CN107708710A - Smart CAR装置,DE CAR多肽,Side CAR及其使用 - Google Patents

Smart CAR装置,DE CAR多肽,Side CAR及其使用 Download PDF

Info

Publication number
CN107708710A
CN107708710A CN201680024848.5A CN201680024848A CN107708710A CN 107708710 A CN107708710 A CN 107708710A CN 201680024848 A CN201680024848 A CN 201680024848A CN 107708710 A CN107708710 A CN 107708710A
Authority
CN
China
Prior art keywords
car
cell
smart
certain embodiments
eukaryotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680024848.5A
Other languages
English (en)
Inventor
B·王
G·兹纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chimerism Bioengineering Corp
Chimera Bioengineering Inc
Original Assignee
Chimerism Bioengineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimerism Bioengineering Corp filed Critical Chimerism Bioengineering Corp
Publication of CN107708710A publication Critical patent/CN107708710A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464424CD20
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464499Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0091Purification or manufacturing processes for gene therapy compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/27Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by targeting or presenting multiple antigens
    • A61K2239/28Expressing multiple CARs, TCRs or antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Manufacturing & Machinery (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明总体上涉及真核细胞中与嵌合抗原受体(CAR)结合的RNA控制装置(元件)和/或去稳定元件(DE)的领域。本发明还涉及真核细胞中的分裂CAR(Side‑CAR)。更具体地说,本发明涉及与嵌合抗原受体结合以制备小分子致动CAR多肽的DE、RNA控制装置(元件)和/或Side‑CAR。本发明还涉及用于疾病治疗的DE‑CAR、Smart‑CAR(Smart=小分子致动RNA触发器)、Smart‑DE‑CAR和/或Side‑CAR。

Description

Smart CAR装置,DE CAR多肽,Side CAR及其使用
技术领域
本发明总体上涉及在真核细胞中RNA控制装置和/或去稳定元件(DE)与嵌合抗原受体(CAR)结合的领域。本发明还涉及真核细胞中的分裂CAR(Side-CAR)。更具体地说,本发明涉及DE、RNA控制装置和/或Side-CAR与嵌合抗原受体结合以制成小分子致动CAR多肽。本发明还涉及用于疾病治疗的DE-CAR、Smart-CAR(Smart=小分子致动RNA触发器)、Smart-DE-CAR和/或Side-CAR。
提及的序列表、表格或计算机程序
序列表的正式文本以ASCII格式的文本文件通过EFS-Web与说明书同时提交,其文件名为“CBIO010_ST25.txt”,创建日期为2016年3月10日,大小为40千字节。通过EFS-Web提交的序列表是说明书的一部分,并以其全文形式被援引加入本文。
背景技术
CAR T细胞疗法已表明在诱导急性淋巴性白血病和其它B-细胞相关的恶性肿瘤的完全反应方面是有效的,并已被证明对于难治性/复发性急性淋巴性白血病在实现和维持缓解方面是有效的(Maude等人,NEJM,371:1507,2014)。不过,已经在一些患者中发现与细胞因子释放综合征(CRS)、肿瘤溶解综合征(TLS)、B-细胞发育不全和靶向/脱靶毒性(on-tumor,off-target toxicity)相关的危险的副作用。
目前有两种现有的策略来控制CAR技术。第一种是可诱导的“杀伤开关”。在这种方法中,启动凋亡途径的一个或多个“自杀”基因被结合入CAR构建体(construct)(Budde等人,PLoS1,2013doi:10.1371/journal.pone.0082742)。这些自杀基因的激活是通过加入AP1903(也称为rimiducid)来启动的,AP1903是脂质渗透性的他克莫司(tacrolimus)类似物,启动人蛋白FKBP12(Fv)的同源二聚化,凋亡诱导蛋白转译融合至AP1903。在理想情况,这些杀伤开关尽力牺牲CAR技术的长期监控益处,以防范毒性。不过,在体内,这些自杀开关不太可能实现这一目标,因为它们针对不响应AP1903的CAR T-细胞的强大的选择压力运行,与将稳定的转基因插入到患者T-细胞中相关联的有害的易错逆转录病毒复制使这种情况恶化。在这种情况下,无响应的CAR T-细胞克隆将以抗原依赖性方式继续增殖并杀死靶细胞。因此,杀伤开关技术不太可能提供足够的防范毒性的保护措施。
第二种CAR调节方法是瞬态CAR表达,其可以通过若干种方式实现。在一种方式中,从不相关的供体收获T-细胞,通过基因组编辑技术删除HLA基因,并将CAR编码转基因插入到这些细胞的基因组中。在过继转移后,这些CAR T-细胞会被受体的免疫系统识别为外来的并被破坏,因此CAR暴露在该系统中是短暂的。在另一种瞬态CAR暴露方式中,将CAR编码基因的mRNA引入收获的患者T-细胞中(Beatty,GL 2014.Cancer Immunology Research 2(2):112-20.doi:10.1158/2326-6066.CIR-13-0170)。因为mRNA具有短的半衰期并且不能在细胞中复制或稳定维持,所以不存在CAR表达的T-细胞的永久性改变,因此CAR表达和活性将是在短时间内。不过,与杀伤开关方式一样,这些瞬态CAR暴露方式牺牲了CAR的监控益处。此外,具有这些瞬态系统,急性毒性可能难以控制。
发明内容
在一些实施例中,本发明涉及用于真核细胞的Smart-CAR、DE-CAR、Side-CAR构建体和/或其组合。在一些实施例中,CAR构建体包括编码CAR(嵌合抗原受体)的核酸,与编码去稳定元件的核酸或编码RNA控制装置的核酸。在一些实施例中,本发明涉及CAR、SmartCAR、DE-CAR和/或Smart-DE-CAR,其由至少两个部分组成,所述至少两个部分相关联以形成本发明的CAR、Smart CAR、DE-CAR和/或Smart-DE-CAR(Side-CAR)。
在一些实施例中,RNA控制装置包括传感器元件、接头元件和致动器元件。在一些实施例中,编码CAR的核酸包括编码细胞外抗原结合元件、跨膜元件、细胞内信号转导元件和共刺激元件的核酸。在一些实施例中,编码CAR的核酸包括编码细胞外抗原结合元件、跨膜元件和细胞内信号转导元件的核酸。在一些实施例中,细胞内信号转导元件还包括共刺激序列和功能。在一些实施例中,本发明的Smart CAR核酸被置于适合用于真核细胞的表达载体中。在一些实施例中,核酸是DNA或RNA。在一些实施例中,RNA控制装置抑制CAR多肽表达,并且当RNA控制装置的传感器元件结合配体时,CAR多肽表达增加。在一些实施例中,当配体结合到传感器元件时,RNA控制装置抑制CAR多肽表达,并且当配体未结合到传感器元件时,CAR多肽表达增加。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR核酸被置于适合用于真核细胞的表达载体中。在一些实施例中,核酸是DNA或RNA。在一些实施例中,去稳定元件靶向DE-CAR多肽,以便在真核细胞内进行蛋白水解。在一些实施例中,DE能够结合配体。在一些实施例中,配体的结合减少了真核细胞中DE-CAR多肽的蛋白水解。在一些实施例中,配体的结合增加了真核细胞中DE-CAR多肽的蛋白水解。在一些实施例中,当不结合配体时,DE-CAR多肽是稳定的并且不被靶向以便蛋白水解。在一些实施例中,RNA控制装置抑制CAR、DE-CAR和/或Side-CAR多肽表达,并且当RNA控制装置的传感器元件结合配体时,CAR、DE-CAR和/或Side-CAR多肽表达增加。在一些实施例中,当配体结合到传感器元件时,RNA控制装置抑制CAR、DE-CAR和/或Side-CAR多肽表达,并且当配体未结合到传感器元件时,CAR、DE-CAR和/或Side-CAR多肽表达增加。
在一些实施例中,CAR、Smart CAR、DE-CAR和/或Smart-DE-CAR的两部分关联以响应小分子、多肽或其它刺激(例如,光、热等等)。在一些实施例中,这些分裂构建体(splitconstruct)被称为Side-CAR。在一些实施例中,CAR、Smart-CAR、DE-CAR和/或Smart-DE-CAR的一部分通过跨膜多肽片段膜结合而另一部分不是。在一些实施例中,非膜结合部分在溶液中是游离的。在一些实施例中,非膜结合部分通过系链与膜关联。在一些实施例中,系链穿过糖磷脂酰肌醇(GPI)。在该实施例中,非膜结合部分包括其C-末端上的GPI信号序列。在一些实施例中,每一部分具有Side-CAR元件,并且在结合相互作用使Side-CAR准备好以便关联之后,Side-CAR元件关联以形成功能性的CAR或DE-CAR。在一些实施例中,CAR或DE-CAR的细胞外元件结合至靶抗原,引起细胞外元件的构象变化,使其与CAR或DE-CAR的其它部分关联。在一些实施例中,将两部分组合在一起的分子是抗体。在一些实施例中,使两部分关联的分子是小分子。
在一些实施例中,本发明涉及包含编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的核酸的真核细胞。在一些实施例中,真核细胞包括具有编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的核酸的表达载体。在一些实施例中,本发明的真核细胞是哺乳动物细胞。在一些实施例中,真核细胞是人体细胞或小鼠细胞。在一些实施例中,真核细胞是造血谱系内的细胞。在一些实施例中,真核细胞是T-淋巴细胞、天然杀伤细胞、B-淋巴细胞或巨噬细胞。在一些实施例中,本发明的真核细胞具有所需量的CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,真核细胞在其表面上具有所需量的CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,具有本发明的CAR、DE-CAR和/或Side-CAR多肽的真核细胞具有所需量的活性。在一些实施例中,所需量的活性产生增殖活性。在一些实施例中,所需量的活性是靶向结合的量或效应物活性的量(例如,靶细胞杀伤)。
在一些实施例中,RNA控制装置顺式表达到编码CAR、DE-CAR和/或Side-CAR的mRNA。在一些实施例中,RNA控制装置反式表达到编码CAR、DE-CAR和/或Side-CAR的mRNA。在一些实施例中,本发明涉及具有Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的真核细胞,其结合入若干独立的正交RNA控制装置,响应不同的小分子配体。在一些实施例中,本发明提供了结合入多个具有相似或不同的靶向特性的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的真核细胞。在一些实施例中,真核细胞中的多个Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR响应不同组的小分子配体。在一些实施例中,多个Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR响应不同的配体或相同的配体或重叠组的配体。
在一些实施例中,本发明涉及具有定制的CAR、定制的DE-CAR和/或定制的Side-CAR多肽表达的真核细胞。在该实施例中,DE、RNA控制装置和/或Side-CAR用于定制呈现在真核细胞表面上的CAR、DE-CAR和/或Side-CAR的量。在一些实施例中,当具有定制的CAR、DE-CAR和/或Side-CAR表达的真核细胞被置于受试者中时,定制的CAR、DE-CAR和/或Side-CAR呈现提供针对靶点的期望的活性水平和/或期望的增殖活性水平。在一些实施例中,定制的CAR、DE-CAR和/或Side-CAR表达提供期望的靶细胞杀伤率。在一些实施例中,定制的CAR、DE-CAR和/或Side-CAR表达对具有CAR、DE-CAR和/或Side-CAR多肽的真核细胞提供期望的增殖率。在一些实施例中,当真核细胞是合适的免疫细胞时,定制的CAR、DE-CAR和/或Side-CAR表达提供期望的记忆细胞形成率。在一些实施例中,定制的CAR、DE-CAR和/或Side-CAR表达在合适的真核细胞例如免疫细胞中提供期望量的效应物功能。
在一些实施例中,本发明涉及利用本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR来制成具有定制水平的CAR、DE-CAR和/或Side-CAR表达的真核细胞的方法。在一些实施例中,本发明涉及制成具有期望量的CAR、DE-CAR和/或Side-CAR多肽的真核细胞的方法。在一些实施例中,本发明涉及制成具有Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的真核细胞的方法,针对靶点具有期望的活性水平。在一些实施例中,本发明涉及制成具有期望的活性水平用于靶细胞杀伤的真核细胞的方法。在一些实施例中,本发明涉及制成具有Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的真核细胞的方法,当置于受试者中时,其具有期望的增殖水平。可定制的其它真核细胞活性包括可用于治疗疾病的任何活性,包括例如,记忆细胞形成率、细胞因子释放率、吞噬作用、靶点结合、先天性骨髓或淋巴细胞募集和表位扩展。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR被引入哺乳动物细胞,作为编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的RNA。在一些实施例中,编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的RNA是来源于逆转录病毒、慢病毒、甲病毒、或其它RNA病毒、或腺病毒或其它DNA病毒、或其组合的病毒载体。在一些实施例中,这些载体可以包含结合报告基因编码的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR装置的库,并且呈现期望的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR行为的转导细胞可以根据活性和受试者进行分离以进一步细化。在一些实施例中,编码SmartCAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的RNA是反向互补链(有时也称为反义链)。在一些实施例中,RNA来源于逆转录病毒载体、慢病毒载体、甲病毒载体或其它RNA病毒载体,并且编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的RNA是相对于这些RNA病毒载体的+链(或有义链)的反向互补链(或反义链),这样在病毒基因组合成和包装过程中SmartCAR、DE-CAR、Smart-DE-CAR和/或Side-CAR在反向互补方向被转录。
在一些实施例中,将编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的多核苷酸整合到真核细胞的染色体中。在一些实施例中,编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的多核苷酸存在于真核细胞染色体外。在一些实施例中,利用基因组编辑酶(CRISPR、TALEN、Zinc-Finger核酸酶)和合适的核酸(包括编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的核酸)来整合编码Smart CAR、DE-CAR、Smart-DE-CAR和/或SideCAR的多核苷酸。在一些实施例中,基因组编辑酶和核酸将编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的核酸在基因组安全港位点整合,例如CCR5、AAVS1、人类ROSA26或PSIP1位点。在一些实施例中,真核细胞是人类T-淋巴细胞,并且编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR的核酸在CCR5或PSIP1位点被整合。
在一些实施例中,本发明提供了筛选对选定的小分子配体具有高特异性和选择性的RNA适配体的方法。在一些实施例中,本发明提供了通过在活体培养中使用噬菌体而实现的提高对RNA控制装置的靶配体的更高灵敏度、选择性或两者的方法。在一些实施例中,本发明提供了通过在小鼠细胞培养中使用有复制能力的小鼠逆转录病毒或慢病毒而实现的提高对RNA控制装置的靶配体的更高灵敏度、选择性或两者的方法。在一些实施例中,本发明提供了将RNA适配体与核酶组合而产生RNA控制装置的方法。在一些实施例中,本发明提供了将RNA控制装置结合入植物、细菌或哺乳动物细胞中的方法。
附图说明
图1提供了嵌合抗原受体-RNA控制装置(Smart CAR)的示意图。
图2提供了嵌合抗原受体-去稳定元件(DE-CAR)的示意图。
图3提供了嵌合抗原受体-去稳定元件-RNA控制装置(Smart-DE-CAR)的示意图。
具体实施方式
在描述不同的实施例之前,应当理解,本公开内容的教导不限于所述的特定实施例,并且当然可以变化。还应当理解,本文使用的术语仅用于描述特定实施例的目的,并不旨在限制,因为本发明的范围将仅由所附权利要求限定。
除非另有定义,本文使用的所有技术和科学术语具有与本文所属领域的普通技术人员通常理解的相同的含义。尽管与本文所述的相似或等同的任何方法和材料也可以用于本发明的实践或测试中,现在描述的是一些示例性方法和材料。
必须指出,如本文和所附权利要求中所使用的,单数形式“一个/种(a)”、“一个/种(an)”和“所述/该(the)”包括复数的所指对象,除非上下文另有明确指示。还应当指出,权利要求可被撰写成排除任何可选的要素。同样的,本声明旨在作为使用结合记载的权利要求要素的例如“仅/仅仅/单独(solely)”、“仅/仅仅(only)”等排他性术语或使用“否定”限定的在先基础。关于物质的浓度或水平所给出的数值限制旨在为近似值,除非上下文另有明确规定。因此,当浓度表示为(例如)10μg时,意图将浓度理解为至少近似或大约10μg。
本领域技术人员在阅读本文后将显而易见,本文描述和示出的各个实施例中的每一个具有分离的组件和特征,其可以容易地与其它几个实施例中的任何一个的特征分离或组合而不偏离本发明的范围或精神。任何记载的方法可按照所记载的事件的顺序进行,或以逻辑上可行的任何其它顺序进行。
定义
关于本发明,本文描述中使用的技术和科学术语具有本领域普通技术人员通常理解的含义,除非另外具体定义。因此,下列术语旨在具有以下含义。
如本文所使用的,“致动器元件(actuator element)”被定义为编码RNA控制装置的系统控制功能的结构域。在一些实施例中,致动器结构域编码基因调节功能。
如本文所使用的,“抗体”被定义为一种蛋白质,其在功能上被定义为配体结合蛋白,并且在结构上被定义为包含本领域技术人员识别为来源于免疫球蛋白的可变区的氨基酸序列。抗体可由一种或多种多肽组成,所述多肽基本上由免疫球蛋白基因、免疫球蛋白基因片段、杂交免疫球蛋白基因(通过组合来自不同动物的遗传信息制备)或合成的免疫球蛋白基因编码。识别的天然免疫球蛋白基因包含κ、λ、α、γ、δ、ε和μ恒定区基因,以及无数个免疫球蛋白可变区基因和多个D-区段和J-区段。轻链被分类为κ或λ。重链被分类为γ、μ、α、δ或ε,依次分别限定免疫球蛋白类别IgG、IgM、IgA、IgD和IgE。抗体作为完整的免疫球蛋白、作为通过用多种肽酶消化产生的多个良好表征的片段、或作为通过重组DNA技术制备的多种片段而存在。抗体可以来源于很多不同的物种(例如,兔、绵羊、骆驼、人、或啮齿动物,例如小鼠或大鼠),或可以是合成的。抗体可以是嵌合的、人源化的或人工程化的(humaneered)。抗体可以是单克隆或多克隆、多链或单链的、片段或完整的免疫球蛋白。
如本文所使用的,“抗体片段”被定义为完整抗体或其重组变体的至少一部分,并且是指抗原结合结构域,例如,完整抗体的抗原决定可变区,其足够赋予抗体片段对靶标(例如抗原)的识别和特异性结合。抗体片段的示例包括但不限于Fab、Fab’、F(ab’)2和Fv片段、scFv抗体片段、线性抗体、单结构域抗体例如sdAb(VL或VH)、骆驼科VHH结构域和由抗体片段形成的多特异性抗体。术语“scFv”被定义为包含至少一个含轻链可变区的抗体片段和至少一个含重链可变区的抗体片段的融合蛋白,其中轻链和重链可变区通过短的柔性多肽接头连续地连接并且能够被表达为单链多肽,并且其中scFv保留其起源的完整抗体的特异性。除非另有说明,如本文所使用的seFv可以按任何顺序具有VL和VH可变区,例如,相对于多肽的N-末端和C-末端,scFv可包括VL-接头-VH或可包括VH-接头-VL
如本文所使用的,“抗原”被定义为引发免疫应答的分子。这种免疫应答可能涉及抗体产生或特异性免疫活性细胞的活化,或两者兼有。本领域技术人员将理解,包括但不限于几乎所有蛋白质或肽的任何大分子,包括糖基化多肽、磷酸化多肽和其它翻译后修饰的多肽(包括脂质修饰的多肽),均可以充当抗原。此外,抗原可以来源于重组或基因组DNA。本领域技术人员将理解,包括编码引发免疫应答的蛋白质的核苷酸序列或部分核苷酸序列的任何DNA因此编码如本文所使用的术语“抗原”。此外,本领域技术人员将理解,抗原不需要仅由基因的全长核苷酸序列编码。显而易见,本发明包括但不限于使用多于一种基因的部分核苷酸序列,并且这些核苷酸序列以各种组合排列以编码引发所需免疫应答的多肽。此外,本领域技术人员将理解,抗原完全不需要由“基因”编码。显而易见,抗原可以合成或可以来源于生物样品,或者可以是除多肽以外的大分子。所述的生物样品可以包括但不限于组织样品、肿瘤样品、细胞或具有其它生物组分的流体。
如本文所使用的,“反义RNA”被定义为核糖核酸,其是靶核酸序列的反向互补序列并且在生理条件下能够与其同源靶序列杂交。
如本文所使用的,“适配体”被定义为在正常生理条件下与配体相互作用的核酸序列。
如本文所使用的,术语“嵌合抗原受体”和术语“CAR”可互换使用。如本文所使用的,“CAR”被定义为包含抗原识别部分和细胞活化元件的融合蛋白。
如本文所使用的,“CAR T-细胞”或“CAR T-淋巴细胞”可互换使用,并且被定义为含有产生CAR多肽的能力而不管实际表达水平的T-细胞。例如,能够表达CAR的细胞是含有用于在细胞中表达CAR的核酸序列的T-细胞。
如本文所使用的,“共刺激元件”或“共刺激信号转导结构域”或“共刺激多肽”被定义为共刺激多肽的细胞内部分。共刺激多肽可呈现在以下蛋白质家族中:TNF受体蛋白、免疫球蛋白样蛋白、细胞因子受体、整合蛋白、信号转导淋巴细胞活化分子(SLAM蛋白)和活化天然杀伤细胞受体。所述多肽的示例包括:CD27、CD28、4-1BB(CD137)、OX40、GITR、CD30、CD40、ICOS、BAFFR、HVEM、淋巴细胞功能关联抗原-1(LFA-1)、CD2、CD7、LIGHT、NKG2C、SLAMF7、NKp80、CD160、B7-H3、MyD88等等。
如本文所使用的,“去稳定元件”或“DE”或“降解因子(Degron)”可互换使用,并被定义为通过添加或减去配体而在细胞环境中可被诱导为抗降解或易降解的多肽序列,并且将这种稳定性调节赋予以顺式融合到其上的共翻译多肽。
如本文所使用的,“有效量”或“治疗有效量”可互换使用,并被定义为如本文所述的有效实现特定生物学效果的化合物、配方、物质或组成物的量。
如本文所使用的,“表位”被定义为能够引发免疫应答的抗原的部分或与抗体结合的抗原的部分。表位可以是被抗体识别的蛋白质序列或亚序列。
如本文所使用的,“表达载体”和“表达构建体”可互换使用,并且均被定义为设计用于细胞中蛋白质表达的质粒、病毒或其它核酸。载体或构建体用于将基因导入宿主细胞,由此载体将在细胞中与聚合酶相互作用以表达载体/构建体中编码的蛋白质。表达载体和/或表达构建体可存在于细胞染色体外或整合到染色体中。当整合到染色体中时,包含表达载体或表达构建体的核酸将是表达载体或表达构建体。
如本文所使用的,“细胞外元件”被定义为嵌合抗原受体的抗原结合或识别元件。
如本文所使用的,“螺旋滑动机构”被定义为基于通过螺旋滑动事件起作用的元件的信息传递机构。所述螺旋滑动事件使用传感器元件的一般传递区域(例如适配体的基干(base stem))内的通信模块(或螺旋滑动元件)来导致调节元件的中断或恢复,以响应传感器元件的恢复。
如本文所使用的,“造血细胞”被定义为由造血干细胞产生的细胞。这包括但不限于骨髓祖细胞、淋巴祖细胞、巨核细胞、红细胞、肥大细胞、成髓细胞、嗜碱性粒细胞、嗜中性粒细胞、嗜酸性粒细胞、巨噬细胞、血小板、单核细胞、天然杀伤细胞、T淋巴细胞、B淋巴细胞和浆细胞。
如本文所使用的,“信息传递元件”是指在传感器元件和调节元件之间传递信息的核酸。
如本文所使用的,“细胞内元件”被定义为嵌合抗原受体的一部分,位于真核细胞的细胞质膜的细胞质侧,并将信号传递到真核细胞中。“细胞内信号转导元件”是转导效应物功能信号的细胞内元件的一部分,所述效应物功能信号引导真核细胞执行特定功能。
如本文所使用的,“调节元件”被定义为编码RNA控制装置的系统控制功能的核酸。调节元件具有RNA序列,其在RNA控制装置中产生独特的行为来响应配体结合。调节元件的示例包括调节多肽表达的核酶、反义RNA、RNAi、siRNA、shRNA、RNA酶III底物、剪接元件、核糖体结合位点、IRES序列、转录终止子、弱化子和其它RNA二级结构。
如本文所使用的,“反向互补链”或“RNA病毒(-)链”被定义为RNA病毒的(+)链或有义链的互补多核苷酸链或反义链。
如本文所使用的,“核酶”被定义为能够进行酶催化的天然或工程化的核糖核酸。天然的核酶的示例是肝炎δ核酶、发卡状核酶、锤头状核酶、varkud卫星核酶和glmS核酶。
如本文所使用的,“RNA控制装置”被定义为可采用与不同基因调节活性相对应的不同结构和行为的RNA分子。
如本文所使用的,“RNA酶III底物”被定义为由RNA酶III家族的核糖核酸内切酶识别和切割的RNA序列基序。
如本文所使用的,“RNAi底物”被定义为由短干扰RNA(siRNA)结合和/或切割的RNA序列,所述短干扰RNA与Argonaute家族的效应物核酸内切酶复合。
如本文所使用的,“RNA病毒(+)链”被定义为编码RNA病毒元件的有义链的多核苷酸。
如本文所使用的,“传感器元件”被定义为可结合配体的核酸。通过传感器元件的配体结合改变了RNA控制装置的调节元件的活性。
如本文所使用的,“单链抗体”(scFv)被定义为具有抗原结合活性功能的免疫球蛋白分子。scFv(单链片段变体)形式的抗体由重链(VH)和轻链(VL)的可变区组成,它们通过柔性的肽接头连接在一起。
如本文所使用的,“链置换元件”是指通过链置换机构起作用的信息传递元件的子集。
如本文所使用的,“T-淋巴细胞”或“T-细胞”被定义为通常在胸腺中发育的造血细胞。T-淋巴细胞或T-细胞包括但不限于天然杀伤T细胞、调节T细胞、辅助T细胞、细胞毒性T细胞、记忆T细胞、γδT细胞和粘膜不变T细胞。
如本文所使用的,“转录终止子”被定义为存在于DNA和/或新生合成的RNA上的核酸序列,其指示RNA聚合酶终止RNA延伸。
如本文所使用的,“转染”或“转化”或“转导”被定义为将外源核酸转入或导入宿主细胞的过程。“转染”或“转化”或“转导”的细胞是用外源核酸转染、转化或转导的细胞。细胞包括原始受试细胞及其后代。
如本文所使用的,“跨膜元件”被定义为细胞外元件和细胞内元件之间的元件。跨膜元件的一部分存在于细胞膜内。
去稳定元件
去稳定元件(DE)是能够与小分子配体相互作用的影响稳定性的多肽,利用配体的存在、不存在、或数量来调节目标DE-多肽的稳定性。在一些实施例中,目标多肽是免疫调节多肽。在一些实施例中,目标多肽是CAR。在一些实施例中,通过DE-CAR结合配体降低了真核细胞中DE-CAR多肽的降解速率。在一些实施例中,通过DE-CAR结合配体提高了真核细胞中DE-CAR的降解速率。
在一些实施例中,DE来源于天然产生的配体结合蛋白。在一些实施例中,配体结合蛋白是FKBP蛋白的变体。在一些实施例中,变体FKBP多肽具有以下取代中的一个或多个:来自SEQ ID NO:1的F15S、V24A、H25R、F36V、E60G、M66T、R71G、D100G、D100N、E102G、K105I和L106P。在一些实施例中,变体FKBP具有SEQ ID NO:2或3的多肽序列。在一些实施例中,变体FKBP多肽具有融合到FKBP的C-末端的多肽TRGVEEVAEGVVLLRRRGN(SEQ ID NO:4)。在一些实施例中,变体FKBP配体是Shield 1,或在结构上与雷帕霉素相关的小分子。在一些实施例中,配体与DE-CAR中的变体FKBP多肽的结合稳定了DE-CAR并降低了真核细胞中DE-CAR的降解速率。在一些实施例中,配体与DE-CAR中的变体FKBP多肽的结合使DE-CAR不稳定并提高了真核细胞中DE-CAR的降解速率。变体FKBP核酸和多肽的示例披露于2012年7月12日公开的美国公开专利申请20120178168A1中,该专利出于所有目的以其全文形式在此被援引加入本文。
在一些实施例中,配体结合蛋白质是DHFR蛋白的变体。在一些实施例中,变体DHFR多肽具有以下取代中的一个或多个:来自SEQ ID NO:5的H12L、H12Y、N18T、A19V、M42T、I61F、T68S、R98H、Y100I、F103L、F103S、H114R和G121V。在一些实施例中,变体DHFR具有SEQID NO:6或7的多肽序列。在一些实施例中,变体DHFR多肽具有以下组的取代中的一组或多组:来自SEQ ID NO:5的H12L/Y100I、H12Y/Y100I、N18T/A19V、M42T/H114R、I61F/T68S和R98H/F103S。在一些实施例中,变体DHFR配体是甲氧苄氨嘧啶或与甲氧苄氨嘧啶结构相关的变体。在一些实施例中,配体与DE-CAR中变体DHFR多肽的结合降低了真核细胞中DE-CAR的降解速率。在一些实施例中,配体与DE-CAR中变体DHFR多肽的结合提高了真核细胞中DE-CAR的降解速率。变体DHFR核酸和多肽的示例披露于2012年7月12日公开的美国公开专利申请20120178168A1中,该专利出于所有目的以其全文形式在此被援引加入本文。
在一些实施例中,配体结合蛋白是具有与ERBD(变体ERBD)的C-末端融合的降解因子的雌激素受体结合结构域(ERBD)。在一些实施例中,ERBD来源于SEQ ID NOS:8或9。在一些实施例中,“降解因子”是与细胞蛋白质降解机制相互作用的氨基酸序列,并指定其自身的降解及其作为其一部分的任何融合蛋白。在一些实施例中,降解因子可以是例如RRRG(SEQ ID NO:10)、细菌Y ALAA肽(SEQ ID NO:11)、酵母CL1降解因子、RRRGN(SEQ ID NO:12),其中N是氨基酸。在一些实施例中,考虑了可选地具有第五残基的肽RRRG(SEQ ID NO:10)。在一些实施例中,变体ERBD的配体是CMP8(9a-(4-氯苄基)-7-烃基-4-[4-(2-哌啶-1-乙氧基)苯基]-1,2,9-,9a-四氢-3H-芴-3-one)、4-羟基他莫昔芬、氟维司群或雷洛昔芬。在一些实施例中,变体ERBD在雌激素受体结合结构域和降解因子之间具有间隔区肽。在一些实施例中,间隔区在2-20、4-20、4-18、4-16、4-14、4-12、4-10、4-8、6-8或8个氨基酸残基之间。在一些实施例中,变体ERBD具有与KHKILHRLLQDSS(SEQ ID NO:13)具有至少约60%、70%、80%、85%、90%或95%序列一致性的多肽,其中该多肽位于间隔区和降解因子之间,或ERBD和降解因子之间。在公开的美国专利申请20140255361中披露了变体ERBD核酸、多肽和配体的示例,该专利出于所有目的以其全文形式在此被援引加入本文。
在一些实施例中,DE来源于Avena sativa(AsLOV2)的向光素1。在一些实施例中,DE是具有连接到向光素1(变体AsLOV2)的C-末端的降解因子的AsLOV2(SEQ ID NO:14)。在一些实施例中,融合到向光素1的C-末端的降解因子是RRRG(SEQ ID NO:9)或RRRGN(SEQ IDNO:11)。在一些实施例中,变体AsLOV2包括一个或多个的氨基酸取代:V416A、V416I、N482K、N482R、D522E、D522A、G528A、V529N、I532A和N538E(分别在SEQ ID NO:14的位置14、80、120、126、127、130和136)。在一些实施例中,变体AsLOV2是SEQ ID NO:15或16,并且变体AsLOV2融合到C-末端的降解因子。当这些DE暴露于蓝光时,C-末端的降解因子被暴露,并且目标DE多肽的降解增加。在一些实施例中,变体AsLOV2与CAR融合以制备受蓝光调节的DE-CAR。变体AsLOV2 DE的示例披露于Bonger et al.,ACS Chem.Biol.2014,vol.9,pp.111-115和Usherenko et al.,BMC Systems Biology 2014,vol.8,pp.128-143,上述文献出于所有目的以其全文形式被援引加入本文。
其它DE可通过将编码配体结合多肽的核酸与编码报道子的核酸以框架形式融合而从其它配体结合多肽衍生。通过公知的方法对该构建体进行诱变,然后通过选择或筛选来鉴定响应于配体结合而具有增加或降低的报道子活性的突变体。在一些实施例中,在第一轮诱变和选择/筛选中获得的变体进一步利用随机诱变进行诱变,和/或利用产生在第一轮诱变中获得的氨基酸取代和/或在第一轮诱变中鉴定的位置处的其它氨基酸取代的组合库进行诱变。在一些实施例中,报道多肽是发光多肽,例如绿色荧光多肽(GFP)。在一些实施例中,报道多肽可以用于选择,例如为细胞提供抗生素抗性或在某种营养环境中生长的能力或产生某种必需营养物质的能力的报道多肽(例如,酶DHFR可用于某些哺乳动物细胞系的选择方案)。
其它DE可以使用如上文对ERBD所述的降解因子从其它配体结合多肽衍生。在一些实施例中,降解因子融合到配体结合多肽的C-末端。在一些实施例中,降解因子融合到配体结合多肽的N-末端。在一些实施例中,配体结合多肽是衍生自配体结合多肽的配体结合结构域,或是具有配体结合性质的配体结合多肽的一些其它截短形式。在一些实施例中,融合到降解因子的编码配体结合结构域的核酸与编码报道子的核酸以框架形式融合。通过公知的方法对该构建体进行诱变,然后通过选择或筛选来鉴定响应于配体结合而具有增加或降低的报道子活性的突变体。在一些实施例中,在第一轮诱变和选择/筛选中获得的变体进一步利用随机诱变进行诱变,和/或利用产生在第一轮诱变中获得的氨基酸取代和/或在第一轮诱变中鉴定的位置处的其它氨基酸取代的组合库进行诱变。
可以制备其变体用作DE的其它配体结合多肽包括,例如酶、抗体或抗体片段或借助可变区、配体结合受体或其它蛋白质通过重组DNA方法工程化的抗体片段。酶的示例包括含有溴结构域的蛋白质、FKBP变体或原核DHFR变体。用于制备DE的受体元件的示例包括:变体ERBD或具有对哺乳动物尤其是人类无毒的配体的其它受体。
在一些实施例中,选择用于DE的配体以优化用于治疗吸引力的某些属性。这些属性包括对靶DE的特异性、对DE的亲和力、生物有效性、稳定性、商业可用性、成本、可用的相关化学品、生物正交性或其组合。在一些实施例中,配体对质膜是可渗透的,或穿过真核细胞的质膜传输。在一些实施例中,配体可口服给予受试者。在一些实施例中,配体是惰性的(前配体),并通过例如化学方法、电磁辐射、或正常菌群或受试者的代谢转化成活性配体,以产生活性配体。在一些实施例中,配体的血清半衰期大于1小时、2小时、4小时、6小时、8小时、12小时、24小时、48小时、96小时或更长。在一些实施例中,配体的血清半衰期小于96小时、48小时、24小时、18小时、12小时、10小时、8小时、6小时、4小时、2小时或1小时或更短。在一些实施例中,配体的血清半衰期为1至96小时、2至48小时、8至36小时、10至28小时、12至24小时、12至48小时、8至48小时或16至18小时之间。在一些实施例中,配体可穿过血脑屏障。在一些实施例中,配体是小的并且亲脂性的。在一些实施例中,配体通常不能存在于人体中或通过正常饮食引入。在一些实施例中,通过Kd测量的配体对靶DE的亲和力小于1M、500mM、100mM、50mM、20mM、10mM、5mM、1mM、500μM、100μM、50μM、20μM、10μM、5μM、1μM、500nM、100nM、50nM、20nM、10nM、5nM、4nM、3nM、2nM、1nM、0.5nM、0.1nM或更小。在一些实施例中,通过Kd测量的配体对靶DE的亲和力在1M和1pM之间、1mM和1nM之间、100μM和1nM之间、10μM和1nM之间、10μM和10nM之间、10μM和100nM之间、10μM和1μM之间以及50μM和5μM之间、1μM和500nM之间。在一些实施例中,配体是蛋白质。在一些实施例中,配体是小分子。在一些实施例中,配体是核酸。
RNA控制装置
在一些实施例中,本发明的核糖核酸(RNA)控制装置表现出基因表达、设计模块性和靶标特异性的可调谐调节。本发明的RNA控制装置可起重新布线通过细胞网络的信息流并重新编程细胞行为的作用以响应细胞环境的变化。在调节多肽表达方面,本发明的RNA控制装置可充当合成细胞传感器来监测不同输入分子水平的时间和空间波动。RNA控制装置代表用于构建配体控制的基因调节系统的强大工具,定制以调节本发明的CAR、DE-CAR和/或Side-CAR多肽的表达,来响应特定的效应物分子,使多种生命系统中靶CAR、DE-CAR和/或Side-CAR构建体的RNA调节成为可能。
本发明的RNA控制装置可以是反式作用或顺式作用。反式作用是指RNA控制装置在不同于RNA控制装置(例如,没有通过磷酸二酯(或同等物)主链接头连接,甚至更优选地根本不与RNA控制装置共价连接)的分子(例如另一核酸)上发挥其配体依赖活性。顺式作用是指RNA控制装置在相同的邻接核酸(即与RNA控制装置共价连接的核酸,例如通过磷酸二酯(或同等物)主链接头)上发挥其配体依赖活性。
在一些实施例中,本发明的RNA控制装置包括调节元件和传感器元件。在一些实施例中,本发明的RNA控制装置包括具有调节和传感功能的单个元件。在一些实施例中,本发明的RNA控制装置包括调节功能和传感功能。在一些实施例中,本发明的RNA控制装置包括调节元件、传感器元件和功能上耦合调节元件和传感器元件的信息传递元件(ITE)。在一些实施例中,主题发明的ITE基于例如链置换机理、静电相互作用、构象变化或空间效应。在一些实施例中,RNA控制装置的传感功能导致RNA控制装置的结构变化,导致作用功能的活性改变。可能发生这些结构变化的一些机制包括空间效应、疏水性驱动效应(log p)、静电驱动效应、核苷酸修饰效应(如甲基化、假尿苷修饰(pseudouradination)等)、次级配体相互作用效应和其它效应。在一些实施例中,链置换机制利用两个核酸序列(例如,竞争链和RNA控制装置链)竞争性结合到RNA控制装置的一般传递区域(例如适配体的基干)以引起调节元件的中断或恢复,来响应配体与传感器元件的结合。
在一些实施例中,传感器元件调节的核酸被设计成使得其可以采用至少两种不同的构象。在一种构象中,传感器元件能够与配体结合,并且调节元件可以处于一种活性状态(例如,更活跃的状态或较不活跃的状态)。在另一种构象中,传感器元件不能与配体结合,并且调节元件可以处于另一种活性状态。传感器元件的构象变化可以通过信息传递元件传递到耦合的调节元件,使得调节元件根据传感器元件能否与配体结合而采用两种活性状态之一。
在一些实施例中,适配体-调节的核酸平台是完全模块化的,使配体响应和调节功能(例如转录物靶向)能够通过交换受试者调节的核酸内的元件来工程化。这为构建用于各种不同配体的量身定制的传感器元件调节的核酸提供了平台。通过仅交换传感器元件将传感器调节核酸中的传感器元件的配体结合与调节元件的靶向能力分开设计。同样,可通过交换调节元件将调节元件的靶向能力与传感器元件的配体结合分开设计,使得不同的基因或分子被靶向而不会影响传感器元件。因此,受试者传感器元件调节的核酸在天然和工程化环境中呈现出定制空间和时间上的基因表达的强大且灵活的方法。
在一些实施例中,RNA控制装置是调节由信使RNA(mRNA)编码的同源蛋白质的产生的顺式作用RNA序列。在一些实施例中,RNA控制装置包含具有能够直接或间接与配体结合的序列的RNA。在一些实施例中,配体与RNA控制装置的结合导致从mRNA衍生的蛋白质产物的水平增加或减少。在一些实施例中,RNA控制装置包括结合小分子的mRNA区段的核糖开关。
RNA控制装置的示例是茶碱响应开关,包括适配体(配体结合组分)和锤头状核酶(基因调节组分)(Win and Smolke 2007 PNAS 104(36):14283-88,该篇文献出于所有目的以其全文形式在此被援引加入本文)。在适配体结合茶碱后,核酶变得无活性并且能够表达所需的转基因。在没有茶碱结合的情况下,核酶自身裂解,导致mRNA的核酸酶驱动的降解,抑制表达。
在一些实施例中,RNA控制装置包括传感器元件和调节元件。在一些实施例中,传感器元件是RNA适配体。在一些实施例中,RNA控制装置包括多于一个的传感器元件。在一些实施例中,调节元件是核酶。在一些实施例中,核酶是锤头状核酶。在一些实施例中,核酶是发卡状核酶,或肝炎δ病毒(HDV)核酶,或Varkud卫星状(VS)核酶,或glmS核酶。在其它实施例中,核酶是本领域已知的核酶。
在一些实施例中,RNA控制装置嵌入编码转基因的核酸内。在一些实施例中,目标转基因编码嵌合抗原受体或DE-嵌合抗原受体。
在一些实施例中,RNA控制装置(或多个RNA控制装置)嵌入DNA序列内。在一些实施例中,将RNA控制装置编码在信使RNA。在一些实施例中,多个RNA控制装置与转基因编码的mRNA顺式编码。在一些实施例中,RNA控制装置被重复。在一些实施例中,用于编码RNA控制装置的核酸被重复。通过包括多个RNA控制装置,可定制或优化灵敏度和剂量反应。在一些实施例中,包括多个RNA控制装置,其中每个RNA控制装置对于不同的配体是特异性的。本实施例可减轻由于与传感器元件相互作用的内源产生的配体的无意识表达。
RNA控制装置:传感器元件
在一些实施例中,传感器调节的多核苷酸还可以包括官能团或官能剂,例如,嵌入剂或烷基化剂。在一些实施例中,传感器调节的多核苷酸可以包括合成或非天然核苷酸和类似物(例如,6-巯基嘌呤、5-氟尿嘧啶、5-碘代-2’-脱氧尿苷和6-硫鸟嘌呤)或可以包括修饰的核酸。示例性的修饰包括胞嘧啶环外胺、5-溴尿嘧啶的取代、骨架修饰、甲基化和不常见的碱基配对组合。另外的类似物包括至少一个修饰的碱基部分,其选自包括但不限于5-氟尿嘧啶、5-溴尿嘧啶、5-氯尿嘧啶、5-碘尿嘧啶、次黄嘌呤、黄嘌呤、4-乙酰胞嘧啶、5-(羧基羟基三乙基)尿嘧啶、5-羧甲基氨基甲基-2-硫尿核苷、5-羧甲基氨基甲基尿嘧啶、二氢尿嘧啶、β-D-galactosylqueosine、肌苷、N6-异戊烯基腺嘌呤、1-甲基鸟嘌呤、1-甲基肌苷、2,2-二甲基鸟嘌呤、2-甲基腺嘌呤、2-甲基鸟嘌呤、3-甲基胞嘧啶、5-甲基胞嘧啶、N6-腺嘌呤、7-甲基鸟嘌呤、5-甲基氨基甲基尿嘧啶、5-甲氧基氨基甲基-2-硫尿嘧啶;β-D-mannosylqueosine、5-甲氧基羧甲基尿嘧啶、5-甲氧基尿嘧啶、2-甲硫基-N6-异戊烯腺嘌呤、尿嘧啶-5-氧基乙酸(v)、wybutoxosine、假尿嘧啶、queosine、2-硫胞嘧啶、5-甲基-2-硫尿嘧啶、2-硫尿嘧啶、4-硫尿嘧啶、5-甲基尿嘧啶、尿嘧啶-5-氧基乙酸甲酯、尿嘧啶-5-氧基乙酸(v)、5-甲基-2-硫尿嘧啶、3-(3-氨基-3-N-2-羧丙基)尿嘧啶、(acp3)w和2,6-二氨基嘌呤的组。
在一些实施例中,传感器元件包括适配体,所述适配体对配体结合作出响应以有利于调节元件中的变构变化,所述变构变化改变调节元件与其靶分子相互作用的能力。本实施例中的配体结合将调节元件从“关闭”转换到“打开”,或反之亦然。因此,传感器元件充当使RNA控制装置的活性“关闭”和/或“打开”的开关来响应配体结合。在一些实施例中,传感器(适配体)元件对配体的响应还可以取决于配体一致性和/或暴露于传感器(适配体)元件的配体的量或浓度。在一些实施例中,适配体可以结合小分子,例如药物、代谢物、中间体、辅因子、过渡态类似物、离子、金属、核酸和毒素。可替换地,适配体可以结合天然和合成的聚合物,包括蛋白质、肽、核酸、多糖、糖蛋白、激素、受体和细胞表面如细胞壁和细胞膜。
在一些实施例中,“适配体”是能够以高亲和力和特异性与特定分子结合的核酸分子,例如RNA或DNA(Ellington等人,Nature 346,818-22(1990);和Tuerk等人,Science249,505-10(1990),所述文献出于所有目的以其全文形式在此被援引加入本文)。与适配体结合的示例性配体包括但不限于小分子,例如药物、代谢物、中间体、辅因子、过渡态类似物、离子、金属、核酸和毒素。在一些实施例中,适配体还可以结合天然和合成的聚合物,包括蛋白质、肽、核酸、多糖、糖蛋白、激素、受体和细胞表面如细胞壁和细胞膜。在一些实施例中,配体与适配体(通常为RNA)的结合引起或有利于调节元件中的构象变化并改变其与其靶分子相互作用的能力。在一些实施例中,配体结合影响调节元件介导基因失活、转录、翻译或以其它方式干扰靶基因或mRNA的正常活性的能力。
可以制备结合各种分子的适配体。这些适配体分子中的每一个都可以使用本发明的方法用作基因表达的调节剂。在一些实施例中,有机分子、核苷酸、氨基酸、多肽、细胞表面上的靶向特征、离子、金属、盐、糖被用作制备可以特异性结合相应配体的适配体的配体。在一些实施例中,有机染料如Hoechst 33258被用作体外适配体选择的靶配体(Werstuckand Green,Science 282:296-298(1998),该篇文献出于所有目的以其全文形式在此被援引加入本文)。在一些实施例中,诸如多巴胺、茶碱、磺酰罗丹明B和纤维二糖的小有机分子用作分离适配体的配体。在一些实施例中,分离与抗生素例如卡那霉素A、利维霉素、妥布霉素、新霉素B、紫霉素、氯霉素和链霉素结合的适配体。关于识别小分子的适配体的综述,参见Famulok,Science 9:324-9(1999),该文献出于所有目的以其全文形式在此被援引加入本文。
在一些实施例中,本发明的RNA控制装置由RNA组成。在本发明的其它实施例中,RNA控制装置可代替地完全由DNA组成,或部分由DNA组成,或部分由其它核苷酸类似物组成。在一些实施例中,对于由RNA构成的RNA控制装置,在体内抑制翻译。所述适配体调节的RNA优选作为编码RNA控制装置的DNA被引入细胞,使得转录产生RNA控制装置。在一些实施例中,可将RNA控制装置本身引入细胞。
在一些实施例中,适配体对其配体的结合亲和力必须足够强,并且当与其配体结合时由适配体形成的结构必须足够重要,以便使本发明的RNA控制装置在“打开”和“关闭”状态之间转换。在一些实施例中,适配体和相关配体的结合常数优选使得配体发挥作用以结合适配体,并且在向受试者施用配体时获得的配体浓度具有期望的效果。对于体内使用,例如,结合常数应该使得结合发生在远低于血清或其它组织中可以实现的配体浓度,优选远低于细胞内可以实现的配体浓度,因为细胞膜的渗透性可能不足以使细胞内配体浓度接近血清或细胞外环境中的水平。在一些实施例中,用于体内使用的所需配体浓度也低于可能对生物体具有不良影响的配体浓度。
RNA控制装置的配体
可以通过添加外源或内源配体来控制RNA控制装置。在一些实施例中,选择配体以优化用于治疗吸引力的某些属性。这些属性包括对靶RNA控制装置的特异性、对RNA控制装置的亲和力、生物有效性、稳定性、商业可用性、成本、可用的相关化学品、生物正交性或其组合。在一些实施例中,配体对质膜是可渗透的,或穿过真核细胞的质膜传输。在一些实施例中,配体可口服给予受试者。在一些实施例中,配体是惰性的(前配体),并且通过正常菌群或受试者代谢以产生活性配体。在一些实施例中,配体的血清半衰期大于1小时、2小时、4小时、6小时、8小时、12小时、24小时、48小时、96小时或更长。在一些实施例中,配体的血清半衰期小于96小时、48小时、24小时、18小时、12小时、10小时、8小时、6小时、4小时、2小时或1小时或更短。在一些实施例中,配体的血清半衰期在1至96小时之间、2至48小时之间、8至36小时之间、10至28小时之间、12至24小时之间、12至48小时之间、8至48小时之间或16至18小时之间。在一些实施例中,配体可穿过血脑屏障。在一些实施例中,配体是小的并且亲脂性的。在一些实施例中,配体通常不能存在于人体中或通过正常饮食引入。在一些实施例中,通过Kd测量的配体对靶RNA控制装置的亲和力小于1M、500mM、100mM、50mM、20mM、10mM、5mM、1mM、500μM、100μM、50μM、20μM、10μM、5μM、1μM、500nM、100nM、50nM、20nM、10nM、5nM、4nM、3nM、2nM、1nM、0.5nM、0.1nM、或更少。在一些实施例中,通过Kd测量的配体对靶DE的亲和力在1M和1pM之间、1mM和1nM之间、100μM和1nM之间、10μM和1nM之间、10μM和10nM之间、10μM和100nM之间、10μM和1μM之间和50μM和5μM之间、1μM和500nM之间。在一些实施例中,配体是蛋白质。在一些实施例中,配体是小分子。在一些实施例中,配体是核酸。
在一些实施例中,配体是天然存在的分泌代谢物。例如,由肿瘤唯一产生或存在于肿瘤微环境中的配体是传感器元件的配体,并且该配体与传感器元件的结合改变了RNA控制装置的活性。因此,控制装置通过化学信号转导或接近肿瘤来响应和受控制。
在一些实施例中,通过其药效学或ADME行为选择配体。例如,配体可以优先地定位于人体解剖学和生理学的特定部分。例如,某些分子优先地在肠道、肝脏、肾脏等中被吸收或代谢。在一些实施例中,选择配体以在特定器官中证实优先的药效学行为。例如,将优先定位于结肠的配体用于结肠直肠癌会是有用的,以便配体的峰浓度在所需位点,而身体其余部分的浓度最小化,防止不希望的非特异性毒性。在一些实施例中,选择配体以证明非优先的药效学行为。例如,对于像血液恶性肿瘤这样的弥散性肿瘤,使得配体贯穿整个身体具有非变量浓度会是有用的。
通过噬菌体辅助连续进化的RNA控制装置发现
定向进化已用于获得具有所需特性的广泛的生物分子库。不过,在实验室进化中典型的成批方法的局限性限制了可以使用定向进化快速并有效地产生这些生物分子的范围。最近,称为噬菌体辅助连续进化(PACE)的用于定向进化的连续技术已经用于快速生成新颖的RNA聚合酶系统(Esvelt等人,Nature,472:499,2011,该篇文献出于所有目的以其全文形式在此被援引加入本文)。在一些实施例中,进化期望的RNA控制装置的方法依赖于PACE。
在一些实施例中,进化RNA控制装置的方法包括使用缺乏M13 P3感染因子的M13噬菌体库。在不希望受理论束缚的情况下,据信RNA控制装置每轮轻度诱变一次,因此含有微妙的RNA控制装置变体,其在存在同源配体下影响T7 RNA聚合酶的表达。随后,T7 RNAP从由感染的大肠杆菌宿主包含的异位位点转录M13 P3。高水平的P3生产与M13噬菌体感染性直接相关,因此携带具有选定特性的RNA控制装置的M13克隆经受多轮纯化选择。在一些实施例中,方法包括非经典噬菌体PACE系统。在一些实施例中,该非经典噬菌体PACE系统包括使用含有RNA控制装置的Leviviridae家族的RNA噬菌体。在一些实施例中,该RNA噬菌体在存在RNA控制装置功能的小分子抑制剂下经受多轮感染。在一些实施例中,将组装的RNA控制装置置于感染性噬菌体内并以与PACE的一种或多种实施方案兼容的方式引入活细菌培养物。在不希望受理论束缚的情况下,据信RNA控制装置的活性直接与连续几轮后代噬菌体感染的增殖和适合性耦合。在一些实施例中,进化RNA装置的方法包括使用标准的基于M13的PACE系统。在本实施例中,在不希望受理论束缚的情况下,含有响应同源小分子配体的RNA控制装置变体的M13克隆经受多次循环的突变和选择,产生在细菌中显示期望的性能性质的进化的RNA控制装置。在一些实施例中,进化RNA控制装置的方法包括使用Leviviridae家族的RNA噬菌体。在一些实施例中,含有RNA控制装置的RNA噬菌体通过易错基因组复制经受多轮突变和经由基因组切割经受阴性选择,产生在细菌中显示期望的性能性质的进化的RNA控制装置。在一些实施例中,进化RNA控制装置的方法是新颖的PACE系统。
许多其它方法是本领域公知的,用于生成用于RNA控制装置的定向进化的变体库。例如EpPCR,其通过降低DNA聚合酶在PCR反应中的保真度来引入随机点突变(Pritchard等人,J.Theor.Biol.234:497-509(2005),该篇文献出于所有目的以其全文形式在此被援引加入本文);易错滚环扩增(epRCA),其类似于epPCR,除了整个环形质粒用作模板并且在最后两个核苷酸上的具有抗核酸外切酶的硫代磷酸酯键的随机的6-mer用于扩增质粒,随后将质粒转化到细胞中,其中质粒以串联重复再环化(Fujii等人,Nucleic Acids Res.32:e145(2004);和Fujii等人,Nat.Protoc.1:2493-2497(2006),上述文献出于所有目的以其全文形式在此被援引加入本文);DNA或家族改组,其通常涉及用核酸酶如Dnase I或Endo V消化两个或更多个变体基因以生成随机片段池,通过在存在DNA聚合酶下退火和延伸循环对随机片段池进行重新组装以产生嵌合基因库(Stemmer,Proc.Natl.Acad.Sci.U.S.A.91:10747-10751(1994);和Stemmer,Nature 370:389-391(1994),上述文献出于所有目的以其全文形式在此被援引加入本文);交错延伸(StEP),其需要模板启动,随后是具有变性和非常短持续时间的退火/延伸(短至5秒)的两步PCR的重复循环(Zhao等人,Nat.Biotechnol.16:258-261(1998),该篇文献出于所有目的以其全文形式在此被援引加入本文);随机引物重组(RPR),其中随机序列引物用于生成与模板的不同区段互补的许多短DNA片段(Shao等人,Nucleic Acids Res 26:681-683(1998),该篇文献出于所有目的以其全文形式在此被援引加入本文)。
RNA控制装置:调节元件
在一些实施例中,调节元件包括核酶,或反义核酸,或RNAi序列或产生siRNA或miRNA的前体,或shRNA或其前体,或RNA酶III底物,或替代的剪接元件,或转录终止子,或核糖体结合位点,或IRES,或多聚腺嘌呤(poly A)位点。
在一些实施例中,RNA控制装置的调节元件包括反义序列,并通过反义机制起调节靶基因表达的作用。例如,RNA控制装置可以包括含有抑制靶基因表达的反义序列的调节元件和结合配体的适配体元件。配体与适配体元件的结合引起RNA控制装置中的构象变化,其改变调节元件的反义序列抑制靶序列表达的能力。
在一些实施例中,RNA控制装置例如可以是表达质粒的组分,其在真核细胞中转录时通过调节元件调节靶标的表达。可替换地,可以在靶细胞外产生RNA控制装置,随后将其引入靶细胞以调节靶标的表达。RNA控制装置可以被修饰成使得它们对内源性核酸酶例如核酸外切酶和/或核酸内切酶具有抗性,因此在体内是稳定的。用于RNA控制装置的示例性核酸分子是DNA的氨基磷酸酯、硫代磷酸酯和甲基膦酸酯类似物(另请参见美国专利号5,176,996、5,264,564和5,256,775,上述专利出于所有目的以其全文形式在此被援引加入本文)。已经综述了构建用于反义技术的寡聚体的一般方法,例如,参见van der Krol等人,(1988)Biotechniques 6:958-976;和Stein等人,(1988)Cancer Res 48:2659-2668,上述文献出于所有目的以其全文形式在此被援引加入本文。
在一些实施例中,RNA控制装置的调节元件包括含有RNAi序列的调节元件,并通过RNAi或miRNA机制起调节靶基因表达的作用。例如,RNA控制装置可以包括含有抑制靶基因表达的miRNA或siRNA序列的调节元件和结合配体的适配体元件。配体与适配体元件的结合引起适配体调节的核酸中的构象变化,其改变调节元件的miRNA或siRNA序列抑制靶序列表达的能力。在一些实施例中,调节元件包括长度在约19个核苷酸和约35个核苷酸之间或优选约25个核苷酸和约35个核苷酸之间的miRNA或siRNA序列。在一些实施例中,调节元件是可由RNase III酶处理的发夹环。如本文所使用的,术语“RNAi”表示用于减弱基因表达的RNA介导的机制,并且包括小RNA介导的沉默机制。RNA介导的沉默机制包括mRNA翻译的抑制和靶向mRNA的定向切割。调节元件靶向的序列可以选自在基因组水平调节靶基因的转录的未转录序列。
在一些实施例中,RNAi构建体包含在细胞生理条件下与待抑制基因(即“靶”基因)的mRNA转录物的至少一部分的核苷酸序列杂交的核苷酸序列。双链RNA只需要与天然RNA在调节RNAi的能力上充分相似。因此,本发明具有能够容忍由于基因突变、应变多态性或进化趋异而可能预期的序列变异的优点。可接受的靶序列与RNAi构建体序列之间的核苷酸错配的数目为5个碱基对中不超过一个,或10个碱基对中不超过一个,或20个碱基对中不超过一个,或50个碱基对中不超过一个。siRNA双链体中心的错配最为关键,可能会消除靶RNA的切割。相比之下,与靶RNA互补的siRNA链3’端的核苷酸对靶向识别的特异性没有显著的贡献。不过,某些miRNA设计,例如基于mir-30的miRNA设计,可能在引导序列中间具有约几个核苷酸的凸起。
在一些实施例中,本发明的RNAi构建体是“siRNA”。这些核酸的长度在约19-35个核苷酸之间,甚至更优选长度在21-23个核苷酸之间,例如,在长度上对应于核酸酶“切割”较长的双链RNA生成的片段。siRNA被认为招募核酸酶复合物并通过与特异性序列配对将复合物引导至靶mRNA。结果,靶mRNA被蛋白质复合物中的核酸酶降解或者翻译被抑制。在特定实施例中,21-23个核苷酸的siRNA分子包含3’羟基。
在一些实施例中,本发明的RNAi构建体是“miRNA”。microRNA(miRNA)是小的非编码RNA,通过与同源mRNA的相互作用来指导基因表达的转录后调控。miRNA通过与靶mRNA中的互补位点结合来控制基因的表达。miRNA通过溶核裂解由较大的双链前体分子加工。这些前体分子通常是发夹结构,长度为约70个核苷酸,其中25个或更多个核苷酸在发夹中是碱基配对的。RNase III样酶Drosha和Dicer(其也可用于siRNA加工)切割miRNA前体以产生miRNA。加工的miRNA是单链的并且被并入称为RISC或miRNP的蛋白质复合物。该RNA-蛋白质复合物靶向互补mRNA。miRNA抑制翻译或引导裂解靶mRNA。(Brennecke等人,GenomeBiology 4:228(2003);Kim等人,Mol.Cells.19:1-15(2005),上述文献出于所有目的以其全文形式在此被援引加入本文)。
在一些实施例中,调节元件是核酶。在一些实施例中,核酶在存在合适的辅因子如二价金属下自体切割其磷酸骨架。该分子内RNA裂解的产物在上游裂解片段上产生2’,3’-环状磷酸酯,并且在下游裂解片段上产生5’OH。自体切割核酶的示例是锤头状核酶,其切割基因产物mRNA的3’非翻译区。核酶可以与结合配体的传感器元件偶联,使得核酶在存在或不存在配体的情况下切割mRNA。根据RNA控制装置的设计,配体的结合可以诱导核酶切割或抑制核酶切割。
在一些实施例中,RNA控制装置具有多个调节元件和/或多个传感器元件。在一些实施例中,多个传感器元件识别不同的配体。在一些实施例中,多个传感器元件对调节元件具有不同的效果。
嵌合抗原受体
在一些实施例中,嵌合抗原受体(CAR)是包含细胞外抗原结合/识别元件、将受体锚定至细胞膜的跨膜元件和至少一种细胞内元件的融合蛋白。这些CAR元件是本领域已知的,例如披露于专利申请US20140242701,该专利出于所有目的以其全文形式在此被援引加入本文。在一些实施例中,本发明的CAR是包括至少细胞外抗原结合元件、跨膜元件和含有衍生自刺激分子的功能性信号转导元件的细胞内信号转导元件的重组多肽构建体。在一些实施例中,刺激分子是与T细胞受体复合物相关的ζ链。在一些实施例中,细胞质信号转导元件还包括衍生自至少一种共刺激分子的一种或多种功能性信号转导元件。在一些实施例中,共刺激分子选自4-1BB(即CD137)、CD27和/或CD28。在一些实施例中,CAR包括嵌合融合蛋白,其包含细胞外抗原识别元件、跨膜元件和含有衍生自刺激分子的功能性信号转导元件的细胞内信号转导元件。在一些实施例中,CAR包括嵌合融合蛋白,其包含细胞外抗原识别元件、跨膜元件和含有衍生自共刺激分子的功能性信号转导元件和衍生自刺激分子的功能性信号转导元件的细胞内信号转导元件。在一些实施例中,CAR包括嵌合融合蛋白,其包含细胞外抗原识别元件、跨膜元件和含有衍生自一种或多种共刺激分子的两个功能性信号转导元件和衍生自刺激分子的功能性信号转导元件的细胞内信号转导元件。在一些实施例中,CAR包括嵌合融合蛋白,其包含细胞外抗原识别元件、跨膜元件和含有衍生自一种或多种共刺激分子的至少两个功能性信号转导元件和衍生自刺激分子的功能性信号转导元件的细胞内信号转导元件。在一些实施例中,CAR包括在CAR融合蛋白的氨基末端(N-ter)的可选的前导序列。在一些实施例中,CAR还包括在细胞外抗原识别元件的N-末端的前导序列,其中前导序列可选地在细胞加工和CAR向细胞膜定位期间从抗原识别元件(例如scFv)裂解。
嵌合抗原受体-细胞外元件
在一些实施例中,用于本发明的CAR的“能够结合抗原的细胞外元件”是包括可与靶抗原结合的寡肽或多肽的元件,并且包括例如抗体的抗原结合结构域和受体的配体结合结构域。在一些实施例中,该元件与抗原例如靶细胞的细胞表面上存在的抗原结合并与其相互作用,从而向表达CAR的细胞赋予特异性。本发明的细胞外元件的特别有用的示例包括衍生自抗体(H链和L链)和TCR(TCRα、TCRβ、TCRγ、TCRδ)、CD8α、CD8β、CD11A、CD11B、CD11C、CD18、CD29、CD49A、CD49B、CD49D、CD49E、CD49F、CD61、CD41和CD51的可变区的细胞外元件。在一些实施例中,可以有效使用整个蛋白质。在一些实施例中,可以使用能够结合抗原或配体的结构域(例如抗体Fab片段的细胞外结构域)、抗体可变区[H链的V区(VH)和L链的V区(VL)]或受体。在一些实施例中,可以使用scFv。在一些实施例中,细胞外元件选自对于受试者的种类来说是天然的多肽,其赋予真核细胞Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR。在一些实施例中,可以使用结构域的一部分,只要其保留结合抗原的能力。
如在美国专利号5,359,046、5,686,281和6,103,521(上述专利出于所有目的以其全文形式在此被援引加入本文)中所述,细胞外元件可从任何多种细胞外元件或与配体结合和/或信号转导相关的分泌蛋白质中获得。在一些实施例中,细胞外元件是蛋白质的一部分,所述蛋白质是单体、同源二聚体、异源二聚体或与较大数量的蛋白质以非共价复合物结合。在一些实施例中,细胞外元件可以由Ig重链组成,其转而可以由于CH1和铰链区的存在而与Ig轻链共价结合,或可以由于铰链、CH2和CH3结构域的存在而与其它Ig重/轻链复合物共价结合。在后一种情况中,连接到嵌合构建体的重/轻链复合物可以构成具有与嵌合构建体的抗体特异性不同的特异性的抗体。根据抗体的功能、期望的结构和信号转导,可以使用整个链,或者可以使用截短的链,其中CH1、CH2或CH3结构域的全部或部分可以被去除,或铰链区的全部或部分可以被去除。
在一些实施例中,用于本发明的CAR的细胞外元件可以是仅结合一个抗原或配体的细胞外元件,或结合两个或多个抗原或配体的细胞外元件。在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR包括一个细胞外元件或两个或多个细胞外元件。在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR是双特异性CAR并且靶向两种不同的抗原。在一些实施例中,双特异性Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR控制抑制性CAR和扩增CAR,每一个可由不同的配体寻址。本实施例对真核细胞的活性提供阳性和阴性控制。在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的抗原特异性靶向区域可以串联排列并且可以被接头肽分开。在一些实施例中,由Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR靶向的抗原是可以是病变细胞(例如癌性B细胞)上的抗原或在单独的细胞上表达的抗原,每一个都导致疾病。在一些实施例中,由Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR靶向的抗原是直接或间接参与疾病的抗原。
在一些实施例中,细胞外元件可以选自识别靶抗原的抗体或与抗原相互作用的分子。抗原的示例包括病毒抗原、细菌(特别是感染性细菌)抗原、寄生虫抗原、靶细胞上与特定条件相关的细胞表面标志物(例如肿瘤抗原)以及免疫性相关细胞的表面分子。
细胞外元件可以是结合抗原的任何多肽,包括但不限于单克隆抗体、多克隆抗体、重组抗体、人类抗体、人源化抗体、单链抗体、多价抗体、多特异性抗体、双链抗体及其功能性片段,包括但不限于单结构域抗体,例如重链可变结构域(VH)、轻链可变结构域(VL)和骆驼科衍生的纳米抗体的可变结构域(VHH),以及本领域已知的用作抗原结合结构域的替代支架,例如重组纤连蛋白结构域等等。在一些实施例中,抗原结合元件来源于相同物种是有益的,其中最终将使用CAR。例如,供人体中使用,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的抗原结合元件包含用于抗体或抗体片段的抗原结合元件的人的或人源化的或人工程化的或人嵌合的残基可能是有益的。
可以使用本领域已知的多种技术制备人源化抗体,包括但不限于CDR移植(参见例如,欧洲专利号EP239,400;国际公开号WO91/09967;以及美国专利号5,225,539、5,530,101和5,585,089,每篇专利以其全文形式在此被援引加入本文)、饰面或表面重修(参见例如,欧洲专利号EP592,106和EP519,596;Padlan,1991,Molecular Immunology,28(4/5):489-498;Studnicka等人,1994,Protein Engineering,7(6):805-814;和Roguska等人,1994,PNAS,91:969-973,每篇专利或文献以其全文形式在此被援引加入本文)、链改组(参见例如,美国专利号5,565,332,该专利以其全文形式在此被援引加入本文)以及披露于例如美国专利申请公开号US2005/0042664、美国专利申请公开号US2005/0048617、美国专利号6,407,213、美国专利号5,766,886、国际公开号WO9317105;Tan等人,J.Immunol.,169:1119-25(2002);Caldas等人,Protein Eng.,13(5):353-60(2000);Morea等人,Methods,20(3):267-79(2000);Baca等人,J.Biol.Chem.,272(16):10678-84(1997);Roguska等人,ProteinEng.,9(10):895-904(1996);Couto等人,Cancer Res.,55(23 Supp):5973s-5977s(1995);Couto等人,Cancer Res.,55(8):1717-22(1995);Sandhu J S,Gene,150(2):409-10(1994);和Pedersen等人,J.Mol.Biol.,235(3):959-73(1994)的技术,每篇专利或文献以其全文形式在此被援引加入本文。通常,骨架区域中的骨架残基将被来自CDR供体抗体的相应残基取代,以改变例如提高抗原结合。这些骨架取代通过本领域公知的方法来识别,例如通过对CDR和骨架残基的相互作用进行建模来识别对于抗原结合重要的骨架残基,并且通过序列对比以识别在特定位置处的异常骨架残基(参见例如,Queen等人,美国专利号5,585,089;和Riechmann等人,1988,Nature,332:323,上述专利或文献以其全文形式在此被援引加入本文)。
用于制备人源化抗体的人可变结构域(轻链和重链)的选择是降低抗原性。根据所谓的“最佳匹配”方法,筛选针对已知人可变结构域序列的整个库的啮齿动物抗体的可变结构域的序列。随后接受与啮齿动物最接近的人序列作为人源化抗体的人骨架(FR)(Sims等人,J.Immunol.,151:2296(1993);Chothia等人,J.Mol.Biol.,196:901(1987),上述文献出于所有目的以其全文形式在此被援引加入本文)。另外一种方法使用衍生自轻链或重链的特定亚组的所有人抗体的共有序列的特定骨架。相同的骨架可用于几种不同的人源化抗体(参见例如,Nicholson等人,Mol.Immun.34(16-17):1157-1165(1997);Carter等人,Proc.Natl.Acad.Sci.USA,89:4285(1992);Presta等人,J.Immunol.,151:2623(1993),上述文献出于所有目的以其全文形式在此被援引加入本文)。在一些实施例中,重链可变区的骨架区域,例如所有四个骨架区域,衍生自VH4--4-59种系序列。在一个实施例中,骨架区域可以包括一个、两个、三个、四个或五个修饰,例如取代,例如来自相应小鼠序列上的氨基酸。在一个实施例中,轻链可变区的骨架区域,例如所有四个骨架区域,衍生自VK3--1.25种系序列。在一个实施例中,骨架区域可以包括一个、两个、三个、四个或五个修饰,例如取代,例如来自相应小鼠序列上的氨基酸。
“人工程化的”抗体是指具有参考抗体结合特异性的工程化的人抗体。用于本发明的“人工程化的”抗体具有包含衍生自供体免疫球蛋白的最小序列的免疫球蛋白分子。通常,通过将编码来自参考抗体的重链CDR3区的结合特异性决定簇(BSD)的DNA序列连接到人VH区段序列以及将来自参考抗体的轻链CDR3 BSD连接到人VL区段序列对抗体进行“人工程化”。“BSD”是指CDR3-FR4区域,或介导结合特异性的该区域的一部分。因此,结合特异性决定簇可以是CDR3-FR4、CDR3、CDR3的最小必要结合特异性决定簇(指的是当存在于抗体的V区中时,赋予结合特异性的小于CDR3的任何区域)、D区段(相对于重链区域)或赋予参考抗体结合特异性的CDR3-FR4的其它区域。用于人工程化的方法在美国专利申请公开号20050255552和美国专利申请公开号20060134098中提供(上述专利出于所有目的以其全文形式被援引加入本文)。
在一些实施例中,提供了能够与抗原结合的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR,所述抗原来源于逆转录病毒科(例如,人类免疫缺陷病毒,比如HIV-1和HIV-LP)、小RNA病毒科(例如,骨髓灰质炎病毒、甲型肝炎病毒、肠道病毒、人类柯萨奇病毒、鼻病毒和艾柯病毒)、风疹病毒、冠状病毒、水疱性口炎病毒、狂犬病毒、埃博拉病毒、副流感病毒、腮腺炎病毒、麻疹病毒、呼吸道合胞体病毒、流感病毒、乙型肝炎病毒、细小病毒、腺病毒科、疱疹病毒科[例如,1型和2型单纯疱疹病毒(HSV)、水痘带状疱疹病毒、巨细胞病毒(CMV)和疱疹病毒]、痘病毒科(例如,天花病毒、牛痘病毒和痘病毒)或丙型肝炎病毒。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR所靶向的对于传染性疾病特异性的抗原包括但不限于炭疽毒素、CCR5、CD4、凝集因子A、巨细胞病毒、巨细胞病毒糖蛋白B、内毒素、大肠杆菌、乙型肝炎表面抗原、乙型肝炎病毒、HIV-1、Hsp90、甲型流感血凝素、脂磷壁酸、铜绿假单胞菌、狂犬病毒糖蛋白、呼吸道合胞体病毒和TNF-α中的任意一种或多种。对于传染性疾病特异性的其它抗原对本领域技术人员来说是显而易见的,并且可以与本发明的替代实施例结合使用。
在一些实施例中,提供了能够与抗原结合的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR,所述抗原来源于葡萄球菌、链球菌、大肠杆菌、假单胞菌或沙门氏菌的细菌菌株。在一些实施例中,用对这些或其它病原菌特异性的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR来工程化吞噬细胞的免疫细胞。所述Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR工程化的免疫细胞对治疗败血症是有用的。可以由所述的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR靶向的细菌病原体的示例包括金黄色葡萄球菌、淋病奈瑟氏球菌、化脓性链球菌、A组链球菌、B组链球菌(无乳链球菌)、肺炎链球菌和破伤风梭状芽孢杆菌。在一些实施例中,提供了能够结合发现于被感染性病原体(例如,病毒、细菌、原生动物或真菌)感染的宿主细胞上的抗原的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR。可以感染宿主细胞的细菌病原体的示例包括幽门螺杆菌、嗜肺军团菌、分枝杆菌属的细菌菌株(例如,结核分枝杆菌、鸟型结核分枝杆菌、细胞内分枝杆菌、M. kansaii或M.gordonea)、脑膜炎奈瑟氏菌、单核细胞增多性李斯特氏菌、R.rickettsia、沙门氏菌属、布鲁氏菌属、志贺氏杆菌属或某些大肠杆菌菌株或具有含侵入性因子的获得的基因的其它细菌。可以感染宿主细胞的病毒病原体的示例包括逆转录病毒科(例如,人类免疫缺陷病毒,比如HIV-1和HIV-LP)、小RNA病毒科(例如,骨髓灰质炎病毒、甲型肝炎病毒、肠道病毒、人类柯萨奇病毒、鼻病毒和艾柯病毒)、风疹病毒、冠状病毒、水疱性口炎病毒、狂犬病毒、埃博拉病毒、副流感病毒、腮腺炎病毒、麻疹病毒、呼吸道合胞体病毒、流感病毒、乙型肝炎病毒、细小病毒、腺病毒科、疱疹病毒科[例如,1型和2型单纯疱疹病毒(HSV)、水痘带状疱疹病毒、巨细胞病毒(CMV)和疱疹病毒]、痘病毒科(例如,天花病毒、牛痘病毒和痘病毒),或丙型肝炎病毒。
在一些实施例中,提供了能够结合肿瘤抗原的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR,所述肿瘤抗原例如4-1BB、5T4、腺癌抗原、甲胎蛋白、BAFF、B-淋巴瘤细胞、C242抗原、CA-125、碳酸酐酶9(CA-IX)、C-MET、CCR4、CD152、CD19、CD20、CD21、CD22、CD23(IgE受体)、CD28、CD30(TNFRSF8)、CD33、CD4、CD40、CD44v6、CD51、CD52、CD56、CD74、CD80、CEA、CNTO888、CTLA-4、DR5、EGFR、EpCAM、CD3、FAP、纤连蛋白额外结构域B、叶酸受体1、GD2、GD3神经节苷脂、糖蛋白75、GPNMB、HER2/neu、HGF、人散射因子受体激酶、IGF-1受体、IGF-I、IgG1、L1-CAM、IL-13、IL-6、胰岛素样生长因子I受体、α5β1-整合蛋白、整合蛋白αvβ3、MORAb-009、MS4A1、MUC1、粘蛋白CanAg、N-羟乙酰神经氨酸、NPC-1C、PDGF-Rα、PDL192、磷脂酰丝氨酸、前列腺癌细胞、RANKL、RON、ROR1、SCH 900105、SDC1、SLAMF7、TAG-72、固生蛋白C、TGF β2、TGF-β、TRAIL-R1、TRAIL-R2、肿瘤抗原CTAA16.88、VEGF-A、VEGFR-1、VEGFR2、707-AP、ART-4、B7H4、BAGE、β-连环蛋白/m、Bcr-abl、MN/C IX抗体、CAMEL、CAP-1、CASP-8、CD25、CDC27/m、CDK4/m、CT、Cyp-B、DAM、ErbB3、ELF2M、EMMPRIN、ETV6-AML1、G250、GAGE、GnT-V、Gp100、HAGE、HLA-A*0201-R170I、HPV-E7、HSP70-2M、HST-2、hTERT(或hTRT)、iCE、IL-2R、IL-5、KIAA0205、LAGE、LDLR/FUT、MAGE、MART-1/melan-A、MART-2/Ski、MC1R、肌球蛋白/m、MUM-1、MUM-2、MUM-3、NA88-A、PAP、蛋白酶-3、p190minor bcr-abl、Pml/RARα、PRAME、PSA、PSM、PSMA、RAGE、RU1或RU2、SAGE、SART-1或SART-3、存活素、TPI/m、TRP-1、TRP-2、TRP-2/INT2、WT1、NY-Eso-1或NY-Eso-B或波形蛋白中的任何一种或多种。对于癌症特异性的其它抗原对本领域技术人员来说是显而易见的,并且可以与本发明的替代实施例结合使用。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR靶向对于炎症性疾病特异性的抗原,其包括但不限于AOC3(VAP-1)、CAM-3001、CCL11(嗜酸性粒细胞趋化因子-1)、CD125、CD147(basigin,基础免疫球蛋白)、CD154(CD40L)、CD2、CD20、CD23(IgE受体)、CD25(IL-2受体的α链)、CD3、CD4、CD5、IFN-α、IF-γ、IgE、IgE Fc区域、IL-1、IL-12、IL-23、IL-13、IL-17、IL-17A、IL-22、IL-4、IL-5、IL-5、IL-6、IL-6受体、整合蛋白α4、整合蛋白α4β7、Lama glama、LFA-1(CD11a)、MEDI-528、肌肉生长抑制素、OX-40、rhuMAb.β.7、scleroscin、SOST、TGFβ1、TNF-α或VEGF-A中的任意一种或多种。对于炎症性疾病特异性的其它抗原对本领域技术人员来说是显而易见的,并且可以与本发明的替代实施例结合使用。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR抗原所靶向的对于神经元异常特异性的抗原包括但不限于β淀粉样蛋白或MABT5102A中的任何一种或多种。对于神经元异常特异性的其它抗原对本领域技术人员来说是显而易见的,并且可以与本发明的替代实施例结合使用。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR所靶向的对于糖尿病特异性的抗原包括但不限于L-1β或CD3中的任何一种或多种。对于糖尿病或其它代谢紊乱特异性的其它抗原对本领域技术人员来说是显而易见的,并且可以与本发明的替代实施例结合使用。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR靶向对于衰老细胞特异性的抗原包括但不限于DEP1、NTAL、EBP50、STX4、VAMP3、ARMX3、B2MG、LANCL1、VPS26A或PLD3中的任何一种或多种。对于衰老细胞特异性的其它抗原对本领域技术人员来说是显而易见的,并且可以与本发明的替代实施例结合使用。参见例如,Althubiti等人,Cell Death and Disease,vol.5,p.e1528(2014),该篇文献出于所有目的以其全文形式被援引加入本文。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR所靶向的对于心血管疾病特异性的抗原包括但不限于C5、心脏肌球蛋白、CD41(整合蛋白α-IIb)、纤维蛋白II、β链、ITGB2(CD18)和鞘氨醇-1-磷酸中的任何一种或多种。对于心血管疾病特异性的其它抗原对本领域技术人员来说是显而易见的,并且可以与本发明的替代实施例结合使用。
细胞内元件
在一些实施例中,当Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞外元件与抗原结合(相互作用)时,细胞内元件是可以将信号传递到细胞中的分子。在一些实施例中,细胞内信号转导元件一般负责激活引入了Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的免疫细胞的至少一种正常效应物功能。术语“效应物功能”是指细胞的特化功能。T细胞的效应物功能例如可以是溶细胞活性或辅助活性,包括细胞因子的分泌。因此,术语“细胞内信号转导元件”是指转导效应物功能信号并引导细胞执行特化功能的蛋白质的部分。尽管可以使用整个细胞内信号转导结构域,但在很多情况,细胞内元件或细胞内信号转导元件不需要由整个结构域组成。在使用细胞内信号转导结构域的截短部分的程度上,只要其转导效应物功能信号,这样的截短部分就可以使用。因此,术语细胞内信号转导元件还旨在包括足以转导效应物功能信号的细胞内信号转导结构域的任何截短部分。用于本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞内信号转导元件的示例包括T细胞受体(TCR)和共同受体(协同作用以启动抗原受体结合之后的信号转导)的细胞质序列,以及这些序列的任何衍生物或变体和具有相同功能能力的任何重组序列。
在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞内信号转导元件可以包括CD3-ζ信号结构域本身,或者其可以与任意其它所需的在本发明的SmartCAR、DE-CAR、Smart-DE-CAR和/或Side CAR的环境中可用的细胞内信号转导元件结合。例如,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞内信号转导元件可以包括CD3ζ链部分和共刺激信号转导元件。共刺激信号转导元件是指包括共刺激分子的细胞内元件的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的一部分。在一些实施例中,共刺激分子是除了抗原受体之外的细胞表面分子,或其增强淋巴细胞对抗原的响应的配体。所述分子的示例包括CD27、CD28、4-1BB(CD137)、OX40、CD30、CD40、PD1、ICOS、淋巴细胞功能相关抗原-1(LFA-1)、CD2、CD7、LIGHT、NKG2C、B7-H3以及与CD83特异性结合的配体等。例如,CD27共刺激已被证实增强体外人类CAR T细胞的扩增、效应物功能和存活,并增强体内人类T细胞持续性和抗肿瘤活性(Song等人,Blood.2012;119(3):696-706,该篇文献出于所有目的以其全文形式被援引加入本文)。在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR包括初级细胞质信号转导序列和/或次级细胞质信号转导序列作为细胞内元件。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR包括GITR的细胞内元件作为细胞内元件。GITR的细胞内元件包括具有相同功能的变体。术语“变体”是指包含取代、缺失或添加一个或几个至多个氨基酸的任何变体,条件是变体基本上保留与原序列具有的相同功能。用于本发明的GITR的细胞内元件的示例包括包含GITR的氨基酸编号193-241(NCBI RefSeq:NP_004186.1,SEQ ID NO:43)的细胞内结构域。
对于本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR,除了GITR的细胞内元件之外,可以使用衍生自其它多肽的细胞内元件。其它细胞内元件的示例包括衍生自TCR复合物和共刺激分子的细胞质序列,以及与那些序列具有相同功能的任何变体。
初级细胞质信号转导序列调节TCR复合物的初级激活。刺激激活的初级细胞质信号转导序列可以包括称为基于免疫受体酪氨酸的激活基序(ITAM)的信号转导基序[Nature,vol.338,pp.383-384(1989)]。另一方面,以抑制方式起作用的初级细胞质信号转导序列包括称为基于免疫受体酪氨酸的抑制基序(ITIM)的信号转导基序[J Immunol.,vol.162,No.2,pp.897-902(1999)]。在本发明中,可以使用具有ITAM或ITIM的细胞内元件。
在一些实施例中,具有ITAM的细胞内元件包括具有衍生自CD3ζ、FcRγ、FcRβ、CD3γ、CD3δ、CD3ε、CD5、CD22、CD79a、CD79b和CD66d的ITAM的细胞内元件。ITAM的示例包括具有CD3ζ的氨基酸编号51-164(NCBI RefSeq:NP_932170.1,SEQ ID NO:17),FcεRIγ的氨基酸编号45-86(NCBI RefSeq:NP_004097.1,SEQ ID NO:18),FcεRIβ的氨基酸编号201-244(NCBI RefSeq:NP_000130.1,SEQ ID NO:19),CD3γ的氨基酸编号139-182(NCBI RefSeq:NP-000064.1,SEQ ID NO:20),CD3δ的氨基酸编号128-171(NCBI RefSeq:NP-000723.1,SEQID NO:21),CD3ε的氨基酸编号153-207(NCBI RefSeq:NP-000724.1,SEQ ID NO:22),CD5的氨基酸编号402-495(NCBI RefSeq:NP-055022.2,SEQ ID NO:23),CD22的氨基酸编号707-847(NCBI RefSeq:NP-001762.2,SEQ ID NO:24),CD79a的氨基酸编号166-226(NCBIRefSeq:NP-001774.1,SEQ ID NO:25),CD79b的氨基酸编号182-229(NCBI RefSeq:NP_000617.1,SEQ ID NO:26)和CD66d的氨基酸编号177-252(NCBI RefSeq:NP-001806.2,SEQID NO:27)的序列的肽,以及与这些肽具有相同功能的其变体。本文所述的基于NCBIRefSeq ID或GenBank的氨基酸序列信息的氨基酸编号是根据每种蛋白质的前体(包括信号肽序列等)的全长进行编号的。
包含可用于本发明的次级细胞质信号转导序列的细胞内元件的示例包括衍生自CD2、CD4、CD5、CD8α、CD8β、CD28、CD134、CD137、ICOS和CD154的序列。其具体示例包括具有CD2的氨基酸编号236-351(NCBI RefSeq:NP_001758.2,SEQ ID NO:28),CD4的氨基酸编号421-458(NCBI RefSeq:NP_000607.1,SEQ ID NO:29),CD5的氨基酸编号402-495(NCBIRefSeq:NP_055022.2,SEQ ID NO:30),CD8α的氨基酸编号207-235(NCBI RefSeq:NP_001759.3,SEQ ID NO:31),CD8β的氨基酸编号196-210(GenBank:AAA35664.1,SEQ ID NO:32),CD28的氨基酸编号181-220(NCBI RefSeq:NP_006130.1,SEQ ID NO:33),CD137的氨基酸编号214-255(4-1BB,NCBI RefSeq:NP_001552.2,SEQ ID NO:34),CD134的氨基酸编号241-277(OX40,NCBI RefSeq:NP-003318.1,SEQ ID NO:35)和ICOS的氨基酸编号166-199(NCBI RefSeq:NP_036224.1,SEQ ID NO:36)的序列的肽,以及与这些肽具有相同功能的其变体。
本发明包括仅含有GITR的细胞内元件作为细胞内元件的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR,以及含有除GITR的细胞内元件之外的一种或多种例如两种或更多种细胞内元件的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR。示例包括含有GITR的细胞内元件和CD3ζ的细胞内元件作为细胞内元件的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR,以及含有GITR的细胞内元件、CD3ζ的细胞内元件和CD28的细胞内元件作为细胞内元件的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR。在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR包括串联连接的相同细胞内元件的两个或多个拷贝。在一些实施例中,本发明提供了Smart CAR、DE-CAR、Smart-DE-CAR和/或SideCAR,其中GITR的细胞内元件相对于CD3ζ的细胞内元件排列在C-末端侧,即,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR包括从N-末端侧按此顺序连接的CD3ζ的细胞内元件和GITR的细胞内元件。在一些实施例中,通过进一步将CD28的细胞内元件加入到前述SmartCAR、DE-CAR、Smart-DE-CAR和/或Side CAR获得Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR,即,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR包括从N-末端侧按此顺序连接的CD28的细胞内元件、CD3ζ的细胞内元件和GITR的细胞内元件,以及Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR包括从N-末端侧按此顺序连接的CD3ζ的细胞内元件、GITR的细胞内元件和CD28的细胞内元件。在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR具有排列在C-末端侧的GITR的细胞内元件。
在一些实施例中,包括多个细胞内元件的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR具有插入在细胞内元件之间的寡肽接头或多肽接头以连接元件。在一些实施例中,接头具有2-10个氨基酸的长度。在一些实施例中,接头具有甘氨酸-丝氨酸连续序列。
在一些实施例中,取决于细胞内结构域,CAR、Smart CAR、DE-CAR、Smart-DE-CAR和/或Side-CAR能够在T细胞、天然杀伤细胞和/或B细胞中引起多官能反应。例如,在一些实施例中,本文所述的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达细胞可以进一步表达另一种试剂,例如,增强Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达细胞的活性的试剂。例如,提高细胞活性的试剂。提高细胞活性的分子包括细胞因子、白介素、趋化因子、免疫调节蛋白,包括例如IL1、IL2、IL6、IL12、TNFα、IFNγ。
在一些实施例中,细胞内结构域包括多肽,其激活替代信号转导途径,包括其它T细胞信号转导途径、NOTCH、TGFa、GPCR介导的途径、存活因子、死亡因子、WNT或Hedgehog等。
在一些实施例中,本文所述的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达细胞可以进一步表达另一种试剂,例如抑制Smart CAR、DE-CAR、Smart-DE-CAR和/或SideCAR表达细胞的活性的试剂。例如,抑制抑制性分子的试剂。在一些实施例中,抑制性分子,例如PD1,可以降低Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达细胞建立免疫效应物应答的能力。抑制性分子的示例包括PD1、PD-L1、CTLA4、TIM3、LAG3、VISTA、BTLA、TIGIT、LAIR1、CD160、2B4、IDO、NDO和TGFRβ。在一个实施例中,抑制抑制性分子的试剂包括与向细胞提供阳性信号的第二多肽(例如本文所述的细胞内信号转导元件)相关联的第一多肽,例如抑制性分子。在一个实施例中,试剂包括第一多肽,例如抑制性分子,如PD1、LAG3、CTLA4、CD160、BTLA、LAIR1、TIM3、2B4和TIGIT,或其中任何一种的片段(例如,其中任何一种的细胞外结构域的至少一部分),和第二多肽,其是本文所述的包含共刺激元件(例如,本文所述的41BB、CD27或CD28)和/或初级信号转导元件(例如,本文所述的CD3ζ信号转导元件)的细胞内信号转导元件。在一些实施例中,试剂包括PD1或其片段(例如,PD1的细胞外元件的至少一部分)的第一多肽,和本文所述的细胞内信号转导元件的第二多肽(例如,本文所述的CD28信号转导元件和/或CD3ζ信号转导元件)。PD1是CD28受体家族的抑制成员,其还包括CD28、CTLA-4、ICOS和BTLA。PD-1在活化的B细胞、T细胞和骨髓细胞上表达(Agata等人,1996,Int.Immunol 8:765-75,该篇文献出于所有目的以其全文形式被援引加入本文)。已经表明PD1、PD-L1和PD-L2的两种配体在与PD1结合时下调T细胞活化(Freeman等人,2000,J Exp Med 192:1027-34;Latchman等人,2001,Nat Immunol 2:261-8;Carter等人,2002,Eur J Immunol 32:634-43,上述文献出于所有目的以其全文形式被援引加入本文)。PD-L1在人类癌症中是丰富的(Dong等人,2003,J Mol Med 81:281-7;Blank等人,2005,Cancer Immunol.Immunother 54:307-314;Konishi等人,2004,Clin Cancer Res 10:5094,上述文献出于所有目的以其全文形式被援引加入本文)。通过抑制PD1与PD-L1的局部相互作用可以逆转免疫抑制。
跨膜元件和间隔元件
本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR包括跨膜元件。跨膜元件附接至Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞外元件。在一些实施例中,跨膜元件包括与跨膜区域相邻的一个或多个另外的氨基酸,例如,与跨膜所衍生的蛋白质的细胞外区域相关联的一个或多个氨基酸(例如,细胞外区域的1、2、3、4、5、6、7、8、9、10直到15个氨基酸)和/或与跨膜蛋白质所衍生的蛋白质的细胞内区域相关联的一个或多个另外的氨基酸(例如,细胞内区域的1、2、3、4、5、6、7、8、9、10直到15个氨基酸)。在一些实施例中,跨膜元件与用于Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的其它元件中的一个相关联。在一些实施例中,通过氨基酸取代来选择或修饰跨膜元件,以避免所述元件与相同或不同表面膜蛋白的跨膜元件的结合,例如,以使与受体复合物的其它成员的相互作用最小化。在一些实施例中,跨膜元件能够与细胞表面上的另一Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR同源二聚化。在一些实施例中,跨膜元件的氨基酸序列可以被修饰或取代,以使与存在于同一细胞中的天然结合配偶体的结合元件的相互作用最小化。
跨膜元件可以由贡献多特异性细胞外诱导物聚类元件的蛋白质、贡献效应物功能信号转导元件的蛋白质、贡献增殖信号转导部分的蛋白质或完全不同的蛋白质贡献。在大多数情况下,使跨膜元件自然地与元件之一相关联将是方便的。在一些情况,希望使用含有能够二硫键结合的半胱氨酸残基的ζ、η或FcεR1γ链的跨膜元件,从而得到的嵌合蛋白能够与其自身或与ζ、η或FcεR1γ链或相关蛋白质的未修饰的形式形成二硫键连接的二聚体。在一些实施例中,通过氨基酸取代来选择或修饰跨膜元件,以避免所述元件与相同或不同表面膜蛋白的跨膜元件的结合,以使与受体复合物的其它成员的相互作用最小化。在一些实施例中,希望使用ζ、η、FcεR1-γ和-β、MB1(Igα)、B29或CD3-γ、ζ或ε的跨膜元件,以便保持与受体复合物的其它成员的物理关联。
在一些实施例中,跨膜元件衍生自天然多肽,或可以人工设计。衍生自天然多肽的跨膜元件可以从任何膜结合蛋白或跨膜蛋白获得。例如,可以使用T细胞受体α或β链、CD3ζ链、CD28、CD3ε、CD45、CD4、CD5、CD8、CD9、CD16、CD22、CD33、CD37、CD64、CD80、CD86、CD134、CD137、ICOS、CD154或GITR的跨膜元件。人工设计的跨膜元件n是主要包括疏水性残基如亮氨酸和缬氨酸的多肽。在一些实施例中,在合成跨膜元件的每个末端发现苯丙氨酸、色氨酸和缬氨酸三联体。在一些实施例中,可以在跨膜元件和细胞内元件之间放置短的寡肽接头或多肽接头,例如,具有2-10个氨基酸长度的接头。在一些实施例中,可以使用具有甘氨酸-丝氨酸连续序列的接头序列。
在一些实施例中,可以使用具有CD28的氨基酸编号153-180(NCBI RefSeq:NP_006130.1,SEQ ID NO:37)的序列的跨膜元件作为跨膜元件。在一些实施例中,可以使用具有GITR的氨基酸编号162-183(NCBI RefSeq:NP_004186.1,SEQ ID NO:38)的序列的跨膜元件。
在一些实施例中,间隔元件可以放置在细胞外元件与跨膜元件之间,或细胞内元件与跨膜元件之间。在一些实施例中,间隔元件是用于连接跨膜元件与细胞外元件和/或跨膜元件与细胞内元件的寡肽或多肽。在一些实施例中,间隔元件包括多达300个氨基酸,或10-100个氨基酸,或25-50个氨基酸。
在一些实施例中,间隔元件具有促进Smart CAR、DE-CAR、Smart-DE-CAR和/或SideCAR与抗原的结合和/或增强信号转导入细胞的序列。这样的氨基酸的示例包括半胱氨酸、带电荷的氨基酸和丝氨酸以及潜在的糖基化位点中的苏氨酸,并且这些氨基酸可以用作构成间隔元件的氨基酸。
在一些实施例中,间隔元件包括CD8α的氨基酸编号118-178(其是CD8α的铰链区)(NCBI RefSeq:NP_001759.3,SEQ ID NO:39),CD8β的氨基酸编号135-195(GenBank:AAA35664.1,SEQ ID NO:40),CD4的氨基酸编号315-396(NCBI RefSeq:NP_000607.1,SEQID NO:41),或CD28的氨基酸编号137-152(NCBI RefSeq:NP_006130.1,SEQ ID NO:42)。在一些实施例中,间隔元件是抗体H链或L链的恒定区(CH1区或CL区)的一部分。在一些实施例中,间隔元件可以是人工合成的序列。
在一些实施例中,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR形成聚合物,特别是二聚体。例如,将半胱氨酸插入到间隔元件和/或跨膜元件中以使SmartCAR、DE-CAR、Smart-DE-CAR和/或Side CAR聚合(二聚)。
在一些实施例中,信号肽序列可以连接到Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR核酸或多肽的N-末端。信号肽序列存在于很多分泌蛋白和膜蛋白的N-末端,并且具有15-30个氨基酸的长度。由于上述作为细胞内元件的很多蛋白质分子具有信号肽序列,因此信号肽可以用作本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的信号肽。
与去稳定元件(DE-CAR)耦联的嵌合抗原受体
在本发明的一些实施例中,将上述的去稳定元件与上述的CAR顺式结合,使得真核细胞中CAR多肽的数量在DE的控制下。这是本发明的DE-CAR的一个实施例。
在一些实施例中,根据容纳DE-CAR的真核细胞,或DE-CAR的靶标,或施用具有DE-CAR的真核细胞的受试者,或前述的组合,选择与CAR一起使用的去稳定元件。
在一些实施例中,DE-CAR具有可被诱导以提高真核细胞中多肽的稳定性的DE,和/或DE-CAR具有可被诱导以提高真核细胞中DE-CAR多肽的降解速率的DE。在一些实施例中,DE-CAR的DE可被诱导以降低真核细胞中DE-CAR多肽的降解速率。
在一些实施例中,宿主细胞中DE-CAR的数量由DE的配体的存在、不存在和/或数量调节。配体的存在、不存在和/或数量改变宿主细胞中DE-CAR的降解速率,并导致宿主细胞中DE-CAR数量的增加、丧失或维持。以这种方式,配体的存在、不存在和/或数量用于改变(或维持)细胞中DE-CAR的数量,从而改变(或维持)宿主细胞对DE-CAR的靶标的反应性。
嵌合抗原受体:Side-CAR
在一些实施例中,本发明的CAR、Smart CAR、DE-CAR和/或Smart-DE-CAR由至少两个部分组成,其相关联以形成功能性CAR或DE-CAR。在一些实施例中,细胞外抗原结合元件表达为与跨膜元件、可选的间隔区和CAR的细胞内元件分开的部分。在一些实施例中,分开的细胞外结合元件与宿主细胞膜相关联(通过不同于跨膜多肽的方式)。在一些实施例中,细胞内元件表达为与细胞外元件、跨膜元件和可选的间隔区独立的部分。在一些实施例中,细胞外元件和细胞内元件分开表达,并且每个具有跨膜元件和可选的间隔区。在一些实施例中,CAR或DE-CAR的每个部分具有用于将两个部分结合起来以形成功能性CAR或DE-CAR的关联元件(“Side CAR”)。
在一些实施例中,宿主细胞制备CAR或DE-CAR的两个部分。在一些实施例中,不同宿主细胞制备CAR或DE-CAR的一部分。在一些实施例中,离体制备一部分,并且宿主细胞制备CAR或DE-CAR的另一部分。在该实施例中,表达一部分的宿主细胞和离体部分可以一起或分开施用给受试者。在一些实施例中,编码CAR或DE-CAR的一个或两个部分的核酸在可诱导的控制区、RNA控制装置和/或降解因子的控制下,在转录、mRNA稳定性、翻译和多肽稳定性阶段提供控制。
在一些实施例中,Side-CAR起响应小分子、多肽或其它刺激(例如光、热等)的作用。当与小分子、多肽结合或与其它刺激相互作用时,Side-CAR能够与将CAR或DE-CAR的两个部分结合起来的另一Side-CAR元件相关联。在一些实施例中,CAR或DE-CAR的一部分通过跨膜多肽区段被膜结合,而另一部分不是。在该实施例中,Side-CAR附接到膜结合部分的跨膜部分,其与附接到跨膜元件上的CAR部分位于膜的相对位置。在一些实施例中,Side-CAR通过间隔多肽附接到跨膜元件。
在一些实施例中,Side-CAR是,例如FK506结合蛋白(FKBP)、钙调磷酸酶亚基A、亲环蛋白、FKBP-雷帕霉素相关联的蛋白、旋转酶B(gyrB)、DHFR、DmrB、PYL、ABI、Cry2、CIB1、GAI和/或GID1。在一些实施例中,与Side-CAR相互作用的小分子是,例如雷帕霉素、雷帕霉素类似物、courmermycin、甲氨喋呤、AP20187、脱落酸和/或赤霉素。在一些实施例中,刺激是与小分子的结合,或光吸收,例如蓝光。在一些实施例中,Side-CAR被活化以与另一Side-CAR发生化学反应。
在一些实施例中,抗体用于关联两个Side-CAR并形成活性CAR和/或DE-CAR。在一些实施例中,两个Side-CAR共享由抗体结合的表位,使得抗体可以将Side-CAR交联在一起。在一些实施例中,Side-CAR具有不同的表位,并且抗体是双特异性抗体,其中抗体的一个臂与一个Side-CAR上的一个表位结合,抗体的另一个臂与另一个Side-CAR上的不同表位结合。在一些实施例中,细胞外元件不具有Side-CAR,并且双特异性抗体识别细胞外元件上的表位。在一些实施例中,没有使用Side-CAR,并且双特异性抗体识别细胞外元件上的表位和跨膜元件的细胞外侧上的表位。在一些实施例中,用于交联Side-CAR的抗体具有与患者相同的物种起源。在一些实施例中,抗体是嵌合抗体、人源化抗体、人工程化的抗体,或从骨架区域形成的其它组合抗体,所述骨架区域取自与不同物种的另一种抗体的全部或部分CDR结合的一个物种的抗体。在一些实施例中,抗体是人、小鼠、大鼠或其它哺乳动物抗体。在一些实施例中,Side-CAR及其表位被识别为自身。在一些实施例中,双特异性抗体由来自一个物种的骨架区域构成。在一些实施例中,双特异性抗体的骨架区域是人。在一些实施例中,双特异性抗体由两种完全人抗体制备。在一些实施例中,双特异性抗体由来自同一物种的两种抗体制备。
在一些实施例中,细胞外元件不是膜关联的并且在溶液中是游离的。在该实施例中,细胞外元件和具有跨膜元件-细胞内元件的宿主细胞在它们通过Side-CAR和/或通过抗体关联之前必须找到彼此。该搜索阶段对CAR和/或DE-CAR多肽活性增加了另一个水平的翻译后控制。在一些实施例中,离体制备细胞外元件,并且向患者施用的细胞外元件的数量用于控制CAR和/或DE-CAR多肽的活性。细胞外元件的半衰期也可以通过选择具有所需半衰期的细胞外元件的全长或片段来控制。细胞外元件也可以被修饰以提高或降低其半衰期。例如,细胞外元件可以被糖基化或聚乙二醇化以增加其半衰期。控制细胞外元件的半衰期将影响治疗期间通过施用不同剂量的细胞外元件而实现的控制水平。在一些实施例中,细胞外元件具有Fc部分,当细胞外元件与其表位结合时,Fc部分被宿主细胞Side-CAR结合。在一些实施例中,宿主细胞Side-CAR是CD16,当细胞外元件与表位结合时,CD16结合细胞外元件的Fc区域。
在一些实施例中,细胞外元件通过系链与宿主细胞膜相关联。在一些实施例中,系链穿过与双层膜的磷酸基团结合的磷脂酰肌醇(GPI)。在该实施例中,细胞外元件包括在其C-末端的GPI信号序列。在一些实施例中,人类GPI信号序列是,例如:
TNATTKAAGGALQSTASLFVVSLSLLHLYS(CD24)SEQ ID NO:44
VSQVKISGAPTLSPSLLGLLLPAFGILVYLEF(CNTN1)SEQ ID NO:45
PEVRVLHSIGHSAAPRLFPLAWTVLLLPLLLLQTP(EFNA1)SEQ ID NO:46
EAPEPIFTSNNSCSSPGGCRLFLSTIPVLWRLLGS(EFNA2)SEQ ID NO:47
QVPKLEKSISGTSPKREHLPLAVGIAFFLMTFLAS(EFNA3)SEQ ID NO:48
ESAEPSRGENAAQTPRIPSRLLAILLFLLAMLLTL(EFNA5)SEQ ID NO:49
YAAAMSGAGPWAAWPFLLSLALMLLWLLS(FOLI)SEQ ID NO:50
SVRGINGSISLAVPLWLLAASLLCLLSKC(LSAMP)SEQ ID NO:51
TTDAAHPGRSVVPALLPLLAGTLLLLETATAP(PPB1)SEQ ID NO:52
DSEGSGALPSLTCSLTPLGLALVLWTVLGPC(RTN4R)SEQ ID NO:53
在该实施例中,细胞外元件还具有N-末端信号序列,其在翻译期间将细胞外元件引导到内质网中。在该实施例中,通过GPI将细胞外元件栓系到细胞膜上,从而细胞外元件的Side-CAR和跨膜元件-细胞内元件的Side-CAR可以在与合适的小分子、多肽(例如抗体)或物理刺激物相互作用时相关联。此外,在该实施例中,可以通过利用酶例如磷脂酶C减少膜栓系的细胞外元件的量来控制CAR或DE-CAR多肽的活性,其中磷脂酶C可以切割GPI连接而从宿主细胞释放细胞外元件。由于CAR或DE-CAR多肽的两个部分之间的相互作用减少(细胞外元件被该切割稀释),GPI连接的这种切割降低了CAR或DE-CAR多肽活性。在一些实施例中,调节酶例如磷脂酶C的活性。在一些实施例中,酶活性由竞争性抑制剂调节,例如磷脂酶C的抑制剂可从Sigma-Aldrich和Santa Cruz Biotechnology购得。
淋巴细胞扩增分子及其它调节因子
在一些实施例中,淋巴细胞扩增分子(“LEM”)用于本发明。LEM的示例包括但不限于在Uniprot或NCBI上发现的小鼠LEM或BC05111基因,在Uniprot或NCBI上发现的人LEM或C1ORF177基因,以及与人或小鼠LEM具有同源性和具有LEM活性的其它多肽。编码这些LEM的核酸也是本发明该方面的一部分。在一些实施例中,IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ用于本发明。
在一些实施例中,LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ与DE结合以调节LEM的表达。当使用DE时,其可操作地顺式放置于LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ,从而真核细胞中LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ多肽的量在DE的控制下。
在一些实施例中,根据会容纳DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ的真核细胞,或DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ的靶细胞,或施用具有DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ的真核细胞的受试者,或前述的组合,选择与LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ一起使用的去稳定元件。
在一些实施例中,具有相同或不同配体的一个或多个DE顺式与LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ放置。在一些实施例中,一些或所有DE可以被诱导以增加真核细胞中DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ多肽的量,和/或一些或所有DE可以被诱导以减少真核细胞中DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ多肽的量。在一些实施例中,不同DE的配体可以以协调的方式被添加以随时间在真核细胞中产生不同数量的DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ多肽。在一些实施例中,不同DE的配体可以以协调的方式被添加以在一定时间内在真核细胞中产生恒定或稳定数量的DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ多肽。
在一些实施例中,配体与DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ的DE的结合诱导DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ的构象的改变,其提高或降低真核细胞中DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ多肽的降解速率。
在本发明的一些实施例中,上述的RNA控制装置与上述的LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ顺式结合,以便LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ的表达水平在RNA控制装置的控制下。在本发明的一些实施例中,RNA控制装置对于LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ反式操作,以便LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ的表达水平在RNA控制装置的控制下。
在一些实施例中,根据容纳Smart LEM、Smart IL1、Smart IL2、Smart IL4、SmartIL5、Smart IL6、Smart IL7、Smart IL10、Smart IL12、Smart IL15、Smart GM-CSF、SmartG-CSF、Smart TNFα和/或Smart IFNγ的真核细胞或Smart LEM的靶细胞,或施用具有SmartLEM、Smart IL1、Smart IL2、Smart IL4、Smart IL5、Smart IL6、Smart IL7、Smart IL10、Smart IL12、Smart IL15、Smart GM-CSF、Smart G-CSF、Smart TNFα和/或Smart IFNγ的真核细胞的受试者,或前述的组合,选择RNA控制装置以便与LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ一起使用。
在一些实施例中,Smart LEM、Smart IL1、Smart IL2、Smart IL4、Smart IL5、Smart IL6、Smart IL7、Smart IL10、Smart IL12、Smart IL15、Smart GM-CSF、Smart G-CSF、Smart TNFα和/或Smart IFNγ会具有可以被诱导以提高真核细胞中多肽表达的调节元件,和/或Smart LEM、Smart IL1、Smart IL2、Smart IL4、Smart IL5、Smart IL6、SmartIL7、Smart IL10、Smart IL12、Smart IL15、Smart GM-CSF、Smart G-CSF、Smart TNFα和/或Smart IFNγ会具有可以被诱导以降低真核细胞中多肽表达的调节元件。在一些实施例中,不同RNA控制装置的配体可以以协调的方式被添加以随时间在真核细胞中产生不同数量的LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ多肽。在一些实施例中,不同RNA控制装置的配体可以以协调的方式被添加以在一段时间内在真核细胞中维持恒定或稳定数量的LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ多肽。
Smart LEM、Smart IL1、Smart IL2、Smart IL4、Smart IL5、Smart IL6、SmartIL7、Smart IL10、Smart IL12、Smart IL15、Smart GM-CSF、Smart G-CSF、Smart TNFα和/或Smart IFNγ的调节元件可以通过上述任何方式进行操作(例如,核酶活性、反义、RNAi、mRNA结构的二级结构螯合等)。配体与Smart LEM、Smart IL1、Smart IL2、Smart IL4、SmartIL5、Smart IL6、Smart IL7、Smart IL10、Smart IL12、Smart IL15、Smart GM-CSF、SmartG-CSF、Smart TNFα和/或Smart IFNγ RNA的感应器元件的结合诱导Smart LEM的构象平衡的变化,其增加或减少LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ RNA到LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ多肽的翻译。
在一些实施例中,LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ在DE和RNA控制装置的控制下。在一些实施例中,一些或所有的DE以及一些或所有的RNA控制装置会具有可以被诱导以增加真核细胞中LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ多肽的数量的调节元件,和/或一些或所有的DE以及一些或所有的RNA控制装置会具有可以被诱导以减少真核细胞中LEM、IL1、IL2、IL4、IL5、IL6、IL7、IL10、IL12、IL15、GM-CSF、G-CSF、TNFα和/或IFNγ多肽的数量的调节元件。在一些实施例中,不同DE和RNA控制装置的配体可以以协调的方式被添加以随时间在真核细胞中产生不同数量的DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ多肽。在一些实施例中,不同DE和RNA控制装置的配体可以以协调的方式被添加以在一段时间内在真核细胞中维持恒定或稳定数量的DE-LEM、DE-IL1、DE-IL2、DE-IL4、DE-IL5、DE-IL6、DE-IL7、DE-IL10、DE-IL12、DE-IL15、DE-GM-CSF、DE-G-CSF、DE-TNFα和/或DE-IFNγ多肽。
真核细胞
在本发明中,各种真核细胞可以用作本发明的真核细胞。在一些实施例中,本发明的真核细胞是动物细胞。在一些实施例中,真核细胞是哺乳动物细胞,例如小鼠、大鼠、兔、仓鼠、猪、牛、猫或犬。在一些实施例中,哺乳动物细胞是灵长类动物细胞,包括但不限于猴、黑猩猩、大猩猩和人。在一些实施例中,哺乳动物细胞是小鼠细胞,因为小鼠通常用作其它哺乳动物的模型,尤其是用作人的模型(参见例如,Hanna,J.等人,Science 318:1920-23,2007;Holtzman,D.M.等人,J Clin Invest.103(6):R15-R21,1999;Warren,R.S.等人,JClin Invest.95:1789-1797,1995;每篇文献出于所有目的以其全文形式被援引加入本文)。动物细胞包括例如成纤维细胞、上皮细胞(例如,肾、乳腺、前列腺、肺)、角质细胞、肝细胞、脂肪细胞、内皮细胞和造血细胞。在一些实施例中,动物细胞是成体细胞(例如,终末分化、分裂或不分裂)或胚胎细胞(例如,囊胚细胞等)或干细胞。在一些实施例中,真核细胞是从动物或其它来源衍生的细胞系。
在一些实施例中,真核细胞是干细胞。各种干细胞类型是本领域已知的,并且可以用作本发明的真核细胞,包括例如,胚胎干细胞、诱导型多能干细胞、造血干细胞、神经干细胞、表皮神经嵴干细胞、乳腺干细胞、肠干细胞、间充质干细胞、嗅觉成体干细胞、睾丸细胞和祖细胞(例如,神经的、成血管细胞、成骨细胞、成软骨细胞、胰腺、表皮等)。在一些实施例中,干细胞是从取自受试者的细胞衍生的干细胞系。
在一些实施例中,真核细胞是在哺乳动物(包括人)的循环系统中发现的细胞。示例性循环系统细胞包括红细胞、血小板、浆细胞、T细胞、天然杀伤细胞、B细胞、巨噬细胞、嗜中性粒细胞等,以及其前体细胞。总体来讲,这些细胞被定义为本发明的循环真核细胞。在一些实施例中,真核细胞是从任何这些循环真核细胞中衍生的。本发明可以与这些循环细胞或从循环细胞衍生的真核细胞中的任何一种一起使用。在一些实施例中,真核细胞是T细胞或T细胞前体或祖细胞。在一些实施例中,真核细胞是辅助T细胞、细胞毒性T细胞、记忆T细胞、调节性T细胞、天然杀伤T细胞、粘膜相关不变T细胞、γδT细胞,或上述的前体或祖细胞。在一些实施例中,真核细胞是天然杀伤细胞,或天然杀伤细胞的前体或祖细胞。在一些实施例中,真核细胞是B细胞,或B细胞前体或祖细胞。在一些实施例中,真核细胞是嗜中性粒细胞或嗜中性粒细胞前体或祖细胞。在一些实施例中,真核细胞是巨核细胞或巨核细胞的前体或祖细胞。在一些实施例中,真核细胞是巨噬细胞或巨噬细胞的前体或祖细胞。
在一些实施例中,真核细胞是植物细胞。在一些实施例中,植物细胞是单子叶植物或双子叶植物的细胞,包括但不限于苜蓿、扁桃、芦笋、鳄梨、香蕉、大麦、豆类、黑莓、芸苔、西兰花、卷心菜、油菜、胡萝卜、菜花、芹菜、樱桃、菊苣、柑橘、咖啡、棉花、黄瓜、桉树、大麻、莴苣、小扁豆、玉米、芒果、甜瓜、燕麦、番木瓜、豌豆、花生、菠萝、李子、马铃薯(包括甘薯)、南瓜、萝卜、油菜籽、覆盆子、大米、黑麦、高粱、大豆、菠菜、草莓、甜菜、甘蔗、向日葵、烟草、番茄、芜菁、小麦、西葫芦、以及其它果菜类(例如,番茄、胡椒、辣椒、茄子、黄瓜、南瓜等)、其它鳞茎类蔬菜(例如,大蒜、洋葱、韭葱等)、其它仁果类(例如,苹果、梨等)、其它核果类(例如,桃、油桃、杏、梨、李子等)、拟南芥、木本植物如针叶树和落叶树、观赏植物、多年生牧草、饲料作物、开花植物、其它蔬菜、其它水果、其它农作物、草本植物、牧草、或多年生植物部分(例如,球茎;块茎;根;冠;茎;匍匐茎/枝;分蘖;芽;插条,包括无根插条、有根插条和愈伤组织插条或愈伤组织产生的组培苗;顶端分生组织等)。术语“植物”是指植物的所有物理部分,包括种子、幼苗、幼树、根、块茎、茎、梗、叶和果实。
在其它实施例中,真核细胞是藻类,包括但不限于小球藻属、衣藻属、栅藻属、等鞭金藻属、杜氏藻属、扁藻属、微拟球藻属或原壁菌属的藻类。在一些实施例中,真核细胞是真菌细胞,包括但不限于酵母属、克鲁维酵母属、假丝酵母属、毕赤酵母属、德巴利氏酵母属、汉逊酵母属、耶氏酵母属、接合酵母属或裂殖酵母属的真菌。
在一些实施例中,从受试者获得细胞来源。受试者可以是任何生物体。在一些实施例中,细胞衍生自从受试者获得的细胞。受试者的示例包括人、狗、猫、小鼠、大鼠及其转基因物种。在一些实施例中,T细胞可从多种来源获得,包括外周血单核细胞、骨髓、淋巴结组织、脐带血、胸腺组织、来自感染部位的组织、腹水、胸腔积液、脾组织和肿瘤。在一些实施例中,可以使用本领域可用的任何数量的T细胞系。在一些实施例中,可以利用本领域人员已知的任何数量的技术,例如Ficoll分离法,从收集自受试者的单位血液获得T细胞。在一些实施例中,通过血液成分单采术(apheresis)获得来自个体的循环血液的细胞。该血液成分单采术产物通常包含淋巴细胞,包括T细胞、单核细胞、粒细胞、B细胞、其它成核的白细胞、红细胞和血小板。在一些实施例中,可以冲洗通过血液成分单采术收集的细胞以除去血浆部分并将细胞置于合适的缓冲液或培养基中用于随后的处理步骤。在一些实施例中,用磷酸盐缓冲盐水(PBS)冲洗细胞。在可选方面,冲洗液缺乏钙并且可能缺乏镁,或者可能缺乏很多(如果不是全部)二价阳离子。在缺乏钙的情况下的初始活化步骤可导致放大的活化。
通过阴性选择富集T细胞群体可以用针对负选择细胞特有的表面标志物的抗体组合来实现。在一些实施例中,使用针对细胞上存在的细胞表面标志物的单克隆抗体的混合物经由负磁性免疫粘附或流式细胞术通过细胞分选和/或选择来富集细胞。例如,为富集CD4+细胞,单克隆抗体混合物通常包括对CD14、CD20、CD11b、CD16、HLA-DR和CD8的抗体。在一些实施例中,可能需要富集通常表达CD4+、CD25+、CD62Lhi、GITR+和FoxP3+的调节性T细胞。可替换地,在某些方面,T调节性细胞通过抗-C25缀合珠或其它类似的选择方法耗尽。
T细胞一般可以利用例如美国专利号6,352,694;6,534,055;6,905,680;6,692,964;5,858,358;6,887,466;6,905,681;7,144,575;7,067,318;7,172,869;7,232,566;7,175,843;5,883,223;6,905,874;6,797,514;6,867,041和美国专利申请公开号20060121005中所述的方法进行活化或扩增,上述每篇专利出于所有目的以其全文形式被援引加入本文。
在一些实施例中,NK细胞可在已被遗传修饰以表达膜结合的IL-15和4-1BB配体(CD137L)的骨髓细胞系的存在下进行扩增。以这种方式修饰的不具有MHC I类和II类分子的细胞系对NK细胞裂解高度敏感并激活NK细胞。例如,可以用由与人CD8α和GFP的信号肽和跨膜结构域融合的人IL-15成熟肽组成的嵌合蛋白构建体转导K562骨髓细胞。然后可以通过有限稀释对转导的细胞进行单细胞克隆,并选择具有最高GFP表达和表面IL-15的克隆。然后可以用人CD137L转导该克隆,产生K562-mb15-137L细胞系。为了优先扩增NK细胞,在10IU/mL的IL-2存在下,将含有NK细胞的外周血单核细胞培养物与K562-mb15-137L细胞系一起培养足以活化和富集NK细胞群体的一段时间。该段时间可以在2-20天之间,优选约5天。然后可以用抗-CD19-BB-ζ嵌合受体转导扩增的NK细胞。
核酸
在一些实施例中,本发明涉及至少部分编码本发明的各个肽、多肽、蛋白质和RNA控制装置的核酸。在一些实施例中,核酸可以是天然的、合成的或其组合。本发明的核酸可以是RNA、mRNA、DNA或cDNA。
在一些实施例中,本发明的核酸还包括表达载体,例如质粒,或病毒载体,或线性载体,或整合到染色体DNA的载体。表达载体可以含有能够使载体在一个或多个选择的宿主细胞中复制的核酸序列。这些序列对于多种细胞是公知的。质粒pBR322的复制起点适用于大多数革兰氏阴性菌。在真核宿主细胞中,例如哺乳动物细胞,表达载体可以整合到宿主细胞染色体中,并随后与宿主染色体一起复制。类似地,载体可以整合到原核细胞的染色体中。
表达载体还一般包含选择基因,也称为选择标记。用于原核和真核细胞(包括本发明的宿主细胞)的选择标记在本领域是公知的。一般,选择基因编码对于在选择性培养基中生长的转化的宿主细胞的存活或生长所必需的蛋白质。未用含有选择基因的载体转化的宿主细胞将不能在培养基中存活。典型的选择基因编码下列蛋白质:(a)赋予抗生素或其它毒素抗性,例如氨卡青霉素、新霉素、甲氨蝶呤或四环素,(b)补充营养缺陷,或(c)提供不能从复合培养基获得的关键营养物质,例如编码芽孢杆菌的D-丙氨酸消旋酶的基因。在一些实施例中,示例性选择方案利用药物来阻止宿主细胞的生长。用异源基因成功转化的那些细胞产生赋予抗药性的蛋白质,并因此在选择方案中存活。用于细菌或真核(包括哺乳动物)系统的其它选择标记是本领域公知的。
能够在哺乳动物T细胞中表达Smart CAR、DE-CAR、Smart-DE-CAR、和/或Side CAR转基因的启动子的示例是EFla启动子。天然的EFla启动子驱动延伸因子-1复合物的α亚基的表达,其负责氨酰基tRNA到核糖体的酶促递送。EFla启动子已广泛用于哺乳动物表达质粒,并已被表明可有效驱动来自克隆到慢病毒载体中的转基因的CAR表达。参见例如,Milone等人,Mol.Ther.17(8):1453-1464(2009),该篇文献出于所有目的以其全文形式被援引加入本文。启动子的另一示例是即刻早期巨细胞病毒(CMV)启动子序列。该启动子序列是能够驱动与其可操作地连接的任何多核苷酸序列的高水平表达的强组成型启动子序列。也可以使用其它组成型启动子序列,包括但不限于猿猴病毒40(SV40)早期启动子、小鼠乳腺肿瘤病毒启动子(MMTV)、人类免疫缺陷病毒(HIV)长末端重复(LTR)启动子、MoMuLV启动子、磷酸甘油酸激酶(PGK)启动子、MND启动子(含有修饰的MoMuLV LTR的U3区域和骨髓增生肉瘤病毒增强子的合成启动子,参见例如,Li等人,J.Neurosci.Methods,vol.189,pp.56-64页(2010),该篇文献出于所有目的以其全文形式被援引加入本文)、禽白血病病毒启动子、Epstein-Barr病毒即刻早期启动子、劳斯氏肉瘤病毒启动子,以及人类基因启动子,例如但不限于肌动蛋白启动子、肌球蛋白启动子、延伸因子-1a启动子、血红蛋白启动子和肌酸激酶启动子。此外,本发明不限于使用组成型启动子。
也可以考虑诱导型启动子作为本发明的一部分。诱导型启动子的示例包括但不限于金属硫蛋白启动子、糖皮质激素启动子、黄体酮启动子、四环素启动子、c-fos启动子、将从人类巨细胞病毒即刻早期启动子开始的表达置于四环素操纵子的控制下的ThermoFisher的T-REx系统、以及Intrexon的RheoSwitch启动子。Karzenowski,D.等人,BioTechiques 39:191-196(2005);Dai,X.等人,Protein Expr.Purif 42:236-245(2005);Palli,S.R.等人,Eur.J.Biochem.270:1308-1515(2003);Dhadialla,T.S.等人,AnnualRev.Entomol.43:545-569(1998);Kumar,M.B.等人,J.Biol.Chem.279:27211-27218(2004);Verhaegent,M.等人,Annal.Chem.74:4378-4385(2002);Katalam,A.K.等人,Molecular Therapy 13:S103(2006);和Karzenowski,D.等人,Molecular Therapy 13:S194(2006);美国专利号8,895,306、8,822,754、8,748,125、8,536,354,所有文献或专利出于所有目的以其全文形式被援引加入本文。
本发明的表达载体通常具有启动子元件,例如增强子,以调节转录起始的频率。通常,这些位于起始位点上游30-110bp区域,尽管许多启动子也显示在起始位点的下游含有功能性元件。启动子元件之间的间距往往是灵活的,以便当元件相对于彼此反转或移动时,保留启动子功能。在胸苷激酶(tk)启动子中,在活性开始下降之前,启动子元件之间的间距可以增加到相隔50bp。取决于启动子,看起来单独的元件可以协同地或独立地起作用以激活转录。
在一些实施例中,可能希望修饰本发明的多肽。技术人员会认识到在给定的核酸构建体中产生改变以生成变体多肽的很多方式。这样的公知的方法包括定点突变、使用简并寡核苷酸的PCR扩增、将含有核酸的细胞暴露于诱变剂或辐射、化学合成所需寡核苷酸(例如,与连接和/或克隆协同以产生大核酸)和其它公知的技术(参见例如,Gillam和Smith,Gene 8:81-97,1979;Roberts等人,Nature328:731-734,1987,上述文献出于所有目的以其全文形式被援引加入本文)。在一些实施例中,编码本发明的多肽的重组核酸被修饰以提供优选的密码子,该优选的密码子增强核酸在选定的生物体中的翻译。
本发明的多核苷酸还包括含有基本上等同于本发明的多核苷酸的核苷酸序列的多核苷酸。根据本发明的多核苷酸可以与本发明的多核苷酸具有至少约80%,更通常至少约90%,甚至更通常至少约95%的序列一致性。本发明还提供多核苷酸的补体,其包括与编码上述多肽的多核苷酸具有至少约80%,更通常至少约90%,甚至更通常至少约95%的序列一致性的核苷酸序列。多核苷酸可以是DNA(基因组、cDNA、扩增的或合成的)或RNA。用于获得所述的多核苷酸的方法和算法是本领域技术人员公知的,并且可以包括例如用于确定可以常规分离所需序列一致性的多核苷酸的杂交条件的方法。
根据本发明,编码蛋白质类似物或变体(即,其中一个或多个氨基酸被设计成不同于野生型多肽)的核酸可以利用定点突变或PCR扩增产生,其中引物具有所需的点突变。关于合适的诱变技术的详细描述,参见Sambrook等人,Molecular Cloning:A LaboratoryManual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y(1989)和/或Current Protocols in Molecular Biology,Ausubel等人,eds,Green Publishers Inc.和Wiley and Sons,N.Y(1994),每篇文献出于所有目的以其全文形式被援引加入本文。使用本领域公知方法的化学合成,例如Engels等人,Angew Chem Intl Ed.28:716-34,1989(该篇文献出于所有目的以其全文形式被援引加入本文)所描述的,也可以用于制备所述的核酸。
在一些实施例中,用于产生变体的氨基酸“取代”优选是用具有相似结构和/或化学性质的另一氨基酸替换一个氨基酸的结果,即保守氨基酸替换。可以基于所涉及的残基的极性、电荷、溶解度、疏水性、亲水性和/或两亲性性质的相似性进行氨基酸取代。例如,非极性(疏水性)氨基酸包括丙氨酸、亮氨酸、异亮氨酸、缬氨酸、脯氨酸、苯丙氨酸、色氨酸和甲硫氨酸;极性中性氨基酸包括甘氨酸、丝氨酸、苏氨酸、半胱氨酸、酪氨酸、天冬酰胺和谷氨酰胺;带正电荷(碱性)氨基酸包括精氨酸、赖氨酸和组氨酸;带负电荷(酸性)氨基酸包括天冬氨酸和谷氨酸。
本发明提供编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸。可以通过传统的方法由特定CAR的氨基酸序列结合RNA控制装置的序列容易地制备编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸。对于每个元件的氨基酸序列,编码氨基酸序列的碱基序列可以从前述的NCBI RefSeq ID或GenBenk的登录号获得,并且本发明的核酸可以利用标准分子生物学和/或化学过程来制备。例如,基于碱基序列,可以合成核酸,并且可以通过结合使用聚合酶链反应(PCR)从cDNA库获得的DNA片段来制备本发明的核酸。
本发明的核酸可以与另一核酸连接,以便在合适的启动子的控制下进行表达。为了获得核酸的有效转录,本发明的核酸也可以连接与启动子或转录起始位点配合的其它调节元件,例如包括增强子序列、poly A位点或终止子序列的核酸。除了本发明的核酸之外,还可以结合用于确认核酸表达的可以是标记的基因(例如,耐药性基因、编码报告酶的基因,或编码荧光蛋白的基因)。
当将本发明的核酸离体引入细胞时,本发明的核酸可以与促进核酸转移入细胞的物质结合,例如引入核酸的试剂,如脂质体或阳离子脂质,除前述的赋形剂之外。可替换地,携带本发明的核酸的载体也是可用的。特别地,以适于向包含由合适载体携带的本发明的核酸的活体施用的形式存在的组合物适于体内基因治疗。
用于产生表达Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞的方法
用于产生表达本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞的方法包括将编码上述Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸引入真核细胞的步骤。在一些实施例中,该步骤是离体进行的。例如,可以用携带本发明的核酸的病毒载体或非病毒载体体外转化细胞,以产生表达本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞。
在本发明的方法中,使用如上所述的真核细胞。在一些实施例中,可以使用衍生自哺乳动物的真核细胞,例如人细胞,或衍生自非人类的哺乳动物如猴、小鼠、大鼠、猪、马或狗的细胞。在本发明的方法中使用的细胞没有特定限制,可以使用任何细胞。例如,可以使用从体液、组织或器官如血液(外周血、脐带血等)或骨髓收集、分离、净化或诱导的细胞。可以使用外周血单核细胞(PBMC)、免疫细胞、树突细胞、B细胞、造血干细胞、巨噬细胞、单核细胞、NK细胞或造血细胞、脐带血单核细胞、成纤维细胞、前体脂肪细胞、肝细胞、皮肤角质形成细胞、间充质干细胞、脂肪干细胞、各种癌细胞株或神经干细胞。在本发明中,特别优选使用T细胞、T细胞的前体细胞(造血干细胞、淋巴细胞前体细胞等)或含有它们的细胞群。T细胞的示例包括CD8阳性T细胞、CD4阳性T细胞、调节性T细胞、细胞毒性T细胞和肿瘤浸润性淋巴细胞。包含T细胞和T细胞的前体细胞的细胞群包括PBMC。前述细胞可以从活体收集,通过从活体收集的细胞的扩大培养获得,或者作为细胞株建立。当需要将产生的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达细胞或从产生的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达细胞分化的细胞移植到活体中时,优选将核酸引入到从活体本身收集的细胞中。
在一些实施例中,将编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或SideCAR的核酸插入载体中,并且将载体引入细胞。在一些实施例中,通过转染(例如,Gorman等人,Proc.Natl.Acad.Sci.79.22(1982):6777-6781,该篇文献出于所有目的以其全文形式被援引加入本文)、转导(例如,Cepko and Pear(2001)Current Protocols in MolecularBiology unit 9.9;DOI:10.1002/0471142727.mb0909s36,该篇文献出于所有目的以其全文形式被援引加入本文)、磷酸钙转化(例如,Kingston,Chen and Okayama(2001)CurrentProtocols in Molecular Biology Appendix 1C;DOI:10.1002/0471142301.nsa01cs01,该篇文献出于所有目的以其全文形式被援引加入本文)、细胞穿透肽(例如,Copolovici,Langel,Eriste and Langel(2014)ACS Nano 20148(3),1972-1994;DOI:10.1021/nn4057269,该篇文献出于所有目的以其全文形式被援引加入本文)、电穿孔(例如,Potter(2001)Current Protocols in Molecular Biology unit 10.15;DOI:10.1002/0471142735.im1015s03和Kim等人(2014)Genome1012-19.doi:10.1101/gr.171322.113;Kim等人2014年描述了Amaza Nucleofector,一种优化的电穿孔系统,上述两篇文献出于所有目的以其全文形式被援引加入本文)、显微注射(例如,McNeil (2001)CurrentProtocols in cell Biology unit 20.1;DOI:10.1002/0471143030.cb2001s18,该篇文献出于所有目的以其全文形式被援引加入本文)、脂质体或细胞融合(例如,Hawley-Nelsonand Ciccarone(2001)Current Protocols in Neurosience Appendix 1F;DOI:10.1002/0471142301.nsa01fs10,该篇文献出于所有目的以其全文形式被援引加入本文)、机械操纵(例如,Sharon等人(2013)PNAS 2013 110(6)DOI:10.1073/pnas.1218705110,该篇文献出于所有目的以其全文形式被援引加入本文)或用于将核酸递送至真核细胞的其它公知技术将编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸引入真核细胞。一旦引入,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR核酸可以瞬时游离地表达,或者可以使用公知的技术如重组(例如,Lisby and Rothstein(2015)Cold Spring Harb PerspectBiol.Mar 2;7(3).pii:a016535.doi:10.1101/cshperspect.a016535,该篇文献出于所有目的以其全文形式被援引加入本文)、或非同源整合(例如,Deyle and Russell(2009)CurrOpin Mol Ther.2009Aug;11(4):442-7,该篇文献出于所有目的以其全文形式被援引加入本文)整合到真核细胞的基因组中。通过引入靶向双链断裂(DSB)的基因组编辑技术可以促进同源和非同源重组的效率。DSB生成技术的示例是CRISPR/Cas9、TALEN、锌指核酸酶或等效系统(例如,Cong等人,Science 339.6121(2013):819-823;Li等人,Nucl.Acids Res(2011):gkr188;Gaj等人,Trends in Biotechnology 31.7(2013):397-405,所有文献出于所有目的以其全文形式被援引加入本文)、转座子如Sleeping Beauty(例如,Singh等人(2014)Immunol Rev.2014Jan;257(1):181-90.doi:10.1111/imr.12137,该篇文献出于所有目的以其全文形式被援引加入本文)、使用例如FLP重组酶的靶向重组(例如,O’Gorman,Fox and Wahl Science(1991)15:251(4999):1351-1355,该篇文献出于所有目的以其全文形式被援引加入本文)、CRE-LOX(例如,Sauer and Henderson PNAS(1988):85;5166-5170)或等效系统,或本领域已知的用于将编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸整合到真核细胞基因组中的其它技术。
在一个实施例中,编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸在基因组安全港位点,例如CCR5、AAVSl、人类ROSA26或PSIPl位点,整合到真核细胞染色体中(Sadelain等人,Nature Rev.12:51-58(2012);Fadel等人,J.Virol.88(17):9704-9717(2014);Ye等人,PNAS 111(26):9591-9596(2014),所有文献出于所有目的以其全文形式被援引加入本文)。在一个实施例中,利用基因编辑系统,例如CRISPR、TALEN或锌指核酸酶系统,进行在CCR5或PSIP1位点编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸的整合。在一个实施例中,真核细胞是人类T-淋巴细胞,并且CRISPR系统用于在CCR5或PSIP1位点整合Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR。在一个实施例中,利用CRISPR系统在CCR5或PSIP1的核酸的整合也删除了CCR5基因或PSIP1基因的部分或全部。在一个实施例中,真核细胞中的Cas9可以衍生自编码Cas9的质粒、编码Cas9的外源mRNA、或单独的或核糖核蛋白复合物中的重组Cas9多肽(Kim等人(2014)Genome 1012-19.doi:10.1101/gr.171322.113.;Wang等人(2013)Cell 153(4).Elsevier Inc.:910-18.doi:10.1016/j.cell.2013.04.025,上述文献出于所有目的以其全文形式被援引加入本文)。
将多核苷酸引入宿主细胞的化学装置包括胶体分散系统,例如大分子复合物、纳米胶囊、微球、珠粒和基于脂质的系统包括水包油乳液、胶束、混合胶束和脂质体。在体内和体外用作递送载体的示例性胶体系统是脂质体(例如,人造膜囊泡)。最先进的靶向递送核酸的其它方法是可用的,例如用靶向纳米颗粒或其它合适的亚微米尺寸的递送系统来递送多核苷酸。
在一些实施例中,转导可以通过使用病毒载体进行,所述病毒载体例如逆转录病毒载体(包括致癌逆转录病毒载体、慢病毒载体和假型载体)、腺病毒载体、腺相关病毒(AAV)载体、猿病毒载体、牛豆病毒载体或仙台病毒载体、Epstein-Barr病毒(EBV)载体和HSV载体。作为病毒载体,优选使用缺乏复制能力的病毒载体,以免在感染细胞中自我复制。
在一些实施例中,当使用逆转录病毒载体时,本发明的方法可以通过基于载体所具有的LTR序列和包装信号序列选择合适的包装细胞并使用包装细胞制备逆转录病毒颗粒来进行。包装细胞的示例包括PG13(ATCC CRL-10686)、PA317(ATCC CRL-9078)、GP+E-86和GP+envAm-12(美国专利号5,278,056,该专利出于所有目的以其全文形式被援引加入本文)和Psi-Crip(Proceedings of the National Academy of Sciences of the UnitedStates of America,vol.85,pp.6460-6464(1988),该篇文献出于所有目的以其全文形式被援引加入本文)。还可以使用具有高转染效率的293细胞或T细胞来制备逆转录病毒颗粒。可用于包装逆转录病毒载体的基于逆转录病毒和包装细胞产生的很多种逆转录病毒载体可广泛地从很多公司购得。
已经开发出许多基于病毒的系统用于将基因转移到哺乳动物细胞中。可以使用本领域已知的技术将选择的基因插入载体并包装在病毒颗粒中。然后可以在体内或体外分离重组病毒并将其递送至受试者的细胞。许多病毒系统是本领域已知的。在一些实施例中,使用腺病毒载体。许多腺病毒载体是本领域已知的。在一些实施例中,使用慢病毒载体。
在一些实施例中,衍生自RNA病毒的病毒载体用于引入Smart CAR、Smart-DE-CAR和/或Side CAR编码多核苷酸。在一些实施例中,RNA病毒载体编码编码RNA控制装置和CAR构建体的多核苷酸的反向互补链或反义链(互补链编码RNA控制装置、DE、CAR和/或Side-CAR构建体的有义链)。在该实施例中,RNA控制装置在单链RNA病毒载体中不具有活性。在一些实施例中,RNA控制装置、DE、CAR和/或Side-CAR构建体的有义链被编码在RNA病毒载体中,并且具有RNA控制装置、DE、CAR和/或Side-CAR构建体的病毒载体在RNA控制装置的传感器元件的配体存在下被保持和复制。在一些实施例中,编码病毒载体中RNA控制装置、DE、CAR和/或Side-CAR构建体的有义链的病毒载体被保持和复制而不需要传感器元件的配体。
在一些实施例中,非病毒载体与脂质体和缩合剂如阳离子脂质结合使用,阳离子脂质如在WO96/10038、WO97/18185、WO97/25329、WO97/30170和WO97/31934中所述(上述专利出于所有目的以其全文形式在此被援引加入本文)。本发明的核酸可通过磷酸钙转导、DEAE-葡聚糖、电穿孔或粒子轰击被引入细胞。
在一些实施例中,使用具有促进稳定性和/或翻译效率能力的化学结构。RNA优选具有5’和3’UTR。在一个实施例中,5’UTR的长度为1至3000个核苷酸之间。可以通过不同的方法改变被添加至编码区的5’和3’UTR序列的长度,包括但不限于设计用于对UTR的不同区域退火的PCR的引物。使用这种方法,本领域普通技术人员可以修改在转录的RNA转染后实现最佳翻译效率所需的5’和3’UTR长度。5’和3’UTR可以是目标核酸的天然存在的內源5’和3’UTR。在一些实施例中,可以通过将UTR序列并入正向和反向引物或通过模板的任何其它修饰来添加目标核酸的非內源UTR序列。目标核酸的非內源UTR序列的使用可有助于改变RNA的稳定性和/或翻译效率。例如,已知3’UTR序列中的AU富集元件可以降低mRNA的稳定性。因此,可以基于本领域公知的UTR的性质来选择或设计3’UTR以提高转录的RNA的稳定性。
在一些实施例中,mRNA具有5’端的帽和3’端多聚(A)尾,其决定细胞中核糖体结合、翻译起始和稳定性mRNA。在环状DNA如质粒DNA模板上,RNA聚合酶产生不适合在真核细胞中表达的长的多联体产物。在3’UTR末端线性化的质粒DNA的转录产生正常大小的mRNA,即使它在转录之后是多聚腺甘酸化的,在真核转染中也不是有效的。
在将核酸引入细胞的步骤中,还可以使用提高引入效率的功能性物质(例如,WO95/26200和WO00/01836,上述专利出于所有目的以其全文形式在此被援引加入本文)。用于提高引入效率的物质的示例包括具有与病毒载体结合的能力的物质,例如纤连蛋白和纤连蛋白片段。在一些实施例中,可以使用具有肝素结合位点的纤连蛋白片段,例如商业可购得的RetroNetcin(注册商标,CH-296,由TAKARA BIO INC.制造)的片段。此外,可以使用聚凝胺(其是具有提高逆转录病毒感染细胞效率的效果的合成的多聚阳离子)、成纤维细胞生长因子、V型胶原、聚赖氨酸或DEAE-葡聚糖。
在本发明的优选方面,功能性物质可以以固定在合适的固相如用于细胞培养的容器(板、培养皿、烧瓶或袋)或载体(微珠等)上的状态使用。
表达Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞
表达本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞是引入编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸并在其中表达的细胞。
在一些实施例中,本发明的真核细胞通过CAR、DE-CAR和/或Side-CAR多肽与特异性抗原结合,引起CAR、DE-CAR和/或Side-CAR多肽将信号传输到真核细胞中,结果真核细胞被活化。表达Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞的活化根据真核细胞和Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的细胞内元件的种类而变化,并且可以基于例如细胞因子的释放、细胞增殖率的提高、细胞表面分子的变化等作为指标来确认。例如,从活化细胞释放细胞毒性细胞因子(肿瘤坏死因子、淋巴毒素等)导致破坏表达抗原的靶细胞。此外,细胞因子的释放或细胞表面分子的变化刺激其它免疫细胞,例如B细胞、树突细胞、NK细胞和/或巨噬细胞。
在一些实施例中,使用蛋白质L(从Peptostreptoccocus magnus分离的细菌表面蛋白,其选择性结合免疫球蛋白的可变轻链(κ链))对表达CAR、Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR构建体的真核细胞进行检测。在一些实施例中,蛋白质L用报告物(例如,光发射或光吸收部分)直接标记,或用试剂如生物素标记。当生物素或相关分子用于标记蛋白质L时,通过添加标记有报告物(例如藻红蛋白)的链霉亲和素(或类似的成对分子)来检测蛋白质L与显示CAR、DE-CAR和/或Side-CAR多肽的真核细胞的结合。Zheng等人,J.Translational Med.,10:29(2012),该篇文献出于所有目的以其全文形式被援引加入本文。蛋白质L与包含CAR、Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR构建体的真核细胞的结合证实真核细胞上抗体轻链(CAR的细胞外结构域)的存在。这种检测真核细胞上CAR表达的方法还可用于对真核细胞表面上的CAR、DE-CAR和/或Side-CAR多肽的数量进行定量。在一些实施例中,在QC和QA方法论中使用蛋白质L,用于制备具有本发明的CAR、SmartCAR、DE-CAR、Smart-DE-CAR和/或Side CAR构建体的真核细胞。
在一些实施例中,表达Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞用作治疗疾病的治疗剂。治疗剂包括表达Smart CAR、DE-CAR、Smart-DE-CAR和/或SideCAR作为活性成分的真核细胞,并且还可以包括合适的赋形剂。赋形剂的示例包括药学上可接受的组合物的赋形剂。表达Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞所针对的疾病没有特别限定,只要疾病对真核细胞具有敏感性。本发明的疾病的示例包括癌症(血癌(白血病)、实体瘤等)、炎性疾病/自身免疫性疾病(哮喘、湿疹)、肝炎和传染性疾病,其病因是病毒如流感和HIV、细菌或真菌,例如结核病、MRSA、VRE和深部霉菌病。施用表达本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞以治疗这些疾病。本发明的真核细胞也可用于预防骨髓移植或暴露于辐射后的传染性疾病、供体淋巴细胞输入用于缓解复发性白血病等。包括表达Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR作为活性成分的真核细胞的治疗剂可以皮内、肌内、皮下、腹腔内、鼻内、动脉内、静脉内、瘤内或通过肠胃外施用例如通过注射或输液进入传入淋巴管施用,尽管施用途径不受限制。
在一些实施例中,具有Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞在施用于受试者之前被表征。在一些实施例中,测试具有Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞以确认Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达。在一些实施例中,具有Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞暴露于一定水平的配体,导致真核细胞中所需水平的CAR、DE-CAR和/或Side-CAR多肽表达。在一些实施例中,当将该所需水平的CAR、DE-CAR和/或Side-CAR多肽置于受试者中时,产生具有所需水平的抗靶细胞活性和/或所需水平的增殖活性的真核细胞。
在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR与具有侵袭性抗肿瘤性质的T淋巴细胞一起使用,例如在Pegram等人,CD28z CARs and armored CARs,2014,Cancer J.20(2):127-133中所述,该篇文献出于所有目的以其全文形式被援引加入本文。在一些实施例中,本发明的RNA控制装置与装甲的CAR、DE-CAR和/或Side-CAR多肽在T淋巴细胞中一起使用。
在一些实施例中,任何上述Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR实施例还可以包括DE-LEM、Smart LEM或Smart-DE-LEM,以提供受控的LEM或DE-LEM表达。在这些实施例中,控制LEM或DE-LEM的数量,使得其扩增信号在期望的时间被提供。通过改变与LEM或DE-LEMDE相关联的DE和/或RNA控制装置的配体的数量来实现扩增信号的这种控制,由此LEM或DE-LEM的数量被改变。在一些实施例中,通过在期望的时间向真核细胞中添加外源LEM来实现LEM扩增信号的控制。
药物组合物
本发明的药物组合物可以包括Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达细胞,例如本文所述的多种Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达细胞,与一种或多种药学上或生理上可接受的载体、稀释剂或赋形剂组合。这样的组合物可以包括缓冲液,例如中性缓冲盐水、磷酸盐缓冲盐水等;碳水化合物,例如葡萄糖、甘露糖、蔗糖或葡聚糖、甘露醇;蛋白质;多肽或氨基酸,例如甘氨酸;抗氧化剂;螯合剂,例如EDTA或谷胱甘肽;佐剂(例如氢氧化铝);和防腐剂。在一方面本发明的组合物被配制用于静脉内施用。
本发明的药物组合物可以以适合于待治疗(或预防)的疾病的方式施用。施用的量和频率由诸如患者的状况以及患者疾病的类型和严重程度等因素确定,尽管合适的剂量可以通过临床试验来确定。
合适的药学上可接受的赋形剂是本领域技术人员公知的。药学上可接受的赋形剂的示例包括磷酸盐缓冲盐水(例如,0.01M磷酸盐,0.138M NaCl,0.0027M KCl,pH7.4),包含无机酸盐如盐酸盐、氢溴酸盐、磷酸盐、或硫酸盐的水溶液,盐水,乙二醇或乙醇的溶液,以及有机酸的盐例如乙酸盐、丙酸盐、丙二酸盐或苯甲酸盐。在一些实施例中,还可以使用佐剂如润湿剂或乳化剂以及pH缓冲剂。在一些实施例中,可以适当地使用在Remington’sPharmaceutical Sciences(Mack Pub.Co.,N.J.1991)(该篇文献出于所有目的以其全文形式在此被援引加入本文)中描述的药学上可接受的赋形剂。本发明的组合物可以配制成适合肠胃外施用如注射或输液的已知形式。在一些实施例中,本发明的组合物可以包括配方添加剂,例如助悬剂、防腐剂、稳定剂和/或分散剂,以及用于延长储存期间有效期的保存剂。
可以将包括本发明的真核细胞作为活性成分的组合物施用于治疗例如癌症(血癌(白血病)、实体瘤等),炎性疾病/自身免疫性疾病(哮喘、湿疹)、肝炎和传染性疾病,其病因是病毒例如流感和HIV、细菌或真菌,例如,疾病如结核病、MRSA、VRE或深部霉菌病,取决于CAR、DE-CAR和/或Side-CAR多肽结合的抗原。
主题组合物的施用可以以任何方便的方式进行,包括通过雾化吸入、注射、摄取、输液、植入或移植。本文所述的组合物可以通过静脉内(i.v.)注射或腹腔内经动脉、皮下、皮内、瘤内、节内、髓内、肌内、鼻内、动脉内、瘤内进入传入淋巴管中施用至患者。一方面,本发明的T细胞组合物通过皮内或皮下注射施用至患者。一方面,本发明的T细胞组合物通过静脉内注射施用。T细胞的组成物可以直接注射到肿瘤、淋巴结或感染部位。在一些实施例中,施用是过继转移。
当表示“免疫有效量”、“抗肿瘤有效量”、“肿瘤抑制有效量”或“治疗量”时,待施用的本发明的组合物的精确量可考虑个体在年龄、体重、肿瘤大小、感染或转移程度的差异以及患者(受试者)的状况由医生确定。在一些实施例中,包含本文所述的真核细胞的药物组合物可以按104-109个细胞/kg体重的剂量施用,在某些情况下以105-106个细胞/kg体重,包括这些范围内的所有整数值。在一些实施例中,真核细胞组合物也可以以这些剂量多次施用。在一些实施例中,可以通过使用免疫治疗中通常已知的输注技术来施用真核细胞(参见例如,Rosenberg等人,New Eng.J.of Med.319:1676,1988,该篇文献出于所有目的以其全文形式被援引加入本文)。
具有Smart CAR、DE-CAR,Smart-DE-CAR和/或Side CAR的真核细胞的使用
在一些实施例中,编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸用于在真核细胞中表达CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸用于在哺乳动物细胞中表达CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸用于在人细胞或小鼠细胞中表达CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸用于在造血细胞中表达CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸用于在T细胞、天然杀伤细胞、B细胞或巨噬细胞中表达CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸用于在T细胞或天然杀伤细胞中表达CAR、DE-CAR和/或Side-CAR多肽。
在一些实施例中,编码本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的核酸用于在真核细胞表面表达所需水平的CAR、DE-CAR和/或Side-CAR多肽。在该实施例中,DE、RNA控制装置和/或Side-CAR至少部分地控制CAR、DE-CAR和/或Side-CAR多肽表达的水平,并通过调节DE、RNA控制装置和/或Side-CAR的活性水平,所需数量的CAR、DE-CAR和/或Side-CAR多肽被表达并显示在真核细胞表面。在一些实施例中,DE提高真核细胞中DE-CAR多肽的降解速率,并且当配体被DE结合时,降解速率降低。在一些实施例中,当配体被DE结合时,DE增大DE-CAR多肽的降解。在一些实施例中,RNA控制装置抑制DE-CAR mRNA的翻译,并且当配体结合RNA控制装置的传感器元件时,这种翻译的抑制降低,使得DE-CAR多肽表达增加。在一些实施例中,Side CAR的配体导致两种Side-CAR多肽形成活性CAR。在一些实施例中,添加DE的配体、RNA控制装置传感器的配体和/或Side-CAR的配体以增加具有Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞的数量,直到在真核细胞中实现所需水平的CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,使用对CAR、DE-CAR和/或Side-CAR多肽特异性的抗体来测定CAR、DE-CAR和/或Side-CAR多肽的数量。在一些实施例中,使用由细胞外元件识别的抗原来测定CAR、DE-CAR和/或Side-CAR多肽的数量。在一些实施例中,在靶细胞杀伤的功能分析中测定CAR、DE-CAR和/或Side-CAR多肽的数量。在一些实施例中,在对真核细胞增殖(由CAR、DE-CAR和/或Side-CAR多肽诱导)的功能分析中测定CAR、DE-CAR和/或Side-CAR多肽的数量。在一些实施例中,上述真核细胞是T淋巴细胞或天然杀伤细胞或巨噬细胞或其它吞噬细胞类型。
在一些实施例中,以增加的量添加DE的配体、RNA控制装置传感器的配体和/或Side-CAR的配体,直到获得期望水平的真核细胞活性。在一些实施例中,期望的真核细胞活性是杀伤靶细胞。在一些实施例中,靶细胞杀伤发生在期望的时间段内,例如,在12小时,或24小时,或36小时,或两天,或3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27或28天,或两个月,或3、4、5或6个月杀伤一定数量的靶细胞。在一些实施例中,靶细胞杀伤表达为标准化数目的靶细胞的半衰期。在该实施例中,靶细胞杀伤的半衰期可以是12小时,24小时,36小时,或2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27或28天,或两个月,或3、4、5或6个月。在一些实施例中,期望的真核细胞活性是增殖。在一些实施例中,细胞增殖以12小时、24小时、36小时、两天、或3、4、5、6或7天的倍增时间发生。在一些实施例中,上述真核细胞是T淋巴细胞或天然杀伤细胞或巨噬细胞或其它吞噬细胞类型。
在一些实施例中,随着时间添加不同数量的配体(对于传感器、DE和/或Side-CAR),使得不同的期望水平的CAR、DE-CAR和/或Side-CAR多肽在不同时间呈现在真核细胞上。例如,在用Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞或Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR天然杀伤细胞在患者中治疗癌症中,CAR、DE-CAR和/或Side-CAR多肽表达的数量可能最初减少以降低肿瘤溶解的毒性,并且随着肿瘤块清除,CAR、DE-CAR和/或Side-CAR多肽表达的数量可以增加以杀死剩余的肿瘤细胞,因为它们在体内变得更加罕见。在一些实施例中,CAR、DE-CAR和/或Side-CAR多肽表达可能最初增加,并且随着肿瘤块缩小,CAR、DE-CAR和/或Side-CAR多肽表达水平降低以减少对也可能表达靶抗原的健康组织的杀伤。在一些实施例中,可以调节对肿瘤细胞的反应性,使得肿瘤细胞杀伤与正常组织杀伤的比率保持在期望的范围内。在一些实施例中,在真核细胞表面表达的CAR、DE-CAR和/或Side-CAR多肽的数量通过真核细胞增殖而减少。随着真核细胞增殖,如果来自Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR核酸的表达水平不足以将CAR、DE-CAR和/或Side-CAR多肽拷贝数保持在亲代真核细胞中发现的水平(即,如果亲代细胞不加倍其CAR、DE-CAR和/或Side-CAR多肽的数量,那么每个子细胞都将具有与亲代细胞相比降低数量的CAR、DE-CAR和/或Side-CAR多肽),CAR、DE-CAR和/或Side-CAR多肽将被稀释。在一些实施例中,与受试者中真核细胞的倍增时间相比,CAR、DE-CAR和/或Side-CAR多肽被设计为具有短的半衰期。在一些实施例中,与受试者中真核细胞的倍增时间相比,配体在受试者中具有短的半衰期。在一些实施例中,将抗配体抗体或不同的配体结合分子施用于受试者或给予真核细胞(体外),使得配体与抗体或配体结合分子结合并且不能与DE、RNA控制装置传感器和/或Side-CAR反应。在一些实施例中,上述真核细胞是T淋巴细胞或天然杀伤细胞或巨噬细胞或其它吞噬细胞类型。
在一些实施例中,具有本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞表达期望数量的CAR、DE-CAR和/或Side-CAR多肽,使得包含具有CAR、DE-CAR和/或Side-CAR多肽的真核细胞的受试者产生治疗水平的靶细胞杀伤,同时将毒性和不良事件保持在可接受的水平。在一些实施例中,上述真核细胞是T淋巴细胞或天然杀伤细胞或巨噬细胞或其它吞噬细胞类型。例如,本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或SideCAR可用于减少肿瘤溶解综合征、细胞因子风暴或健康组织被具有Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的T淋巴细胞杀死。在一些实施例中,在T淋巴细胞或其它真核细胞上表达的CAR、DE-CAR和/或Side-CAR多肽的量被个体化,以便预防严重的不良事件。
在一些实施例中,通过测量受试者病变组织(或细胞)上的靶抗原的量和/或在受试者健康组织(或细胞)上表达的靶抗原的量,针对受试者使真核细胞表达的CAR、DE-CAR和/或Side-CAR多肽的数量个体化。在一些实施例中,从受试者获取病变和健康组织(或细胞)的活组织检查,并且使用常规方法来测量靶抗原的量,例如,可以使用靶向抗体来定量靶抗原表达。根据在受试者的病变和健康组织(或细胞)上表达的靶抗原的相对量,可以确定对于真核细胞的期望水平的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR。具有本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的真核细胞随后可以被编程以表达期望数量的CAR、DE-CAR和/或Side-CAR以给予期望水平的CAR、DE-CAR和/或Side-CAR活性。在一些实施例中,上述真核细胞是T淋巴细胞或天然杀伤细胞或巨噬细胞或其它吞噬细胞类型。
在一些实施例中,本发明的Smart CAR、Smart-DE-CAR和/或Side CAR与两个或多个RNA控制装置相关联。在一些实施例中,将不同量的用于DE、Side-CAR和/或两个或多个RNA控制装置的两种或多种配体添加到真核细胞,以在真核细胞中产生期望数量的CAR、DE-CAR和/或Side-CAR多肽。在一些实施例中,将配体的组合的不同方式应用于真核细胞,以在真核细胞表面产生CAR、DE-CAR和/或Side CAR多肽的量随时间的期望表达谱。在一些实施例中,当结合传感器元件的配体时,一些RNA控制装置增加CAR、DE-CAR和/或Side-CAR多肽的表达,并且当结合传感器元件的配体时,一些RNA控制装置降低CAR、DE-CAR和/或Side-CAR多肽表达。在一些实施例中,上述真核细胞是T淋巴细胞或天然杀伤细胞或巨噬细胞或其它吞噬细胞类型。
在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR用于遗传工程化T细胞,以用于癌症免疫治疗。当用于免疫治疗应用时,通过白细胞除去法从患者中移除T细胞,并且优选分选和保存T细胞。T细胞经受编码Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的转基因的慢病毒或逆转录病毒引入(或其它核酸引入方式),扩增至靶治疗细胞浓度并输入患者,导致自体治疗并伴有少量移植物抗宿主并发症。尽管已表明CAR在实现和维持对于难治性/复发性急性淋巴细胞性白血病的缓解上非常有效(Maude等人,NEJM,371:1507,2014,该篇文献出于所有目的以其全文形式被援引加入本文),与细胞因子释放综合征(CRS)、肿瘤溶解综合征(TLS)、B细胞发育不全或“靶向/脱靶”毒性相关的危险的副作用会发生。通过在本发明的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR中并入DE、RNA控制装置和/或Side-CAR来调节CAR表达可以控制这些毒性。
在一些实施例中,编码同源RNA控制装置的核酸序列存在于编码嵌合抗原受体转基因的核酸位点。在一些实施例中,将RNA控制装置编码为编码CAR、DE-CAR和/或Side-CAR多肽的载体近端、远端或ORF中的核酸序列。载体的示意图的一个示例包括在图1中,改自(Budde等人,PLoS1,2013,doi:10.1371/journal.pone.0082742,该篇文献出于所有目的以其全文形式被援引加入本文)。在一些实施例中,编码RNA控制装置的核酸序列位于转基因的3’UTR区域内。在一些实施例中,编码RNA控制装置的核酸序列位于DE-CAR转基因的5’UTR区域内。在一些实施例中,编码RNA控制装置的核酸序列位于CAR转基因内的编码或非编码外显子侧翼的合成或天然内含子内,或内含子/外显子边界。
在一些实施例中,RNA控制装置在编码CAR、DE-CAR和/或Side-CAR多肽的mRNA中顺式存在。在一些实施例中,CAR、DE-CAR和/或Side-CAR多肽由mRNA编码。Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR mRNA可以通过电穿孔、转染或其它本领域技术人员已知的方法递送到T细胞,以产生瞬时翻译的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞。RNA控制装置可以起调节同源mRNA稳定性或翻译的作用。DE与其配体可以调节真核细胞中DE-CAR和/或Side-CAR多肽的量。在一些实施例中,这些Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR mRNA可以利用原核或噬菌体RNA聚合酶从体外转录衍生得到。在一些实施例中,这些Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR mRNA可以来源于RNA的化学合成、化学合成的RNA的酶促操作、或mRNA的化学合成和体外转录的组合。在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR mRNA可以包含对碱基、糖或主链部分的化学修饰,其可以提高或降低mRNA稳定性、改变规范的RNA碱基的碱基配对性质或通过促进修饰的mRNA密码子与带电的非同源tRNA之间的相互作用来改变翻译的多肽序列。
在一些实施例中,T细胞包括具有整合的RNA控制装置的DE-CAR和/或Side-CAR。在一些实施例中,使用组合的Smart-DE-CAR和/或Side-CAR T细胞,其中独立的T细胞表达正交Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR,其靶向不同的肿瘤相关抗原(TAA)。同时靶向多个TAA可以引导针对原发性肿瘤或转移瘤的更大的CTL应答并防止复发。使用CAR、DE-CAR和/或Side-CAR多肽T细胞的潜在缺点是可能有更高的引起靶向/脱靶效应的可能性,导致毒性。将DE、RNA控制装置和/或Side-CAR与Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞中的CAR耦合在一起减轻了毒性问题,同时能够实现Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞更强的应答和复发预防。在一些实施例中,Smart-DE-CAR和/或Side-CAR T细胞由多个配体控制。在一些实施例中,组合的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞中使用的DE、RNA控制装置和Side-CAR对于不同的配体或配体组合是特异性的,使得表达串扰最小化或消除。在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞通过靶向不同的肿瘤相关表面抗原用于针对单个肿瘤。在一些实施例中,这些Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞通过利用Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR的不同的跨膜、铰链、受体、共刺激元件、其它方面或其组合来靶向相同的肿瘤相关表面抗原,用于针对单个肿瘤。在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞用于针对克隆异质肿瘤类型,其中每个Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞群体对特定TAA是特异性的。在一些实施例中,控制Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞的相对群体。在一些实施例中,按剂量施用配体组合以诱导Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞的特定群体的表达。在一些实施例中,使用通用的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞。这样的CAR T细胞是单个T细胞,其包括多于一个的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR,或多于一个的用于Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR表达的装置。在一些实施例中,通用的CAR T细胞包含多于一个、两个、三个或更多个Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR。在一些实施例中,通用的CAR T细胞中的每一个Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR由RNA控制装置、DE和/或Side-CAR控制。在一些实施例中,只有CAR的子集由RNA控制装置、DE和/或Side-CAR控制。在一些实施例中,通用的CAR T细胞中的RNA控制装置对不同的配体或配体组合是特异性的,使得表达串扰最小化或消除。在一些实施例中,Side-CAR对不同的配体或配体组合是特异性的,使得表达串扰最小化或消除。
在一些实施例中,Smart CAR、DE-CAR、Smart-DE-CAR、Side CAR和/或通用的CAR被设计为包括针对具有细菌、真菌或病毒来源的抗原的受体。因为Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR可以用于对抗免疫低下患者中的毒性来源的感染,所述抗病原体Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR可以与对TAA特异性的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞治疗结合使用。
在一些实施例中,使用多个正交靶向Smart CAR、DE-CAR、Smart-DE-CAR和/或SideCAR T细胞,其中不同的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR靶向单独的抗原,或组合的Smart CAR、DE-CAR、Smart-DE-CAR和/或Side CAR T细胞,其中单个Smart CAR、DE-CAR、Smart-DE-CAR或Side CAR T细胞靶向多个抗原,由此增加肿瘤细胞杀伤,更有可能完全响应和维持缓解。该组合CAR、DE-CAR和/或Side-CAR多肽方法将通过RNA控制装置增强,所述RNA控制装置响应生物正交配体以在单个或群体的修饰的T细胞中控制个体的CAR、DE-CAR和/或Side-CAR多肽表达。
在一些实施例中,任何上述DE-CAR或Smart-DE-CAR实施例还可以包括DE-LEM、Smart LEM或Smart-DE-LEM,以提供受控的LEM或DE-LEM表达。在这些实施例中,LEM或DE-LEM的量被控制,使得在期望的时间提供其扩增信号。通过改变与LEM或DE-LEM相关联的DE和/或RNA控制装置的配体的量来实现扩增信号的这种控制,由此改变LEM或DE-LEM的量。在一些实施例中,通过在期望的时间向真核细胞添加外源LEM来实现LEM扩增信号的控制。
从下面的实验细节将更好地理解本文公开的发明。不过,本领域技术人员会容易地理解,所讨论的具体方法和结果仅仅是所附权利要求更全面地描述的发明的说明。除非另外指明,本发明不限于具体步骤、材料等,这些可以变化。还应当理解,本文使用的术语仅是为了描述特定实施例的目的,而不是意图限制。
实例
实例1:用Smart CAR控制T细胞效应物活性
利用Budde 2013中所述的第三代抗CD20 CAR盒(Budde等人,PLoS1,2013 doi:10.1371/journal.pone.0082742,该篇文献出于所有目的以其全文形式在此被援引加入本文)和RNA控制装置,3XL2bulge9(Win and Smolke 2007Proc.Natl Acad.Sci.104(36):14283-88,该篇文献出于所有目的以其全文形式在此被援引加入本文)来制备Smart CAR。将编码3XL2bulge9控制装置的核酸在合适的表达载体中工程化到抗CD20 CAR盒中。
通过常规方法将该抗CD20 Smart CAR转染到T细胞(Jurkat细胞和/或原代人类T细胞)中,并且利用合适的抗生素(或其它选择方案)选择稳定的T细胞群体。通过与抗CD3/CD28珠共同孵育来活化具有抗CD20 Smart CAR(CD20-/CD22-/CD3+)的T细胞群体。
活化的抗CD20 Smart CAR T细胞与CD20+/CD22+/CD3-Ramos靶细胞共培养,SmartCAR T细胞与Ramos靶细胞的比率为2∶1、5∶1和10∶1。将RNA控制装置的配体茶碱添加到培养基中,浓度范围在500μM-1mM之间(更低或更高浓度可用于将Smart CAR活性滴定至所需水平)。Smart-CAR T细胞与Ramos细胞一起生长48小时。清洗培养物,然后用抗CD22和抗CD3试剂染色,随后对CD22+(Ramos靶细胞)和CD3+细胞(Smart CAR T细胞)进行计数。这些测定将确定靶细胞杀伤率(例如半衰期)以及在不同Smart-CAR表达水平下的Smart-CAR T细胞的增殖率。
实例2:用组合Smart CAR控制人受试者中的T细胞效应物活性
构建编码正交Smart CAR的核酸并将其包装到慢病毒载体中,所述正交Smart CAR对不同的TAA具有特异性并响应不同的小分子配体。这些Smart CAR中的每一个均在体外显示细胞毒性T细胞效应物功能和响应于同源配体暴露的抗原依赖性扩增,并且各自在人类患者中具有已知的治疗窗。
为了治疗患有表达由该Smart CAR池识别的定义组的多个TAA的肿瘤的人类受试者,通过血液成分单采术从患者的外周血中收获自体T细胞,并用编码同源Smart CAR的慢病毒体外单独地或在池中转导。然后将扩增的Smart CAR CD4+和/或CD8+T细胞过继转移回患者。每个Smart CAR均单独用其自己的同源小分子配体活化,以启动肿瘤识别和消除。因为每个Smart CAR都是单独控制的,针对每个Smart CAR的治疗窗被调节以实施最大的移植物抗肿瘤反应,具有可容忍的移植物抗宿主反应。如果达到肿瘤免疫编辑的逃逸阶段,通过移除其同源配体来失活靶向丢失的TAA的Smart CAR,以限制不再提供移植物抗肿瘤益处的Smart CAR的进一步移植物抗宿主反应。通过控制Smart CAR毒性并且快速对TAA平行化分布式攻击,可实现任何肿瘤类型的持久缓解。
实例3:用DE-CAR控制T细胞效应物活性
使用Budde 2013中所述的抗CD20 CAR盒(Budde等人,PLoS1,2013doi:10.1371/journal.pone.0082742,该篇文献出于所有目的以其全文形式在此被援引加入本文)和在Iwamoto 2010中所述的去稳定元件(DE)ecDHFR(Iwamoto等人,Chemistry and Biology,2010 doi:10.1016/j.chembiol.2010.07.009,该篇文献出于所有目的以其全文形式在此被援引加入本文)制备DE-CAR。在一个实施例中,DE-CAR还编码RNA控制装置,3XL2bulge9(Win and Smolke 2007Proc.Natl Acad.Sci.104(36):14283-88,该篇文献出于所有目的以其全文形式在此被援引加入本文)。将编码突变体scDHFR的DE的核酸在合适的表达载体中工程化到抗CD20 CAR盒中。在替换的实施例中,进一步将编码3XL2bulge9控制装置的核酸工程化到DE-抗CD20 CAR盒中。
通过常规方法将该抗CD20 DE-CAR转染到T细胞(Jurkat细胞和/或原代人类T细胞)中,并且使用合适的抗生素(或其它选择方案)选择稳定的T细胞群体。通过与抗CD3/CD28珠共同孵育来活化具有抗CD20 DE-CAR或抗CD20 Smart-DE-CAR(CD20-/CD22-/CD3+)的T细胞群体。
活化的抗CD20 DE-CAR T细胞或抗CD20 Smart-DE-CAR T细胞与CD20+/CD22+/CD3-Ramos靶细胞共同培养,DE-CAR T细胞(或Smart-DE-CAR T细胞)与Ramos靶标的比率为2∶1、5∶1和10∶1。将DE的配体甲氧苄啶和/或RNA控制装置的配体茶碱添加到培养基中,浓度范围在500μM-1mM之间(更低或更高浓度可用于将Smart-CAR活性滴定至所需水平)。DE-CAR T细胞或Smart-DE-CAR T细胞与Ramos细胞一起生长48小时。清洗培养物,然后用抗CD22和抗CD3试剂染色,随后对CD22+(Ramos靶细胞)和CD3+细胞(DE-CAR和/或Smart-DE-CAR T细胞)进行计数。这些测定将确定靶细胞杀伤率(例如半衰期)以及在不同Smart-CAR表达水平下的Smart-CAR T细胞的增殖率。
实例4:用组合DE-CAR和/或Smart-DE-CAR控制人受试者中的T细胞效应物活性
构建编码正交DE-CAR和/或Smart-DE-CAR的核酸并将其包装到慢病毒载体中,所述正交DE-CAR和/或Smart-DE-CAR对不同的TAA具有特异性并响应不同的小分子配体。这些DE-CAR和/或Smart-DE-CAR中的每一个在体外显示细胞毒性T细胞效应物功能和响应于同源配体暴露的抗原依赖性扩增,并且在人类患者中各自具有已知的治疗窗。
为了治疗患有表达由该DE-CAR和/或Smart-DE-CAR池识别的定义组的多个TAA的肿瘤的人类受试者,通过血液成分单采术从患者的外周血中收获自体T细胞,并用编码同源DE-CAR和/或Smart-DE-CAR的慢病毒体外单独地或在池中转导。然后将扩增的DE-CAR和/或Smart-DE-CAR CD4+和/或CD8+T细胞过继转移回患者。每个DE-CAR和/或Smart-DE-CAR各自用其自己的同源小分子配体活化,以启动肿瘤识别和消除。因为每个DE-CAR和/或Smart-DE-CAR都是单独控制的,每个DE-CAR和/或Smart-DE-CAR的治疗窗被调节以实施最大的移植物抗肿瘤反应,具有可容忍的移植物抗宿主反应。如果达到肿瘤免疫编辑的逃逸阶段,通过移除其同源配体来失活靶向丢失的TAA的DE-CAR和/或Smart-DE-CAR,以限制不再提供移植物抗肿瘤益处的DE-CAR和/或Smart-DE-CAR的进一步移植物抗宿主反应。通过控制DE-CAR和/或Smart-DE-CAR毒性并且快速对TAA平行化分布式的攻击,可实现对于任何肿瘤类型的持久缓解。
实例5:编码DE-CAR和/或Smart-DE-CAR的核酸在人T-淋巴细胞的CCR5位点的整合
CRISPR系统用于利用编码本发明的DE-CAR和/或Smart-DE-CAR的核酸从合适的控制区域下游工程化人T淋巴细胞,所述合适的控制区域包括例如,来自SV40、CMV、UBC、EF1A、PGK或CAGG的启动子(Qin等人(2010)PLoS ONE.doi:10.1371/journal.pone.0010611,该篇文献出于所有目的以其全文形式被援引加入本文),可选地合适的增强子,例如CMV早期增强子,以及可选地其它合适的调节序列,例如,北美旱獭乙型肝炎病毒转录后调节元件(WPRE;Donello,Loeb,and Hope(1998)Journal of Virology,该篇文献出于所有目的以其全文形式被援引加入本文)、短UTR处的翻译起始子(TISU;Elfakess等人(2011)NAR 39(17):7598-7609.doi:10.1093/nar/gkr484,该篇文献出于所有目的以其全文形式被援引加入本文)、A-U富集元件、β珠蛋白3’UTR和poly-A序列、SV403’UTR和poly-A序列。该表达盒在3’和5’侧通过合适的CCR5序列侧接,使得断点与使用例如美国专利号8,697,359(该专利出于所有目的以其全文形式被援引加入本文)的方法获得的合成指导序列相关联。
通过利用合适的控制序列和与sgRNA配对的CCR5侧翼序列电穿孔Cas9 mRNA、sgRNA和编码DE-CAR和/或Smart-DE-CAR的供体核酸,将Cas9引入T淋巴细胞(参见例如,Qin等人,Genetics 115∶176594(2015);Qin等人,Genetics 115∶176594(2015);Kim等人,(2014)Genome 1012-19;Kim等人(2014)描述了Amaza Nucleofector-优化的电穿孔系统,上述三篇文献出于所有目的均以其全文形式被援引加入本文)。将电穿孔的细胞沉积到多孔板中并在合适的培养基中培养。
通过RFLP和/或测序获得并测定代表性细胞,以鉴定具有整合在CCR5位点的DE-CAR和/或Smart-DE-CAR构建体的T淋巴细胞。
本文讨论和引用的所有出版物、专利以及专利申请均以其全文形式在此被援引加入本文。应当理解,所披露的发明并不局限于所描述的特定方法、方案和材料,因为这些可以变化。还应当理解,本文使用的术语仅用于描述特定实施例的目的,并不意图限制本发明的范围,本发明的范围仅由所附权利要求限制。
本领域技术人员利用至多常规实验将认识到或能够确定本文所述的本发明的具体实施例的许多等同情况。这样的等同情况旨在由所附权利要求涵盖。

Claims (33)

1.一种核酸,包括:编码控制装置的多核苷酸可操作地与编码CAR的多核苷酸连接,其中CAR由细胞外元件、跨膜元件和细胞内元件组成,并且其中跨膜元件在细胞外元件和细胞内元件之间。
2.根据权利要求1所述的核酸,其中编码控制装置的多核苷酸融合到编码CAR的N-末端的多核苷酸的端部,融合到编码CAR的C-末端的多核苷酸的端部,或融合到编码CAR的多核苷酸中。
3.根据权利要求1所述的核酸,其中控制装置是RNA控制装置,并且其中RNA控制装置由传感器元件和调节元件组成。
4.根据权利要求1所述的核酸,其中控制装置是去稳定元件。
5.根据权利要求1所述的核酸,其中编码CAR的多核苷酸还包括编码共刺激元件的多核苷酸,其中跨膜元件在细胞外元件和共刺激元件之间。
6.根据权利要求4所述的核酸,还包括编码RNA控制装置的多核苷酸,其中RNA控制装置由传感器元件和调节元件组成。
7.多种核酸,包括:编码控制装置的第一多核苷酸可操作地与编码CAR和关联元件的一部分的多核苷酸连接,编码控制装置的第二多核苷酸可操作地与编码CAR和关联元件的第二部分的多核苷酸连接。
8.一种包括核酸的真核细胞,其中所述核酸包括权利要求1所述的核酸。
9.根据权利要求8所述的真核细胞,其中所述真核细胞是哺乳动物细胞。
10.根据权利要求9所述的真核细胞,其中所述真核细胞是人细胞。
11.根据权利要求9所述的真核细胞,其中所述真核细胞是小鼠细胞。
12.根据权利要求8所述的真核细胞,其中所述真核细胞是造血细胞。
13.根据权利要求12所述的真核细胞,其中所述真核细胞是T淋巴细胞。
14.根据权利要求12所述的真核细胞,其中所述真核细胞是天然杀伤细胞。
15.一种包括至少一种核酸的真核细胞,其中所述至少一种核酸包括权利要求7所述的核酸。
16.一种治疗受试者的方法,包括步骤:获得包括权利要求1、2、3、4、5、6或7所述的核酸的真核细胞,在真核细胞中表达所述核酸,以及向受试者施用所述真核细胞,其中所述真核细胞利用CAR的细胞外元件在受试者中与靶标相互作用。
17.根据权利要求16所述的方法,其中真核细胞来源于受试者。
18.根据权利要求17所述的方法,其中真核细胞是造血细胞。
19.根据权利要求17所述的方法,其中靶标是病变细胞。
20.根据权利要求19所述的方法,其中靶标是癌细胞。
21.根据权利要求19所述的方法,其中靶标是用病原体感染的细胞。
22.根据权利要求18所述的方法,其中靶标是病原体。
23.根据权利要求17所述的方法,其中控制装置是RNA控制装置,并且其中RNA控制装置由传感器元件和调节元件组成。
24.根据权利要求17所述的方法,其中控制装置是去稳定元件。
25.一种控制T淋巴细胞增殖的方法,包括步骤:获得包括权利要求1、2、3、4、5、6或7所述的核酸的T淋巴细胞,将T淋巴细胞暴露于第一浓度的控制装置的配体,其中通过控制装置的配体结合改变由T淋巴细胞所显示的CAR多肽的数量,以及将T淋巴细胞暴露于细胞外元件的抗原,由此抗原的结合刺激T淋巴细胞增殖。
26.根据权利要求25所述的方法,还包括将T淋巴细胞暴露于第二浓度的配体和将T淋巴细胞暴露于抗原的步骤。
27.根据权利要求25所述的方法,还包括将T淋巴细胞暴露于第二浓度的抗原和测定T淋巴细胞的增殖率的步骤。
28.一种控制真核细胞中CAR表达的方法,包括步骤:获得包括权利要求1、2、3、4、5、6或7所述的核酸的真核细胞,将真核细胞暴露于控制装置的配体,其中通过控制装置的配体结合改变控制装置的活性,由此改变CAR多肽的表达。
29.根据权利要求28所述的方法,其中CAR多肽是DE-CAR多肽。
30.根据权利要求28所述的方法,其中CAR多肽的表达被提高。
31.根据权利要求28所述的方法,其中CAR多肽的表达被降低。
32.一种控制T淋巴细胞活化的方法,包括步骤:获得包括权利要求1、2、3、4、5、6或7所述的核酸的T淋巴细胞,将T淋巴细胞暴露于第一浓度的控制装置的配体,其中通过控制装置的配体结合改变由T淋巴细胞显示的CAR多肽的数量,以及将T淋巴细胞暴露于细胞外元件的抗原,由此抗原的结合刺激T淋巴细胞活化。
33.一种改进RNA控制装置的方法,包括步骤:提供病毒,其中所述病毒包括核酸,其中所述核酸编码RNA控制装置,所述RNA控制装置可操作地连接到病毒复制所必需的病毒核酸的一部分;用病毒感染宿主细胞,其中所述病毒能够在宿主细胞中复制;可选地向宿主细胞提供配体,其中所述配体通过RNA控制装置结合;通过至少一轮的多个宿主细胞的感染使所述病毒生长;以及识别改进的RNA控制装置。
CN201680024848.5A 2015-03-17 2016-03-15 Smart CAR装置,DE CAR多肽,Side CAR及其使用 Pending CN107708710A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201562134143P 2015-03-17 2015-03-17
US62/134,143 2015-03-17
US201562152727P 2015-04-24 2015-04-24
US62/152,727 2015-04-24
US201562183595P 2015-06-23 2015-06-23
US62/183,595 2015-06-23
US201662276449P 2016-01-08 2016-01-08
US62/276,449 2016-01-08
PCT/US2016/022442 WO2016149254A1 (en) 2015-03-17 2016-03-15 Smart car devices, de car polypeptides, side cars and uses thereof

Publications (1)

Publication Number Publication Date
CN107708710A true CN107708710A (zh) 2018-02-16

Family

ID=56919745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680024848.5A Pending CN107708710A (zh) 2015-03-17 2016-03-15 Smart CAR装置,DE CAR多肽,Side CAR及其使用

Country Status (4)

Country Link
US (3) US9777064B2 (zh)
EP (1) EP3270936A4 (zh)
CN (1) CN107708710A (zh)
WO (1) WO2016149254A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279438A (zh) * 2016-08-24 2017-01-04 胜武(北京)生物科技有限公司 新型嵌合抗原受体及其用途
CN108680533A (zh) * 2018-04-12 2018-10-19 长治医学院 利用共振瑞利散射光谱法测定表皮生长因子受体浓度方法
CN108707629A (zh) * 2018-05-28 2018-10-26 上海海洋大学 斑马鱼notch1b基因突变体的制备方法
CN110121352A (zh) * 2016-09-01 2019-08-13 嵌合体生物工程公司 Gold优化的car t-细胞

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2948544A4 (en) 2013-01-28 2016-08-03 St Jude Childrens Res Hospital CHIMERIC RECEPTOR WITH NKG2D SPECIFICITY FOR CELL THERAPY AGAINST CANCER AND INFECTION DISEASES
EP3143134B1 (en) 2014-05-15 2020-10-28 National University of Singapore Modified natural killer cells and uses thereof
US20170151281A1 (en) 2015-02-19 2017-06-01 Batu Biologics, Inc. Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
EP3270936A4 (en) 2015-03-17 2018-08-08 Chimera Bioengineering Inc. Smart car devices, de car polypeptides, side cars and uses thereof
CN108025024B (zh) 2015-07-28 2022-11-29 宾夕法尼亚大学董事会 表达嵌合抗原受体的修饰单核细胞/巨噬细胞及其用途
EP3331905B1 (en) 2015-08-06 2022-10-05 Dana-Farber Cancer Institute, Inc. Targeted protein degradation to attenuate adoptive t-cell therapy associated adverse inflammatory responses
US11052111B2 (en) 2015-12-08 2021-07-06 Chimera Bioengineering, Inc. Smart CAR devices and DE CAR polypeptides for treating disease and methods for enhancing immune responses
US11446398B2 (en) 2016-04-11 2022-09-20 Obsidian Therapeutics, Inc. Regulated biocircuit systems
WO2017201019A1 (en) 2016-05-17 2017-11-23 Chimera Bioengineering, Inc. Methods for making novel antigen binding domains
US11286306B2 (en) * 2016-12-09 2022-03-29 H. Lee Moffitt Cancer Center And Research Institute, Inc. TLR9-binding chimeric antigen receptors
BR112019012950A2 (pt) 2016-12-23 2019-11-26 Macrogenics Inc molécula de ligação a adam9, composição farmacêutica, uso da molécula de ligação a adam9 e método para tratar uma doença ou condição associada ou caracterizada pela expressão de adam9 em um indivíduo
US11649288B2 (en) 2017-02-07 2023-05-16 Seattle Children's Hospital Phospholipid ether (PLE) CAR T cell tumor targeting (CTCT) agents
WO2018148440A1 (en) 2017-02-08 2018-08-16 Dana-Farber Cancer Institute, Inc. Regulating chimeric antigen receptors
CN110582288A (zh) 2017-02-28 2019-12-17 恩多塞特公司 用于car t细胞疗法的组合物和方法
US11629340B2 (en) * 2017-03-03 2023-04-18 Obsidian Therapeutics, Inc. DHFR tunable protein regulation
US11896616B2 (en) 2017-03-27 2024-02-13 National University Of Singapore Stimulatory cell lines for ex vivo expansion and activation of natural killer cells
SG11201908492PA (en) 2017-03-27 2019-10-30 Nat Univ Singapore Truncated nkg2d chimeric receptors and uses thereof in natural killer cell immunotherapy
US11938153B2 (en) * 2017-03-31 2024-03-26 The Board Of Trustees Of The Leland Stanford Junior University Methods of treating T cell exhaustion by inhibiting or modulating T cell receptor signaling
JP2020519267A (ja) * 2017-05-12 2020-07-02 セレクティスCellectis より安全な細胞免疫療法のためのプロテアーゼベースの切り替えキメラ抗原受容体
WO2018206791A1 (en) * 2017-05-12 2018-11-15 Cellectis Protease based switch chimeric antigen receptors for safer cell immunotherapy
CN107312797B (zh) * 2017-07-28 2021-06-18 广州中科蓝华生物科技有限公司 一种蛋白调控系统及其制备方法和应用
CN107446937B (zh) * 2017-09-05 2020-12-25 深圳华云生物技术有限公司 嵌合抗原受体及其表达基因、光控调节的嵌合抗原受体修饰的t细胞及其应用
MX2020002901A (es) 2017-09-19 2020-07-22 Massachusetts Inst Technology Composiciones para la terapia con celulas t con receptores de antigeno quimerico y usos de las mismas.
US11649294B2 (en) 2017-11-14 2023-05-16 GC Cell Corporation Anti-HER2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same
WO2019118518A2 (en) * 2017-12-11 2019-06-20 Senti Biosciences, Inc. Inducible cell receptors for cell-based therapeutics
BR112020014913A2 (pt) 2018-01-22 2020-12-08 Seattle Children's Hospital (dba Seattle Children's Research Institute) Métodos para uso de células t car
KR20200120917A (ko) 2018-02-02 2020-10-22 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 키메라 항원 수용체를 발현하는 변형된 단핵구/대식세포/수지상 세포 및 단백질 응집체와 연관이 있는 질환 및 장애에서의 용도
US11110125B2 (en) 2018-02-13 2021-09-07 Chimera Bioengineering, Inc. Coordinating gene expression using RNA destabilizing elements
WO2019195142A1 (en) * 2018-04-03 2019-10-10 The Board Of Trustees Of The Leland Stanford Junior University Mesenchymal stem cells comprising a chimeric antigen receptor (car) for treating inflammatory and autoimmune diseases
US20200102370A1 (en) 2018-09-28 2020-04-02 Massachusetts Institute Of Technology Collagen-localized immunomodulatory molecules and methods thereof
EP3773918A4 (en) 2019-03-05 2022-01-05 Nkarta, Inc. CD19 DIRECTED CHIMERIC ANTIGEN RECEPTORS AND THEIR USES IN IMMUNOTHERAPY
US11013764B2 (en) 2019-04-30 2021-05-25 Myeloid Therapeutics, Inc. Engineered phagocytic receptor compositions and methods of use thereof
US11642409B2 (en) 2019-06-26 2023-05-09 Massachusetts Insttute of Technology Immunomodulatory fusion protein-metal hydroxide complexes and methods thereof
WO2021034653A1 (en) 2019-08-18 2021-02-25 Chimera Bioengineering, Inc. Combination therapy with gold controlled transgenes
CA3149897A1 (en) 2019-09-03 2021-03-11 Daniel Getts Methods and compositions for genomic integration
WO2021061648A1 (en) 2019-09-23 2021-04-01 Massachusetts Institute Of Technology Methods and compositions for stimulation of endogenous t cell responses
BR112022024228A2 (pt) 2020-06-04 2023-02-07 Carisma Therapeutics Inc Construtos para receptores de antígeno quiméricos
US11770377B1 (en) * 2020-06-29 2023-09-26 Cyral Inc. Non-in line data monitoring and security services
WO2022046802A1 (en) * 2020-08-25 2022-03-03 The Regents Of The University Of California Targeted protein degradation in therapeutic cells
MX2023005201A (es) 2020-11-04 2023-06-28 Myeloid Therapeutics Inc Composiciones de proteinas de fusion quimerica modificadas por ingenieria y metodos de uso de las mismas.
IL308696A (en) * 2021-05-24 2024-01-01 Kite Pharma Inc NKG2D-based chemical antigen receptor
WO2023225569A1 (en) 2022-05-17 2023-11-23 Umoja Biopharma, Inc. Manufacturing viral particles
WO2024097992A2 (en) 2022-11-04 2024-05-10 Umoja Biopharma, Inc. Particles displaying adhesion-molecule fusions

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972193B1 (en) 1993-02-12 2005-12-06 Board Of Trustees Of Leland Stanford Junior University Regulated transcription of targeted genes and other biological events
AU2005229159A1 (en) 2004-03-31 2005-10-13 Lions Eye Institute Limited Therapeutic molecules for modulating stability of VEGF transcripts
WO2008108890A2 (en) * 2006-10-18 2008-09-12 University Of Rochester Conditionally replicating viruses for cancer therapy
WO2012056440A1 (en) 2010-10-28 2012-05-03 Nanodoc Ltd. COMPOSITIONS AND METHODS FOR ACTIVATING EXPRESSION BY A SPECIFIC ENDOGENOUS miRNA
CN104126009B (zh) 2011-10-07 2019-05-10 国立大学法人三重大学 嵌合抗原受体
US10391126B2 (en) 2011-11-18 2019-08-27 Board Of Regents, The University Of Texas System CAR+ T cells genetically modified to eliminate expression of T-cell receptor and/or HLA
CA2886684C (en) * 2012-10-10 2023-09-19 Sangamo Biosciences, Inc. T cell modifying compounds and uses thereof
JP6580028B2 (ja) 2013-03-13 2019-09-25 ストラタテック コーポレーション 生育可能なヒト皮膚代用物の凍結保存
CA2905352A1 (en) * 2013-03-14 2014-09-25 Bellicum Pharmaceuticals, Inc. Methods for controlling t cell proliferation
KR102339240B1 (ko) 2013-10-15 2021-12-15 더 스크립스 리서치 인스티튜트 펩타이드 키메라 항원 수용체 t 세포 스위치 및 이의 용도
GB201322798D0 (en) 2013-12-20 2014-02-05 Oxford Biomedica Ltd Production system
JP6772063B2 (ja) 2014-02-14 2020-10-21 ベリカム ファーマシューティカルズ, インコーポレイテッド 誘導可能なキメラポリペプチドを使用して細胞を活性化するための方法
CN106414748B (zh) 2014-02-14 2021-05-28 得克萨斯州大学系统董事会 嵌合抗原受体及制备方法
US20170081411A1 (en) 2014-03-15 2017-03-23 Novartis Ag Regulatable chimeric antigen receptor
ES2939760T3 (es) 2014-03-15 2023-04-26 Novartis Ag Tratamiento de cáncer utilizando un receptor quimérico para antígenos
US9944709B2 (en) 2014-03-19 2018-04-17 Cellectis CD123 specific chimeric antigen receptors for cancer immunotherapy
CA2949325A1 (en) 2014-06-17 2015-12-23 Cellectis Cd123 specific multi-chain chimeric antigen receptor
CN107108744B (zh) 2014-08-19 2020-09-25 诺华股份有限公司 抗cd123嵌合抗原受体(car)用于癌症治疗
US11161907B2 (en) 2015-02-02 2021-11-02 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
EP3270936A4 (en) 2015-03-17 2018-08-08 Chimera Bioengineering Inc. Smart car devices, de car polypeptides, side cars and uses thereof
US11052111B2 (en) 2015-12-08 2021-07-06 Chimera Bioengineering, Inc. Smart CAR devices and DE CAR polypeptides for treating disease and methods for enhancing immune responses
SG11201807489PA (en) 2016-03-04 2018-09-27 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
WO2017201019A1 (en) 2016-05-17 2017-11-23 Chimera Bioengineering, Inc. Methods for making novel antigen binding domains
WO2018045177A1 (en) 2016-09-01 2018-03-08 Chimera Bioengineering, Inc. Gold optimized car t-cells
US11110125B2 (en) 2018-02-13 2021-09-07 Chimera Bioengineering, Inc. Coordinating gene expression using RNA destabilizing elements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279438A (zh) * 2016-08-24 2017-01-04 胜武(北京)生物科技有限公司 新型嵌合抗原受体及其用途
CN106279438B (zh) * 2016-08-24 2019-10-22 北京领柯生物科技有限公司 新型嵌合抗原受体及其用途
CN110121352A (zh) * 2016-09-01 2019-08-13 嵌合体生物工程公司 Gold优化的car t-细胞
CN110121352B (zh) * 2016-09-01 2020-12-11 嵌合体生物工程公司 Gold优化的car t-细胞
CN112481217A (zh) * 2016-09-01 2021-03-12 嵌合体生物工程公司 Gold优化的car t-细胞
CN108680533A (zh) * 2018-04-12 2018-10-19 长治医学院 利用共振瑞利散射光谱法测定表皮生长因子受体浓度方法
CN108707629A (zh) * 2018-05-28 2018-10-26 上海海洋大学 斑马鱼notch1b基因突变体的制备方法

Also Published As

Publication number Publication date
US9777064B2 (en) 2017-10-03
US20180030143A1 (en) 2018-02-01
US10508152B2 (en) 2019-12-17
US20160272718A1 (en) 2016-09-22
US20180142031A1 (en) 2018-05-24
EP3270936A4 (en) 2018-08-08
EP3270936A1 (en) 2018-01-24
US11530272B2 (en) 2022-12-20
WO2016149254A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
CN107708710A (zh) Smart CAR装置,DE CAR多肽,Side CAR及其使用
US11052111B2 (en) Smart CAR devices and DE CAR polypeptides for treating disease and methods for enhancing immune responses
JP7125351B2 (ja) サルベージキメラ抗原受容体システム
JP2021506305A (ja) 多価キメラ抗原受容体
US20220168351A1 (en) Treatment of a canine cd20 positive disease or condition using a canine cd20-specific chimeric antigen receptor
JP7358369B2 (ja) Cd83結合キメラ抗原受容体
US11999773B2 (en) Anti-BCMA chimeric antigen receptors
CN107936120B (zh) Cd19靶向性的嵌合抗原受体及其制法和应用
EP4257617A1 (en) Antigen-binding protein targeting cd70 and use thereof
WO2020160419A1 (en) Signaling platforms for chimeric antigen receptor t cells
CN114929341A (zh) 用于治疗髓系恶性肿瘤的嵌合抗原受体
CN114615992A (zh) 表达t调节性细胞的抗cd83嵌合抗原受体
CN117402247B (zh) 一种靶向cd5的单域抗体、嵌合抗原受体及其应用
WO2020077318A1 (en) Compositions and methods for switchable car t cells using surface-bound sortase transpeptidase
CN117659198A (zh) 一种靶向cd5的嵌合抗原受体及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180216

WD01 Invention patent application deemed withdrawn after publication