CN108707629A - 斑马鱼notch1b基因突变体的制备方法 - Google Patents

斑马鱼notch1b基因突变体的制备方法 Download PDF

Info

Publication number
CN108707629A
CN108707629A CN201810527945.7A CN201810527945A CN108707629A CN 108707629 A CN108707629 A CN 108707629A CN 201810527945 A CN201810527945 A CN 201810527945A CN 108707629 A CN108707629 A CN 108707629A
Authority
CN
China
Prior art keywords
zebra fish
notchlb
notch1b
grna
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810527945.7A
Other languages
English (en)
Inventor
张庆华
郭欣娅
董雪红
岳倩文
李伟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Shanghai Ocean University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201810527945.7A priority Critical patent/CN108707629A/zh
Publication of CN108707629A publication Critical patent/CN108707629A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases

Abstract

本发明公开了一种斑马鱼notch1b基因突变体的制备方法;包括如下步骤:确定notch1b基因敲除的靶点位置;以pUC19‑gRNA scaffold质粒为模板,使用引物T7‑notch1b‑sfd、tracr rev进行PCR扩增;对PCR产物纯化、体外转录获得gRNA;将gRNA与Cas9mRNA导入斑马鱼一细胞期胚胎中,培养获得稳定遗传的notch1b基因突变体。本发明利用CRISPR/Cas9技术,通过选择独特的一段打靶区,使得斑马鱼中的notch1b基因被敲除,又不“误伤”其他基因,形成Notch1b敲除的斑马鱼,对于研究Notch信号通路意义重大。

Description

斑马鱼notch1b基因突变体的制备方法
技术领域
本发明涉及一种斑马鱼突变体,具体涉及一种斑马鱼notch1b基因突变体的制备方法。
背景技术
Notch信号通路是广泛存在于脊椎动物和无脊椎动物细胞中且高度保守的信号途径,其受体在不同物种之间(从果蝇到人)以及同一物种的不同成员之间都有高度的结构同源性,由相邻细胞膜外配体与受体相互作用进而调控激活下游通路的典型信号通路,并与其它信号通路共同构成复杂而庞大的网络结构。越来越多的研究发现,Notch信号通路可以通过调节多种免疫细胞的发育和功能来调节机体的免疫功能,而且还可以直接调控免疫因子的表达。
CRISPR/Cas(Clustered Regularly Interspersed Short PalindromicRepeats,CRISPR/CRISPR-associated genes,Cas gene)系统是一种微生物的后天免疫系统,其主要功能是对抗入侵的病毒及外源DNA,利用向导RNA核酸酶对外源基因进行切割。CRISPR技术是最新出现的第三代基因组编辑工具,它能够完成RNA导向的DNA识别及编辑。CRISPR/Cas有三种类型:I型、II型和III型,其中Type II的运用最多,只需要一个Cas9核酸内切酶切割DNA双链,即CRISPR/Cas9系统,Cas9蛋白主要促进crRNA的成熟,降解侵入的噬菌体DNA或者入侵的外源质粒。相比于锌指核酸酶(Zinc-finger nuclease,ZFN)和转录激活样效应因子核酸酶(transcription activator-like effector nuclease,TALEN),CRISPR/Cas9系统具有容易合成、打靶效率高、靶向精确、易于操作和细胞毒性低等优势,而且其高效性在确保体细胞内对基因进行突变的同时,也能造成生殖细胞的突变,从而将突变基因传递到下一代。
Notchlb是鱼类Notch信号通路中的一个受体,与小鼠Notchl、斑马鱼Notchla受体表现出类似的高水平的一致性,分别为73%和72%,而与小鼠的Notch3、Notch4、大鼠的Notch2一致性比较低,分别为51%、37%、和54%。在小鼠中,利用Cre-loxp系统条件性敲除肝窦内皮Notchl重组信号结合蛋白J(RBP-J),导致小鼠肝窦内皮细胞增殖、肝脏充血、肝窦内纤维蛋白样物质沉积等肝静脉闭塞病样改变。最新研究表明,利用Cre-loxp系统特异性敲除小鼠骨髓中的Notchl,结果加剧了由病毒引起的干细胞损伤,增加了巨噬细胞和嗜中性粒细胞的浸润和非应激性的干细胞凋亡。然而,目前关于小鼠中Notch1突变体的研究不足,并且小鼠模型的构建及维护费用昂贵。
斑马鱼notch1b基因位于第5号染色体上,有3个转录本,其中最长的一个转录本mRNA全长7824bp,编码2436个氨基酸,含有35个外显子和34个内含子。如何选择一个有功能的靶点,使整个基因失去功能而且易于筛选是十分困难的,成功构建notch1 b的突变体,对于研究Notch信号通路的功能是十分必要的。
发明内容
本发明的目的在于提供一种斑马鱼notch1b基因突变体的制备方法。
本发明的目的是通过以下技术方案来实现的:
本发明涉及一种斑马鱼notch1b基因突变体的制备方法,所述方法包括如下步骤:
S1、确定notch1b基因敲除的靶点在斑马鱼notch1b的基因序列的第四个外显子上;
S2、根据步骤S1确定的靶点序列设计扩增引物;
S3、以pUC19-gRNA scaffold质粒为模板,使用引物T7-notch1b-sfd、tracr rev进行PCR扩增;
S4、对步骤S3的PCR产物进行纯化,体外转录获得gRNA;
S5、以pXT7-hCas9质粒为模板,体外转录合成Cas9 mRNA;
S6、将gRNA与Cas9 mRNA导入斑马鱼一细胞期胚胎中;
S7、培养获得稳定遗传的斑马鱼notch1b基因突变体。
优选的,步骤S2中,所述靶点序列为GGTGCTCCGTGCCGAAACGG(SEQ ID NO.2)。
优选的,步骤S3中,pUC19-gRNA scaffold质粒模板序列为:GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ IDNO.1)。
优选的,步骤S3中,所述引物T7-notch1b-sfd的序列为TAATACGACTCACTATAGGTGCTCCGTGCCGAAACGGGTTTTAGAGCTAGAAATAGC(SEQ ID NO.3)。
优选的,步骤S3中,所述引物tracr rev的序列为AAAAAAAGCACCGACTCGGTGCCAC(SEQ ID NO.4)。
优选的,步骤S4中,所述gRNA的序列为T7启动子+靶位点+pUC19-gRNA固定序列,所述gRNA的序列为TAATACGACTCACTATAGGTGCTCCGTGCCGAAACGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ ID NO.7)。是使用T7-notch1b-sfd和tracr rev引物对,以pUC19-gRNA scaffold质粒为模板,使用高保真酶High-Fidelity PCR Master Mix with HF Buffer,电泳、切胶回收获得。
优选的,步骤S5中,所述Cas9 mRNA是通过包括如下步骤的方法制备而得:
A1、pXT7-hCas9质粒线性化,用XbaI内切酶酶切质粒pXT7-hCas9;
A2、酶切产物纯化,用DNA Clean&Contentrator TM-5 kit纯化试剂盒对上述质粒酶切产物进行纯化;
A3、体外转录Cas9 mRNA,用mMESSAGE mMACHINE T7ULTRA kit体外转录试剂盒对Cas9 mRNA进行体外转录;
A4、对得到的产物进行加尾后用Nanodrop 2000C测浓度并-80℃保存备用。
优选的,步骤S6中,将gRNA与Cas9 mRNA导入斑马鱼具体为:将gRNA与Cas9 mRNA混合,显微注射到斑马鱼一细胞期胚胎中;其中,gRNA终浓度为100ng/μL,Cas9 mRNA终浓度为400ng/μL。
优选的,步骤S7中,具体包括如下步骤:
B1、对导入gRNA与Cas9 mRNA的斑马鱼进行notch1b敲除检测,确定notch1b F0靶点突变效率;
B2、将notch1b F0成鱼与WT斑马鱼外交,得到F1胚胎;经基因型鉴定获得notch1bF1突变体斑马鱼;
B3、将相同突变的notch1b F1突变体斑马鱼内交,获得notch1b F2突变体斑马鱼;
B4、鉴定F2中notch1b敲除的纯合子,F2中notch1b基因敲除的纯合子即所述稳定遗传的斑马鱼notch1b突变体。
优选的,步骤B1中,notch1b敲除检测采用的引物序列为notch1b F:GATGATGATGTAATTGTGGGAG(SEQ ID NO.5):notch1b R:CACGAGATCATATCCATATCAC(SEQ IDNO.6)。
本发明用CRISPR/Cas9技术制备notch1b突变体,未发现明显的表型,并且notch1b纯合突变体能成活长至成鱼,并且可繁殖后代,纯合突变体内交产生的F3斑马鱼也未发现明显的表型。同时,本发明用CRISPR/Cas9技术制备notch1b突变体,可实现永久性特异性的基因敲除,并可遗传给后代,且遗传背景清晰干净,能为研究斑马鱼天然免疫和早期发育中Notch信号通路的功能提供可靠的材料保障。
与现有技术相比,本发明具有如下有益效果:
1、利用CRISPR/Cas9技术及一段特异的打靶位点,首次在斑马鱼中敲除notch1b。
2、notch1b突变可稳定遗传,方便深入研究notch1b的基因功能。
3、notch1b纯合突变体可长至成鱼,并可繁殖后代。
4、利用CRISPR/Cas9技术,设计独特的一段打靶区,使得斑马鱼中的notch1b基因被敲除,又不“误伤”其他基因,形成notch1b敲除的斑马鱼。
附图说明
图1为notch1b F0敲除检测示意图;其中,a为notch1b F0斑马鱼胚胎PCR产物,b为T7E1内切酶酶切鉴定结果,c为PCR产物测序结果;
图2为notch1b F1突变类型统计;
图3为notch1b F2成年斑马鱼基因型检测结果;其中,a为notch1b杂合突变体内交的F2成鱼剪尾PCR结果;b为部分T7E1内切酶酶切鉴定杂合突变体结果;c为第一次酶切未切开的PCR产物与WT PCR产物1∶1混合,部分T7E1内切酶酶切鉴定纯合突变体结果;d为WT和notch1b纯合突变体PCR产物测序峰图序列比对结果。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
实施例
1材料及设备
1.1实验用鱼
本实验中所用的斑马鱼均为AB品系,购置于中国科学院上海生命科学研究院生物化学与细胞生物学研究所斑马鱼平台。
1.2质粒
pXT7-hCas9质粒,pUC19-gRNA scaffold质粒来源于文献:Chang N,Sun C,Gao L,Zhu D,Xu X,Zhu X,Xiong JW,Xi JJ.Genome editing with RNA-guided Cas9nucleasein zebrafish embryos,Cell Res,2013,23(4):465-472。
在gRNA产物合成中用到的pUC19-gRNA scaffold质粒模板序列为:
GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ ID NO.1)。
1.3主要试剂
DNA Clean&Contentrator-5(ZYMO RESEARCH,D4004),普通DNA纯化试剂盒(TIANGEN,DP204-03),T7in vitro Transcription Kit(Ambion,AM1314),乙醇(无水乙醇)(国药集团化学试剂有限公司,10009218),GenCrisprNLS-Cas9-NLS(金斯瑞,Z03389-25),Premix TaqTM(Ex TaqTM Version 2.0plus dye)(TAKARA,RR902),DNA MarkerI(TIANGEN,MD 101-02),T7endonuclease 1(NEW ENGLANDInc.,M0302L),快速质粒小提试剂盒(TIANGEN,DP105),DH5α感受态细胞(TIANGEN,CB101-03),2BEasyTaq PCRSuperMix(+dye)(TAKARA,AS111-12),LB Broth(上海生工,D915KA6602),LB Broth agar(上海生工,D911KA6566),pMDTM19-T Vector Cloning Kit(TAKARA,6013)。
1.4主要仪器
PCR仪(品牌:BIO-RAD,型号:c1000TouchTMThermal Cycler),离心机(品牌:eppendorf,型号:Centrifuge 5424),震荡混匀仪(品牌:VORTEX-GENIE,型号:G560E),紫外分光光度计(品牌:Thermo Scientific,型号:Nanodrop 2000C),电泳仪(品牌:BIO-RAD,型号:PowerPac Basic),照胶仪(品牌:BIO-RAD,型号:Gel Doc EZ Imager),电子天平(品牌:METTLER TOLEDO,型号:AL104),玻璃毛细管(品牌:WPI,型号:TW100F-4),Milli-Q Direct8超纯水系统(品牌:Millipore,型号:Milli-Q Direct 8),垂直拉针仪(品牌:NARISHIGE,型号:PC-10),恒温摇床(品牌:Innova,型号:40R),磨针器(品牌:NARISHIGE,型号:EG-400),微量注射泵(品牌:WARNER,型号:PLI-100A),恒温水浴锅(品牌:精宏,型号:H1401438,DK-8D),4℃冰箱(品牌:Haier,型号:HYC-610),-40℃低温冰箱(品牌:Haier,型号:DW-40L508),-80℃超低温冰箱(品牌:Pana-sonic,型号:MDF-U53V),高压蒸汽灭菌锅(品牌:SANYO,型号:MLS-3780)。
2实验方法
2.1gRNA合成
(1)靶点设计
a、下载序列:在Ensembl数据库查找并下载斑马鱼notch1b的基因序列。
b、靶点设计:利用http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx网站在notch1b基因ATG之后的外显子序列上设计靶点(表1)。靶点设计在notch1b的第四个外显子上。
c、靶点特异性检测:在NCBI网站将设计的靶点序列通过blast比对,验证靶位点特异性。
d、亲本检测:将用于基因敲除的WT斑马鱼剪尾并用碱裂解法获得基因组DNA,进行PCR扩增靶点附近的一段序列。
e、酶切检测:用T7E1内切酶酶切检测WT斑马鱼,看T7E1酶能否将扩增的片段切开,若切不开,则可用于后续敲除检测;若被切开,则需要根据扩增序列信息选择特异性的酶进行酶切检测。
f、测序鉴定:将PCR产物送测序,峰图及序列比对,确认亲本为纯合子,不存在自然突变,从而保证后续制备的突变体为基因敲除后造成的。
表1 notch1b靶位点序列
(2)设计检测引物:设计的引物应保证距离靶点两侧大于100bp,并且上下游引物到靶点的距离与下游引物到靶点的距离应相差大于100bp,至少50bp。引物扩增应具备特异性,扩增片段约500bp。引物在上海生工生物工程股份有限公司合成(表2)。
表2实验所用引物信息
(3)gRNA产物合成:以pUC19-gRNA scaffold质粒为模板,使用引物T7-notch1b-sfd、tract rev和2×EasyTaq PCR Super Mix(+dye)扩增片段并用试剂盒纯化。
(4)体外转录:
表3反应体系
Nuclease-free Water to 20μL
DNA template 1μg
10×Transcription Buffer 2μL
10mM ATP 1μL
10mM CTP 1μL
10mM GTP 1μL
10mM UTP 1μL
T7Enzyme Mix 2μL
注意:最后添加10×Transcription Buffer和T7Enzyme mix。
混匀并短暂离心后,37℃孵育80min;之后向体系中加入1μL TURBO DNase并混匀,短暂离心后37℃孵育15min。
(5)纯化gRNA:
a、向20μL体外转录体系中加入2.5μL 4M的LiCl和100μL无水乙醇,混匀并短暂离心后放于-80℃冰箱至少1h。
b、到时间后从冰箱取出,4℃,12000rmp,离心15min。弃上清后用70%乙醇清洗沉淀。4℃,8000rmp,离心5min。弃上清后将离心管放于通风橱中使乙醇挥发干净。
c、根据沉淀大小加入适量DEPC水溶解gRNA沉淀。
d、用Nanodrop检测浓度和OD值并用电泳检测。
所述gRNA的序列为TAATACGACTCACTATAGGTGCTCCGTGCCGAAACGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ IDNO.7)。
2.2显微注射
将gRNA与Cas9 mRNA混合,利用显微注射仪注射到斑马鱼一细胞期胚胎中。混合注射终浓度:gRNA为100ng/μL,Cas9 mRNA为400ng/μL。
2.3T7E1酶切检测敲除效率
a、提取胚胎基因组
每组5枚胚胎,加35μL的50mM NaOH,95℃孵育20min,中间取出振荡。之后加3.5μL1M TrisHCl(pH≈8.0),振荡混匀后离心。
b、PCR扩增目的片段
使用表里中notch1b F(SEQ ID NO.5)与notch1b R(SEQ ID NO.6)引物扩增目的片段。
表4 PCR反应体系
H2O to 25μL
12.5μL
F 0.5μL
R 0.5μL
Template 10ng
PCR反应条件:
98℃预变性2sec;98℃变性10sec,60℃退火30sec,72℃延伸1min,共34个循环;72℃再延伸5min;4℃保存。
2%琼脂糖凝胶120V电泳25min。
c、T7E1内切酶酶切检测
表5
H2O to 10μL
PCR产物 5μL
Buffer 1.1μL
95℃孵育5min,冷却至室温,加0.25μL T7E1酶,37℃孵育45min。
d、电泳检测
电泳后利用凝胶电泳成像仪对电泳的琼脂糖凝胶成像,观察目的条带,判断敲除是否成功,并计算敲除效率。
3实验结果
3.1notch1b突变体的构建
3.1.1notch1b F0基因敲除检测结果
结果显示notch1b基因敲除成功,利用Image Lab 5.1软件计算敲除效率达到80%以上。测序峰图显示在16bp靶点处出现套峰,证明敲除成功(图1)。
3.1.2notch1b F1突变体斑马鱼检测
对F1斑马鱼进行基因型检测,共得到1种突变类型,在靶点附近缺失5bp。对突变的序列进行氨基酸翻译发现形成翻译的提前终止。notch1b可编码2465个氨基酸,缺失5bp突变体会在110位氨基酸处出现翻译终止(图2)。
3.1.3notch1b F2突变体斑马鱼检测
对F2斑马鱼成鱼进行基因型鉴定,从中筛选出纯合突变体,并将PCR产物送测序,峰图及序列比对,确认为纯合子(图3)。将纯合突变体雌鱼和雄鱼进行交配,正常产卵,可繁殖后代。
3.1.4notch1b突变体斑马鱼形态学观察
将相同突变类型的notch1b杂合突变体斑马鱼内交后,从中筛选纯合突变体,纯合突变体能正常生长和繁殖,并且在成鱼和幼鱼纯合突变体中均没有观察到明显的表型。
综上所述,本发明首次在斑马鱼中利用CRISPR/Cas9技术获得notch1b突变体。作为首例利用CRISPR-Cas9方法敲除的Notch1b基因模式动物斑马鱼,可以排除人为因素干预,对于Notch1b基因的功能研究意义重大,同时与传统基因敲除的技术相比,周期短,使得Notch1b基因更快的被敲除。考虑到notch1b基因对机体的重要作用,为深入研究基因的具体功能,我们首次在斑马鱼上利用CRISPR/Cas9技术制备notch1b突变体,为后续基因功能的深入研究提供了实验材料。
序列表
<110> 上海海洋大学
<120> 斑马鱼notch1b基因突变体的制备方法
<130> 2018
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 83
<212> DNA
<213> pUC19-gRNA scaffold质粒()
<400> 1
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtgctttt ttt 83
<210> 2
<211> 20
<212> DNA
<213> Danio rerio
<400> 2
ggtgctccgt gccgaaacgg 20
<210> 3
<211> 57
<212> DNA
<213> Artificial sequence
<220>

Claims (9)

1.一种斑马鱼notchlb基因突变体的制备方法,其特征在于,所述方法包括如下步骤:
S1、确定notchlb基因敲除的靶点在斑马鱼notchlb基因序列的第四个外显子上;
S2、根据步骤S1确定的靶点序列设计扩增引物;
S3、以pUC19-gRNA scaffold质粒为模板,使用引物T7-notchlb-sfd、tracr rev进行PCR扩增;
S4、对步骤S3的PCR产物进行纯化,体外转录获得gRNA;
S5、将gRNA与Cas9 mRNA导入斑马鱼中;
S6、培养获得稳定遗传的斑马鱼notchlb基因突变体。
2.根据权利要求1所述的斑马鱼notchlb基因突变体的制备方法,其特征在于,步骤S2中,所述靶点序列为如SEQ ID NO.2所示的序列。
3.根据权利要求1所述的斑马鱼notchlb基因突变体的制备方法,其特征在于,步骤S3中,pUC19-gRNA scaffold质粒模板序列为如SEQ ID NO.1所示的序列。
4.根据权利要求1所述的斑马鱼notchlb基因突变体的制备方法,其特征在于,步骤S3中,所述引物T7-notchlb-sfd的序列为如SEQ ID NO.3所示的序列。
5.根据权利要求1所述的斑马鱼notchlb基因突变体的制备方法,其特征在于,步骤S3中,所述引物tracr rev的序列为如SEQ ID NO.4所示的序列。
6.根据权利要求1所述的斑马鱼notchlb基因突变体的制备方法,其特征在于,步骤S4中,所述gRNA的序列为如SEQ ID NO.7所示的序列。
7.根据权利要求1所述的斑马鱼notchlb基因突变体的制备方法,其特征在于,步骤S5中,将gRNA与Cas9 mRNA导入斑马鱼,具体为:将gRNA与Cas9 mRNA混合,显微注射到斑马鱼一细胞期胚胎中;其中,gRNA终浓度为100ng/μL,Cas9 mRNA终浓度为400ng/μL。
8.根据权利要求1所述的斑马鱼notchlb基因突变体的制备方法,其特征在于,步骤S6具体包括如下步骤:
A1、对导入gRNA与Cas9 mRNA的48hpf斑马鱼进行notchlb基因敲除检测,确定notchlbF0靶点突变效率;
A2、将notchlb F0基因检测敲除成功的成鱼与WT斑马鱼外交,得到F1胚胎;经基因型鉴定获得notchlb F1突变体斑马鱼;
A3、将相同突变的notchlb F1突变体斑马鱼内交,获得notchlb F2突变体斑马鱼;
A4、鉴定为F2中notchlb基因敲除的纯合子即所述稳定遗传的斑马鱼notchlb基因突变体。
9.根据权利要求8所述的斑马鱼notchlb基因突变体的制备方法,其特征在于,步骤A1中,notchlb基因敲除检测采用的引物序列为如SEQ ID NO.5和SEQ ID NO.6所示的序列。
CN201810527945.7A 2018-05-28 2018-05-28 斑马鱼notch1b基因突变体的制备方法 Pending CN108707629A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810527945.7A CN108707629A (zh) 2018-05-28 2018-05-28 斑马鱼notch1b基因突变体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810527945.7A CN108707629A (zh) 2018-05-28 2018-05-28 斑马鱼notch1b基因突变体的制备方法

Publications (1)

Publication Number Publication Date
CN108707629A true CN108707629A (zh) 2018-10-26

Family

ID=63870777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810527945.7A Pending CN108707629A (zh) 2018-05-28 2018-05-28 斑马鱼notch1b基因突变体的制备方法

Country Status (1)

Country Link
CN (1) CN108707629A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
CN110511934A (zh) * 2019-08-30 2019-11-29 山西大学 利用CRISPR/Cas9技术构建斑马鱼asap1a基因敲除突变体的方法
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388006A (zh) * 2013-07-26 2013-11-13 华东师范大学 一种基因定点突变的构建方法
US20140087460A1 (en) * 2008-11-03 2014-03-27 University Of Washington Induction of human embryonic stem cell derived cardiac pacemaker or chamber-type cardiomyocytes by manipulation of neuregulin signaling
CN105274144A (zh) * 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法
CN105531365A (zh) * 2013-04-23 2016-04-27 耶达研究及发展有限公司 分离的幼稚多能干细胞和产生所述细胞的方法
CN105594664A (zh) * 2016-02-16 2016-05-25 湖南师范大学 一种stat1a基因缺失型斑马鱼
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN106191112A (zh) * 2016-07-27 2016-12-07 湖南师范大学 一种基因敲除选育wnt16基因缺失型斑马鱼的方法
CN106191110A (zh) * 2016-07-15 2016-12-07 湖南师范大学 一种wnt16基因缺失型斑马鱼
CN106474490A (zh) * 2016-10-28 2017-03-08 武汉大学 干扰素调节因子6(irf6)及其抑制剂在治疗心肌肥厚中的应用
CN107058320A (zh) * 2017-04-12 2017-08-18 南开大学 Il7r基因缺失斑马鱼突变体的制备及其应用
CN107708710A (zh) * 2015-03-17 2018-02-16 嵌合体生物工程公司 Smart CAR装置,DE CAR多肽,Side CAR及其使用
CN107988268A (zh) * 2017-12-18 2018-05-04 湖南师范大学 一种基因敲除选育tcf25基因缺失型斑马鱼的方法
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法
CN108048486A (zh) * 2017-12-18 2018-05-18 湖南师范大学 一种基因敲除选育fhl1b基因缺失型斑马鱼的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140087460A1 (en) * 2008-11-03 2014-03-27 University Of Washington Induction of human embryonic stem cell derived cardiac pacemaker or chamber-type cardiomyocytes by manipulation of neuregulin signaling
CN105531365A (zh) * 2013-04-23 2016-04-27 耶达研究及发展有限公司 分离的幼稚多能干细胞和产生所述细胞的方法
CN103388006A (zh) * 2013-07-26 2013-11-13 华东师范大学 一种基因定点突变的构建方法
CN107708710A (zh) * 2015-03-17 2018-02-16 嵌合体生物工程公司 Smart CAR装置,DE CAR多肽,Side CAR及其使用
CN105274144A (zh) * 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法
CN105594664A (zh) * 2016-02-16 2016-05-25 湖南师范大学 一种stat1a基因缺失型斑马鱼
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN106191110A (zh) * 2016-07-15 2016-12-07 湖南师范大学 一种wnt16基因缺失型斑马鱼
CN106191112A (zh) * 2016-07-27 2016-12-07 湖南师范大学 一种基因敲除选育wnt16基因缺失型斑马鱼的方法
CN106474490A (zh) * 2016-10-28 2017-03-08 武汉大学 干扰素调节因子6(irf6)及其抑制剂在治疗心肌肥厚中的应用
CN107058320A (zh) * 2017-04-12 2017-08-18 南开大学 Il7r基因缺失斑马鱼突变体的制备及其应用
CN107988268A (zh) * 2017-12-18 2018-05-04 湖南师范大学 一种基因敲除选育tcf25基因缺失型斑马鱼的方法
CN108048486A (zh) * 2017-12-18 2018-05-18 湖南师范大学 一种基因敲除选育fhl1b基因缺失型斑马鱼的方法
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CASSANDRA L LOVE 等: "Silencing Mutations in NOTCH1 Activate Calcium Signaling in B Cells", 《BLOOD》 *
NANNAN CHANG 等: "Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos", 《CELL RESEARCH》 *
董雪红: "副溶血弧菌诱导的Notch分子参与天然免疫应答作用的初步研究", 《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》 *
郭欣娅 等: "Notch1b 受体对嗜中性粒细胞在炎症反应中的调控作用研究", 《第十三届全国免疫学学术大会分会场交流报告》 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110511934A (zh) * 2019-08-30 2019-11-29 山西大学 利用CRISPR/Cas9技术构建斑马鱼asap1a基因敲除突变体的方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN108707629A (zh) 斑马鱼notch1b基因突变体的制备方法
US11317610B2 (en) Method of constructing zebrafish notch1a mutants
Sakurai et al. A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice
CN108707628A (zh) 斑马鱼notch2基因突变体的制备方法
Song et al. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system
CN108660161B (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
Zhou et al. Programmable base editing of the sheep genome revealed no genome-wide off-target mutations
Zhang et al. Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos
Niu et al. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9
Sato et al. The combinational use of CRISPR/Cas9‐based gene editing and targeted toxin technology enables efficient biallelic knockout of the α‐1, 3‐galactosyltransferase gene in porcine embryonic fibroblasts
Wu et al. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems
CN106244557A (zh) 定点突变ApoE基因与LDLR基因的方法
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
Ayabe et al. Off-and on-target effects of genome editing in mouse embryos
Le et al. Effects of electroporation treatment using different concentrations of Cas9 protein with gRNA targeting Myostatin (MSTN) genes on the development and gene editing of porcine zygotes
US11406090B2 (en) Method of preparing ddx27-deletion zebrafish mutants
Song et al. One-step base editing in multiple genes by direct embryo injection for pig trait improvement
CN109055434B (zh) 一种利用CRISPRCas9技术纠正猪KIT基因结构突变的方法
CN110257435A (zh) 一种prom1-ko小鼠模型的构建方法及其应用
CN110643636A (zh) 一种团头鲂MSTNa&amp;b基因敲除方法与应用
CN110541002A (zh) 一种利用CRISPR/Cas9技术构建斑马鱼asap1b基因敲除突变体的方法
CN105274141A (zh) 一种用于原始生殖细胞靶向突变的转基因载体及制备方法和用途
Liu et al. Multiple homologous genes knockout (KO) by CRISPR/Cas9 system in rabbit
Xu et al. A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection
CN110894510A (zh) 一种基因敲除选育Lgr6基因缺失型斑马鱼的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination