CN108913717A - 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法 - Google Patents

一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法 Download PDF

Info

Publication number
CN108913717A
CN108913717A CN201810866033.2A CN201810866033A CN108913717A CN 108913717 A CN108913717 A CN 108913717A CN 201810866033 A CN201810866033 A CN 201810866033A CN 108913717 A CN108913717 A CN 108913717A
Authority
CN
China
Prior art keywords
phyb
rice
crispr
grna
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810866033.2A
Other languages
English (en)
Inventor
杜彦修
季新
李飞
赵全志
晏云
孙红正
张静
李俊周
彭廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN201810866033.2A priority Critical patent/CN108913717A/zh
Publication of CN108913717A publication Critical patent/CN108913717A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,属于植物基因工程技术领域。本发明利用CRISPR/Cas9技术,对水稻光敏色素PHYB基因进行定向编辑,通过设计PHYB突变靶点、构建表达载体,并利用农杆菌介导法导入水稻,实现了对水稻PHYB基因的定点突变,该方法操作更加简单快捷、试验周期短,为快速创制抗旱和耐盐水稻新品种提供了一种简单有效的技术手段,对改良水稻性状和高产稳产育种具有重要实践意义。

Description

一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法
技术领域
本发明涉及一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,属于植物基因工程技术领域。
背景技术
光是影响植物生长与发育的重要环境因子之一,可调节植物生长和发育的各个过程。植物通过光受体感知并传递光信号,目前在植物中已至少发现4种光受体:光敏色素、隐花色素、向光素和紫外线-B受体(Chen M,Chory J,Fankhauser C.Light signaltransduction in higher plants[J].Annual Review of Genetics,2004,38(1):87.)。其中光敏色素主要感受红光和远红光,其主要以红光吸收型(Pr)和远红光吸收型(Pfr)两种形式存在。在黑暗条件下,光敏色素主要以Pr形式存在,红光照射后可使Pr转化为活性的Pfr形式(Rockwell N C,Su Y S,Lagarias J C.Phytochrome structure and signalingmechanisms[J].Annual Review of Plant Biology,2006,57(1):837-858.)。具有活性的Pfr构像光敏色素可进入细胞核中,与光敏色素互作因子相互作用,调节下游基因的表达(Rockwell N C,Su Y S,Lagarias J C.Phytochrome structure and signalingmechanisms[J].Annual Review of Plant Biology,2006,57(1):837-858.Leivar P,Quail P H.PIFs:pivotal components in a cellular signaling hub[J].Trends inPlant Science,2011,16(1):19-28.)。
在拟南芥中光敏色素编码基因由PHYA、PHYB、PHYC、PHYD和PHYE组成,而水稻中则含有三种光敏色素编码基因:PHYA,PHYB和PHYC(Mathews S,Sharrock R A.Phytochromegene diversity[J].Plant Cell&Environment,2010,20(6):666-671.),其中光敏色素PHYB主要调节红光下植物的生长(GC W,E J,J P,et al.Phytochrome A null mutants ofArabidopsis display a wild-type phenotype in white light[J].Plant Cell,1993,5(7):757-768.Neff M M,Fankhauser C,Chory J.Light:an indicator of time andplace.[J].Genes&Development,2000,14(3):257-271.)。PHYB可通过感受红光信号并调节光响应基因表达,是调控光形态建成最重要的光敏色素基因(Casal J J,Mazzella MA.Conditional synergism between cryptochrome 1and phytochrome B is shown bythe analysis of phyA,phyB,and hy4simple,double,and triple mutants inArabidopsis[J].Plant Physiology,1998,118(1):19-25.);在高红光/远红光比率下,PHYB缺失突变体表现出典型的避荫反应,表明PHYB是抑制避荫反应的主要因子(NagataniA,Chory J,Furuya M.Phytochrome B is not detectable in the hy3mutant ofArabidopsis,which is deficient in responding to end-of-day far-red lighttreatments[J].Plant&Cell Physiology,1991,32(7):1119-1122.Somers D E,SharrockR A,Tepperman J M,et al.The hy3long hypocotyl mutant of Arabidopsis isdeficient in Phytochrome B[J].Plant Cell,1991,3(12):1263-1274.)。光敏色素PHYB不仅在植物光形态建成中发挥重要功能,其在植物抗逆调节过程中也具有重要作用。水稻PHYB基因通过与OsPIL16相互作用调控靶基因OsDREB1表达而改善水稻的耐冷性(He Y,LiY,Cui L,et al.Phytochrome B negatively affects cold tolerance by regulatingOsDREB1gene expression through Phytochrome interacting factor-like proteinOsPIL16in rice[J].Frontiers in Plant Science,2016,7:1963.)。拟南芥中红光诱导条件下,PHYB作为介导气孔运动转录因子MYB60表达的必需条件来调控气孔开闭(Liu J,Zhang F,Zhou J,et al.Phytochrome B control of total leaf area and stomataldensity affects drought tolerance in rice[J].Plant molecular biology,2012,78(3):289-300.);在缺水胁迫下,PHYB通过增强其突变体对ABA的敏感性来改善植株的抗旱性(Gonzalez C V,Ibarra S E,Piccoli P N,et al.Phytochrome B increases droughttolerance by enhancing ABA sensitivity in Arabidopsis thaliana[J].Plant celland environment,2012,35(1):1958-1968.);当红光处理时,拟南芥PHYB突变体受盐胁迫后,参与盐胁迫反应基因STO的表达量降低,表明光敏色素在耐盐胁迫反应中有所贡献(Indorf M,Cordero J,Neuhaus G,et al.Salt tolerance(STO),a stress-relatedprotein,has a major role in light signalling[J].Plant Journal,2010,51(4):563-574.)。
CRISPR/Cas9属于第三代基因编辑技术,该技术主要依靠核酸酶(Cas9)核心蛋白,通过向导RNA(guide RNA,gRNA)的介导,Cas9蛋白能够识别PAM(protospacer-adjacentmotif)目标序列,对目标DNA进行切割造成DNA的双链断裂。CRISPR/Cas9由于其简单性、稳定性和高效性,已发展成为植物科学中最主要的基因编辑工具。Deng等通过CRISPR/Cas9介导的SLMYB12靶向突变,建立了粉红番茄植株的生产方法(Deng L,Wang H,Sun C,etal.Efficient generation of pink-fruited tomatoes using CRISPR/Cas9system[J].Journal of Genetics and Genomics,2018(1):51-54);季新等利用CRISPR/Cas9技术对OsPIL15基因进行定点突变,获得了10种不同基因型的突变体(季新,李飞,晏云,等.基于CRISPR/Cas9系统的水稻光敏色素互作因子OsPIL15基因编辑[J].中国农业科学,2017,50(15):2861-2871.);Macovei等使用CRISPR/CAS9系统对稻瘟病(RTD)天然抗性起始因子4γ基因(eIF4G)进行编辑,靶位点突变率在36%-86.6%,且突变可成功地传递给下一代。
发明内容
本发明的目的在于提供一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法。
为实现上述目的,本发明的技术方案是:
一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,包括如下步骤:
(1)gRNA序列的选择:
在PHYB基因第一外显子区域选择一段区域作为gRNA序列,所选gRNA序列为:5′-TCCTCCACCGCATCGATGT-3′;
(2)gRNA序列的上下游引物设计为:
上游引物gRNA-F:5′-ggcgTCCTCCACCGCATCGATGT-3′;
下游引物gRNA-R:5′-aaacACATCGATGCGGTGGAGGA-3′;
(3)gRNA表达载体的构建:
1)取所述上下游引物混合、退火,得双链DNA;
2)用限制性内切酶对质粒进行酶切得到线性质粒;
3)用T4DNA连接酶连接所述线性质粒和双链DNA得到连接产物;连接产物经转化、筛选得到表达载体;
(4)将表达载体导入相应的浸染细菌中,得到含有CRISPR/Cas9-gRNA质粒的浸染细菌,然后用含有CRISPR/Cas9-gRNA质粒的浸染细菌浸染水稻愈伤组织;
(5)将步骤(4)中的愈伤组织经诱导获得再生苗,筛选得到转基因阳性植株。
上述步骤(1)中在PHYB基因第一外显子区域选择的gRNA序列大小为19bp。
上述步骤(1)中gRNA序列3′的末三位CGG为PAM序列。gRAN序列中的ATCGAT为限制性内切酶Bsu15I的识别序列。
步骤(2)中上游引物序列中的ggcg序列和下游引物序列中的aaac序列为限制性内切酶BsaI的黏性末端接头。
步骤(3)中1)所述的退火的条件为:65℃退火5min。
步骤(3)中2)所述的限制性内切酶为BsaI。
步骤(3)中2)所述的质粒为pBUN411。
步骤(3)中2)所述的酶切的反应体系为:pBUN411质粒2μg、10×NEB缓冲液5μL、BsaI 10U、Nuclease-Free Water Up to 50μL。
步骤(3)中2)所述的酶切的条件为:37℃酶切4h。
步骤(3)中3)所述的T4DNA连接酶连接的反应体系为:pBUN411线性化质粒6μL、PHYB-gRNA 2μL、T4DNA ligase 3U、10×Buffer 1μL。
步骤(3)中3)所述的T4DNA连接酶连接的条件为:4℃连接反应12h。
步骤(3)中3)所述的将连接产物转化、筛选,具体操作为:热激法将上述连接产物加入大肠杆菌DH5α感受态细胞,菌液涂布于含50mg/L的卡那霉素LB培养基平板,过夜培养后挑取单菌斑。
将步骤(3)中得到的单菌斑用引物pBUN411-VF和pBUN411-VR进行菌落PCR验证。
上述引物pBUN411-VF和pBUN411-VR的序列为:
pBUN411-VF:5′-CCATGAAGCCTTTCAGGACATGTA-3′;
pBUN411-VR:5′-ACGCTGCAAACATGAGACGGAGAA-3′。
上述菌落PCR验证的反应体系为:2×Taq Master Mix 5μL、pBUN411-VF 0.4μL、pBUN411-VR 0.4μL、单菌斑稀释模板1μL、RNase-Free Water 3.2μL。
上述菌落PCR验证的反应体系中pBUN411-VF和pBUN411-VR终浓度为10μM。
上述菌落PCR验证的反应条件为:预变性94℃2min,变性94℃30s,退火55℃30s,延伸72℃30s,终延伸72℃10min。其中变性,退火和延伸为35个循环。
步骤(4)所述的浸染细菌为农杆菌。
具体的,所述农杆菌为土壤农杆菌EHA105。
步骤(5)再生苗的获得方式为用除草剂筛选得到。
步骤(5)为采用抗除草剂基因引物进行筛选,所述抗除草剂基因引物序列为:
Bar-F:5′-AAGCACGGTCAACTTCCGTA-3′;
Bar-R:5′-GAAGTCCAGCTGCCAGAAAC-3′。
以上述Bar-F、Bar-R为引物,以转基因植株基因组DNA为模板,筛选出扩增长度为412bp的植株,该植株即为阳性植株,做进一步的突变基因型鉴定。
步骤(5)中在筛选出阳性植株之后进行鉴定,所述鉴定是针对gRNA靶点序列两侧设计引物进行鉴定,两侧引物序列为:
PHYB-test-F:5′-CTACCTCTCCCGCATCCAG-3′;
PHYB-test-R:5′-GCAACGACTTCTCCATGCTC-3′。
上述的鉴定包括如下步骤:
A、以单株转基因阳性植株的DNA为模板,以PHYB-test-F和PHYB-test-R为引物进行PCR扩增得到PCR扩增产物;
B、用限制性内切酶Bsu15I酶切上述PCR扩增产物得到酶切产物;
C、电泳检测步骤B中所得的酶切产物确定突变株。
步骤A中PCR扩增反应体系为:2×Taq Master Mix 25μL、PHYB-test-F(终浓度10μM)2μL、PHYB-test-R(终浓度10μM)2μL、DNA模板2μL、RNase-Free Water 19μL。
步骤A中PCR扩增条件为:预变性94℃2min,变性94℃30s,退火55℃30s,延伸72℃30s,终延伸72℃10min。其中变性、退火和延伸为35个循环。
步骤B中酶切体系为:PCR产物10μL、10×Fast Digest缓冲液2μL、Bsu15I10U、Nuclease-Free Water 17μL。
步骤B所述的酶切的条件为:37℃酶切5min。
步骤C所述的电泳为采用2%琼脂糖凝胶电泳进行检测。
步骤C确定突变株的方法为:PCR产物片段大小为570bp,若使用限制性内切酶Bsu15I能将PCR产物完全切开,得到330bp和240bp的两条带,表明靶位点未发生突变,为未突变单株;若PCR产物被部分切开,得到一条在570bp附近处条带,一条330bp的条带和一条240bp的条带,表明一条同源染色体突变,为杂合体;若PCR产物完全不能切开,条带在570bp附近处,表明两条同源染色体均发生突变,则可能为两个等位基因发生不同突变的双等位突变体或两个等位基因发生相同突变的纯合体。
对步骤A中的PCR扩增产物进行测序获得各株系的突变基因型。
本发明的有益效果是:
本发明依据CRISPR/Cas9技术原理对水稻光敏色素PHYB基因进行定向编辑。本发明创造中的gRNA序列及其引物序列的设计具有特异性,能够特异性对水稻PHYB基因进行定点编辑,而不破坏水稻基因组的其他基因。该gRNA序列中在Cas9蛋白剪切处包含了一个限制性内切酶Bsu15I识别位点(ATCGAT),利用本发明提供的酶切位点和gRNA序列,能快速鉴定T0代以及后代转基因材料的PHYB基因是否发生突变,同时可以降低成本。该方法操作更加简单快捷、定向突变、试验周期短,为快速创制抗旱和耐盐水稻新品种提供了一种简单有效的技术手段,对改良水稻性状和高产稳产育种具有重要实践意义。
附图说明
图1为PHYB基因靶位点、PAM序列及酶切位点示意图;
图2为CRISPR/Cas9-gRNA表达载体示意图;
图3为PCR产物酶切鉴定PHYB基因靶位点突变情况;
图4为PHYB突变体突变序列与野生型日本晴序列比对分析。
具体实施方式
下面结合附图对本发明的实施方式作进一步说明。
CRISPR/Cas9表达载体pBUN411由中国农业大学陈其军教授惠赠(Xing H,Dong L,Wang Z,et al.A CRISPR/Cas9toolkit for multiplex genome editing in plants[J].BMC plant biology,2014,14(1):327.)。
以下实施例中的引物由生工生物工程(上海)股份有限公司合成。
实施例1
1、PHYB基因gRNA靶点序列设计
根据水稻生物学网站Rice Genome Annotation Project(http://rice.plantbiology.msu.edu/)提供的PHYB基因(LOC_Os03g19590)序列设计gRNA靶点序列。其中水稻光敏色素PHYB基因的氨基酸序列如SEQ ID NO:1所示、其编码序列如SEQ IDNO:2所示、基因序列如SEQ ID NO:3所示。在PHYB基因第一外显子区域选择一段19bp的序列(5′-TCCTCCACCGCATCGATGT-3′)作为靶位点,该序列3′端3个碱基CGG可作为PAM(protospacer-adjacent motif)序列。Cas9蛋白识别PAM序列后可在其5′端3-4bp处进行切割,该剪切处包含限制性内切酶Bsu15I识别位点(ATCGAT),选择剪切处含有常用酶切位点的gRNA有利于后续检测转基因阳性植株是否发生突变。将该gRNA靶点序列在水稻基因组数据库The Rice Annotation Project(http://rapdb.dna.affrc.go.jp/)中进行比对,避免出现同源序列,保证gRNA的特异性。PHYB基因靶位点、PAM序列及酶切位点如图1所示。
2、PHYB基因CRISPR/Cas9表达载体pBUN411-gRNA构建
(1)根据gRNA靶点序列设计合成gRNA的上下游引物,将gRNA序列作为正义链,gRNA反向互补序列作为反义链,分别在正义链和反义链5′端添加ggcg和aaac序列作为限制性内切酶BsaI的黏性末端接头,引物序列如表1中gRNA-F和gRNA-R所示。
表1引物序列
(2)分别取上下游引物gRNA-F和gRNA-R(终浓度10μM)5μL混合,65℃退火5min后温度缓慢降至室温,形成互补双链DNA,直接用于后续载体的构建。
(3)使用NEB(北京)有限公司的限制性内切酶BsaI酶切CRISPR/Cas9表达载体pBUN411质粒,50μL酶切反应体系如下表2所示。
表2酶切反应体系
37℃酶切4h后65℃热处理20min使酶失活。
(4)使用天根生化科技(北京)有限公司的普通琼脂糖凝胶DNA回收试剂盒将上述酶切产物纯化回收,使用T4DNA连接酶进行连接,连接体系如下表3所示:
表3连接体系
4℃过夜连接。
(5)利用热激法将上述连接产物加入大肠杆菌DH5α感受态细胞,将感受态细胞冰浴30min,42℃热激90s,快速将感受态细胞转移至冰上冰浴2min。加入500μL LB培养液,37℃摇菌1h,而后将菌液涂布于含50mg/L的卡那霉素LB培养基平板,37℃过夜培养。LB培养基配方如下表4所示。
表4 LB培养基配方
(6)挑选上述LB平板上单菌斑,使用引物pBUN411-VF和pBUN411-VR(引物序列见表1)进行菌落PCR验证,PCR反应体系如下表5所示,PCR反应条件如下表6所示:
表5 PCR反应体系
表6 PCR反应条件
其中变性、退火和延伸为35个循环。
(7)pBUN411空载体扩增片段长度为1538bp,经BsaI酶切后连接,靶序列插入扩增片段大小应为336bp。选取菌落PCR片段大小正确的菌斑,提取质粒,表明PHYB基因CRISPR/Cas9表达载体pBUN411-gRNA载体构建成功。如图2所示,PHYB基因靶序列由OsU3基因启动子驱动,编码Cas9蛋白基因由玉米泛素基因(Ubi)启动子驱动。
实施例2
农杆菌介导水稻愈伤遗传转化和阳性转基因植株检测
(1)参照Hood等报道方法(Hood E E,Gelvin S B,Melchers L S,etal.NewAgrobacterium helper plasmids for gene transfer to plants[J].TransgenicResearch,1993,2(4):208-218.)将pBUN411-gRNA表达载体导入土壤农杆菌EHA105。使用含有CRISPR/Cas9-gRNA质粒的农杆菌浸染水稻品种日本晴(Oryza sativa ssp.Japonicacv.Nipponbare)的愈伤组织,参照Nishimura等(Nishimura A,Aichi I,Matsuoka M.Aprotocol for Agrobacterium-mediated transformation in rice[J].NatureProtocols,2006,1(6):2796-2802.)报道的方法进行水稻转基因,用除草剂(Basta)筛选获得再生苗。
(2)采用SLS法提取转基因植株基因组DNA,SLS提取液配制方法如下表7所示。
表7 SLS提取液的配置
(3)使用抗除草剂基因(Bar)引物Bar-F和Bar-R(抗除草剂基因Bar序列如SEQ IDNO:4所示,引物序列见表1),以提取的上述转基因植株基因组DNA为模板,进行PCR扩增筛选转基因植株阳性,PCR反应体系如下表8所示:
表8 PCR反应体系
PCR反应条件同实施例1。
(4)抗除草剂基因引物Bar-F和Bar-R扩增出的序列大小为412bp,转基因阳性植株中含有上述抗除草剂基因,所以能扩增出412bp大小片段的植株为阳性转基因植株;不能扩增出412bp大小的片段,则为非阳性转基因植株,进而筛选出阳性转基因植株。
实施例3
PHYB基因突变体筛选鉴定
(1)根据PHYB基因序列(SEQ ID NO:3),在gRNA序列两侧设计引物PHYB-test-F和PHYB-test-R(引物序列见表1),以上述筛选出的阳性转基因单株DNA为模板,进行PCR扩增,PCR反应体系如下表9所示:
表9 PCR反应体系
PCR反应条件同实施例1。
(2)使用赛默飞世尔科技公司(Thermo Fisher Scientific)限制性内切酶Bsu15I酶切上述PCR产物,酶切体系如下表10所示:
表10酶切体系
37℃酶切5min后65℃热处理15min使酶失活。
(3)使用2%琼脂糖凝胶电泳检测上述酶切产物。PCR产物片段大小为570bp,若使用限制性内切酶Bsu15I能将PCR产物完全切开,得到330bp和240bp的两条带,表明靶位点未发生突变,为未突变单株;若PCR产物被部分切开,得到一条在570bp附近处条带,一条330bp的条带和一条240bp的条带,表明一条同源染色体突变,为杂合体;若PCR产物完全不能切开,条带在570bp附近处,表明两条同源染色体均发生突变,则可能为两个等位基因发生不同突变的双等位突变体或两个等位基因发生相同突变的纯合体。
(4)根据PCR产物酶切后条带的电泳检测可初步判断,如图3所示,图3中的M为marker,1-8为阳性转基因植株的的扩增条带,NE为阴性对照,WT为阳性对照。
从图3可以看出,单株3和5为未突变单株;单株1可能为杂合单株;单株2、4、6、7和8为纯合或双等位突变单株。
(5)酶切PCR产物只能初步定性判断转基因植株靶点是否发生突变,而突变体靶点序列的基因型还需测序进行鉴定。由于杂合突变或双等位突变的两条同源染色体突变情况不一致,用PCR产物测序时会在某一位点(一般在突变位点附近)之后出现重叠峰,后续序列无法准确得知。因此,对可能出现重叠峰的突变体进行TA克隆,随机选取单菌斑,将PCR产物和单菌斑送至生工生物工程(上海)股份有限公司进行测序分析。
(6)综合分析测序结果得到各株系突变基因型,如图4所示,单株1的一条同源染色体在PAM序列前第3和第4碱基之间插入1个碱基“a”,另一条同源染色体插入1个碱基“t”,但由于插入碱基“t”并没有破坏限制性内切酶Bsu15I的识别位点ATCGAT,因此使用Bsu15I仍能切开部分PCR产物,使胶图显示出杂合单株的带型,但经TA克隆结果分析单株1为双等位突变体;单株2、6和7为双等位突变体,一条同源染色体在PAM序列前第3和第4碱基之间插入1个碱基“a”,另一条同源染色体的PAM前2个碱基“ga”缺失;单株4和8为纯合突变体,PAM前第4个碱基“a”缺失。结果显示,共得到4种突变基因型的6株phyB突变体。
(7)上述phyB突变体碱基的插入或缺失形成移码突变,造成翻译的提前终止,推导氨基酸序列,具体见序列表所示。
PAM序列前第3和第4碱基间插入1个碱基“a”推导氨基酸序列如SEQ IDNO:14所示。
PAM序列前第3和第4碱基间插入1个碱基“t”推导氨基酸序列如SEQ IDNO:15所示。
PAM前2个碱基“ga”缺失推导氨基酸序列如SEQ ID NO:16所示。
PAM前第4个碱基“a”缺失推导氨基酸序列如SEQ ID NO:17所示。
利用上述方法进行定向编辑PHYB基因得到具有抗旱耐盐的优良性状的水稻材料,参照Liu等报道的方法筛选抗旱水稻品种(Liu J,Zhang F,Zhou J,et al.Phytochrome Bcontrol of total leaf area and stomatal density affects drought tolerance inrice[J].Plant molecular biology,2012,78(3):289-300.);参照Kwon等报道的方法筛选耐盐水稻品种(Kwon C T,Song G,Kim S H,et al.Functional deficiency ofphytochrome B improves salt tolerance in rice[J].Environmental& ExperimentalBotany,2018,148:100-108.)。具有优良性状的水稻材料经多个世代的分离后,即可获得不含CRISPR/Cas9表达载体的phyB突变体,即得到不含转基因成分的水稻品种,可用于大面积推广。
综上,本发明依据CRISPR/Cas9系统技术原理,特异性地针对水稻PHYB设计引物,成功构建了水稻光敏色素PHYB基因编辑载体,并利用该载体对水稻光敏色素PHYB基因进行定向编辑,而不破坏其他基因。本发明成功创制了4种突变基因型的phyB突变体,简化了创制phyB突变体的工作量,同时使创制突变体的过程更为可控。
上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对其作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
<110> 河南农业大学
<120> 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法
<160> 17
<170> PatentIn version 3.5
<211> 1171
<212> PRT
<213>序列
<221>水稻光敏色素PHYB氨基酸序列
<400> 1
MASGSRATPT RSPSSARPAA PRHQHHHSQS SGGSTSRAGG GGGGGGGGGG GAAAAESVSK 60
AVAQYTLDAR LHAVFEQSGA SGRSFDYTQS LRASPTPSSE QQIAAYLSRI QRGGHIQPFG 120
CTLAVADDSS FRLLAYSENT ADLLDLSPHH SVPSLDSSAV PPPVSLGADA RLLFAPSSAV 180
LLERAFAARE ISLLNPLWIH SRVSSKPFYA ILHRIDVGVV IDLEPARTED PALSIAGAVQ 240
SQKLAVRAIS RLQALPGGDV KLLCDTVVEY VRELTGYDRV MVYRFHEDEH GEVVAESRRN 300
NLEPYIGLHY PATDIPQASR FLFRQNRVRM IADCHAAPVR VIQDPALTQP LCLVGSTLRS 360
PHGCHAQYMA NMGSIASLVM AVIISSGGDD DHNISRGSIP SAMKLWGLVV CHHTSPRCIP 420
FPLRYACEFL MQAFGLQLNM ELQLAHQLSE KHILRTQTLL CDMLLRDSPT GIVTQSPSIM 480
DLVKCDGAAL YYHGKYYPLG VTPTEVQIKD IIEWLTMCHG DSTGLSTDSL ADAGYPGAAA 540
LGDAVSGMAV AYITPSDYLF WFRSHTAKEI KWGGAKHHPE DKDDGQRMHP RSSFKAFLEV 600
VKSRSLPWEN AEMDAIHSLQ LILRDSFRDS AEGTSNSKAI VNGQVQLGEL ELRGIDELSS 660
VAREMVRLIE TATVPIFAVD TDGCINGWNA KVAELTGLSV EEAMGKSLVN DLIFKESEET 720
VNKLLSRALR GDEDKNVEIK LKTFGPEQSK GPIFVIVNAC SSRDYTKNIV GVCFVGQDVT 780
GQKVVMDKFI NIQGDYKAIV HNPNPLIPPI FASDENTCCS EWNTAMEKLT GWSRGEVVGK 840
LLVGEVFGNC CRLKGPDALT KFMIVLHNAI GGQDCEKFPF SFFDKNGKYV QALLTANTRS 900
RMDGEAIGAF CFLQIASPEL QQAFEIQRHH EKKCYARMKE LAYIYQEIKN PLNGIRFTNS 960
LLEMTDLKDD QRQFLETSTA CEKQMSKIVK DASLQSIEDG SLVLEKGEFS LGSVMNAVVS 1020
QVMIQLRERD LQLIRDIPDE IKEASAYGDQ YRIQQVLCDF LLSMVRFAPA ENGWVEIQVR 1080
PNIKQNSDGT DTMLFLFRFA CPGEGLPPEI VQDMFSNSRW TTQEGIGLSI CRKILKLMGG 1140
EVQYIRESER SFFHIVLELP QPQQAASRGT S 1171
<211> 3516
<212> DNA
<213>序列
<221>水稻光敏色素PHYB氨基酸序列编码序列
<400> 2
atggcctcgg gtagccgcgc cacgcccacg cgctccccct cctccgcgcg gcccgcggcg 60
ccgcggcacc agcaccacca ctcgcagtcc tcgggcggga gcacgtcccg cgcgggaggg 120
ggtggcgggg gcgggggagg gggagggggc ggcgcggccg ccgcggagtc ggtgtccaag 180
gccgtggcgc agtacaccct ggacgcgcgc ctccacgccg tgttcgagca gtcgggcgcg 240
tcgggccgca gcttcgacta cacgcagtcg ctgcgtgcgt cgcccacccc gtcctccgag 300
cagcagatcg ccgcctacct ctcccgcatc cagcgcggcg ggcacataca gcccttcggc 360
tgcacgctcg ccgtcgccga cgactcctcc ttccgcctcc tcgcctactc cgagaacacc 420
gccgacctgc tcgacctgtc gccccaccac tccgtcccct cgctcgactc ctccgcggtg 480
cctccccccg tctcgctcgg cgcagacgcg cgcctccttt tcgccccctc gtccgccgtc 540
ctcctcgagc gcgccttcgc cgcgcgcgag atctcgctgc tcaacccgct ctggatccac 600
tccagggtct cctctaaacc cttctacgcc atcctccacc gcatcgatgt cggcgtcgtc 660
atcgacctcg agcccgcccg caccgaggat cctgcactct ccatcgctgg cgcagtccag 720
tctcagaagc tcgcggtccg tgccatctcc cgcctccagg cgcttcccgg cggtgacgtc 780
aagctccttt gcgacaccgt tgttgagtat gttagagagc tcacaggtta tgaccgcgtt 840
atggtgtaca ggttccatga ggatgagcat ggagaagtcg ttgccgagag ccggcgcaat 900
aaccttgagc cctacatcgg gttgcattat cctgctacag atatcccaca ggcatcacgc 960
ttcctgttcc ggcagaaccg tgtgcggatg attgctgatt gccatgctgc gccggtgagg 1020
gtcatccagg atcctgcact aacacagccg ctgtgcttgg ttgggtccac gctgcgttcg 1080
ccgcatggtt gccatgcgca gtatatggcg aacatgggtt ccattgcatc tcttgttatg 1140
gcagtgatca ttagtagtgg tggggatgat gatcataaca tttcacgggg cagcatcccg 1200
tcggcgatga agttgtgggg gttggtagta tgccaccaca catctccacg gtgcatccct 1260
ttcccactac ggtatgcatg cgagttcctc atgcaagcct ttgggttgca gctcaacatg 1320
gagttgcagc ttgcacacca actgtcagag aaacacattc tgcggacgca gacactgctg 1380
tgtgatatgc tactccggga ttcaccaact ggcattgtca cacaaagccc cagcatcatg 1440
gaccttgtga agtgtgatgg tgctgctctg tattaccatg ggaagtacta ccctcttggt 1500
gtcactccca cagaagttca gattaaggac atcatcgagt ggttgactat gtgccatgga 1560
gactccacag ggctcagcac agatagcctt gctgatgcag gctaccctgg tgctgctgca 1620
ctaggagatg cagtgagtgg aatggcggta gcatatatca cgccaagtga ttatttgttt 1680
tggttccggt cacacacagc taaggagata aagtggggtg gtgcaaagca tcatccagag 1740
gataaggatg atggacaacg aatgcatcca cgatcatcgt tcaaggcatt tcttgaagtt 1800
gtgaagagta ggagcttacc atgggagaat gcggagatgg atgcaataca ttccttgcag 1860
ctcatattgc gggactcttt cagagattct gcagagggca caagtaactc aaaagccata 1920
gtgaatggcc aggttcagct tggggagcta gaattacggg gaatagatga gcttagctcg 1980
gtagcaaggg agatggttcg gttgatcgag acagcaacag tacccatctt tgcagtagat 2040
actgatggat gtataaatgg ttggaatgca aaggttgctg agctgacagg cctctctgtt 2100
gaggaagcaa tgggcaaatc attggtaaat gatctcatct tcaaggaatc tgaggaaaca 2160
gtaaacaagc tactctcacg agctttaaga ggtgatgaag acaaaaatgt agagataaag 2220
ttgaagacat tcgggccaga acaatctaaa ggaccaatat tcgttattgt gaatgcttgt 2280
tctagcaggg attacactaa aaatattgtt ggtgtttgtt ttgttggcca agatgtcaca 2340
ggacaaaagg tggtcatgga taaatttatc aacatacaag gggattacaa ggctatcgta 2400
cacaacccta atcctctcat acccccaata tttgcttcag atgagaatac ttgttgttcg 2460
gagtggaaca cagcaatgga aaaactcaca ggatggtcaa gaggggaagt tgttggtaag 2520
cttctggtcg gtgaggtctt tggtaattgt tgtcgactca agggcccaga tgcattaacg 2580
aaattcatga ttgtcctaca caacgctata ggaggacagg attgtgaaaa gttccccttt 2640
tcattttttg acaagaatgg gaaatacgtg caggccttat tgactgcaaa cacgaggagc 2700
agaatggatg gtgaggccat aggagccttc tgtttcttgc agattgcaag tcctgaatta 2760
cagcaagcct ttgagattca gagacaccat gaaaagaagt gttatgcaag gatgaaggaa 2820
ttggcttaca tttaccagga aataaagaat cctctcaacg gtatccgatt tacaaactcg 2880
ttattggaga tgactgatct aaaggatgac cagaggcagt ttcttgaaac cagcactgct 2940
tgtgagaaac agatgtccaa aattgttaag gatgctagcc tccaaagtat tgaggatggc 3000
tctttggtgc ttgagaaagg tgaattttca ctaggtagtg ttatgaatgc tgttgtcagc 3060
caagtgatga tacagttgag agaaagagat ttacaactta ttcgagatat ccctgatgaa 3120
attaaagaag cctcagcata tggtgaccaa tatagaattc aacaagtttt atgtgacttt 3180
ttgctaagca tggtgaggtt tgctccagct gaaaatggct gggtggagat acaggtcaga 3240
ccaaatataa aacaaaattc tgatggaaca gacacaatgc ttttcctctt caggtttgcc 3300
tgtcctggcg aaggccttcc cccagagatt gttcaagaca tgtttagtaa ctcccgctgg 3360
acaacccaag agggtattgg cctaagcata tgcaggaaga tcctaaaatt gatgggtggc 3420
gaggtccaat atataaggga gtcggagcgg agtttcttcc atatcgtact tgagctgccc 3480
cagcctcagc aagcagcaag tagggggaca agctga 3516
<211> 8138
<212> DNA
<213>序列
<221>水稻光敏色素PHYB基因序列
<400> 3
catcgcatcg tcatcgcgac tcatctcgcc ttaacgcagc agcaagccaa cgcgactgtg 60
tgcaatccca ctctcatctc cctcagttac tgccttgctc cccaacccca ggagcaagca 120
caagtccact gcgtgcgtgc gagcgatgac tccgataacc gcaggggcgg tgaggtgagg 180
tgaggcgagg aaaaaatcgg acgcacccgc ctaatccgga ccaatccacc gcatcggcgc 240
catggcctcg ggtagccgcg ccacgcccac gcgctccccc tcctccgcgc ggcccgcggc 300
gccgcggcac cagcaccacc actcgcagtc ctcgggcggg agcacgtccc gcgcgggagg 360
gggtggcggg ggcgggggag ggggaggggg cggcgcggcc gccgcggagt cggtgtccaa 420
ggccgtggcg cagtacaccc tggacgcgcg cctccacgcc gtgttcgagc agtcgggcgc 480
gtcgggccgc agcttcgact acacgcagtc gctgcgtgcg tcgcccaccc cgtcctccga 540
gcagcagatc gccgcctacc tctcccgcat ccagcgcggc gggcacatac agcccttcgg 600
ctgcacgctc gccgtcgccg acgactcctc cttccgcctc ctcgcctact ccgagaacac 660
cgccgacctg ctcgacctgt cgccccacca ctccgtcccc tcgctcgact cctccgcggt 720
gcctcccccc gtctcgctcg gcgcagacgc gcgcctcctt ttcgccccct cgtccgccgt 780
cctcctcgag cgcgccttcg ccgcgcgcga gatctcgctg ctcaacccgc tctggatcca 840
ctccagggtc tcctctaaac ccttctacgc catcctccac cgcatcgatg tcggcgtcgt 900
catcgacctc gagcccgccc gcaccgagga tcctgcactc tccatcgctg gcgcagtcca 960
gtctcagaag ctcgcggtcc gtgccatctc ccgcctccag gcgcttcccg gcggtgacgt 1020
caagctcctt tgcgacaccg ttgttgagta tgttagagag ctcacaggtt atgaccgcgt 1080
tatggtgtac aggttccatg aggatgagca tggagaagtc gttgccgaga gccggcgcaa 1140
taaccttgag ccctacatcg ggttgcatta tcctgctaca gatatcccac aggcatcacg 1200
cttcctgttc cggcagaacc gtgtgcggat gattgctgat tgccatgctg cgccggtgag 1260
ggtcatccag gatcctgcac taacacagcc gctgtgcttg gttgggtcca cgctgcgttc 1320
gccgcatggt tgccatgcgc agtatatggc gaacatgggt tccattgcat ctcttgttat 1380
ggcagtgatc attagtagtg gtggggatga tgatcataac atttcacggg gcagcatccc 1440
gtcggcgatg aagttgtggg ggttggtagt atgccaccac acatctccac ggtgcatccc 1500
tttcccacta cggtatgcat gcgagttcct catgcaagcc tttgggttgc agctcaacat 1560
ggagttgcag cttgcacacc aactgtcaga gaaacacatt ctgcggacgc agacactgct 1620
gtgtgatatg ctactccggg attcaccaac tggcattgtc acacaaagcc ccagcatcat 1680
ggaccttgtg aagtgtgatg gtgctgctct gtattaccat gggaagtact accctcttgg 1740
tgtcactccc acagaagttc agattaagga catcatcgag tggttgacta tgtgccatgg 1800
agactccaca gggctcagca cagatagcct tgctgatgca ggctaccctg gtgctgctgc 1860
actaggagat gcagtgagtg gaatggcggt agcatatatc acgccaagtg attatttgtt 1920
ttggttccgg tcacacacag ctaaggagat aaagtggggt ggtgcaaagc atcatccaga 1980
ggataaggat gatggacaac gaatgcatcc acgatcatcg ttcaaggcat ttcttgaagt 2040
tgtgaagagt aggagcttac catgggagaa tgcggagatg gatgcaatac attccttgca 2100
gctcatattg cgggactctt tcagagattc tgcagagggc acaagtaact caaaagccat 2160
agtgaatggc caggttcagc ttggggagct agaattacgg ggaatagatg agcttagctc 2220
ggtagcaagg gagatggttc ggttgatcga gacagcaaca gtacccatct ttgcagtaga 2280
tactgatgga tgtataaatg gttggaatgc aaaggttgct gagctgacag gcctctctgt 2340
tgaggaagca atgggcaaat cattggtaaa tgatctcatc ttcaaggaat ctgaggaaac 2400
agtaaacaag ctactctcac gagctttaag aggtacctct cttgtcatgc taattggttg 2460
ttcttgcctt tcatgttttc ttttgcgaat atacacaata ctgtttactc gatattcttt 2520
aattacttgg atccctaacc tgtaatgcta atttggttcc tcttgccttt catgtttcat 2580
atggatagtg cacacaatac tgtttactcg atattcttta atgacttgac atttagacac 2640
atttgataat ttacaacagt gcccaaaact gacaaagtat attgagctca ttcagtaggt 2700
acatgtaagg ctggaatact agttatatta ttctaaatta cttattcaat acaccacagt 2760
gagtttatgt tttcactaag gggaagtggt aggactgggt tcatgatttg ttaatttgtt 2820
gctcatgcag gtgatgaaga caaaaatgta gagataaagt tgaagacatt cgggccagaa 2880
caatctaaag gaccaatatt cgttattgtg aatgcttgtt ctagcaggga ttacactaaa 2940
aatattgttg gtgtttgttt tgttggccaa gatgtcacag gacaaaaggt ggtcatggat 3000
aaatttatca acatacaagg ggattacaag gctatcgtac acaaccctaa tcctctcata 3060
cccccaatat ttgcttcaga tgagaatact tgttgttcgg agtggaacac agcaatggaa 3120
aaactcacag gatggtcaag aggggaagtt gttggtaagc ttctggtcgg tgaggtcttt 3180
ggtaattgtt gtcgactcaa gggcccagat gcattaacga aattcatgat tgtcctacac 3240
aacgctatag gaggacagga ttgtgaaaag ttcccctttt cattttttga caagaatggg 3300
aaatacgtgc aggccttatt gactgcaaac acgaggagca gaatggatgg tgaggccata 3360
ggagccttct gtttcttgca gattgcaagt cctgaattac agcaagcctt tgagattcag 3420
agacaccatg aaaagaagtg ttatgcaagg atgaaggaat tggcttacat ttaccaggaa 3480
ataaagaatc ctctcaacgg tatccgattt acaaactcgt tattggagat gactgatcta 3540
aaggatgacc agaggcagtt tcttgaaacc agcactgctt gtgagaaaca gatgtccaaa 3600
attgttaagg atgctagcct ccaaagtatt gaggatgggt tagtattctg aacttacctt 3660
tttctttaac tttaatgaat actgatccac actaatgtct ctgtgtttgg gataacatct 3720
gagaatggca tatgatatcc cgttgtgctc ttgaaaaaat gtatgttttg tgatcctctc 3780
ctttctttac cttgtgctaa gactaggtgt tgtttggtgt ttcagttggc actaaccgtt 3840
aacctaagca tggatggaaa ataaggaatt agagaagtcc gtcagactga cagctctggt 3900
tcactgtatt catttatctg aaaagttctc ttgccatgta aattttatcc ttttttagat 3960
taatgcctgt attctgtgca tgtgggcctt ttatgggaat ttagtttact gtcagaaccc 4020
ttcttgtcat tgcagaaatg aactaaaact agttgcccaa gtgtagatat caagcataaa 4080
attcatgcta atatctatat tgctagtatc ctaagtacat tgccgtcctc aacagcttaa 4140
ccttttggcc aaaatggttg ttgcatgaaa gtcgacatca agcagcttac tctaaaaatg 4200
ccattgccac cctttactct tgtttcataa atatggtaac tatttcttgt aaatgctgct 4260
gtacacttta cttgtttgaa attttggaga tcattctggt ttccttgcat cacttgatca 4320
attcctctca gctgcattta ttgacaatga atgtgcaatg cttttatcct gaggaagtca 4380
ctactccctc tggttccata attcttggtg ttttggacaa tgacacggtc tccgaaatat 4440
atctttgagt atatttttct attataatac ttcctccgtc ccaaattaag ttaatatagt 4500
acgggatgtg acatatccta gtagtaccaa agtccaagca tagcctaatc tagcatagtt 4560
ccaaatagga actcatggct ctgtgatgta tttttcttgt gtcatttact tggtgtaatt 4620
tcattctagg tagaagcatt gtgtgacttt ttcgtgtgct gagacatttg aactcactgc 4680
taaatttgac gccttattag tattttaaca aatgattagc tgaaagctta tttgtttttt 4740
gtgtttatta agcagctctt tggtgcttga gaaaggtgaa ttttcactag gtagtgttat 4800
gaatgctgtt gtcagccaag tgatgataca gttgagagaa agagatttac aacttattcg 4860
agatatccct gatgaaatta aagaagcctc agcatatggt gaccaatata gaattcaaca 4920
agttttatgt gactttttgc taagcatggt gaggtttgct ccagctgaaa atggctgggt 4980
ggagatacag gtcagaccaa atataaaaca aaattctgat ggaacagaca caatgctttt 5040
cctcttcagg ttagctattt atcttcattt tcaataccag aaggcaatac atattctcac 5100
gcaggaattt cttgtgttga atttggtaga ggacaagtta aatatttggt taaatttata 5160
ttcgttggtc atatttgctg tagcactcta ggtaatattt gtgtttatcc tgaactattg 5220
atgctctacc tacagacact acaaaaaata gattatccta aataagatct cctacatatc 5280
aaacatatgt attatccctg tacatatctg atagactgaa gaccccacct atttaagtat 5340
aaatatatgc aaaatatatg tgtcatgggt tggctggtca ctctctttga gtaaatttgg 5400
aagataataa aatacacttg gtttattttc tttgagtaag tgacataaaa cgctaggttt 5460
tggggcctta gtaacacaaa cccccaagtt ttgcaatttg tgtcaaagaa cccaaggctt 5520
tgaggcaaaa tgctttataa agccctagat ttatatacaa aacacttaca cgccattata 5580
atgaaccaaa tttcaactgt atacttacat agatacgcat tcctaatcct accgtgtagt 5640
ctatttcctt ccccactctc ctactgaatg aatacacaat ggcaaactcc agttacaaag 5700
accagggccg tctccaggat atgggggccc cagaacaaaa tgcaaattga gaccctaaat 5760
ttttaaaaaa taatgtgtca ttttcagtta ttatataact ttaatatgtg ttatttcgta 5820
tgatatttag tacttcctcc gtttcaggtt ataagacttt ctagcattgc ccacattcat 5880
aaatatgtta atgaatctag acatatatat atgtcaagat tcattaacat atatatgaat 5940
atgggcaatg ctagaaagtc ttataaccta aaacggaggt agtaatatat tttcaaatat 6000
taatggtaca agagtaaagg tagtactaac cttatgttcc agtgtaaagc atcatctgct 6060
gaggatttga ggacttcctg ttttataaaa agggagaaga cgttcacatt acttttgatt 6120
cgataattat caatccaatg gaatgatgga tcattcaaaa tactgtaaca gtgtaacttc 6180
attagccttg attcaaatta gtaatcagta aattatcgat tccgagtacc aactagagct 6240
aggcctcgca gcctcgtcgc cgctcgccgt tcccattgct ccgcttggca acatcggcgt 6300
tgtgctgcct gctgccgtga ggcgtaatgc tgtcgctgcc gcctgctgtg ctgcacacac 6360
gcagcaagtc gcgtctctcc acgagtgaac actaaaaagt aaacagttaa gacggagcga 6420
catatgtctt ccgcctgggc acctagcgta gctcctgatc tagggccagg ctgcaggcct 6480
actccgaggc gggggccccc aaaaataggg ggccttgtgc ggccgccgtg ctcgcacatg 6540
gccttagacg gccctgacaa agacatgtta actgggtaca taaatgcaca aacagtcatg 6600
ccgtcaacat cgatacttgt cgagtaggcg gctaatgcac aaacagtcaa ggtactactg 6660
aaaaaactac cacatactat tttgtacagc tattatgcat aaattccata gctagctggt 6720
tgatgttgac acaaaatggg gttctgtgaa acatttgggc ccaaaacctg ggttagttga 6780
aataaattgc aaaatctggg ttcttatgtt actagtacca cactaccact aaaactgcag 6840
atttatgaaa tctaccttat gtataattaa gcctcctagg ctcttaggaa ctgctgctaa 6900
caaaatagta gagatatgat aggattttga caataggtaa caaatactaa gaacaaggaa 6960
actagagatg gtatgatcaa ttaaacttgg tccttatctg ttgaagatgg tgttggaact 7020
ttatcttagt gatgccagct aggaagccct catacctgct gctaggtgct acagtacgct 7080
actgttcacc ggtgtccatg gctagcacac cctcatggtt ccccccccct ccaaaaaaaa 7140
aaaagattag ttattacagc atgtaccttc gttgtaatgg tgttgtaaat aataaaatat 7200
caacaattat ttcttggtgt tggagtatta aacgtgtgac actggtcacc aaggtgaatg 7260
atgcttaaaa tttggaattt tttaattgtc tgcactagtt cgtgttgtta cttatagtat 7320
agagaaccta atgactcggc agggaggacc acaaactgat cgcttaccat ctatctggtt 7380
ctgcaggttt gcctgtcctg gcgaaggcct tcccccagag attgttcaag acatgtttag 7440
taactcccgc tggacaaccc aagagggtat tggcctaagc atatgcagga agatcctaaa 7500
attgatgggt ggcgaggtcc aatatataag ggagtcggag cggagtttct tccatatcgt 7560
acttgagctg ccccagcctc agcaagcagc aagtaggggg acaagctgat atggtgtatg 7620
ctcgtcgcta acctcgcata actattcggt caaccaggtg acctgggatc ttctgatgga 7680
gaacccagtt tatgagagtt ccagaaacca acatttcgtc cactctgatg aagcacatct 7740
gaactttgga acggcatcgg tgattctcgg tgtcgaggtg gtccctccag tctcctgatt 7800
cctggcatgc ccgactgtaa gttcagcttt ggacgatgtt gttctattag agttctatgg 7860
cggcaagcaa tgcacactga cggtcatgta actcgtagca taggcccact accacttggt 7920
tgaagtacat atatgttcta aaagctgcca tgtatataac atcggttata tatgtactac 7980
gtgcataagg agagctgtgc agctcccagg gtggtatttt gtagggcttc ccaagcctat 8040
gacatcttat tatatcatct taacataaaa gcatttggtt tccttggatg tcggcatcta 8100
ctcgattccc caattctgtt gtgcagagta ttgtcctg 8138
<211> 552
<212> DNA
<213>序列
<221>抗除草剂基因序列
<400> 4
atgagcccag aacgacgccc ggccgacatc cgccgtgcca ccgaggcgga catgccggcg 60
gtctgcacca tcgtcaacca ctacatcgag acaagcacgg tcaacttccg taccgagccg 120
caggaaccgc aggagtggac ggacgacctc gtccgtctgc gggagcgcta tccctggctc 180
gtcgccgagg tggacggcga ggtcgccggc atcgcctacg cgggcccctg gaaggcacgc 240
aacgcctacg actggacggc cgagtcgacc gtgtacgtct ccccccgcca ccagcggacg 300
ggactgggct ccacgctcta cacccacctg ctgaagtccc tggaggcaca gggcttcaag 360
agcgtggtcg ctgtcatcgg gctgcccaac gacccgagcg tgcgcatgca cgaggcgctc 420
ggatatgccc cccgcggcat gctgcgggcg gccggcttca agcacgggaa ctggcatgac 480
gtgggtttct ggcagctgga cttcagcctg ccggtaccgc cccgtccggt cctgcccgtc 540
accgagattt ga 552
<211> 22
<212> DNA
<213>序列
<221>水稻光敏色素PHYB基因gRNA序列
<400> 5
tcctccaccg catcgatgtc gg 22
<211> 23
<212> DNA
<213>人工序列
<221>gRNA-F
<400>6
ggcgtcctcc accgcatcga tgt 23
<211> 23
<212> DNA
<213>人工序列
<221>gRNA-R
<400> 7
aaacacatcg atgcggtgga gga 23
<211> 24
<212> DNA
<213>人工序列
<221> pBUN411-VF
<400> 8
ccatgaagcc tttcaggaca tgta 24
<211> 24
<212> DNA
<213>人工序列
<221> pBUN411-VR
<400> 9
acgctgcaaa catgagacgg agaa 24
<211> 20
<212> DNA
<213>人工序列
<221> Bar-F
<400>10
aagcacggtc aacttccgta 20
<211> 20
<212> DNA
<213>人工序列
<221> Bar-R
<400> 11
gaagtccagc tgccagaaac 20
<211> 19
<212> DNA
<213>人工序列
<221> PHYB-test-F
<400> 12
ctacctctcc cgcatccag 19
<211> 20
<212> DNA
<213>人工序列
<221> PHYB-test-R
<400> 13
gcaacgactt ctccatgctc 20
<211> 258
<212> PRT
<213>序列
<221> PAM序列前第3和第4碱基间插入1个碱基“a”氨基酸序列
<400> 14
MASGSRATPT RSPSSARPAA PRHQHHHSQS SGGSTSRAGG GGGGGGGGGG GAAAAESVSK 60
AVAQYTLDAR LHAVFEQSGA SGRSFDYTQS LRASPTPSSE QQIAAYLSRI QRGGHIQPFG 120
CTLAVADDSS FRLLAYSENT ADLLDLSPHH SVPSLDSSAV PPPVSLGADA RLLFAPSSAV 180
LLERAFAARE ISLLNPLWIH SRVSSKPFYA ILHRIECRRR HRPRARPHRG SCTLHRWRSP 240
VSEARGPCHL PPPGASRR 258
<211> 258
<212> PRT
<213>序列
<221> PAM序列前第3和第4碱基间插入1个碱基“t”氨基酸序列
<400> 15
MASGSRATPT RSPSSARPAA PRHQHHHSQS SGGSTSRAGG GGGGGGGGGG GAAAAESVSK 60
AVAQYTLDAR LHAVFEQSGA SGRSFDYTQS LRASPTPSSE QQIAAYLSRI QRGGHIQPFG 120
CTLAVADDSS FRLLAYSENT ADLLDLSPHH SVPSLDSSAV PPPVSLGADA RLLFAPSSAV 180
LLERAFAARE ISLLNPLWIH SRVSSKPFYA ILHRIDCRRR HRPRARPHRG SCTLHRWRSP 240
VSEARGPCHL PPPGASRR 258
<211> 257
<212> PRT
<213>序列
<221> PAM序列前2个碱基“ga”缺失氨基酸序列
<400> 16
MASGSRATPT RSPSSARPAA PRHQHHHSQS SGGSTSRAGG GGGGGGGGGG GAAAAESVSK 60
AVAQYTLDAR LHAVFEQSGA SGRSFDYTQS LRASPTPSSE QQIAAYLSRI QRGGHIQPFG 120
CTLAVADDSS FRLLAYSENT ADLLDLSPHH SVPSLDSSAV PPPVSLGADA RLLFAPSSAV 180
LLERAFAARE ISLLNPLWIH SRVSSKPFYA ILHRICRRRH RPRARPHRGS CTLHRWRSPV 240
SEARGPCHLP PPGASRR 257
<211> 329
<212> PRT
<213>序列
<221> PAM序列第4个碱基“a”缺失氨基酸序列
<400> 17
MASGSRATPT RSPSSARPAA PRHQHHHSQS SGGSTSRAGG GGGGGGGGGG GAAAAESVSK 60
AVAQYTLDAR LHAVFEQSGA SGRSFDYTQS LRASPTPSSE QQIAAYLSRI QRGGHIQPFG 120
CTLAVADDSS FRLLAYSENT ADLLDLSPHH SVPSLDSSAV PPPVSLGADA RLLFAPSSAV 180
LLERAFAARE ISLLNPLWIH SRVSSKPFYA ILHRIVSASS STSSPPAPRI LHSPSLAQSS 240
LRSSRSVPSP ASRRFPAVTS SSFATPLLSM LESSQVMTAL WCTGSMRMSM EKSLPRAGAI 300
TLSPTSGCII LLQISHRHHA SCSGRTVCG 329

Claims (9)

1.一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:包括如下步骤:
(1)gRNA序列的选择:
在PHYB基因第一外显子区域选择一段区域作为gRNA序列,所选gRNA序列为:5′-TCCTCCACCGCATCGATGT-3′;
(2)gRNA序列的上下游引物的设计:
根据步骤(1)中的gRNA序列设计引物如下:
上游引物gRNA-F:5′-ggcgTCCTCCACCGCATCGATGT-3′,
下游引物gRNA-R:5′-aaacACATCGATGCGGTGGAGGA-3′;
(3)gRNA表达载体的构建:
1)取所述上下游引物混合、退火,得双链DNA;
2)用限制性内切酶对质粒进行酶切得到线性质粒;
3)用T4DNA连接酶连接所述线性质粒和双链DNA得到连接产物;连接产物经转化、筛选得到表达载体;
(4)将表达载体导入相应的浸染细菌中,得到含有CRISPR/Cas9-gRNA质粒的浸染细菌,然后用含有CRISPR/Cas9-gRNA质粒的浸染细菌侵染水稻愈伤组织;
(5)将步骤(4)中的愈伤组织经诱导获得再生苗,筛选得到转基因阳性植株。
2.根据权利要求1所述的利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:步骤(3)中1)所述的退火的条件为:65℃退火5min。
3.根据权利要求1所述的利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:步骤(3)中2)所述的限制性内切酶为BsaI,所述的质粒为pBUN411。
4.根据权利要求1所述的利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:步骤(4)中所述的浸染细菌为农杆菌。
5.根据权利要求1所述的利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:步骤(5)中再生苗的获得方式为用除草剂筛选得到。
6.根据权利要求5所述的利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:步骤(5)为采用抗除草剂基因引物进行筛选,所述抗除草剂基因引物序列为:
Bar-F:5′-AAGCACGGTCAACTTCCGTA-3′;
Bar-R:5′-GAAGTCCAGCTGCCAGAAAC-3′。
7.根据权利要求1所述的利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:步骤(5)中在筛选出阳性植株之后进行鉴定,所述鉴定是针对gRNA靶点序列两侧设计引物进行鉴定,两侧引物序列为:
PHYB-test-F:5′-CTACCTCTCCCGCATCCAG-3′;
PHYB-test-R:5′-GCAACGACTTCTCCATGCTC-3′。
8.根据权利要求7所述的利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:所述的鉴定包括如下步骤:
A、以单株转基因阳性植株的DNA为模板,以PHYB-test-F和PHYB-test-R为引物进行PCR扩增得到PCR扩增产物;
B、用限制性内切酶Bsu15I酶切上述PCR扩增产物得到酶切产物;
C、电泳检测步骤B中所得的酶切产物确定突变株。
9.根据权利要求8所述的利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法,其特征在于:对步骤A中的PCR扩增产物进行测序获得各株系的突变基因型。
CN201810866033.2A 2018-08-01 2018-08-01 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法 Pending CN108913717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810866033.2A CN108913717A (zh) 2018-08-01 2018-08-01 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810866033.2A CN108913717A (zh) 2018-08-01 2018-08-01 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法

Publications (1)

Publication Number Publication Date
CN108913717A true CN108913717A (zh) 2018-11-30

Family

ID=64394040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810866033.2A Pending CN108913717A (zh) 2018-08-01 2018-08-01 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法

Country Status (1)

Country Link
CN (1) CN108913717A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
CN110760540A (zh) * 2019-11-29 2020-02-07 中国农业科学院植物保护研究所 一套用于水稻的基因编辑人工系统及其应用
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
CN111508558A (zh) * 2020-03-23 2020-08-07 广州赛业百沐生物科技有限公司 一种基于CRISPR-Cas9技术设计点突变模型的方法及系统
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
WO2021159727A1 (zh) * 2020-02-14 2021-08-19 华南农业大学 玉米开花期相关的ZmPHYCs突变型蛋白、其编码基因、重组载体和应用
WO2021234370A1 (en) 2020-05-20 2021-11-25 Oxford University Innovation Limited Enhancement of productivity in c3 plants
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993889A (zh) * 2009-08-27 2011-03-30 中国科学院上海生命科学研究院 改变植物气孔开度和密度的方法
CN107164401A (zh) * 2017-05-25 2017-09-15 河南农业大学 一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993889A (zh) * 2009-08-27 2011-03-30 中国科学院上海生命科学研究院 改变植物气孔开度和密度的方法
CN107164401A (zh) * 2017-05-25 2017-09-15 河南农业大学 一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMURA Y: "Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa", 《BIOSCI BIOTECHNOL BIOCHEM》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110760540A (zh) * 2019-11-29 2020-02-07 中国农业科学院植物保护研究所 一套用于水稻的基因编辑人工系统及其应用
WO2021159727A1 (zh) * 2020-02-14 2021-08-19 华南农业大学 玉米开花期相关的ZmPHYCs突变型蛋白、其编码基因、重组载体和应用
CN111508558A (zh) * 2020-03-23 2020-08-07 广州赛业百沐生物科技有限公司 一种基于CRISPR-Cas9技术设计点突变模型的方法及系统
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2021234370A1 (en) 2020-05-20 2021-11-25 Oxford University Innovation Limited Enhancement of productivity in c3 plants

Similar Documents

Publication Publication Date Title
CN108913717A (zh) 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法
Cai et al. CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean
Zhang et al. Development of an Agrobacterium‐delivered CRISPR/Cas9 system for wheat genome editing
Shan et al. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems
US11732251B2 (en) Anti-CRISPR polynucleotides and polypeptides and methods of use
US20170114351A1 (en) TARGETED VIRAL-MEDIATED PLANT GENOME EDITING USING CRISPR /Cas9
CN108064129A (zh) 玉米和大豆中复合性状基因座的位点特异性整合位点的产生和使用方法
Li et al. Two novel AP2/EREBP transcription factor genes TaPARG have pleiotropic functions on plant architecture and yield-related traits in common wheat
CN107164401A (zh) 一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及应用
US20170016017A1 (en) Method for increasing plant yields
US20210348179A1 (en) Compositions and methods for regulating gene expression for targeted mutagenesis
CA3118340A1 (en) Targeted mutagenesis using base editors
US20210189419A1 (en) Loss-of-function gene of dominant gene eifiso4e-s resistant to tvbmv and uses thereof
WO2021159727A1 (zh) 玉米开花期相关的ZmPHYCs突变型蛋白、其编码基因、重组载体和应用
Wang et al. Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases
Char et al. Use of CRISPR/Cas9 for targeted mutagenesis in sorghum
Bhowmik et al. Application of CRISPR-Cas genome editing tools for the improvement of plant abiotic stress tolerance
Santoso et al. Targeted mutation of GA20ox-2 gene using CRISPR/Cas9 system generated semi-dwarf phenotype in rice
CN106399287B (zh) 一种水稻mit1基因、其编码蛋白及应用
Bhattacharjee et al. Strategic transgene-free approaches of CRISPR-based genome editing in plants
CN111087457B (zh) 提高氮素利用率和作物产量的蛋白ngr5及其编码基因与应用
Movahedi et al. CRISPR-mediated genome editing in poplar issued by efficient transformation
Kershanskaya et al. RETRACTED: CRISPR/Cas genome editing perspectives for barley breeding
CN110904109B (zh) 控制水稻种子萌发的miR1866基因、过表达载体、gRNA表达载体、制备方法及其应用
CN106883291A (zh) 植物株型相关蛋白prog2及其编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130

RJ01 Rejection of invention patent application after publication