网络的模拟电路故障诊断方法 |
| CN106701763B (zh) | 2016-12-30 | 2019-07-19 | 重庆高圣生物医药有限责任公司 | CRISPR/Cas9靶向敲除人乙肝病毒P基因及其特异性gRNA |
| CN106868008A (zh) | 2016-12-30 | 2017-06-20 | 重庆高圣生物医药有限责任公司 | CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA |
| CN106834341B (zh) | 2016-12-30 | 2020-06-16 | 中国农业大学 | 一种基因定点突变载体及其构建方法和应用 |
| CN106755077A (zh) | 2016-12-30 | 2017-05-31 | 华智水稻生物技术有限公司 | 利用crispr‑cas9技术对水稻cenh3基因定点突变的方法 |
| CN106701818B (zh) | 2017-01-09 | 2020-04-24 | 湖南杂交水稻研究中心 | 一种培育水稻普通核不育系的方法 |
| CN107012164B (zh) | 2017-01-11 | 2023-03-03 | 电子科技大学 | CRISPR/Cpf1植物基因组定向修饰功能单元、包含该功能单元的载体及其应用 |
| EP3568476A1 (en) | 2017-01-11 | 2019-11-20 | Oxford University Innovation Limited | Crispr rna |
| US20180258418A1 (en) | 2017-01-17 | 2018-09-13 | Institute For Basic Science | Method of identifying genome-wide off-target sites of base editors by detecting single strand breaks in genomic dna |
| CN107058372A (zh) | 2017-01-18 | 2017-08-18 | 四川农业大学 | 一种应用于植物上的CRISPR/Cas9载体的构建方法 |
| CN106701823A (zh) | 2017-01-18 | 2017-05-24 | 上海交通大学 | 生产无岩藻糖单克隆抗体的cho细胞系建立及其应用 |
| JP2020513783A (ja) | 2017-01-18 | 2020-05-21 | エクシジョン バイオセラピューティクス インコーポレイテッド | Crispr |
| CN106801056A (zh) | 2017-01-24 | 2017-06-06 | 中国科学院广州生物医药与健康研究院 | 一种sgRNA及其构建的慢病毒载体和应用 |
| US20190352626A1 (en) | 2017-01-30 | 2019-11-21 | KWS SAAT SE & Co. KGaA | Repair template linkage to endonucleases for genome engineering |
| TWI608100B (zh) | 2017-02-03 | 2017-12-11 | 國立清華大學 | Cas9表達質體、大腸桿菌基因剪輯系統及其方法 |
| TW201839136A (zh) | 2017-02-06 | 2018-11-01 | 瑞士商諾華公司 | 治療血色素異常症之組合物及方法 |
| US10465187B2 (en) | 2017-02-06 | 2019-11-05 | Trustees Of Boston University | Integrated system for programmable DNA methylation |
| WO2018148246A1 (en) | 2017-02-07 | 2018-08-16 | Massachusetts Institute Of Technology | Methods and compositions for rna-guided genetic circuits |
| AU2018218280B2 (en) | 2017-02-07 | 2024-10-17 | The Regents Of The University Of California | Gene therapy for haploinsufficiency |
| WO2018148647A2 (en) | 2017-02-10 | 2018-08-16 | Lajoie Marc Joseph | Genome editing reagents and their use |
| IT201700016321A1 (it) | 2017-02-14 | 2018-08-14 | Univ Degli Studi Di Trento | Mutanti di cas9 ad alta specificita' e loro applicazioni. |
| US20200063127A1 (en) | 2017-02-15 | 2020-02-27 | Massachusetts Institute Of Technology | Dna writers, molecular recorders and uses thereof |
| JP7688478B2 (ja) | 2017-02-15 | 2025-06-04 | キージーン ナムローゼ フェンノートシャップ | 植物細胞における標的遺伝子変化の方法 |
| CN106957855B (zh) | 2017-02-16 | 2020-04-17 | 上海市农业科学院 | 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法 |
| WO2018152418A1 (en) | 2017-02-17 | 2018-08-23 | Temple University - Of The Commonwealth System Of Higher Education | Gene editing therapy for hiv infection via dual targeting of hiv genome and ccr5 |
| WO2018149418A1 (en) | 2017-02-20 | 2018-08-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Genome editing system and method |
| CA3053709A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Compositions and methods for treatment of proprotein convertase subtilisin/kexin type 9 (pcsk9)-related disorders |
| WO2018156372A1 (en) | 2017-02-22 | 2018-08-30 | The Regents Of The University Of California | Genetically modified non-human animals and products thereof |
| EP3585807A1 (en) | 2017-02-22 | 2020-01-01 | CRISPR Therapeutics AG | Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders |
| EP3585897A1 (en) | 2017-02-22 | 2020-01-01 | CRISPR Therapeutics AG | Materials and methods for treatment of dystrophic epidermolysis bullosa (deb) and other collagen type vii alpha 1 chain (col7a1) gene related conditions or disorders |
| WO2018154459A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of primary hyperoxaluria type 1 (ph1) and other alanine-glyoxylate aminotransferase (agxt) gene related conditions or disorders |
| US11559588B2 (en) | 2017-02-22 | 2023-01-24 | Crispr Therapeutics Ag | Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders |
| US11920148B2 (en) | 2017-02-22 | 2024-03-05 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
| US20200216857A1 (en) | 2017-02-22 | 2020-07-09 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders |
| EP3585896A1 (en) | 2017-02-22 | 2020-01-01 | CRISPR Therapeutics AG | Materials and methods for treatment of merosin-deficient cogenital muscular dystrophy (mdcmd) and other laminin, alpha 2 (lama2) gene related conditions or disorders |
| US20190380314A1 (en) | 2017-02-23 | 2019-12-19 | President And Fellows Of Harvard College | Methods of Genetic Modification of a Cell |
| CN106868031A (zh) | 2017-02-24 | 2017-06-20 | 北京大学 | 一种基于分级组装的多个sgRNA串联并行表达的克隆方法及应用 |
| WO2018161009A1 (en) | 2017-03-03 | 2018-09-07 | Yale University | Aav-mediated direct in vivo crispr screen in glioblastoma |
| JP2020508685A (ja) | 2017-03-03 | 2020-03-26 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | サプレッサーtRNA及びデアミナーゼによる変異のRNAターゲティング |
| US11111492B2 (en) | 2017-03-06 | 2021-09-07 | Florida State University Research Foundation, Inc. | Genome engineering methods using a cytosine-specific Cas9 |
| EP3592853A1 (en) | 2017-03-09 | 2020-01-15 | President and Fellows of Harvard College | Suppression of pain by gene editing |
| EP3592381A1 (en) | 2017-03-09 | 2020-01-15 | President and Fellows of Harvard College | Cancer vaccine |
| KR20190127797A (ko) | 2017-03-10 | 2019-11-13 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | 시토신에서 구아닌으로의 염기 편집제 |
| WO2018170015A1 (en) | 2017-03-14 | 2018-09-20 | The Regents Of The University Of California | Engineering crispr cas9 immune stealth |
| CN106978428A (zh) | 2017-03-15 | 2017-07-25 | 上海吐露港生物科技有限公司 | 一种Cas蛋白特异结合靶标DNA、调控靶标基因转录的方法及试剂盒 |
| BR112019019087A2 (pt) | 2017-03-15 | 2020-05-12 | The Broad Institute, Inc. | Diagnóstico baseado em sistema efetor de crispr para detecção de vírus |
| CN106906242A (zh) | 2017-03-16 | 2017-06-30 | 重庆高圣生物医药有限责任公司 | 一种提高CRIPSR/Cas9靶向敲除基因产生非同源性末端接合效率的方法 |
| EP3600382A4 (en) | 2017-03-21 | 2020-12-30 | Anthony P. Shuber | TREATMENT OF CANCER WITH CAS ENDONUCLEASE COMPLEXES |
| CA3057192A1 (en) | 2017-03-23 | 2018-09-27 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable dna binding proteins |
| CN107012213A (zh) | 2017-03-24 | 2017-08-04 | 南开大学 | 结直肠癌的生物标记物 |
| CN106947780A (zh) | 2017-03-28 | 2017-07-14 | 扬州大学 | 一种兔mstn基因的编辑方法 |
| US10876101B2 (en) | 2017-03-28 | 2020-12-29 | Locanabio, Inc. | CRISPR-associated (Cas) protein |
| CN106906240A (zh) | 2017-03-29 | 2017-06-30 | 浙江大学 | 运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法 |
| KR102758434B1 (ko) | 2017-03-30 | 2025-01-21 | 고쿠리츠 다이가쿠 호진 교토 다이가쿠 | 게놈 편집에 의한 엑손 스키핑 유도 방법 |
| CN108660161B (zh) | 2017-03-31 | 2023-05-09 | 中国科学院脑科学与智能技术卓越创新中心 | 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法 |
| CN107058358B (zh) | 2017-04-01 | 2020-06-09 | 中国科学院微生物研究所 | 一种双spacer序列识别切割CRISPR-Cas9载体构建及其在疣孢菌中的应用 |
| CN106967726B (zh) | 2017-04-05 | 2020-12-29 | 华南农业大学 | 一种创建亚洲栽培稻与非洲栽培稻种间杂种亲和系的方法和应用 |
| US9938288B1 (en) | 2017-04-05 | 2018-04-10 | President And Fellows Of Harvard College | Macrocyclic compound and uses thereof |
| CN107142282A (zh) | 2017-04-06 | 2017-09-08 | 中山大学 | 一种利用CRISPR/Cas9在哺乳动物细胞中实现大片段DNA定点整合的方法 |
| CN107034229A (zh) | 2017-04-07 | 2017-08-11 | 江苏贝瑞利生物科技有限公司 | 一种植物中高效筛选CRISPR/CAS9基因编辑系统候选sgRNA系统及应用 |
| ES2880366T3 (es) | 2017-04-11 | 2021-11-24 | Hoffmann La Roche | Retrotranscriptasa mutante con un incremento en la estabilidad térmica así como productos, procedimientos y usos que involucran la misma |
| CN107058320B (zh) | 2017-04-12 | 2019-08-02 | 南开大学 | Il7r基因缺失斑马鱼突变体的制备及其应用 |
| CN110799645B (zh) | 2017-04-12 | 2024-08-02 | 博德研究所 | 新型vi型crispr直系同源物和系统 |
| CN106916852B (zh) | 2017-04-13 | 2020-12-04 | 上海科技大学 | 一种碱基编辑系统及其构建和应用方法 |
| CN108728476A (zh) | 2017-04-14 | 2018-11-02 | 复旦大学 | 一种利用crispr系统产生多样性抗体文库的方法 |
| CN107298701B (zh) | 2017-04-18 | 2020-10-30 | 上海大学 | 玉米转录因子ZmbZIP22及其应用 |
| CN106957844A (zh) | 2017-04-20 | 2017-07-18 | 华侨大学 | 一种能有效敲除HTLV‑1病毒基因组的CRISPR/Cas9的gRNA序列 |
| US12058986B2 (en) | 2017-04-20 | 2024-08-13 | Egenesis, Inc. | Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements |
| WO2018195555A1 (en) | 2017-04-21 | 2018-10-25 | The Board Of Trustees Of The Leland Stanford Junior University | Crispr/cas 9-mediated integration of polynucleotides by sequential homologous recombination of aav donor vectors |
| EP3612551B1 (en) | 2017-04-21 | 2024-09-04 | The General Hospital Corporation | Variants of cpf1 (cas12a) with altered pam specificity |
| US11530405B2 (en) | 2017-04-24 | 2022-12-20 | Dupont Nutrition Biosciences Aps | Anti-CRISPR genes and proteins and methods of use |
| CN107043775B (zh) | 2017-04-24 | 2020-06-16 | 中国农业科学院生物技术研究所 | 一种能促进棉花侧根发育的sgRNA及其应用 |
| CN206970581U (zh) | 2017-04-26 | 2018-02-06 | 重庆威斯腾生物医药科技有限责任公司 | 一种用于辅助CRISPR/cas9基因敲除的试剂盒 |
| US20180312822A1 (en) | 2017-04-26 | 2018-11-01 | 10X Genomics, Inc. | Mmlv reverse transcriptase variants |
| WO2018197020A1 (en) | 2017-04-27 | 2018-11-01 | Novozymes A/S | Genome editing by crispr-cas9 using short donor oligonucleotides |
| US20200407737A1 (en) | 2017-05-03 | 2020-12-31 | KWS SAAT SE & Co. KGaA | Use of crispr-cas endonucleases for plant genome engineering |
| CN107012174A (zh) | 2017-05-04 | 2017-08-04 | 昆明理工大学 | CRISPR/Cas9技术在获得家蚕锌指蛋白基因突变体中的应用 |
| JP7292213B2 (ja) | 2017-05-04 | 2023-06-16 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | Crispr/cpf1を用いる、t細胞における遺伝子編集のための組成物および方法 |
| CN107254485A (zh) | 2017-05-08 | 2017-10-17 | 南京农业大学 | 一种能够快速构建植物基因定点敲除载体的新反应体系 |
| WO2018208755A1 (en) | 2017-05-09 | 2018-11-15 | The Regents Of The University Of California | Compositions and methods for tagging target proteins in proximity to a nucleotide sequence of interest |
| CN107129999A (zh) | 2017-05-09 | 2017-09-05 | 福建省农业科学院畜牧兽医研究所 | 利用稳转CRISPR/Cas9系统对病毒基因组进行靶向编辑的方法 |
| WO2018209158A2 (en) | 2017-05-10 | 2018-11-15 | Editas Medicine, Inc. | Crispr/rna-guided nuclease systems and methods |
| JP7398279B2 (ja) | 2017-05-10 | 2023-12-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Crispr/cas9核送達による細胞rnaの狙いを定めた編集 |
| WO2018209320A1 (en) | 2017-05-12 | 2018-11-15 | President And Fellows Of Harvard College | Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation |
| CN107130000B (zh) | 2017-05-12 | 2019-12-17 | 浙江卫未生物医药科技有限公司 | 一种同时敲除KRAS基因和EGFR基因的CRISPR-Cas9系统及其应用 |
| CN106957831B (zh) | 2017-05-16 | 2021-03-12 | 上海交通大学 | 一种Cas9核酸酶K918A及其用途 |
| CN107326042A (zh) | 2017-05-16 | 2017-11-07 | 上海交通大学 | 水稻tms10基因的定点敲除系统及其应用 |
| CN107012250B (zh) | 2017-05-16 | 2021-01-29 | 上海交通大学 | 一种适用于CRISPR/Cas9系统的基因组DNA片段编辑精准度的分析方法及应用 |
| CN106939303B (zh) | 2017-05-16 | 2021-02-23 | 上海交通大学 | 一种Cas9核酸酶R919P及其用途 |
| CN106987570A (zh) | 2017-05-16 | 2017-07-28 | 上海交通大学 | 一种Cas9核酸酶R780A及其用途 |
| CN106957830B (zh) | 2017-05-16 | 2020-12-25 | 上海交通大学 | 一种Cas9核酸酶ΔF916及其用途 |
| CN106947750B (zh) | 2017-05-16 | 2020-12-08 | 上海交通大学 | 一种Cas9核酸酶Q920P及其用途 |
| CN106916820B (zh) | 2017-05-16 | 2019-09-27 | 吉林大学 | 能有效编辑猪ROSA26基因的sgRNA及其应用 |
| CN106967697B (zh) | 2017-05-16 | 2021-03-26 | 上海交通大学 | 一种Cas9核酸酶G915F及其用途 |
| US11692184B2 (en) | 2017-05-16 | 2023-07-04 | The Regents Of The University Of California | Thermostable RNA-guided endonucleases and methods of use thereof |
| US11591620B2 (en) | 2017-05-18 | 2023-02-28 | Cargill, Incorporated | Genome editing system |
| EP3625359A4 (en) | 2017-05-18 | 2021-03-03 | Children's National Medical Center | APTAMERIC AND NUCLEIC ACID PAYLOAD COMPOSITIONS AND METHODS OF USE |
| US12297436B2 (en) | 2017-05-18 | 2025-05-13 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
| CN111417727A (zh) | 2017-05-18 | 2020-07-14 | 博德研究所 | 用于靶向核酸编辑的系统、方法和组合物 |
| CN107043787B (zh) | 2017-05-19 | 2017-12-26 | 南京医科大学 | 一种基于CRISPR/Cas9获得MARF1定点突变小鼠模型的构建方法和应用 |
| CN107236737A (zh) | 2017-05-19 | 2017-10-10 | 上海交通大学 | 特异靶向拟南芥ILK2基因的sgRNA序列及其应用 |
| WO2018217852A1 (en) | 2017-05-23 | 2018-11-29 | Gettysburg College | Crispr based tool for characterizing bacterial serovar diversity |
| CN107034188B (zh) | 2017-05-24 | 2018-07-24 | 中山大学附属口腔医院 | 一种靶向骨的外泌体载体、CRISPR/Cas9基因编辑系统及应用 |
| WO2018218188A2 (en) | 2017-05-25 | 2018-11-29 | The General Hospital Corporation | Base editors with improved precision and specificity |
| CN107177625B (zh) | 2017-05-26 | 2021-05-25 | 中国农业科学院植物保护研究所 | 一种定点突变的人工载体系统及定点突变方法 |
| EP3630975B1 (en) | 2017-05-26 | 2025-11-19 | North Carolina State University | Altered guide rnas for modulating cas9 activity and methods of use |
| CN107287245B (zh) | 2017-05-27 | 2020-03-17 | 南京农业大学 | 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法 |
| CN107142272A (zh) | 2017-06-05 | 2017-09-08 | 南京金斯瑞生物科技有限公司 | 一种控制大肠杆菌中质粒复制的方法 |
| US20200140835A1 (en) | 2017-06-06 | 2020-05-07 | The General Hospital Corporation | Engineered CRISPR-Cas9 Nucleases |
| CN107119071A (zh) | 2017-06-07 | 2017-09-01 | 江苏三黍生物科技有限公司 | 一种降低植物直链淀粉含量的方法及应用 |
| CN107177595A (zh) | 2017-06-07 | 2017-09-19 | 浙江大学 | 用于猪CD163基因编辑的靶向sgRNA、修饰载体及其制备方法和应用 |
| CN107034218A (zh) | 2017-06-07 | 2017-08-11 | 浙江大学 | 用于猪APN基因编辑的靶向sgRNA、修饰载体及其制备方法和应用 |
| CN106987757A (zh) | 2017-06-12 | 2017-07-28 | 苏州双金实业有限公司 | 一种耐腐蚀型奥氏体镍基合金 |
| CN107236739A (zh) | 2017-06-12 | 2017-10-10 | 上海捷易生物科技有限公司 | CRISPR/SaCas9特异性敲除人CXCR4基因的方法 |
| CN107083392B (zh) | 2017-06-13 | 2020-09-08 | 中国医学科学院病原生物学研究所 | 一种CRISPR/Cpf1基因编辑系统及其在分枝杆菌中的应用 |
| CN107227352A (zh) | 2017-06-13 | 2017-10-03 | 西安医学院 | 基于eGFP的GPR120基因表达的检测方法及应用 |
| CN107245502B (zh) | 2017-06-14 | 2020-11-03 | 中国科学院武汉病毒研究所 | Cd2结合蛋白(cd2ap)和其相互作用蛋白 |
| CN107312798B (zh) | 2017-06-16 | 2020-06-23 | 武汉大学 | 含特异靶向CCR5基因的gRNA序列的CRISPR/Cas9重组慢病毒载体及应用 |
| CN107099850B (zh) | 2017-06-19 | 2018-05-04 | 东北农业大学 | 一种通过酶切基因组构建CRISPR/Cas9基因组敲除文库的方法 |
| CN107266541B (zh) | 2017-06-20 | 2021-06-04 | 上海大学 | 玉米转录因子ZmbHLH167及其应用 |
| CN107446951B (zh) | 2017-06-20 | 2021-01-08 | 温氏食品集团股份有限公司 | 一种通过CRISPR/Cas9系统快速筛选重组鸡痘病毒的方法及其应用 |
| CN107058328A (zh) | 2017-06-22 | 2017-08-18 | 江苏三黍生物科技有限公司 | 一种提高植物直链淀粉含量的方法及应用 |
| US10011849B1 (en) | 2017-06-23 | 2018-07-03 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| CN107099533A (zh) | 2017-06-23 | 2017-08-29 | 东北农业大学 | 一种特异靶向猪IGFBP3基因的sgRNA导向序列及应用 |
| CN107227307A (zh) | 2017-06-23 | 2017-10-03 | 东北农业大学 | 一种特异靶向猪IRS1基因的sgRNA导向序列及其应用 |
| US9982279B1 (en) | 2017-06-23 | 2018-05-29 | Inscripta, Inc. | Nucleic acid-guided nucleases |
| CN107119053A (zh) | 2017-06-23 | 2017-09-01 | 东北农业大学 | 一种特异靶向猪MC4R基因的sgRNA导向序列及其应用 |
| JP7454494B2 (ja) | 2017-06-26 | 2024-03-22 | ザ・ブロード・インスティテュート・インコーポレイテッド | 標的化された核酸編集のためのcrispr/cas-アデニンデアミナーゼ系の組成物、系及び方法 |
| CN107177631B (zh) | 2017-06-26 | 2020-11-24 | 中国农业大学 | 利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法 |
| WO2019005886A1 (en) | 2017-06-26 | 2019-01-03 | The Broad Institute, Inc. | CRISPR / CAS-CYTIDINE DEAMINASE COMPOSITIONS, SYSTEMS AND METHODS FOR TARGETED EDITING OF NUCLEIC ACIDS |
| CN107217075B (zh) | 2017-06-28 | 2021-07-02 | 西安交通大学医学院第一附属医院 | 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法 |
| CN107356793A (zh) | 2017-07-01 | 2017-11-17 | 合肥东玖电气有限公司 | 一种防火电表箱 |
| CN107312793A (zh) | 2017-07-05 | 2017-11-03 | 新疆农业科学院园艺作物研究所 | Cas9介导的番茄基因编辑载体及其应用 |
| US20200202981A1 (en) | 2017-07-07 | 2020-06-25 | The Broad Institute, Inc. | Methods for designing guide sequences for guided nucleases |
| CN107190006A (zh) | 2017-07-07 | 2017-09-22 | 南通大学附属医院 | 一种靶向IGF‑IR基因的sgRNA及其应用 |
| CN107400677B (zh) | 2017-07-19 | 2020-05-22 | 江南大学 | 一种基于CRISPR-Cas9系统的地衣芽孢杆菌基因组编辑载体及其制备方法 |
| CN107236741A (zh) | 2017-07-19 | 2017-10-10 | 广州医科大学附属第五医院 | 一种敲除野生型T细胞TCR alpha链的gRNA及方法 |
| CN107190008A (zh) | 2017-07-19 | 2017-09-22 | 苏州吉赛基因测序科技有限公司 | 一种基于Crispr/cas9的捕获基因组目标序列的方法及其在高通量测序中的应用 |
| CN107354156B (zh) | 2017-07-19 | 2021-02-09 | 广州医科大学附属第五医院 | 一种敲除野生型T细胞TCR beta链的gRNA及方法 |
| CN107446954A (zh) | 2017-07-28 | 2017-12-08 | 新乡医学院 | 一种sd大鼠t细胞缺失遗传模型的制备方法 |
| CN111801345A (zh) | 2017-07-28 | 2020-10-20 | 哈佛大学的校长及成员们 | 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物 |
| CN107267515B (zh) | 2017-07-28 | 2020-08-25 | 重庆医科大学附属儿童医院 | CRISPR/Cas9靶向敲除人CNE10基因及其特异性gRNA |
| CN107418974A (zh) | 2017-07-28 | 2017-12-01 | 新乡医学院 | 一种利用单克隆细胞分选快速获得CRISPR/Cas9基因敲除稳定细胞株的方法 |
| CN107435051B (zh) | 2017-07-28 | 2020-06-02 | 新乡医学院 | 一种通过CRISPR/Cas9系统快速获得大片段缺失的细胞系基因敲除方法 |
| CN107435069A (zh) | 2017-07-28 | 2017-12-05 | 新乡医学院 | 一种细胞系CRISPR/Cas9基因敲除的快速检测方法 |
| CN107384922A (zh) | 2017-07-28 | 2017-11-24 | 重庆医科大学附属儿童医院 | CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA |
| CN107217042B (zh) | 2017-07-31 | 2020-03-06 | 江苏东抗生物医药科技有限公司 | 一种生产无岩藻糖基化蛋白的基因工程细胞系及其建立方法 |
| US20190032053A1 (en) | 2017-07-31 | 2019-01-31 | Sigma-Aldrich Co. Llc | Synthetic guide rna for crispr/cas activator systems |
| CN107446922A (zh) | 2017-08-03 | 2017-12-08 | 无锡市第二人民医院 | 一种敲除人成骨细胞株中hepcidin基因的gRNA序列及其使用方法 |
| CN107502618B (zh) | 2017-08-08 | 2021-03-12 | 中国科学院微生物研究所 | 可控载体消除方法及易用型CRISPR-Cas9工具 |
| CN107312785B (zh) | 2017-08-09 | 2019-12-06 | 四川农业大学 | OsKTN80b基因在降低水稻株高方面的应用 |
| CN107384926B (zh) | 2017-08-13 | 2020-06-26 | 中国人民解放军疾病预防控制所 | 一种靶向清除细菌耐药性质粒的CRISPR-Cas9系统及应用 |
| CN107365804B (zh) | 2017-08-13 | 2019-12-20 | 中国人民解放军疾病预防控制所 | 一种使用温和噬菌体载体包装CRISPR-Cas9系统的方法 |
| CN107446923B (zh) | 2017-08-13 | 2019-12-31 | 中国人民解放军疾病预防控制所 | rAAV8-CRISPR-SaCas9系统及在制备乙肝治疗药物中的应用 |
| CN107815463A (zh) | 2017-08-15 | 2018-03-20 | 西南大学 | CRISPR/Cas9技术介导miR167前体序列编辑体系的建立方法 |
| CN108034656A (zh) | 2017-08-16 | 2018-05-15 | 四川省农业科学院生物技术核技术研究所 | 与水稻红褐色颖壳性状有关的sgRNA、CRISPR/Cas9载体、载体构建、应用 |
| CN107446924B (zh) | 2017-08-16 | 2020-01-14 | 中国科学院华南植物园 | 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用 |
| CN107384894B (zh) | 2017-08-21 | 2019-10-22 | 华南师范大学 | 功能化氧化石墨烯高效运载CRISPR/Cas9用于基因编辑的方法 |
| CN107299114B (zh) | 2017-08-23 | 2021-08-27 | 中国科学院分子植物科学卓越创新中心 | 一种高效的酵母菌染色体融合方法 |
| CN107557393B (zh) | 2017-08-23 | 2020-05-08 | 中国科学院上海应用物理研究所 | 一种磁性纳米材料介导的CRISPR/Cas9 T细胞内递送系统及其制备方法和应用 |
| CN107312795A (zh) | 2017-08-24 | 2017-11-03 | 浙江省农业科学院 | 运用CRISPR/Cas9系统创制粉色果实番茄的基因编辑方法 |
| CN107488649A (zh) | 2017-08-25 | 2017-12-19 | 南方医科大学 | 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用 |
| CN107460196A (zh) | 2017-08-25 | 2017-12-12 | 同济大学 | 一种免疫缺陷小鼠动物模型的构建方法及应用 |
| CN107541525B (zh) | 2017-08-26 | 2021-12-10 | 内蒙古大学 | 一种基于CRISPR/Cas9技术介导山羊Tβ4基因定点敲入的方法 |
| CN107446932B (zh) | 2017-08-29 | 2020-02-21 | 江西省农业科学院 | 一个控制水稻雄性生殖发育基因及其应用 |
| WO2019139645A2 (en) | 2017-08-30 | 2019-07-18 | President And Fellows Of Harvard College | High efficiency base editors comprising gam |
| WO2019041296A1 (zh) | 2017-09-01 | 2019-03-07 | 上海科技大学 | 一种碱基编辑系统及方法 |
| CN107519492B (zh) | 2017-09-06 | 2019-01-25 | 武汉迈特维尔生物科技有限公司 | 使用CRISPR技术敲除miR-3187-3p在冠状动脉粥样硬化性心脏病中的应用 |
| CN107641631A (zh) | 2017-09-07 | 2018-01-30 | 浙江工业大学 | 一种由化学转化介导的基于CRISPR/Cas9系统敲除大肠杆菌基因的方法 |
| CN107362372B (zh) | 2017-09-07 | 2019-01-11 | 佛山波若恩生物科技有限公司 | 使用crispr技术在冠状动脉粥样硬化性心脏病中的应用 |
| WO2019051097A1 (en) | 2017-09-08 | 2019-03-14 | The Regents Of The University Of California | RNA-GUIDED ENDONUCLEASE FUSION POLYPEPTIDES AND METHODS OF USING SAME |
| CN107502608B (zh) | 2017-09-08 | 2020-10-16 | 中山大学 | 用于敲除人ALDH2基因的sgRNA、ALDH2基因缺失细胞株的构建方法及应用 |
| CN107557455A (zh) | 2017-09-15 | 2018-01-09 | 国家纳米科学中心 | 一种基于CRISPR‑Cas13a的特异性核酸片段的检测方法 |
| CN107475300B (zh) | 2017-09-18 | 2020-04-21 | 上海市同济医院 | Ifit3-eKO1基因敲除小鼠动物模型的构建方法和应用 |
| WO2019056002A1 (en) | 2017-09-18 | 2019-03-21 | President And Fellows Of Harvard College | CONTINUOUS EVOLUTION FOR STABILIZED PROTEINS |
| CN107557390A (zh) | 2017-09-18 | 2018-01-09 | 江南大学 | 一种筛选cho细胞系高表达位点的方法 |
| CN107630041A (zh) | 2017-09-19 | 2018-01-26 | 安徽大学 | 一种基于维吉尼亚链霉菌IBL14 I‑B型Cas系统的真核基因编辑方法 |
| CN107557378B (zh) | 2017-09-19 | 2025-04-25 | 安徽大学 | 一种基于I型CRISPR-Cas系统中基因cas7-3的真核基因编辑方法 |
| CN107557373A (zh) | 2017-09-19 | 2018-01-09 | 安徽大学 | 一种基于I‑B型CRISPR‑Cas系统基因cas3的基因编辑方法 |
| CN107523583A (zh) | 2017-09-19 | 2017-12-29 | 安徽大学 | 一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法 |
| CN107630042A (zh) | 2017-09-19 | 2018-01-26 | 安徽大学 | 一种源于I型Cas系统4个cas基因的原核生物基因编辑方法 |
| CN107619837A (zh) | 2017-09-20 | 2018-01-23 | 西北农林科技大学 | 利用Cas9切割核酸酶介导Ipr1定点插入获取转基因牛胎儿成纤维细胞的方法 |
| CN107513531B (zh) | 2017-09-21 | 2020-02-21 | 无锡市妇幼保健院 | 用于内源性过表达lncRNA-XIST的gRNA靶点序列及其应用 |
| CN107686848A (zh) | 2017-09-26 | 2018-02-13 | 中山大学孙逸仙纪念医院 | 转座子协同CRISPR/Cas9系统的稳定敲除单质粒载体及其应用 |
| CN107557394A (zh) | 2017-09-29 | 2018-01-09 | 南京鼓楼医院 | 降低CRISPR/Cas9介导的胚胎基因编辑脱靶率的方法 |
| CN107760652A (zh) | 2017-09-29 | 2018-03-06 | 华南理工大学 | CRISPR/CAS9介导药物转运体靶向性敲除的caco‑2细胞模型及其方法 |
| CN107828794A (zh) | 2017-09-30 | 2018-03-23 | 上海市农业生物基因中心 | 一种水稻耐盐基因OsRR22突变体、其编码的氨基酸序列、植株及该突变体的创制方法 |
| CN107760663A (zh) | 2017-09-30 | 2018-03-06 | 新疆大学 | 油莎草pepc基因的克隆及表达载体的构建和应用 |
| CN107630006B (zh) | 2017-09-30 | 2020-09-11 | 山东兴瑞生物科技有限公司 | 一种制备tcr与hla双基因敲除的t细胞的方法 |
| CN107604003A (zh) | 2017-10-10 | 2018-01-19 | 南方医科大学 | 一种基于线性化crispr‑cas9慢病毒载体基因敲除试剂盒及其应用 |
| CN108102940B (zh) | 2017-10-12 | 2021-07-13 | 中石化上海工程有限公司 | 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法 |
| CN107557381A (zh) | 2017-10-12 | 2018-01-09 | 南京农业大学 | 一种白菜CRISPR‑Cas9基因编辑体系的建立及其应用 |
| CN107474129B (zh) | 2017-10-12 | 2018-10-19 | 江西汉氏联合干细胞科技有限公司 | 特异性增强crispr-cas系统基因编辑效率的方法 |
| WO2019075357A1 (en) | 2017-10-12 | 2019-04-18 | Wave Life Sciences Ltd. | OLIGONUCLEOTIDE COMPOSITIONS AND RELATED METHODS |
| CN108103586A (zh) | 2017-10-13 | 2018-06-01 | 上海科技大学 | 一种CRISPR/Cas9随机文库及其构建和应用 |
| CN107586779B (zh) | 2017-10-14 | 2018-08-28 | 天津金匙生物科技有限公司 | 使用crispr-cas系统对间充质干细胞进行casp3基因敲除的方法 |
| CN107619829B (zh) | 2017-10-14 | 2018-08-24 | 南京平港生物技术有限公司 | 使用crispr-cas系统对间充质干细胞进行gins2基因敲除的方法 |
| CN107523567A (zh) | 2017-10-16 | 2017-12-29 | 遵义医学院 | 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法 |
| CA3082251A1 (en) | 2017-10-16 | 2019-04-25 | The Broad Institute, Inc. | Uses of adenosine base editors |
| CN107760715B (zh) | 2017-10-17 | 2021-12-10 | 张业胜 | 一种转基因载体及其构建方法和应用 |
| CN107937427A (zh) | 2017-10-20 | 2018-04-20 | 广东石油化工学院 | 一种基于CRISPR/Cas9体系的同源修复载体构建方法 |
| EP3701025A4 (en) | 2017-10-23 | 2021-07-28 | The Broad Institute, Inc. | NUCLEIC ACID TARGETED EDITING SYSTEMS, METHODS AND COMPOSITIONS |
| CN107893086B (zh) | 2017-10-24 | 2021-09-03 | 中国科学院武汉植物园 | 快速构建配对sgRNA的Cas9双元表达载体文库的方法 |
| IL274396B2 (en) | 2017-11-02 | 2025-10-01 | Wistar Inst | Methods for rescuing stop codons through genetic rearrangement with ACE–tRNA |
| CN107760684B (zh) | 2017-11-03 | 2018-09-25 | 上海拉德钫斯生物科技有限公司 | 使用crispr-cas系统对间充质干细胞进行rbm17基因敲除的方法 |
| US20200239379A1 (en) | 2017-11-05 | 2020-07-30 | Aveterra Corp | Method and Apparatus for Automated Composting of Organic Wastes |
| CN107858346B (zh) | 2017-11-06 | 2020-06-16 | 天津大学 | 一种敲除酿酒酵母染色体的方法 |
| CN107794276A (zh) | 2017-11-08 | 2018-03-13 | 中国农业科学院作物科学研究所 | 一种crispr介导快速有效的农作物定点基因片段或等位基因替换方法和体系 |
| US20200318086A1 (en) | 2017-11-10 | 2020-10-08 | Novozymes A/S | Temperature-sensitive cas9 protein |
| CN107630043A (zh) | 2017-11-14 | 2018-01-26 | 吉林大学 | 采用敲除技术建立Gadd45a敲除兔模型的方法 |
| CN108441519A (zh) | 2017-11-15 | 2018-08-24 | 中国农业大学 | 在crispr/cas9基因编辑中提高同源修复效率的方法 |
| CN107858373B (zh) | 2017-11-16 | 2020-03-17 | 山东省千佛山医院 | 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法 |
| CN107893075A (zh) | 2017-11-17 | 2018-04-10 | 和元生物技术(上海)股份有限公司 | CRISPR‑Cas9靶向敲除人肠癌细胞RITA基因及其特异性的sgRNA |
| CN108192956B (zh) | 2017-11-17 | 2021-06-01 | 东南大学 | 一种基于Cas9核酸酶的DNA检测分析方法及其应用 |
| CN107828874B (zh) | 2017-11-20 | 2020-10-16 | 东南大学 | 一种基于crispr的dna检测和分型方法及其应用 |
| CN107653256A (zh) | 2017-11-21 | 2018-02-02 | 云南省烟草农业科学研究院 | 一种烟草多酚氧化酶基因NtPPO1及其定点突变方法与应用 |
| CN107904261A (zh) | 2017-11-21 | 2018-04-13 | 福州大学 | CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用 |
| CN107893076A (zh) | 2017-11-23 | 2018-04-10 | 和元生物技术(上海)股份有限公司 | CRISPR‑Cas9靶向敲除人乳腺癌细胞RASSF2基因及其特异性的sgRNA |
| CN107937432B (zh) | 2017-11-24 | 2020-05-01 | 华中农业大学 | 一种基于crispr系统的基因组编辑方法及其应用 |
| CN107937501A (zh) | 2017-11-24 | 2018-04-20 | 安徽师范大学 | 一种快速简便的筛选CRISPR/Cas基因编辑阳性对象的方法 |
| CN107828738A (zh) | 2017-11-28 | 2018-03-23 | 新乡医学院 | 一种dna甲基转移酶缺陷型cho细胞系及其制备方法及应用 |
| CN107988256B (zh) | 2017-12-01 | 2020-07-28 | 暨南大学 | 人亨廷顿基因敲入用重组载体及其构建方法和在模型猪构建中的应用 |
| CN108570479B (zh) | 2017-12-06 | 2020-04-03 | 内蒙古大学 | 一种基于CRISPR/Cas9技术介导绒山羊VEGF基因定点敲入的方法 |
| CN108148873A (zh) | 2017-12-06 | 2018-06-12 | 南方医科大学 | 一种cav-1基因缺失斑马鱼及其制备方法 |
| CN108315330B (zh) | 2017-12-07 | 2020-05-19 | 嘉兴市第一医院 | CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及敲除方法和应用 |
| CN108251423B (zh) | 2017-12-07 | 2020-11-06 | 嘉兴市第一医院 | CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用 |
| CN108148835A (zh) | 2017-12-07 | 2018-06-12 | 和元生物技术(上海)股份有限公司 | CRISPR-Cas9靶向敲除SLC30A1基因及其特异性的sgRNA |
| CN107974466B (zh) | 2017-12-07 | 2020-09-29 | 中国科学院水生生物研究所 | 一种鲟鱼CRISPR/Cas9基因编辑方法 |
| CN108103090B (zh) | 2017-12-12 | 2021-06-15 | 中山大学附属第一医院 | 靶向RNA甲基化的RNA Cas9-m6A修饰载体系统及其构建方法和应用 |
| CN107828826A (zh) | 2017-12-12 | 2018-03-23 | 南开大学 | 一种体外高效获得神经干细胞的方法 |
| JP2021506251A (ja) | 2017-12-14 | 2021-02-22 | クリスパー セラピューティクス アーゲー | 新規rnaプログラム可能エンドヌクレアーゼ系、ならびにゲノム編集および他の適用におけるその使用 |
| CN108103098B (zh) | 2017-12-14 | 2020-07-28 | 华南理工大学 | 一种化合物皮肤致敏体外评估细胞模型及其构建方法 |
| EP3724214A4 (en) | 2017-12-15 | 2021-09-01 | The Broad Institute Inc. | SYSTEMS AND METHODS FOR PREDICTING REPAIR RESULTS IN GENETIC ENGINEERING |
| CN107988268A (zh) | 2017-12-18 | 2018-05-04 | 湖南师范大学 | 一种基因敲除选育tcf25基因缺失型斑马鱼的方法 |
| CN108018316A (zh) | 2017-12-20 | 2018-05-11 | 湖南师范大学 | 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法 |
| WO2019123430A1 (en) | 2017-12-21 | 2019-06-27 | Casebia Therapeutics Llp | Materials and methods for treatment of usher syndrome type 2a and/or non-syndromic autosomal recessive retinitis pigmentosa (arrp) |
| CN108048466B (zh) | 2017-12-21 | 2020-02-07 | 嘉兴市第一医院 | CRISPR-Cas13a系统特异性靶向人RSPO2基因的crRNA及系统和应用 |
| US20230193242A1 (en) | 2017-12-22 | 2023-06-22 | The Broad Institute, Inc. | Cas12b systems, methods, and compositions for targeted dna base editing |
| RU2652899C1 (ru) | 2017-12-28 | 2018-05-03 | Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) | РНК-проводники для подавления репликации вируса гепатита B и для элиминации вируса гепатита B из клетки-хозяина |
| CN107893080A (zh) | 2017-12-29 | 2018-04-10 | 江苏省农业科学院 | 一种靶向大鼠Inhba基因的sgRNA及其应用 |
| CN107988229B (zh) | 2018-01-05 | 2020-01-07 | 中国农业科学院作物科学研究所 | 一种利用CRISPR-Cas修饰OsTAC1基因获得分蘖改变的水稻的方法 |
| CN108103092B (zh) | 2018-01-05 | 2021-02-12 | 中国农业科学院作物科学研究所 | 利用CRISPR-Cas系统修饰OsHPH基因获得矮化水稻的系统及其应用 |
| CN107988246A (zh) | 2018-01-05 | 2018-05-04 | 汕头大学医学院 | 一种基因敲除载体及其斑马鱼胶质瘤模型 |
| CN108559760A (zh) | 2018-01-09 | 2018-09-21 | 陕西师范大学 | 基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法 |
| WO2019139951A1 (en) | 2018-01-09 | 2019-07-18 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Detecting protein interaction sites in nucleic acids |
| US11268092B2 (en) | 2018-01-12 | 2022-03-08 | GenEdit, Inc. | Structure-engineered guide RNA |
| CN108559730B (zh) | 2018-01-12 | 2021-09-24 | 中国人民解放军第四军医大学 | 利用CRISPR/Cas9技术构建Hutat2:Fc基因敲入单核细胞的实验方法 |
| CN108148837A (zh) | 2018-01-12 | 2018-06-12 | 南京医科大学 | ApoE-CRISPR/Cas9载体及其在敲除ApoE基因中的应用 |
| CN108251451A (zh) | 2018-01-16 | 2018-07-06 | 西南大学 | HTT的CRISPR/Cas9-gRNA打靶序列对、质粒及其应用 |
| CN108251452A (zh) | 2018-01-17 | 2018-07-06 | 扬州大学 | 一种表达Cas9基因的转基因斑马鱼及其构建方法和应用 |
| JP7075170B2 (ja) | 2018-01-23 | 2022-05-25 | インスティチュート フォー ベーシック サイエンス | 延長された単一ガイドrna及びその用途 |
| CN208034188U (zh) | 2018-02-09 | 2018-11-02 | 衡阳市振洋汽车配件有限公司 | 一种快速定位的加工孔用夹具 |
| CN108359712B (zh) | 2018-02-09 | 2020-06-26 | 广东省农业科学院农业生物基因研究中心 | 一种快速高效筛选SgRNA靶向DNA序列的方法 |
| CN108559745A (zh) | 2018-02-10 | 2018-09-21 | 和元生物技术(上海)股份有限公司 | 基于CRISPR-Cas9技术提高B16F10细胞转染效率的方法 |
| CN108359691B (zh) | 2018-02-12 | 2021-09-28 | 中国科学院重庆绿色智能技术研究院 | 利用mito-CRISPR/Cas9系统敲除异常线粒体DNA的试剂盒及方法 |
| CN108486145A (zh) | 2018-02-12 | 2018-09-04 | 中国科学院遗传与发育生物学研究所 | 基于CRISPR/Cas9的植物高效同源重组方法 |
| WO2019161251A1 (en) | 2018-02-15 | 2019-08-22 | The Broad Institute, Inc. | Cell data recorders and uses thereof |
| CN109021111B (zh) | 2018-02-23 | 2021-12-07 | 上海科技大学 | 一种基因碱基编辑器 |
| CN108396027A (zh) | 2018-02-27 | 2018-08-14 | 和元生物技术(上海)股份有限公司 | CRISPR-Cas9靶向敲除人肠癌细胞DEAF1基因及其特异性的sgRNA |
| WO2019168953A1 (en) | 2018-02-27 | 2019-09-06 | President And Fellows Of Harvard College | Evolved cas9 variants and uses thereof |
| CN108486159B (zh) | 2018-03-01 | 2021-10-22 | 南通大学附属医院 | 一种敲除GRIN2D基因的CRISPR-Cas9系统及其应用 |
| CN108410906A (zh) | 2018-03-05 | 2018-08-17 | 淮海工学院 | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 |
| CN108342480B (zh) | 2018-03-05 | 2022-03-01 | 北京医院 | 一种基因变异检测质控物及其制备方法 |
| CN108410907B (zh) | 2018-03-08 | 2021-08-27 | 湖南农业大学 | 一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法 |
| CN108410911B (zh) | 2018-03-09 | 2021-08-20 | 广西医科大学 | 基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系 |
| CN108486146B (zh) | 2018-03-16 | 2021-02-19 | 中国农业科学院作物科学研究所 | LbCpf1-RR突变体用于CRISPR/Cpf1系统在植物基因编辑中的应用 |
| CN108486108B (zh) | 2018-03-16 | 2020-10-09 | 华南农业大学 | 一种敲除人hmgb1基因的细胞株及其应用 |
| CN108384784A (zh) | 2018-03-23 | 2018-08-10 | 广西医科大学 | 一种利用CRISPR/Cas9技术敲除Endoglin基因的方法 |
| US12331328B2 (en) | 2018-03-23 | 2025-06-17 | Massachusetts Eye And Ear Infirmary | CRISPR/Cas9-mediated exon-skipping approach for USH2A-associated usher syndrome |
| CN108504685A (zh) | 2018-03-27 | 2018-09-07 | 宜明细胞生物科技有限公司 | 一种利用CRISPR/Cas9系统同源重组修复IL-2RG缺陷基因的方法 |
| CN108410877A (zh) | 2018-03-27 | 2018-08-17 | 和元生物技术(上海)股份有限公司 | CRISPR-Cas9靶向敲除人细胞SANIL1基因及其特异性的sgRNA |
| CN108486234B (zh) | 2018-03-29 | 2022-02-11 | 东南大学 | 一种crispr分型pcr的方法及其应用 |
| CN108424931A (zh) | 2018-03-29 | 2018-08-21 | 内蒙古大学 | CRISPR/Cas9技术介导山羊VEGF基因定点整合的方法 |
| CN108504693A (zh) | 2018-04-04 | 2018-09-07 | 首都医科大学附属北京朝阳医院 | 利用Crispr技术敲除T合酶基因构建的O-型糖基化异常的结肠癌细胞系 |
| CN108441520B (zh) | 2018-04-04 | 2020-07-31 | 苏州大学 | 利用CRISPR/Cas9系统构建的基因条件性敲除方法 |
| CN108486111A (zh) | 2018-04-04 | 2018-09-04 | 山西医科大学 | CRISPR-Cas9靶向敲除人SMYD3基因的方法及其特异性sgRNA |
| CN108486154A (zh) | 2018-04-04 | 2018-09-04 | 福州大学 | 一种唾液酸酶基因敲除小鼠模型的构建方法及其应用 |
| CN108753772B (zh) | 2018-04-04 | 2020-10-30 | 南华大学 | 基于CRISPR/Cas技术敲除CAPNS1基因的人神经母细胞瘤细胞系的构建方法 |
| CN108504657B (zh) | 2018-04-12 | 2019-06-14 | 中南民族大学 | 利用crispr-cas9技术敲除hek293t细胞kdm2a基因的方法 |
| CN108588182B (zh) | 2018-04-13 | 2025-11-28 | 武汉中科先进技术研究院有限公司 | 基于crispr-链取代的等温扩增及检测技术 |
| CN108753817A (zh) | 2018-04-13 | 2018-11-06 | 北京华伟康信生物科技有限公司 | 增强细胞的抗癌能力的方法及采用该方法获得的增强型细胞 |
| EP3781214A4 (en) | 2018-04-17 | 2022-04-13 | Applied StemCell, Inc. | Compositions and methods for treating spinal muscular atrophy |
| CN108753832A (zh) | 2018-04-20 | 2018-11-06 | 中山大学 | 一种利用CRISPR/Cas9编辑大白猪CD163基因的方法 |
| CN108823248A (zh) | 2018-04-20 | 2018-11-16 | 中山大学 | 一种利用CRISPR/Cas9编辑陆川猪CD163基因的方法 |
| CN108588071A (zh) | 2018-04-25 | 2018-09-28 | 和元生物技术(上海)股份有限公司 | CRISPR-Cas9靶向敲除人肠癌细胞CNR1基因及其特异性的sgRNA |
| CN108707621B (zh) | 2018-04-26 | 2021-02-12 | 中国农业科学院作物科学研究所 | 一种CRISPR/Cpf1系统介导的以RNA转录本为修复模板的同源重组方法 |
| CN108546712B (zh) | 2018-04-26 | 2020-08-07 | 中国农业科学院作物科学研究所 | 一种利用CRISPR/LbCpf1系统实现目的基因在植物中同源重组的方法 |
| CN108588128A (zh) | 2018-04-26 | 2018-09-28 | 南昌大学 | 一种高效率大豆CRISPR/Cas9系统的构建方法及应用 |
| CN108642053A (zh) | 2018-04-28 | 2018-10-12 | 和元生物技术(上海)股份有限公司 | CRISPR-Cas9靶向敲除人肠癌细胞PPP1R1C基因及其特异性的sgRNA |
| CN108611364A (zh) | 2018-05-03 | 2018-10-02 | 南京农业大学 | 一种非转基因crispr突变体的制备方法 |
| CN108588123A (zh) | 2018-05-07 | 2018-09-28 | 南京医科大学 | CRISPR/Cas9载体组合在制备基因敲除猪的血液制品中的应用 |
| US12133884B2 (en) | 2018-05-11 | 2024-11-05 | Beam Therapeutics Inc. | Methods of substituting pathogenic amino acids using programmable base editor systems |
| CN108610399B (zh) | 2018-05-14 | 2019-09-27 | 河北万玛生物医药有限公司 | 特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法 |
| CN108546717A (zh) | 2018-05-15 | 2018-09-18 | 吉林大学 | 反义lncRNA介导顺式调控抑制靶基因表达的方法 |
| CN108546718B (zh) | 2018-05-16 | 2021-07-09 | 康春生 | crRNA介导的CRISPR/Cas13a基因编辑系统在肿瘤细胞中的应用 |
| CN108624622A (zh) | 2018-05-16 | 2018-10-09 | 湖南艾佳生物科技股份有限公司 | 一种基于CRISPR-Cas9系统构建的能分泌小鼠白细胞介素-6的基因工程细胞株 |
| CN108642055B (zh) | 2018-05-17 | 2021-12-03 | 吉林大学 | 能有效编辑猪miR-17-92基因簇的sgRNA |
| CN108642077A (zh) | 2018-05-18 | 2018-10-12 | 江苏省农业科学院 | 基于CRISPR/Cas9基因编辑技术选育绿豆不育突变体的方法及专用gRNA |
| CN108642078A (zh) | 2018-05-18 | 2018-10-12 | 江苏省农业科学院 | 基于CRISPR/Cas9基因编辑技术选育绿豆开花传粉突变体的方法及专用gRNA |
| CN108642090A (zh) | 2018-05-18 | 2018-10-12 | 中国人民解放军总医院 | 基于CRISPR/Cas9技术获得Nogo-B敲除模式小鼠的方法及应用 |
| CN108559732A (zh) | 2018-05-21 | 2018-09-21 | 陕西师范大学 | 基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-luciferase细胞系的方法 |
| CN108707620A (zh) | 2018-05-22 | 2018-10-26 | 西北农林科技大学 | 一种Gene drive载体及构建方法 |
| WO2019226953A1 (en) | 2018-05-23 | 2019-11-28 | The Broad Institute, Inc. | Base editors and uses thereof |
| US11117812B2 (en) | 2018-05-24 | 2021-09-14 | Aqua-Aerobic Systems, Inc. | System and method of solids conditioning in a filtration system |
| CN108690844B (zh) | 2018-05-25 | 2021-10-15 | 西南大学 | HTT的CRISPR/Cas9-gRNA打靶序列对、质粒及HD细胞模型 |
| CN108823249A (zh) | 2018-05-28 | 2018-11-16 | 上海海洋大学 | CRISPR/Cas9构建notch1a突变体斑马鱼的方法 |
| CN108707629A (zh) | 2018-05-28 | 2018-10-26 | 上海海洋大学 | 斑马鱼notch1b基因突变体的制备方法 |
| CN108707628B (zh) | 2018-05-28 | 2021-11-23 | 上海海洋大学 | 斑马鱼notch2基因突变体的制备方法 |
| CN108707604B (zh) | 2018-05-30 | 2019-07-23 | 江西汉氏联合干细胞科技有限公司 | 表皮干细胞中采用CRISPR-Cas系统进行CNE10基因敲除 |
| CN108753835A (zh) | 2018-05-30 | 2018-11-06 | 中山大学 | 一种利用CRISPR/Cas9编辑猪BMP15基因的方法 |
| CN108753836B (zh) | 2018-06-04 | 2021-10-12 | 北京大学 | 一种利用rna干扰机制的基因调控或编辑系统 |
| CN108715850B (zh) | 2018-06-05 | 2020-10-23 | 艾一生命科技(广东)有限公司 | 表皮干细胞中采用CRISPR-Cas系统进行GING2基因敲除 |
| IL279222B2 (en) | 2018-06-05 | 2025-10-01 | Lifeedit Inc | RNA-guided nucleases and active variant fragments thereof and methods of use |
| CN108753813B (zh) | 2018-06-08 | 2021-08-24 | 中国水稻研究所 | 获得无标记转基因植物的方法 |
| CN108753783A (zh) | 2018-06-13 | 2018-11-06 | 上海市同济医院 | Sqstm1全基因敲除小鼠动物模型的构建方法和应用 |
| WO2019241649A1 (en) | 2018-06-14 | 2019-12-19 | President And Fellows Of Harvard College | Evolution of cytidine deaminases |
| CN108728486A (zh) | 2018-06-20 | 2018-11-02 | 江苏省农业科学院 | 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用 |
| CN108841845A (zh) | 2018-06-21 | 2018-11-20 | 广东石油化工学院 | 一种带有筛选标记的CRISPR/Cas9载体及其构建方法 |
| CN108893529A (zh) | 2018-06-25 | 2018-11-27 | 武汉博杰生物医学科技有限公司 | 一种基于CRISPR技术特异性检测人KRAS基因2号及3号外显子突变的crRNA |
| CN108866093B (zh) | 2018-07-04 | 2021-07-09 | 广东三杰牧草生物科技有限公司 | 一种利用CRISPR/Cas9系统对紫花苜蓿基因定点突变的方法 |
| CN108795902A (zh) | 2018-07-05 | 2018-11-13 | 深圳三智医学科技有限公司 | 一种安全高效的CRISPR/Cas9基因编辑技术 |
| CN108913714A (zh) | 2018-07-05 | 2018-11-30 | 江西省超级水稻研究发展中心 | 一种利用CRISPR/Cas9系统敲除BADH2基因创制香稻的方法 |
| WO2020014261A1 (en) | 2018-07-09 | 2020-01-16 | The Broad Institute, Inc. | Rna programmable epigenetic rna modifiers and uses thereof |
| CN108913691B (zh) | 2018-07-16 | 2020-09-01 | 山东华御生物科技有限公司 | 表皮干细胞中采用CRISPR-Cas系统进行Card3基因敲除 |
| CN108913664B (zh) | 2018-07-20 | 2020-09-04 | 嘉兴学院 | 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法 |
| CN108823291B (zh) | 2018-07-25 | 2022-04-12 | 领航医学科技(深圳)有限公司 | 基于crispr技术的特异性核酸片段定量检测方法 |
| CN108853133A (zh) | 2018-07-25 | 2018-11-23 | 福州大学 | 一种PAMAM与CRISPR/Cas9系统重组质粒递送纳米粒的制备方法 |
| CA3111432A1 (en) | 2018-07-31 | 2020-02-06 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
| CN108913717A (zh) | 2018-08-01 | 2018-11-30 | 河南农业大学 | 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法 |
| EP3830263A4 (en) | 2018-08-03 | 2022-05-04 | Beam Therapeutics, Inc. | Multi-effector nucleobase editors and methods of using same to modify a nucleic acid target sequence |
| EP3841203A4 (en) | 2018-08-23 | 2022-11-02 | The Broad Institute Inc. | CAS9 VARIANTS WITH NON-CANONICAL PAM SPECIFICITIES AND THEIR USES |
| KR20210049859A (ko) | 2018-08-28 | 2021-05-06 | 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 | 게놈을 조절하는 방법 및 조성물 |
| WO2020051360A1 (en) | 2018-09-05 | 2020-03-12 | The Broad Institute, Inc. | Base editing for treating hutchinson-gilford progeria syndrome |
| WO2020086908A1 (en) | 2018-10-24 | 2020-04-30 | The Broad Institute, Inc. | Constructs for improved hdr-dependent genomic editing |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| US20220282275A1 (en) | 2018-11-15 | 2022-09-08 | The Broad Institute, Inc. | G-to-t base editors and uses thereof |
| CN109517841B (zh) | 2018-12-05 | 2020-10-30 | 华东师范大学 | 一种用于核苷酸序列修饰的组合物、方法与应用 |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| WO2020157008A1 (en) | 2019-01-28 | 2020-08-06 | Proqr Therapeutics Ii B.V. | Rna-editing oligonucleotides for the treatment of usher syndrome |
| US20220098593A1 (en) | 2019-02-13 | 2022-03-31 | Beam Therapeutics Inc. | Splice acceptor site disruption of a disease-associated gene using adenosine deaminase base editors, including for the treatment of genetic disease |
| WO2020180975A1 (en) | 2019-03-04 | 2020-09-10 | President And Fellows Of Harvard College | Highly multiplexed base editing |
| WO2020181202A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | A:t to t:a base editing through adenine deamination and oxidation |
| WO2020181195A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | T:a to a:t base editing through adenine excision |
| WO2020181193A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | T:a to a:t base editing through adenosine methylation |
| WO2020181178A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | T:a to a:t base editing through thymine alkylation |
| WO2020181180A1 (en) | 2019-03-06 | 2020-09-10 | The Broad Institute, Inc. | A:t to c:g base editors and uses thereof |
| AU2020234013B2 (en) | 2019-03-12 | 2025-08-28 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Cas9 variants with enhanced specificity |
| DE112020001306T5 (de) | 2019-03-19 | 2022-01-27 | Massachusetts Institute Of Technology | Verfahren und zusammensetzungen zur editierung von nukleotidsequenzen |
| WO2020210751A1 (en) | 2019-04-12 | 2020-10-15 | The Broad Institute, Inc. | System for genome editing |
| US12473543B2 (en) | 2019-04-17 | 2025-11-18 | The Broad Institute, Inc. | Adenine base editors with reduced off-target effects |
| US20220249697A1 (en) | 2019-05-20 | 2022-08-11 | The Broad Institute, Inc. | Aav delivery of nucleobase editors |
| US20220315906A1 (en) | 2019-08-08 | 2022-10-06 | The Broad Institute, Inc. | Base editors with diversified targeting scope |
| WO2021030666A1 (en) | 2019-08-15 | 2021-02-18 | The Broad Institute, Inc. | Base editing by transglycosylation |
| AU2020337919A1 (en) | 2019-08-27 | 2022-03-24 | Vertex Pharmaceuticals Incorporated | Compositions and methods for treatment of disorders associated with repetitive DNA |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
| US20230086199A1 (en) | 2019-11-26 | 2023-03-23 | The Broad Institute, Inc. | Systems and methods for evaluating cas9-independent off-target editing of nucleic acids |
| WO2021138469A1 (en) | 2019-12-30 | 2021-07-08 | The Broad Institute, Inc. | Genome editing using reverse transcriptase enabled and fully active crispr complexes |
| CA3166153A1 (en) | 2020-01-28 | 2021-08-05 | The Broad Institute, Inc. | Base editors, compositions, and methods for modifying the mitochondrial genome |
| WO2021158999A1 (en) | 2020-02-05 | 2021-08-12 | The Broad Institute, Inc. | Gene editing methods for treating spinal muscular atrophy |
| US20230235309A1 (en) | 2020-02-05 | 2023-07-27 | The Broad Institute, Inc. | Adenine base editors and uses thereof |
| US20230123669A1 (en) | 2020-02-05 | 2023-04-20 | The Broad Institute, Inc. | Base editor predictive algorithm and method of use |
| US20230127008A1 (en) | 2020-03-11 | 2023-04-27 | The Broad Institute, Inc. | Stat3-targeted base editor therapeutics for the treatment of melanoma and other cancers |
| US20230159913A1 (en) | 2020-04-28 | 2023-05-25 | The Broad Institute, Inc. | Targeted base editing of the ush2a gene |
| JP2023525304A (ja) | 2020-05-08 | 2023-06-15 | ザ ブロード インスティテュート,インコーポレーテッド | 標的二本鎖ヌクレオチド配列の両鎖同時編集のための方法および組成物 |
| CA3193099A1 (en) | 2020-09-24 | 2022-03-31 | David R. Liu | Prime editing guide rnas, compositions thereof, and methods of using the same |
| EP4232583A1 (en) | 2020-10-21 | 2023-08-30 | Massachusetts Institute of Technology | Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste) |
| US20240287487A1 (en) | 2021-06-11 | 2024-08-29 | The Broad Institute, Inc. | Improved cytosine to guanine base editors |
-
2018
- 2018-03-09 KR KR1020197029551A patent/KR20190127797A/ko active Pending
- 2018-03-09 EP EP18718954.3A patent/EP3592777A1/en active Pending
- 2018-03-09 US US16/492,553 patent/US11542496B2/en active Active
- 2018-03-09 JP JP2019548939A patent/JP2020510439A/ja active Pending
- 2018-03-09 WO PCT/US2018/021878 patent/WO2018165629A1/en not_active Ceased
- 2018-03-09 CN CN201880030290.0A patent/CN110914310A/zh active Pending
-
2022
- 2022-11-28 US US18/059,308 patent/US12435331B2/en active Active
-
2023
- 2023-05-08 JP JP2023076781A patent/JP2023113627A/ja active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4880635A (en) | 1984-08-08 | 1989-11-14 | The Liposome Company, Inc. | Dehydrated liposomes |
| US4880635B1 (en) | 1984-08-08 | 1996-07-02 | Liposome Company | Dehydrated liposomes |
| US4921757A (en) | 1985-04-26 | 1990-05-01 | Massachusetts Institute Of Technology | System for delayed and pulsed release of biologically active substances |
| US4920016A (en) | 1986-12-24 | 1990-04-24 | Linear Technology, Inc. | Liposomes with enhanced circulation time |
| US4906477A (en) | 1987-02-09 | 1990-03-06 | Kabushiki Kaisha Vitamin Kenkyusyo | Antineoplastic agent-entrapping liposomes |
| US4911928A (en) | 1987-03-13 | 1990-03-27 | Micro-Pak, Inc. | Paucilamellar lipid vesicles |
| US4917951A (en) | 1987-07-28 | 1990-04-17 | Micro-Pak, Inc. | Lipid vesicles formed of surfactants and steroids |
| WO2001038547A2 (en) | 1999-11-24 | 2001-05-31 | Mcs Micro Carrier Systems Gmbh | Polypeptides comprising multimers of nuclear localization signals or of protein transduction domains and their use for transferring molecules into cells |
| WO2016072399A1 (ja) * | 2014-11-04 | 2016-05-12 | 国立大学法人神戸大学 | 脱塩基反応により標的化したdna配列に特異的に変異を導入する、ゲノム配列の改変方法、並びにそれに用いる分子複合体 |
| EP3216867A1 (en) * | 2014-11-04 | 2017-09-13 | National University Corporation Kobe University | Method for modifying genome sequence to introduce specific mutation to targeted dna sequence by base-removal reaction, and molecular complex used therein |
| WO2017070632A2 (en) | 2015-10-23 | 2017-04-27 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
Non-Patent Citations (72)
| Title |
|---|
| "Controlled Drug Bioavailability, Drug Product Design and Performance", 1984, WILEY |
| "Medical Applications of Controlled Release", 1974, CRC PRESS |
| ABUDAYYEH ET AL.: "C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector", SCIENCE, 5 August 2016 (2016-08-05) |
| ALEXIS C. KOMOR ET AL: "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage", NATURE, vol. 533, no. 7603, 20 April 2016 (2016-04-20), GB, pages 420 - 424, XP055343871, ISSN: 0028-0836, DOI: 10.1038/nature17946 * |
| BUCHWALD ET AL., SURGERY, vol. 88, 1980, pages 507 |
| BURSTEIN ET AL.: "New CRISPR-Cas systems from uncultivated microbes", CELL RES., 21 February 2017 (2017-02-21) |
| CHAN, K.; RESNICK, M. A.; GORDENIN, D. A.: "The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis", DNA REPAIR, vol. 12, 2013, pages 878 - 889 |
| CHOI ET AL., J MOL BIO., 2010 |
| CHOI, J.Y.; LIM, S.; KIM, E. J.; JO, A.; GUENGERICH F.P.: "Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases alpha, delta, eta, iota, kappa, and Revl", JOURNAL OF MOLECULAR BIOLOGY, vol. 404, 2010, pages 34 - 44 |
| CHYLINSKI, RHUN; CHARPENTIER: "The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems", RNA BIOLOGY, vol. 10, no. 5, 2013, pages 726 - 737, XP055116068, DOI: doi:10.4161/rna.24321 |
| CONG, L. ET AL.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055469277, DOI: doi:10.1126/science.1231143 |
| DELTCHEVA E.; CHYLINSKI K.; SHARMA C.M.; GONZALES K.; CHAO Y.; PIRZADA Z.A.; ECKERT M.R.; VOGEL J.; CHARPENTIER E.: "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III", NATURE, vol. 471, 2011, pages 602 - 607, XP055308803, DOI: doi:10.1038/nature09886 |
| DIANOV, G. L.; HUBSHER U.: "Mammalian base excision repair: the forgotten archangel", NUCLEIC ACIDS RESEARCH, 2013, pages 1 - 8 |
| DICARLO, J.E. ET AL.: "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RESEARCH, 2013 |
| DURING ET AL., ANN. NEUROL., vol. 25, 1989, pages 351 |
| EAST-SELETSKY ET AL.: "Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection", NATURE, vol. 538, no. 7624, 13 October 2016 (2016-10-13), pages 270 - 273, XP055407060, DOI: doi:10.1038/nature19802 |
| FERRETTI J.J.; MCSHAN W.M.; AJDIC D.J.; SAVIC D.J.; SAVIC G.; LYON K.; PRIMEAUX C.; SEZATE S.; SUVOROV A.N.; KENTON S.: "Complete genome sequence of an Ml strain of Streptococcus pyogenes", PROC. NATL. ACAD. SCI. U.S.A., vol. 98, 2001, pages 4658 - 4663, XP002344854, DOI: doi:10.1073/pnas.071559398 |
| FORTINI, P.; PASUCCI, B.; SOBOL, R. W.; WILSON, S. H.; DOGLIOTTI, E.: "Different DNA polymerases are involved in the Short- and Ion-patch base excision repair in mammalian cells", BIOCHEMISTRY, vol. 37, 1998, pages 3575 - 3580 |
| GAO ET AL., NAT BIOTECHNOL., vol. 34, no. 7, July 2016 (2016-07-01), pages 768 - 773 |
| GREEN; SAMBROOK: "Molecular Cloning: A Laboratory Manual", 2012, COLD SPRING HARBOR LABORATORY PRESS |
| GREEN; SAMBROOK: "Molecular Cloning: A LaboratoryManual", 2012, COLD SPRING HARBOR LABORATORY PRESS |
| HOWARD ET AL., J. NEUROSURG., vol. 71, no. 105, 1989 |
| HWANG, W.Y. ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 227 - 229, XP055086625, DOI: doi:10.1038/nbt.2501 |
| J.J., MCSHAN W.M.; AJDIC D.J.; SAVIC D.J.; SAVIC G.; LYON K.; PRIMEAUX C.; SEZATE S.; SUVOROV A.N.; KENTON S.; LAI H.S., PROC. NATL. ACAD. SCI. U.S.A., vol. 98, 2001, pages 4658 - 4663 |
| JIANG, W. ET AL.: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 233 - 239, XP055249123, DOI: doi:10.1038/nbt.2508 |
| JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 - 821 |
| JINEK M.; CHYLINSKI K.; FONFARA I.; HAUER M.; DOUDNA J.A.; CHARPENTIER E., SCIENCE, vol. 337, 2012, pages 816 - 821 |
| JINEK M.; CHYLINSKI K.; FONFARA I.; HAUER M.; DOUDNA J.A.; CHARPENTIER E.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055299674, DOI: doi:10.1126/science.1225829 |
| JINEK, M. ET AL.: "RNA-programmed genome editing in human cells", ELIFE, vol. 2, 2013, pages e00471, XP002699851, DOI: doi:10.7554/eLife.00471 |
| JIRICNY, J.: "The multifaceted mismatch-repair system", NATURE REV. MOLECULAR CELL BIOLOGY, vol. 7, 2006, pages 335 - 346, XP009098401 |
| KATAFUCHI A.; NOHMI T.: "DNA polymerases involved in the incorporation of oxidized nucelotides into DNA: their efficiency and template base preference", MUTATION RESEARCH, vol. 703, 2010, pages 24 - 31, XP027504654, DOI: doi:10.1016/j.mrgentox.2010.06.004 |
| KAVLI, B.; SLUPPHAUG, G.; MOL, C. D.; ARVAI, A. S.; PETERSON, S. B.; TAINER, J. A.; KROKAN, E.H.: "Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase", EMBO, vol. 15, 1996, pages 3442 - 3447 |
| KAYA ET AL.: "A bacterial Argonaute with noncanonical guide RNA specificity", PROC NATL ACAD SCI U S A, vol. 113, no. 15, 12 April 2016 (2016-04-12), pages 4057 - 4062, XP055387813, DOI: doi:10.1073/pnas.1524385113 |
| KETHAR, K.M.V. ET AL.: "Applicationof bioinformatics-coupled experimental analysis reveals a new transport-competent nuclear localization signal in the nucleoptotein of Influenza A virus strain", BMC CELL BIOL, vol. 9, 2008, pages 22 |
| KLEINSTIVER, B. P. ET AL.: "Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition", NATURE BIOTECHNOLOGY, vol. 33, 2015, pages 1293 - 1298, XP055309933, DOI: doi:10.1038/nbt.3404 |
| KLEINSTIVER, B. P. ET AL.: "Engineered CRISPR-Cas9 nucleases with altered PAM specificities", NATURE, vol. 523, 2015, pages 481 - 485, XP055293257, DOI: doi:10.1038/nature14592 |
| KLEINSTIVER, B.P. ET AL.: "High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects", NATURE, vol. 529, 2016, pages 490 - 495, XP055303390, DOI: doi:10.1038/nature16526 |
| KOMOR, A.C. ET AL.: "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage", NATURE, vol. 533, 2016, pages 420 - 424, XP055483559, DOI: doi:10.1038/nature17946 |
| KROKAN, H.E.; BJORAS, M.: "Harbor Perspectives in Biology", 2013, COLD SPRING, article "Base Excision Repair", pages: 1 - 22 |
| KUNKEL, T. A.; ERIE, D. A.: "Eukaryotic mismatch repair in relation to RNA replication", ANNUAL REVIEWS GENETICS, vol. 49, 2015, pages 291 - 313 |
| LANGER, SCIENCE, vol. 249, 1990, pages 1527 - 1533 |
| LEVY ET AL., SCIENCE, vol. 228, no. 190, 1985 |
| LI, G. M.: "Mechanisms and functions of DNA mismatch repair", CELL RESEARCH, vol. 18, 2008, pages 85 - 98 |
| LIN, W.; XIN, H.; WU, X.; YUAN, F.; WANG, Z.: "The human REV1 gene codes for a DNA template-dependent dCMP transferase", NUCLEIC ACIDS RESEARCH, vol. 27, 1999, pages 4468 - 4475 |
| LIU ET AL.: "C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism", MOL. CELL, vol. 65, no. 2, 19 January 2017 (2017-01-19), pages 310 - 322, XP029890333, DOI: doi:10.1016/j.molcel.2016.11.040 |
| MAKAROVA K. ET AL.: "Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements", BIOL DIRECT., vol. 4, 25 August 2009 (2009-08-25), pages 29, XP021059840, DOI: doi:10.1186/1745-6150-4-29 |
| MALI, P. ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826 |
| MOL, C. D.; ARVAI, A. S.; SLUPPHAUG, G.; KAVIL, B.; ALSETH, I.; KROKAN, H. E.; TAINER, J. A.: "Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis", CELL, vol. 80, 1995, pages 869 - 878, XP002940943, DOI: doi:10.1016/0092-8674(95)90290-2 |
| NUCLEIC ACIDS RESEARCH, vol. 43, no. 17, 2015 |
| PRASAD, R.; POLTORATSKY, V.; HOU, E. W.; WILSON, S. H.: "Revl is a base excision repair enzyme with 5'deoxyribose phosphate lyase activity", NUCLEIC ACID RESEARCH, 2016, pages 1 - 10 |
| PRASHANT ET AL.: "CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering", NATURE BIOTECHNOLOGY, vol. 31, no. 9, 2013, pages 833 - 838, XP055294730, DOI: doi:10.1038/nbt.2675 |
| QI ET AL., CELL, vol. 152, no. 5, 2013, pages 1173 - 1183 |
| QI ET AL.: "Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression", CELL, vol. 152, no. 5, 2013, pages 1173 - 1183, XP055346792, DOI: doi:10.1016/j.cell.2013.02.022 |
| RANGER; PEPPAS: "Macromol. Sci. Rev. Macromol. Chem.", vol. 23, 1983, pages: 61 |
| ROBERTSON, A. B.; KLUNGLAND, A.; ROGNES, T.; LEIROS, I.: "Base excision repair: the long and the short of it", CELL MOLECULAR LIFE SCIENCES, vol. 66, 2009, pages 981 - 993, XP019700850 |
| SALE, J. E.; LEHMANN, A. R.; WOODGATE, R.: "Y-Family DNA polymerases and their role in tolerance of cellular DNA damage", NATURE REV. MOLECULAR CELL BIOLOGY, vol. 13, 2012, pages 141 - 152 |
| SANG ET AL.: "A Unique Uracil-DNA binding protein of the uracil DNA glycosylase superfamily", NUCLEIC ACIDS RESEARCH, vol. 43, no. 17, 2015 |
| SANG, P. B.; SRINATH, T.; PATIL, A. G.; WOO, E. J.; VARSHNEY, U.: "A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily", NUCLEIC ACIDS RESEARCH, 2015, pages 1 - 12 |
| SAUDEK ET AL., N. ENGL. J. MED., vol. 321, 1989, pages 574 |
| SAVVA, R.; MCAULEY-HECHT, K.; BROWN, T.; PEARL, L.: "The structural basis of specific base-excision repair by uracil-DNA glycosylase", NATURE, vol. 373, 1995, pages 487 - 493 |
| SEFTON, CRC CRIT. REF. BIOMED. ENG., vol. 14, 1989, pages 201 |
| SHMAKOV ET AL.: "Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems", MOL. CELL, vol. 60, no. 3, 5 November 2015 (2015-11-05), pages 385 - 397, XP055481389, DOI: doi:10.1016/j.molcel.2015.10.008 |
| SLAYMAKER, I.M. ET AL.: "Rationally engineered Cas9 nucleases with improved specificity", SCIENCE, vol. 351, 2015, pages 84 - 88, XP002757561, DOI: doi:10.1126/science.aad5227 |
| SLUPPHAUG, G.; MOL, C. D.; KAVLI, B.; ARVAI, A. S.; KROKAN, H. E.; TAINER, J. A.: "A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA", NATURE, vol. 384, 1996, pages 87 - 92 |
| SWARTS ET AL., NATURE, vol. 507, no. 7491, 2014, pages 258 - 261 |
| SWARTS ET AL., NUCLEIC ACIDS RES., vol. 43, no. 10, 2015, pages 5120 - 5129 |
| WEILL, J. C.; REYNAUD C. A.: "DNA polymerases in adaptive immunity", NATURE REV. IMMUNOLOGY, vol. 8, 2008, pages 302 - 312 |
| YAMANO ET AL.: "Crystal structure of Cpfl in complex with guide RNA and target DNA", CELL, vol. 165, 2016, pages 949 - 962 |
| YANG ET AL.: "PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease", CELL, vol. 167, no. 7, 15 December 2016 (2016-12-15), pages 1814 - 1828, XP029850724, DOI: doi:10.1016/j.cell.2016.11.053 |
| YASUI, A.: "Alternative excision repair pathways", COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, pages 1 - 8 |
| ZETSCHE ET AL., CELL, vol. 163, 2015, pages 759 - 771 |
| ZHANG Y. P. ET AL., GENE THER., vol. 6, 1999, pages 1438 - 1447 |
Cited By (155)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
| US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
| US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
| US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
| US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
| US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US12473573B2 (en) | 2013-09-06 | 2025-11-18 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
| US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
| US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US12398406B2 (en) | 2014-07-30 | 2025-08-26 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US12344869B2 (en) | 2015-10-23 | 2025-07-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
| US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
| US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
| US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
| US11975029B2 (en) | 2017-02-28 | 2024-05-07 | Vor Biopharma Inc. | Compositions and methods for inhibition of lineage specific proteins |
| US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US12390514B2 (en) | 2017-03-09 | 2025-08-19 | President And Fellows Of Harvard College | Cancer vaccine |
| US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US12435331B2 (en) | 2017-03-10 | 2025-10-07 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| US11326157B2 (en) | 2017-05-25 | 2022-05-10 | The General Hospital Corporation | Base editors with improved precision and specificity |
| EP3630198A4 (en) * | 2017-05-25 | 2021-04-21 | The General Hospital Corporation | USE OF CLIVED DESAMINASES TO LIMIT UNWANTED OUT-OF-TARGET DESAMINATION FROM BASE EDITING |
| US12359218B2 (en) | 2017-07-28 | 2025-07-15 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11649442B2 (en) | 2017-09-08 | 2023-05-16 | The Regents Of The University Of California | RNA-guided endonuclease fusion polypeptides and methods of use thereof |
| US12415993B2 (en) | 2017-09-08 | 2025-09-16 | The Regents Of The University Of California | RNA-guided endonuclease fusion polypeptides and methods of use thereof |
| US11649443B2 (en) | 2017-09-08 | 2023-05-16 | The Regents Of The University Of California | RNA-guided endonuclease fusion polypeptides and methods of use thereof |
| US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| WO2019161251A1 (en) | 2018-02-15 | 2019-08-22 | The Broad Institute, Inc. | Cell data recorders and uses thereof |
| US12133884B2 (en) | 2018-05-11 | 2024-11-05 | Beam Therapeutics Inc. | Methods of substituting pathogenic amino acids using programmable base editor systems |
| US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
| WO2020047164A1 (en) | 2018-08-28 | 2020-03-05 | Vor Biopharma, Inc | Genetically engineered hematopoietic stem cells and uses thereof |
| US11903973B2 (en) | 2018-08-28 | 2024-02-20 | Vor Biopharma Inc. | Genetically engineered hematopoietic stem cells and uses thereof |
| US12031129B2 (en) | 2018-08-28 | 2024-07-09 | Flagship Pioneering Innovations Vi, Llc | Methods and compositions for modulating a genome |
| US12398392B2 (en) | 2018-08-28 | 2025-08-26 | Flagship Pioneering Innovations Vi, Llc | Methods and compositions for modulating a genome |
| EP4512890A2 (en) | 2018-08-28 | 2025-02-26 | Vor Biopharma, Inc. | Genetically engineered hermatopoietic stem cells and uses thereof |
| US12251403B2 (en) | 2018-08-28 | 2025-03-18 | Vor Biopharma Inc. | Genetically engineered hematopoietic stem cells and uses thereof |
| US12454694B2 (en) | 2018-09-07 | 2025-10-28 | Beam Therapeutics Inc. | Compositions and methods for improving base editing |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US11946040B2 (en) | 2019-02-04 | 2024-04-02 | The General Hospital Corporation | Adenine DNA base editor variants with reduced off-target RNA editing |
| US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| WO2020191234A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US12281303B2 (en) | 2019-03-19 | 2025-04-22 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| JP7786948B2 (ja) | 2019-03-19 | 2025-12-16 | ザ ブロード インスティテュート,インコーポレーテッド | 編集ヌクレオチド配列を編集するための方法および組成物 |
| US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| GB2601618A (en) * | 2019-03-19 | 2022-06-08 | Broad Inst Inc | Methods and compositions for editing nucleotide sequences |
| WO2020191249A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| WO2020191242A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| WO2020191241A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| JP2022526908A (ja) * | 2019-03-19 | 2022-05-27 | ザ ブロード インスティテュート,インコーポレーテッド | 編集ヌクレオチド配列を編集するための方法および組成物 |
| WO2020191246A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| WO2020191245A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| WO2020191243A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| WO2020191239A1 (en) * | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
| US12473543B2 (en) | 2019-04-17 | 2025-11-18 | The Broad Institute, Inc. | Adenine base editors with reduced off-target effects |
| US20220228133A1 (en) * | 2019-05-22 | 2022-07-21 | Toolgen Incorporated | Single base substitution protein, and composition comprising same |
| EP3974525A4 (en) * | 2019-05-22 | 2023-07-05 | Toolgen Incorporated | SINGLE-BASED SUBSTITUTION PROTEIN, AND COMPOSITION COMPRISING THEM |
| JP2022533842A (ja) * | 2019-05-22 | 2022-07-26 | ツールゲン インコーポレイテッド | 一塩基置換蛋白質およびそれを含む組成物 |
| CN114144519B (zh) * | 2019-05-22 | 2025-03-18 | 株式会社图尔金 | 单碱基置换蛋白以及包含其的组合物 |
| CN114144519A (zh) * | 2019-05-22 | 2022-03-04 | 株式会社图尔金 | 单碱基置换蛋白以及包含其的组合物 |
| WO2020237217A1 (en) | 2019-05-23 | 2020-11-26 | Vor Biopharma, Inc | Compositions and methods for cd33 modification |
| US12351815B2 (en) | 2019-06-13 | 2025-07-08 | The General Hospital Corporation | Engineered human-endogenous virus-like particles and methods of use thereof for delivery to cells |
| US12404525B2 (en) | 2019-06-13 | 2025-09-02 | The General Hospital Corporation | Engineered human-endogenous virus-like particles and methods of use thereof for delivery to cells |
| US12351814B2 (en) | 2019-06-13 | 2025-07-08 | The General Hospital Corporation | Engineered human-endogenous virus-like particles and methods of use thereof for delivery to cells |
| WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
| CN112280771A (zh) * | 2019-07-10 | 2021-01-29 | 中国科学院遗传与发育生物学研究所 | 双功能基因组编辑系统及其用途 |
| US20220380749A1 (en) * | 2019-08-20 | 2022-12-01 | Tianjin Institute Of Industrial Biotechnology, Chinese Academy Of Sciences | Base editing systems for achieving c to a and c to g base mutation and application thereof |
| CN111763686A (zh) * | 2019-08-20 | 2020-10-13 | 中国科学院天津工业生物技术研究所 | 实现c到a以及c到g碱基突变的碱基编辑系统及其应用 |
| WO2021041977A1 (en) | 2019-08-28 | 2021-03-04 | Vor Biopharma, Inc. | Compositions and methods for cd123 modification |
| WO2021041971A1 (en) | 2019-08-28 | 2021-03-04 | Vor Biopharma, Inc. | Compositions and methods for cll1 modification |
| WO2021042047A1 (en) * | 2019-08-30 | 2021-03-04 | The General Hospital Corporation | C-to-g transversion dna base editors |
| US20220411777A1 (en) * | 2019-08-30 | 2022-12-29 | The General Hospital Corporation | C-to-G Transversion DNA Base Editors |
| WO2021046155A1 (en) | 2019-09-03 | 2021-03-11 | Voyager Therapeutics, Inc. | Vectorized editing of nucleic acids to correct overt mutations |
| EP4034648A4 (en) * | 2019-09-26 | 2023-11-01 | Syngenta Crop Protection AG | METHOD AND COMPOSITIONS FOR EDITING DNA BASES |
| US12146152B2 (en) | 2019-10-09 | 2024-11-19 | Massachusetts Institute Of Technology | Systems, methods, and compositions for correction of frameshift mutations |
| US11530425B2 (en) | 2019-10-09 | 2022-12-20 | Massachusetts Institute Of Technology | Systems, methods, and compositions for correction of frameshift mutations |
| WO2021072309A1 (en) * | 2019-10-09 | 2021-04-15 | Massachusetts Institute Of Technology | Systems, methods, and compositions for correction of frameshift mutations |
| WO2021072328A1 (en) * | 2019-10-10 | 2021-04-15 | The Broad Institute, Inc. | Methods and compositions for prime editing rna |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
| GB2605514A (en) * | 2019-10-11 | 2022-10-05 | Univ Leland Stanford Junior | Recombinant polypeptides for regulatable cellular localization |
| WO2021072250A1 (en) * | 2019-10-11 | 2021-04-15 | The Board Of Trustees Of The Leland Stanford Junior University | Recombinant polypeptides for regulatable cellular localization |
| JP2023507163A (ja) * | 2019-12-17 | 2023-02-21 | シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー | バクテロイデスにおけるゲノム編集 |
| JP2023508669A (ja) * | 2019-12-26 | 2023-03-03 | エージェンシー フォー サイエンス, テクノロジー アンド リサーチ | 核酸塩基エディター |
| EP4081635A4 (en) * | 2019-12-26 | 2024-03-27 | Agency for Science, Technology and Research | Nucleobase editors |
| WO2021133261A1 (en) * | 2019-12-26 | 2021-07-01 | Agency For Science, Technology And Research | Nucleobase editors |
| CN114829594B (zh) * | 2019-12-26 | 2025-03-21 | 新加坡科技研究局 | 核碱基编辑器 |
| CN114829594A (zh) * | 2019-12-26 | 2022-07-29 | 新加坡科技研究局 | 核碱基编辑器 |
| US20210238598A1 (en) * | 2020-01-30 | 2021-08-05 | Pairwise Plants Services, Inc. | Compositions, systems, and methods for base diversification |
| WO2021155607A1 (zh) * | 2020-02-07 | 2021-08-12 | 辉大(上海)生物科技有限公司 | 经改造的胞嘧啶碱基编辑器及其应用 |
| US12065669B2 (en) | 2020-03-04 | 2024-08-20 | Flagship Pioneering Innovations Vi, Llc | Methods and compositions for modulating a genome |
| US12037602B2 (en) | 2020-03-04 | 2024-07-16 | Flagship Pioneering Innovations Vi, Llc | Methods and compositions for modulating a genome |
| WO2021183504A1 (en) * | 2020-03-11 | 2021-09-16 | North Carolina State University | Compositions, methods, and systems for genome editing technology |
| US11352623B2 (en) | 2020-03-19 | 2022-06-07 | Rewrite Therapeutics, Inc. | Methods and compositions for directed genome editing |
| US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US12043827B2 (en) | 2020-06-30 | 2024-07-23 | Pairwise Plants Services, Inc. | Compositions, systems, and methods for base diversification |
| US12319938B2 (en) | 2020-07-24 | 2025-06-03 | The General Hospital Corporation | Enhanced virus-like particles and methods of use thereof for delivery to cells |
| WO2022047168A1 (en) | 2020-08-28 | 2022-03-03 | Vor Biopharma Inc. | Compositions and methods for cll1 modification |
| WO2022047165A1 (en) | 2020-08-28 | 2022-03-03 | Vor Biopharma Inc. | Compositions and methods for cd123 modification |
| WO2022056489A1 (en) | 2020-09-14 | 2022-03-17 | Vor Biopharma, Inc. | Compositions and methods for cd38 modification |
| WO2022056459A1 (en) | 2020-09-14 | 2022-03-17 | Vor Biopharma, Inc. | Compositions and methods for cd5 modification |
| WO2022061115A1 (en) | 2020-09-18 | 2022-03-24 | Vor Biopharma Inc. | Compositions and methods for cd7 modification |
| WO2022067240A1 (en) | 2020-09-28 | 2022-03-31 | Vor Biopharma, Inc. | Compositions and methods for cd6 modification |
| WO2022072643A1 (en) | 2020-09-30 | 2022-04-07 | Vor Biopharma Inc. | Compositions and methods for cd30 gene modification |
| US11827881B2 (en) | 2020-10-21 | 2023-11-28 | Massachusetts Institute Of Technology | Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste) |
| US12195733B2 (en) | 2020-10-21 | 2025-01-14 | Massachusetts Institute Of Technology | Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste) |
| US11952571B2 (en) | 2020-10-21 | 2024-04-09 | Massachusetts Institute Of Technology | Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste) |
| US11572556B2 (en) | 2020-10-21 | 2023-02-07 | Massachusetts Institute Of Technology | Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste) |
| WO2022093983A1 (en) | 2020-10-27 | 2022-05-05 | Vor Biopharma, Inc. | Compositions and methods for treating hematopoietic malignancy |
| WO2022094245A1 (en) | 2020-10-30 | 2022-05-05 | Vor Biopharma, Inc. | Compositions and methods for bcma modification |
| WO2022103935A1 (en) * | 2020-11-11 | 2022-05-19 | The Trustees Of Columbia University In The City Of New York | Multiplex epigenome editing |
| WO2022104090A1 (en) | 2020-11-13 | 2022-05-19 | Vor Biopharma Inc. | Methods and compositions relating to genetically engineered cells expressing chimeric antigen receptors |
| WO2022147347A1 (en) | 2020-12-31 | 2022-07-07 | Vor Biopharma Inc. | Compositions and methods for cd34 gene modification |
| WO2022155532A1 (en) * | 2021-01-15 | 2022-07-21 | 4M Genomics Inc. | Polypeptide fusions or conjugates for gene editing |
| WO2022217086A1 (en) | 2021-04-09 | 2022-10-13 | Vor Biopharma Inc. | Photocleavable guide rnas and methods of use thereof |
| US12123006B2 (en) * | 2021-05-18 | 2024-10-22 | Shanghaitech University | Base editing tool and use thereof |
| US20220372497A1 (en) * | 2021-05-18 | 2022-11-24 | Shanghaitech University | Base Editing Tool And Use Thereof |
| WO2022247873A1 (zh) | 2021-05-27 | 2022-12-01 | 中国科学院动物研究所 | 工程化的Cas12i核酸酶、效应蛋白及其用途 |
| WO2022261509A1 (en) | 2021-06-11 | 2022-12-15 | The Broad Institute, Inc. | Improved cytosine to guanine base editors |
| WO2023283585A2 (en) | 2021-07-06 | 2023-01-12 | Vor Biopharma Inc. | Inhibitor oligonucleotides and methods of use thereof |
| WO2023015182A1 (en) | 2021-08-02 | 2023-02-09 | Vor Biopharma Inc. | Compositions and methods for gene modification |
| WO2023049926A2 (en) | 2021-09-27 | 2023-03-30 | Vor Biopharma Inc. | Fusion polypeptides for genetic editing and methods of use thereof |
| WO2023086422A1 (en) | 2021-11-09 | 2023-05-19 | Vor Biopharma Inc. | Compositions and methods for erm2 modification |
| WO2023196816A1 (en) | 2022-04-04 | 2023-10-12 | Vor Biopharma Inc. | Compositions and methods for mediating epitope engineering |
| WO2024015925A2 (en) | 2022-07-13 | 2024-01-18 | Vor Biopharma Inc. | Compositions and methods for artificial protospacer adjacent motif (pam) generation |
| WO2024030432A1 (en) | 2022-08-01 | 2024-02-08 | Gensaic, Inc. | Therapeutic phage-derived particles |
| WO2024073751A1 (en) | 2022-09-29 | 2024-04-04 | Vor Biopharma Inc. | Methods and compositions for gene modification and enrichment |
| WO2024073047A1 (en) * | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Cytidine deaminases and methods of use in mapping modified cytosine nucleotides |
| WO2024083883A1 (en) * | 2022-10-19 | 2024-04-25 | Dna Script | Methods and products for removal of uracil containing polynucleotides |
| WO2024159069A1 (en) | 2023-01-27 | 2024-08-02 | Gensaic, Inc. | Icosahedral phage derived particles |
| WO2024168312A1 (en) | 2023-02-09 | 2024-08-15 | Vor Biopharma Inc. | Methods for treating hematopoietic malignancy |
| US12497601B2 (en) | 2023-04-03 | 2025-12-16 | The Regents Of The University Of California | RNA-guided endonuclease fusion polypeptides and methods of use thereof |
| WO2025030010A1 (en) | 2023-08-01 | 2025-02-06 | Vor Biopharma Inc. | Compositions comprising genetically engineered hematopoietic stem cells and methods of use thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2023113627A (ja) | 2023-08-16 |
| US20240035017A1 (en) | 2024-02-01 |
| CN110914310A (zh) | 2020-03-24 |
| US12435331B2 (en) | 2025-10-07 |
| EP3592777A1 (en) | 2020-01-15 |
| KR20190127797A (ko) | 2019-11-13 |
| US20210230577A1 (en) | 2021-07-29 |
| JP2020510439A (ja) | 2020-04-09 |
| US11542496B2 (en) | 2023-01-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12435331B2 (en) | Cytosine to guanine base editor | |
| US11999947B2 (en) | Adenosine nucleobase editors and uses thereof | |
| AU2022204298B2 (en) | Nucleobase editors and uses thereof | |
| US20230348883A1 (en) | Nucleobase editors comprising nucleic acid programmable dna binding proteins | |
| US11912985B2 (en) | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence | |
| US20240287487A1 (en) | Improved cytosine to guanine base editors | |
| JP2023543803A (ja) | プライム編集ガイドrna、その組成物、及びその使用方法 | |
| HK40103008A (en) | Nucleobase editors and uses thereof | |
| HK40116839A (en) | Evolved cas9 proteins for gene editing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18718954 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019548939 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20197029551 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2018718954 Country of ref document: EP Effective date: 20191010 |