CN108707628A - 斑马鱼notch2基因突变体的制备方法 - Google Patents

斑马鱼notch2基因突变体的制备方法 Download PDF

Info

Publication number
CN108707628A
CN108707628A CN201810526041.2A CN201810526041A CN108707628A CN 108707628 A CN108707628 A CN 108707628A CN 201810526041 A CN201810526041 A CN 201810526041A CN 108707628 A CN108707628 A CN 108707628A
Authority
CN
China
Prior art keywords
notch2
zebra fish
grna
sequence
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810526041.2A
Other languages
English (en)
Other versions
CN108707628B (zh
Inventor
张庆华
岳倩文
徐行
季策
李伟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Shanghai Ocean University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201810526041.2A priority Critical patent/CN108707628B/zh
Publication of CN108707628A publication Critical patent/CN108707628A/zh
Application granted granted Critical
Publication of CN108707628B publication Critical patent/CN108707628B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了涉及一种斑马鱼notch2基因突变体的制备方法;包括如下步骤:确定notch2基因敲除的靶点位置;以pUC19‑gRNA scaffold质粒为模板,使用引物T7‑notch2‑sfd、tracr rev进行PCR扩增;对PCR产物纯化、体外转录获得gRNA;将gRNA与Cas9蛋白显微注射入斑马鱼胚胎一细胞期中,筛选获得稳定遗传的notch2基因突变体。本发明利用CRISPR/Cas9技术,通过选择独特的一段打靶区,使得斑马鱼中的notch2基因被敲除,又不“误伤”其他基因,形成Notch2敲除的斑马鱼,为后续基因功能的深入研究提供了实验材料,对于研究Notch信号通路意义重大。

Description

斑马鱼notch2基因突变体的制备方法
技术领域
本发明涉及一种斑马鱼突变体,具体涉及一种斑马鱼notch2基因突变体的制备方法。
背景技术
CRISPR/Cas系统最早是在细菌的适应性免疫系统内发现的,其主要功能是对抗入侵的病毒及外源DNA。1987年大阪大学(Osaka University)的研究人员在Escherichiacoli K12的碱性磷酸酶基因附近发现了成簇的规律间隔的短回文重复序列(Clusteredregularly interspaced short palindromic repeat,CRISPR)和CRISPR相关基因(CRISPR-associated genes,Cas gene),目前普遍认为有40%的细菌基因组具有这样的结构。CRISPR技术是最新出现的第三代基因组编辑工具,它能够完成RNA导向的DNA识别及编辑。CRISPR/Cas9基因编辑技术源于一种微生物防御噬菌体DNA或外源质粒入侵的后天免疫系统。CRISPR/Cas系统的防御机制可以分为三个阶段。第一个阶段称为间隔序列的获得,间隔序列被识别并被整合到CRISPR基因座中两个相邻重复单元之间。第二阶段被称为CRISPR的表达,一个主要的转录本,被RNA聚合酶从CRISPR基因座转录而来。随后,特异性的核酸内切酶将pre-crRNAs切割成小的CRISPR RNAs(crRNAs)。第三个阶段称为干扰或免疫,在crRNA和Cas蛋白形成的复合物中crRNA能识别碱基对,特别是具有完全(或几乎完全)互补的外来DNA(或RNA)的区域。这样便开始了Cas蛋白对特定位点的切割。从细菌到古细菌共有三种类型的CRISPR/Cas系统,分别是Type I、II、III,其中Type II的运用最多。Type II中包括标志性的Cas9蛋白,该蛋白主要促进crRNA的成熟,降解侵入的噬菌体DNA或者入侵的外源质粒。目前,CRISPR/Cas9技术已广泛用于小鼠、斑马鱼、果蝇、酵母、大米、小麦、细菌等各种生物上,实现了不同生物进化阶段物种的基因编辑。
与锌指核酸酶(Zinc-finger nuclease,ZFN)和转录激活样效应因子核酸酶(transcription activator-like effector nuclease,TALEN)等基因编辑技术相比,CRISPR/Cas9技术有如下优势:
1、Cas9不具有特异性;
2、gRNA体现需要敲除的基因的特异性,靶向精确,作用高效,脱靶率低;
3、廉价便捷,细胞毒性低;
4、CRISPR技术更易于操作,具有更强的可扩展性。
在人中NOTCH2受体突变会造成Alagille综合征,又称先天性肝内胆管发育不良征,是一种类及多系统的显性遗传性疾病,涉及的脏器包括肝脏、心脏、骨骼、眼睛和颜面等,肝内胆汁淤积为主要特征。面部特征主要为前额突出,眼与鼻的距离大,下颏小而尖等。目前无特殊疗法,可给予消胆胺或中药,以治疗胆汁淤积,并补充脂溶性纤维素。
在小鼠中,Notch2突变后可造成眼睛缺陷,表现为眼睛变小,明显的晶状体后的增生,形成异常的球状结构,眼睛不对称;造成心脏和血管受损,具体为心脏生长迟缓、心包水肿和出血,心肌壁变薄、心肌小梁降低;造成肾小球发育缺陷,肾脏发育缓慢。突变体小鼠最终在E16.5之前死亡。
已有报道利用TALEN技术在斑马鱼notch2第四个外显子上设计靶点并进行基因敲除,制备的notch2突变体在靶点处缺失104bp,造成移码突变,并产生终止密码子。该突变体没有表型,但可养至成鱼。而本发明用CRISPR/Cas9技术制备的不同突变类型的突变体notch2-/-均未发现明显的表型,并且在notch2不同突变类型的F2中均未筛选到纯合子斑马鱼。经χ2检验,F2中杂合子和野生型斑马鱼的数量符合2∶1的比例,故确定notch2存在纯和致死现象,并初步统计纯合子的最大存活时间约为16dpf。这说明由于作用机制、作用靶点等不同,运用不同的基因编辑方法制备的突变体在一定程度上存在着差异。
发明内容
本发明的目的在于提供一种斑马鱼notch2基因突变体的制备方法。
本发明的目的是通过以下技术方案来实现的:
本发明涉及一种斑马鱼notch2基因突变体的制备方法,所述方法包括如下步骤:
S1、确定notch2基因敲除的靶点在斑马鱼notch2的基因序列的第四个外显子上;
S2、根据步骤S1确定的靶点序列设计扩增引物;
S3、以pUC19-gRNA scaffold质粒为模板,使用引物T7-notch2-sfd、tracr rev进行PCR扩增;
S4、对步骤S3的PCR产物进行纯化,体外转录获得gRNA;
S5、将gRNA与Cas9蛋白导入斑马鱼中;
S6、培养获得稳定遗传的斑马鱼notch2基因突变体。
优选的,步骤S2中,所述靶点序列为GGCGTTTGTGTGAACACCAT(SEQ ID NO.2)。
优选的,步骤S3中,pUC19-gRNA scaffold质粒模板序列为:GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ IDNO.1)。
优选的,步骤S3中,所述引物T7-notch2-sfd的序列为TAATACGACTCACTATAGGCGTTTGTGTGAACACCATGTTTTAGAGCTAGAAATAGC(SEQ ID NO.3)。
优选的,步骤S3中,所述引物tracr rev的序列为AAAAAAAGCACCGACTCGGT GCCAC(SEQ ID NO.4)。
优选的,步骤S4中,所述gRNA的序列为TAATACGACTCACTATAGGCGTTTGTGTGAACACCATGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ ID NO.7)。
优选的,步骤S5中,将gRNA与Cas9蛋白导入斑马鱼具体为:将gRNA与Cas9蛋白混合,显微注射到斑马鱼一细胞期胚胎中;其中,gRNA终浓度为100ng/μL,Cas9蛋白终浓度为800ng/μL。
优选的,步骤S6具体包括如下步骤:
A1、对导入gRNA与Cas9蛋白的斑马鱼进行notch2基因敲除检测,确定notch2 F0靶点突变效率;
A2、将notch2 F0基因检测敲除成功的成鱼与野生型斑马鱼外交,得到F1胚胎;经基因型鉴定获得notch2 F1突变体斑马鱼;
A3、将相同突变的notch2 F1突变体斑马鱼内交,获得notch2 F2突变体斑马鱼;
A4、鉴定为F2中notch2基因敲除的纯合子即所述稳定遗传的斑马鱼notch2基因突变体。
优选的,步骤A1中,notch2基因敲除检测采用的引物序列为F:CCCATGTGCCAACAAGGGTA(SEQ ID NO.5)和R:ACAAGTCTAGCTTCTCTTCAGATT(SEQ ID NO.6)。
本发明选取的斑马鱼notch2基因,是Notch受体之一,在发育上起重要作用。在人类中NOTCH2基因突变会造成Alagille综合征,又称先天性肝内胆管发育不良征,患者会出现前额突出,眼与鼻的距离大,下颏小而尖等面部特征;在小鼠中,Notch2基因突变会导致肾脏发育迟缓,眼睛变小,心血管异常等,最终在E16.5之前死亡。斑马鱼notch2基因位于斑马鱼8号染色体上,全长10095bp,编码2475个氨基酸,含有34个外显子和33个内含子。本发明根据T7启动子的靶位点选择规律,选取了比较靠前的、位于Notch2基因第4个外显子上的靶点,F0敲除效率超过70%。制备了8种突变类型,其中-4、-11和+26bp三种类型的突变体分别形成了256、250和212个氨基酸的截短蛋白。
本发明利用CRISPR/Cas9制备的-4、-11和+26bp三种不同类型的突变体notch2-/-均未发现明显的表型,并且在notch2不同突变类型的F2中均未筛选到纯合子斑马鱼。经χ2检验,F2中杂合子和野生型斑马鱼的数量符合2∶1的比例,故确定notch2存在纯和致死现象,并初步统计纯合子的最大存活时间约为16dpf。这说明本发明靶点特异性较高,未出现脱靶现象,制备的突变体为今后研究相应的疾病提供了可靠的材料保障。
与现有技术相比,本发明具有如下有益效果:
1、首次在斑马鱼中利用CRISPR/Cas9技术获得notch2突变体;
2、notch2突变体可稳定遗传,方便对notch2功能的深入研究;
3、notch2-/-突变体出现早期纯合致死现象;
4、利用CRISPR/Cas9技术,设计独特的一段打靶区,使得斑马鱼中的notch2基因被敲除,又不“误伤”其他基因,形成Notch2敲除的斑马鱼。
附图说明
图1为notch2基因F0敲除检测示意图;其中,a为notch2 F0斑马鱼胚胎PCR产物,b为T7E1内切酶酶切鉴定结果,c为PCR产物测序结果;
图2为notch2 F0 germline transmission检测结果;
图3为notch2 F1成年斑马鱼基因型检测结果。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
实施例
1材料及设备
1.1实验用鱼
本实验中所用的斑马鱼均为AB品系,购买于中国科学院上海生命科学研究院生物化学与细胞生物学研究所斑马鱼平台。
1.2质粒
pUC19-gRNA scaffold质粒来源于文献:Chang N,Sun C,Gao L,Zhu D,Xu X,ZhuX,Xiong JW,Xi JJ.Genome editing with RNA-guided Cas9 nuclease in zebrafishembryos,Cell Res,2013,23(4):465-472。
在gRNA产物合成中用到的pUC19-gRNA scaffold质粒模板序列为:
GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ ID NO.1)。
1.3主要试剂
DNA Clean&Contentrator-5(ZYMO RESEARCH,D4004),普通DNA纯化试剂盒(TIANGEN,DP204-03),T7 in vitro Transcription Kit(Ambion,AM1314),乙醇(无水乙醇)(国药集团化学试剂有限公司,10009218),GenCrispr NLS-Cas9-NLS(金斯瑞,Z03389-25),Premix TaqTM(Ex TaqTM Version 2.0plus dye)(TAKARA,RR902),DNAMarker I(TIANGEN,MD101-02),T7endonuclease 1(NEW ENGLAND Inc.,M0302L),快速质粒小提试剂盒(TIANGEN,DP105),DH5α感受态细胞(TIANGEN,CB101-03),2BEasyTaqPCR SuperMix(+dye)(TAKARA,AS111-12),LB Broth(上海生工,D915KA6602),LB Brothagar(上海生工,D911KA6566),pMDTM19-T Vector Cloning Kit(TAKARA,6013)。
1.4主要仪器
PCR仪(品牌:BIO-RAD,型号:c1000 TouchTMThermal Cycler),小离心机(品牌:eppendorf,型号:Centrifuge 5424),震荡混匀仪(品牌:VORTEX-GENIE,型号:G560E),紫外分光光度计(品牌:Thermo Scientific,型号:Nanodrop 2000C),电泳仪(品牌:BIO-RAD,型号:PowerPac Basic),照胶仪(品牌:BIO-RAD,型号:Gel Doc EZ Imager),电子天平(品牌:METTLER TOLEDO,型号:AL104),玻璃毛细管(品牌:WPI,型号:TW100F-4),Milli-Q Direct8超纯水系统(品牌:Millipore,型号:Milli-Q Direct 8),垂直拉针仪(品牌:NARISHIGE,型号:PC-10),恒温摇床(品牌:Innova,型号:40R),磨针器(品牌:NARISHIGE,型号:EG-400),微量注射泵(品牌:WARNER,型号:PLI-100A),恒温水浴锅(品牌:精宏,型号:H1401438,DK-8D),4℃冰箱(品牌:Haier,型号:HYC-610),-40℃低温冰箱(品牌:Haier,型号:DW-40L508),-80℃超低温冰箱(品牌:Pana-sonic,型号:MDF-U53V),高压蒸汽灭菌锅(品牌:SANYO,型号:MLS-3780)。
2实验方法
2.1 gRNA合成
(1)靶点设计
a、下载序列:在Ensembl数据库查找并下载斑马鱼notch2的基因序列。
b、靶点设计:利用http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx网站在notch2基因ATG之后的外显子序列上设计靶点(表1)。notch2设计靶点在第四个外显子上。
c、靶点特异性检测:在NCBI网站将设计的靶点序列通过blast比对,验证靶位点特异性。
d、亲本检测:将用于基因敲除的野生型斑马鱼剪尾并用碱裂解法获得基因组DNA,进行PCR扩增靶点附近的一段序列。
e、酶切检测:用T7E1内切酶酶切检测野生型斑马鱼,看T7E1酶能否将扩增的片段切开,若切不开,则可用于后续敲除检测;若被切开,则需要根据扩增序列信息选择特异性的酶进行酶切检测。
f、测序鉴定:将PCR产物送测序,峰图及序列比对,确认亲本为纯合子,不存在自然突变,从而保证后续制备的突变体为基因敲除后造成的。
表1 notch2靶位点序列
(2)设计检测引物:设计的引物应保证距离靶点两侧大于100bp,并且上下游引物到靶点的距离与下游引物到靶点的距离应相差大于100bp,至少50bp。引物扩增应具备特异性,扩增片段约500bp。引物在上海生工生物工程股份有限公司合成(表2)。
表2实验所用引物信息
(3)gRNA产物合成:以pUC19-gRNA scaffold质粒为模板,使用引物T7-notch2-sfd、tracr rev和2×EasyTaq PCR Super Mix(+dye)扩增片段并用试剂盒纯化。
(4)体外转录:
表3反应体系
Nuclease-free Water to 20μL
DNA template 1μg
10×Transcription Buffer 2μL
10mM ATP 1μL
10mM CTP 1μL
10mM GTP 1μL
10mM UTP 1μL
T7Enzyme Mix 2μL
注意:最后添加10×Transcription Buffer和T7Enzyme mix
混匀并短暂离心后,37℃孵育80min;之后向体系中加入1μL TURBO DNase并混匀,短暂离心后37℃孵育15min。
(5)纯化gRNA:
a、向20μL体外转录体系中加入2.5μL 4M的LiCl和100μL无水乙醇,混匀并短暂离心后放于-80℃冰箱至少1h。
b、到时间后从冰箱取出,4℃,12000rmp,离心15min。弃上清后用70%乙醇清洗沉淀。4℃,8000rmp,离心5min。弃上清后将离心管放于通风橱中使乙醇挥发干净。
c、根据沉淀大小加入适量DEPC水溶解gRNA沉淀。
d、用Nanodrop检测浓度和OD值并用电泳检测。
所述gRNA的序列为TAATACGACTCACTATAGGCATCTGCATGAATACACAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT(SEQ IDNO.7)。
2.2显微注射
将gRNA与Cas9蛋白(购买于南京金斯瑞生物科技有限公司[GenCrispr NLS-Cas9-NLS(金斯瑞,Z03389-25)])混合,利用显微注射仪器将混合后的物质注射到斑马鱼一细胞期胚胎中,每次注射都留一批未注射的同批次胚胎作为对照组。混合注射终浓度:gRNA为100ng/μL,Cas9蛋白为800ng/μL。
2.3检测敲除效率
a、提取鱼卵基因组
每组5枚卵,加35μL 50mM NaOH,95℃孵育20min,中间取出振荡,短暂离心一次。之后加3.5μL 1M的Tris.HC1(pH≈8.0),剧烈振荡混匀后离心。
b、PCR扩增目的片段
根据靶点附近设计的引物F:CCCATGTGCCAACAAGGGTA(SEQ ID NO.5)和R:ACAAGTCTAGCTTCTCTTCAGATT(SEQ ID NO.6)扩增目的片段。
表4 PCR反应体系
H2O to 25μL
12.5μL
F 0.5μL
R 0.5μL
Template 10ng
PCR反应条件:
98℃预变性2sec;98℃变性10sec,58℃退火30sec,72℃延伸1min,共34个循环;72℃再延伸5min;4℃保存。
2%琼脂糖凝胶120V电泳27min。
c、T7E1内切酶酶切检测
表5
H2O to 10μL
PCR产物 5μL
Buffer 1.1μL
95℃孵育5min,冷却至室温,加0.25μL T7E1酶,37℃孵育45min。
d、电泳检测
电泳后利用凝胶电泳成像仪对电泳的琼脂糖凝胶成像,观察目的条带,判断敲除是否成功。
3实验结果
3.1 notch2突变体的构建
3.1.1 notch2 F0基因敲除检测结果
T7E1酶切结果显示notch2基因敲除成功。利用Image Lab 5.1软件计算敲除效率达到70%以上。测序峰图显示在20bp靶点处出现套峰,证明敲除成功(图1)。
3.1.2 notch2 F0 germline transmission检测结果
取23尾notch2 F0基因检测敲除成功的成鱼与野生型斑马鱼外交,得到的F1胚胎5枚一管,取3管进行T7E1酶切鉴定,酶切结果显示,有12尾斑马鱼将突变传递给后代(图2),其中雌鱼9尾,雄鱼3尾。
3.1.3 notch2 F1突变体斑马鱼检测
剪尾检测51尾notch2(外交)斑马鱼,经T7E1检测到47尾阳性斑马鱼,进行TA克隆,其中有17尾发生有效突变,氨基酸序列发生移码突变并提前产生终止密码子。
发生有效突变的斑马鱼中+26bp的突变体只得到1尾雄鱼;-11bp的突变体有两种类型,一种得到5尾突变体,2雌3雄,另一种得到2尾突变体,1雌1雄;-10bp和-2bp的突变体各得到1尾雌鱼;-4bp的突变体仅筛选到1尾雄鱼;-1bp的的突变体得到6尾,其中有2尾突变基因型完全相同的,并且1雌1雄,另外-1bp的2尾突变体还有一个突变碱基,但均为雄鱼(图3)。
3.1.4 notch2突变体斑马鱼形态学观察
将相同突变类型的notch2+/-斑马鱼内交后,没有观察到notch2-/-突变体明显的表型。在notch2不同突变类型的F2中均未筛选到纯合子斑马鱼。经χ2检验,F2中杂合子和野生型斑马鱼的数量符合2∶1的比例,故确定notch2存在纯和致死现象,并初步统计纯合子的最大存活时间约为16dpf。
综上所述,本发明首次在斑马鱼中利用CRISPR/Cas9技术获得notch2突变体。作为首例利用CRISPR/Cas9技术敲除的Notch2基因模式动物斑马鱼,可以排除人为因素干预,对于Notch2基因的功能研究意义重大,同时与传统基因敲除的技术相比,周期短,使得Notch2基因更快的被敲除。虽然已有报道用TALEN技术在斑马鱼notch2第四个外显子上设计靶点并进行基因敲除,但制备的notch2el517突变体没有表型,并可养至成鱼。考虑到notch2基因对机体的重要作用,为深入研究基因的具体功能,我们首次在斑马鱼的上利用CRISPR/Cas9技术制备notch2突变体。本发明利用CRISPR/Cas9技术所制备的突变体与TALEN技术制备的突变体不仅制备突变体的方法不同,并且突变体在个体水平上存在意想不到的较大差异,即我们用CRISPR/Cas9技术制备的notch2突变体出现早期纯合致死现象。这说明由于作用机制、作用靶点等不同,运用不同的基因编辑方法制备的突变体在一定程度上存在着差异。制备的notch2突变体为后续基因功能的深入研究提供了实验材料,对于研究Notch信号通路意义重大。
序列表
<110> 上海海洋大学
<120> 斑马鱼notch2基因突变体的制备方法
<130> 2018
<141> 2018-05-28
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 83
<212> DNA
<213> pUC19-gRNA scaffold质粒()
<400> 1
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtgctttt ttt 83
<210> 2
<211> 20
<212> DNA
<213> Danio rerio
<400> 2
ggcgtttgtg tgaacaccat 20
<210> 3
<211> 57
<212> DNA
<213> Artificial sequence
<220>

Claims (9)

1.一种斑马鱼notch2基因突变体的制备方法,其特征在于,所述方法包括如下步骤:
S1、确定notch2基因敲除的靶点在斑马鱼notch2基因序列的第四个外显子上;
S2、根据步骤S1确定的靶点序列设计扩增引物;
S3、以pUC 19-gRNA scaffold质粒为模板,使用引物T7-notch2-sfd、tracr rev进行PCR扩增;
S4、对步骤S3的PCR产物进行纯化,体外转录获得gRNA;
S5、将gRNA与Cas9蛋白导入斑马鱼中;
S6、培养获得稳定遗传的斑马鱼notch2基因突变体。
2.根据权利要求1所述的斑马鱼notch2基因突变体的制备方法,其特征在于,步骤S2中,所述靶点序列为如SEQ ID NO.2所示的序列。
3.根据权利要求1所述的斑马鱼notch2基因突变体的制备方法,其特征在于,步骤S3中,pUC19-gRNA scaffold质粒模板序列为如SEQ ID NO.1所示的序列。
4.根据权利要求1所述的斑马鱼notch2基因突变体的制备方法,其特征在于,步骤S3中,所述引物T7-notch2-sfd的序列为如SEQ ID NO.3所示的序列。
5.根据权利要求1所述的斑马鱼notch2基因突变体的制备方法,其特征在于,步骤S3中,所述引物tracr rev的序列为如SEQ ID NO.4所示的序列。
6.根据权利要求1所述的斑马鱼notch2基因突变体的制备方法,其特征在于,步骤S4中,所述gRNA的序列为如SEQ ID NO.7所示的序列。
7.根据权利要求1所述的斑马鱼notch2基因突变体的制备方法,其特征在于,步骤S5中,将gRNA与Cas9蛋白导入斑马鱼具体为:将gRNA与Cas9蛋白混合,显微注射到斑马鱼一细胞期胚胎中;其中,gRNA终浓度为100g/μL,Cas9蛋白终浓度为800ng/μL。
8.根据权利要求1所述的斑马鱼notch2基因突变体的制备方法,其特征在于,步骤S6具体包括如下步骤:
A1、对导入gRNA与Cas9蛋白的斑马鱼48hpf后进行notch2基因敲除检测,确定notch2 Fo靶点突变效率;
A2、将notch2 F0基因检测敲除成功的成鱼与野生型斑马鱼外交,得到F1胚胎;经基因型鉴定获得notch2 F1突变体斑马鱼;
A3、将相同突变的notch2 F1突变体斑马鱼成鱼内交,获得notch2 F2突变体斑马鱼;
A4、鉴定为F2中notch2基因敲除的纯合子即所述稳定遗传的斑马鱼notch2基因突变体。
9.根据权利要求8所述的斑马鱼notch2基因突变体的制备方法,其特征在于,步骤A1中,notch2基因敲除检测采用的引物序列为如SEQ ID NO.5和SEQ ID NO.6所示的序列。
CN201810526041.2A 2018-05-28 2018-05-28 斑马鱼notch2基因突变体的制备方法 Active CN108707628B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810526041.2A CN108707628B (zh) 2018-05-28 2018-05-28 斑马鱼notch2基因突变体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810526041.2A CN108707628B (zh) 2018-05-28 2018-05-28 斑马鱼notch2基因突变体的制备方法

Publications (2)

Publication Number Publication Date
CN108707628A true CN108707628A (zh) 2018-10-26
CN108707628B CN108707628B (zh) 2021-11-23

Family

ID=63869684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810526041.2A Active CN108707628B (zh) 2018-05-28 2018-05-28 斑马鱼notch2基因突变体的制备方法

Country Status (1)

Country Link
CN (1) CN108707628B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
CN113337540A (zh) * 2021-05-13 2021-09-03 武汉大学 特异性敲除小鼠Treg细胞中Notch2基因的模型构建方法
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324652A2 (en) * 2000-09-29 2003-07-09 Novartis AG Transgenic drosophila melanogaster expressing beta amyloid
US20030207803A1 (en) * 1998-05-28 2003-11-06 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030216305A1 (en) * 1997-10-17 2003-11-20 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20050137130A1 (en) * 2001-11-14 2005-06-23 Bodmer Mark W. Medical treatment
CN1763196A (zh) * 2004-09-13 2006-04-26 首都医科大学宣武医院 基因突变类型及基因测序方法
EP2002714A1 (en) * 2005-11-21 2008-12-17 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
CN101541977A (zh) * 2006-09-19 2009-09-23 诺瓦提斯公司 用于raf抑制剂的靶向调节、效力、诊断和/或预后的生物标志物
WO2009146033A2 (en) * 2008-03-31 2009-12-03 Sma Foundation Compositions and methods for modulating smn activity
CN101883786A (zh) * 2007-08-23 2010-11-10 纽约哥伦比亚大学理事会 人源化的notch融合蛋白组合物及治疗方法
US20120083424A1 (en) * 2002-11-01 2012-04-05 Lars Dyrskjot Andersen Expression of UBE2C and Other Genes Associated with Bladder Cancer Progression
US20120115750A1 (en) * 2003-11-03 2012-05-10 Andersen Lars Dyrskjoet Expression of FABP4 and Other Genes Associated with Bladder Cancer Progression
US20120122722A1 (en) * 2003-11-03 2012-05-17 Andersen Lars Dyrskjoet Expression of MBNL2 and Other Genes Associated with Bladder Cancer Progression
CN103834596A (zh) * 2014-03-10 2014-06-04 上海海洋大学 一种枯草芽孢杆菌shou003、抗弧菌蛋白及其制备方法与应用
CN104338149A (zh) * 2013-07-30 2015-02-11 上海市东方医院(同济大学附属东方医院) Isl1基因及其表达产物在促进HCN4表达中的应用
JP2015120689A (ja) * 2013-12-20 2015-07-02 ファイザー・インク 乳がんにおける活性化型Notch変化
CN104928321A (zh) * 2015-02-12 2015-09-23 中国科学院西北高原生物研究所 一种由Crispr/Cas9诱导的鳞片缺失斑马鱼模式及建立方法
CN105025986A (zh) * 2013-04-02 2015-11-04 周一红 纤蛋白蛋白变体及相应的核酸序列
CN105121648A (zh) * 2012-12-12 2015-12-02 布罗德研究所有限公司 用于序列操纵的系统、方法和优化的指导组合物的工程化
CN105164264A (zh) * 2012-12-12 2015-12-16 布罗德研究所有限公司 用于序列操纵和治疗应用的系统、方法和组合物的递送、工程化和优化
CN105658796A (zh) * 2012-12-12 2016-06-08 布罗德研究所有限公司 用于序列操纵的crispr-cas组分系统、方法以及组合物
CN105916977A (zh) * 2013-10-07 2016-08-31 东北大学 用于使用自体细胞系统从生殖系细胞离体产生有发育能力的卵的方法和组合物
CN106191112A (zh) * 2016-07-27 2016-12-07 湖南师范大学 一种基因敲除选育wnt16基因缺失型斑马鱼的方法
CN106191110A (zh) * 2016-07-15 2016-12-07 湖南师范大学 一种wnt16基因缺失型斑马鱼
CN106282241A (zh) * 2016-08-05 2017-01-04 无锡市第二人民医院 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法
CN106414768A (zh) * 2014-03-27 2017-02-15 生命技术公司 与癌症相关的基因融合体和基因变异体
CN106459919A (zh) * 2014-06-04 2017-02-22 弗莱德哈钦森癌症研究中心 使用notch 1和/或notch 2激动剂扩增和植入干细胞
CN106491595A (zh) * 2015-09-07 2017-03-15 山西振东先导生物科技有限公司 鸦胆子苦素D在制备Wnt/Notch信号通路抑制剂药物中的应用
WO2017075451A1 (en) * 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1
WO2017100498A1 (en) * 2015-12-11 2017-06-15 The Johns Hopkins University Isolation of fusion-competent myoblasts and therapeutic applications thereof related to muscular dystrophy
CN107056930A (zh) * 2011-11-16 2017-08-18 昂考梅德药品有限公司 编码突变的人notch受体的多核苷酸
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法
CN108048486A (zh) * 2017-12-18 2018-05-18 湖南师范大学 一种基因敲除选育fhl1b基因缺失型斑马鱼的方法
CN108064283A (zh) * 2015-02-24 2018-05-22 加利福尼亚大学董事会 结合触发的转录开关及其使用方法
CN109679953A (zh) * 2018-12-28 2019-04-26 赛业(广州)生物科技有限公司 利用CRISPR-Cas9系统制得基因点突变动物模型胚胎的靶序列组、载体和方法

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030216305A1 (en) * 1997-10-17 2003-11-20 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030207803A1 (en) * 1998-05-28 2003-11-06 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
EP1324652A2 (en) * 2000-09-29 2003-07-09 Novartis AG Transgenic drosophila melanogaster expressing beta amyloid
US20050137130A1 (en) * 2001-11-14 2005-06-23 Bodmer Mark W. Medical treatment
US20120083424A1 (en) * 2002-11-01 2012-04-05 Lars Dyrskjot Andersen Expression of UBE2C and Other Genes Associated with Bladder Cancer Progression
US20120115750A1 (en) * 2003-11-03 2012-05-10 Andersen Lars Dyrskjoet Expression of FABP4 and Other Genes Associated with Bladder Cancer Progression
US20120122722A1 (en) * 2003-11-03 2012-05-17 Andersen Lars Dyrskjoet Expression of MBNL2 and Other Genes Associated with Bladder Cancer Progression
CN1763196A (zh) * 2004-09-13 2006-04-26 首都医科大学宣武医院 基因突变类型及基因测序方法
EP2002714A1 (en) * 2005-11-21 2008-12-17 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
CN101541977A (zh) * 2006-09-19 2009-09-23 诺瓦提斯公司 用于raf抑制剂的靶向调节、效力、诊断和/或预后的生物标志物
CN101883786A (zh) * 2007-08-23 2010-11-10 纽约哥伦比亚大学理事会 人源化的notch融合蛋白组合物及治疗方法
WO2009146033A2 (en) * 2008-03-31 2009-12-03 Sma Foundation Compositions and methods for modulating smn activity
CN107056930A (zh) * 2011-11-16 2017-08-18 昂考梅德药品有限公司 编码突变的人notch受体的多核苷酸
CN105658796A (zh) * 2012-12-12 2016-06-08 布罗德研究所有限公司 用于序列操纵的crispr-cas组分系统、方法以及组合物
CN105164264A (zh) * 2012-12-12 2015-12-16 布罗德研究所有限公司 用于序列操纵和治疗应用的系统、方法和组合物的递送、工程化和优化
CN105121648A (zh) * 2012-12-12 2015-12-02 布罗德研究所有限公司 用于序列操纵的系统、方法和优化的指导组合物的工程化
CN105025986A (zh) * 2013-04-02 2015-11-04 周一红 纤蛋白蛋白变体及相应的核酸序列
CN104338149A (zh) * 2013-07-30 2015-02-11 上海市东方医院(同济大学附属东方医院) Isl1基因及其表达产物在促进HCN4表达中的应用
CN105916977A (zh) * 2013-10-07 2016-08-31 东北大学 用于使用自体细胞系统从生殖系细胞离体产生有发育能力的卵的方法和组合物
JP2015120689A (ja) * 2013-12-20 2015-07-02 ファイザー・インク 乳がんにおける活性化型Notch変化
CN103834596A (zh) * 2014-03-10 2014-06-04 上海海洋大学 一种枯草芽孢杆菌shou003、抗弧菌蛋白及其制备方法与应用
CN106414768A (zh) * 2014-03-27 2017-02-15 生命技术公司 与癌症相关的基因融合体和基因变异体
CN106459919A (zh) * 2014-06-04 2017-02-22 弗莱德哈钦森癌症研究中心 使用notch 1和/或notch 2激动剂扩增和植入干细胞
CN104928321A (zh) * 2015-02-12 2015-09-23 中国科学院西北高原生物研究所 一种由Crispr/Cas9诱导的鳞片缺失斑马鱼模式及建立方法
CN108064283A (zh) * 2015-02-24 2018-05-22 加利福尼亚大学董事会 结合触发的转录开关及其使用方法
CN106491595A (zh) * 2015-09-07 2017-03-15 山西振东先导生物科技有限公司 鸦胆子苦素D在制备Wnt/Notch信号通路抑制剂药物中的应用
WO2017075451A1 (en) * 2015-10-28 2017-05-04 The Broad Institute Inc. Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1
WO2017100498A1 (en) * 2015-12-11 2017-06-15 The Johns Hopkins University Isolation of fusion-competent myoblasts and therapeutic applications thereof related to muscular dystrophy
CN106191110A (zh) * 2016-07-15 2016-12-07 湖南师范大学 一种wnt16基因缺失型斑马鱼
CN106191112A (zh) * 2016-07-27 2016-12-07 湖南师范大学 一种基因敲除选育wnt16基因缺失型斑马鱼的方法
CN106282241A (zh) * 2016-08-05 2017-01-04 无锡市第二人民医院 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法
CN108048486A (zh) * 2017-12-18 2018-05-18 湖南师范大学 一种基因敲除选育fhl1b基因缺失型斑马鱼的方法
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法
CN109679953A (zh) * 2018-12-28 2019-04-26 赛业(广州)生物科技有限公司 利用CRISPR-Cas9系统制得基因点突变动物模型胚胎的靶序列组、载体和方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
D.E.LANCEFIELD: "LINKAGE RELATIONS OF THE SEX-LINKED CHARACTERS IN DROSOPHILA OBSCURAl", 《GENETICS》 *
GERRY WEINMASTER 等: "Notch2: a second mammalian Notch gene", 《DEVELOPMENT》 *
JONATAN WESTIN 等: "Three novel Notch genes in zebrafish:implications for vertebrate Notch gene evolution and function", 《DEV GENES EVOL》 *
KIYOSHI SHIMIZU 等: "Functional Diversity among Notch1, Notch2,and Notch3 Receptors", 《BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS》 *
LORENZ POELLINGER 等: "Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms", 《DIFFERENTIATION AND GENE REGULATION》 *
NANNAN CHANG 等: "Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos", 《CELL RESEARCH》 *
NCBI: "Danio rerio strain Tuebingen chromosome 8, GRCz11 Primary Assembly", 《GENBANK DATABASE》 *
W. J. WELSHONS: "GENETIC BASIS FOR TWO TYPES OF RECESSIVE LETHALITY AT THE NOTCH LOCUS OF DROSOPHILA", 《GENETICS》 *
吴国凯: "纯合隐性致死选择下的替换负荷", 《湖北农学院学报》 *
张秋月: "Notch分子参与嗜中性粒细胞清除副溶血弧菌的动态变化研究", 《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》 *
董雪红: "副溶血弧菌诱导的Notch分子参与天然免疫应答作用的初步研究", 《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》 *
蒋祝: "NOTCH1复合杂合与法洛四联症关系的探索研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN113337540A (zh) * 2021-05-13 2021-09-03 武汉大学 特异性敲除小鼠Treg细胞中Notch2基因的模型构建方法
CN113337540B (zh) * 2021-05-13 2022-06-14 武汉大学 特异性敲除小鼠Treg细胞中Notch2基因的模型构建方法

Also Published As

Publication number Publication date
CN108707628B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN108707628A (zh) 斑马鱼notch2基因突变体的制备方法
CN108707629A (zh) 斑马鱼notch1b基因突变体的制备方法
US11317610B2 (en) Method of constructing zebrafish notch1a mutants
Sakurai et al. A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice
Edvardsen et al. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation
Square et al. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates
Zhou et al. Programmable base editing of the sheep genome revealed no genome-wide off-target mutations
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
Wu et al. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems
WO2020173150A1 (zh) 单碱基编辑导致非靶向单核苷酸变异及避免该变异的高特异性无脱靶单碱基基因编辑工具
US11406090B2 (en) Method of preparing ddx27-deletion zebrafish mutants
CN110541002A (zh) 一种利用CRISPR/Cas9技术构建斑马鱼asap1b基因敲除突变体的方法
Challa et al. Novel hypomorphic alleles of the mouse tyrosinase gene induced by CRISPR-Cas9 nucleases cause non-albino pigmentation phenotypes
Karagyaur et al. Practical recommendations for improving efficiency and accuracy of the CRISPR/Cas9 genome editing system
CN110894510A (zh) 一种基因敲除选育Lgr6基因缺失型斑马鱼的方法
CN110066805A (zh) 基因敲除选育adgrf3b基因缺失型斑马鱼的方法
CN115029352A (zh) 一种基因敲除选育adgrg1基因缺失型斑马鱼的方法
CN114480497A (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN108715862A (zh) ddx19基因缺失斑马鱼突变体的制备方法
CN108753833A (zh) 斑马鱼notch3基因突变体的制备方法
CN110511934A (zh) 利用CRISPR/Cas9技术构建斑马鱼asap1a基因敲除突变体的方法
CN110438159A (zh) 一种引发肌原纤维肌病的基因突变小鼠模型的构建方法
CN113774128B (zh) Gja8基因突变位点在制备诊断白内障疾病的制品中的应用
Liu et al. Efficient mutagenesis targeting the IFNAR1 gene in mice using a combination of Cas9 protein and dual gRNAs
US20230313205A1 (en) Fusion protein and use thereof in base editing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant