US20170151281A1 - Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer - Google Patents

Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer Download PDF

Info

Publication number
US20170151281A1
US20170151281A1 US15/048,922 US201615048922A US2017151281A1 US 20170151281 A1 US20170151281 A1 US 20170151281A1 US 201615048922 A US201615048922 A US 201615048922A US 2017151281 A1 US2017151281 A1 US 2017151281A1
Authority
US
United States
Prior art keywords
cells
tumor
car
cell
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/048,922
Inventor
Samuel C. Wagner
Thomas E. Ichim
Julia S. Szymanski
Santosh Kesari
Amit N. Patel
Boris Minev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myeloid Therapeutics Inc
Original Assignee
Batu Biologics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/048,922 priority Critical patent/US20170151281A1/en
Application filed by Batu Biologics Inc filed Critical Batu Biologics Inc
Publication of US20170151281A1 publication Critical patent/US20170151281A1/en
Assigned to Batu Biologics, Inc. reassignment Batu Biologics, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MINEV, Boris
Assigned to Batu Biologics, Inc. reassignment Batu Biologics, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SZYMANSKI, JULIA S.
Assigned to Batu Biologics, Inc. reassignment Batu Biologics, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ICHIM, THOMAS E.
Assigned to Batu Biologics, Inc. reassignment Batu Biologics, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KESARI, SANTOSH
Assigned to Batu Biologics, Inc. reassignment Batu Biologics, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PATEL, AMIT
Assigned to Batu Biologics, Inc. reassignment Batu Biologics, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WAGNER, Samuel C.
Assigned to MYELOID THERAPEUTICS, INC. reassignment MYELOID THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Batu Biologics Inc.
Priority to US17/227,193 priority patent/US20210252053A1/en
Priority to US17/559,967 priority patent/US20220118010A1/en
Priority to US17/672,415 priority patent/US20220202856A1/en
Priority to US17/675,559 priority patent/US20220175831A1/en
Priority to US17/675,519 priority patent/US20220175830A1/en
Priority to US17/715,558 priority patent/US11517589B2/en
Priority to US17/715,710 priority patent/US11918604B2/en
Priority to US17/975,187 priority patent/US11918605B1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4614Monocytes; Macrophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464403Receptors for growth factors
    • A61K39/464406Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ ErbB4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/599Cell markers; Cell surface determinants with CD designations not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present disclosure generally relates to the fields of genetics, immunology and medicine.
  • the invention pertains to the field of immunotherapy, more specifically the invention pertains to the utilization of monocytes that have been manipulated to home to tumor cells and upon binding to tumor antigens differentiating into monocytes with cytotoxic properties to tumors, or dendritic cells.
  • the immune system possesses the power to cure cancers based on published reports of immunologically mediated spontaneous regressions, which have been document in colon, lung, melanoma, liver, breast. Intriguingly, spontaneous regression clinically, as well as in an animal model of spontaneous regression, seems to be associated primarily with stimulation of the innate immune system, comprising of macrophages, NK cells, NKT cells and neutrophils.
  • the field has focused on the adaptive immune response, specifically stimulation of T and B cells, and only recently has interest re-ignited in the innate immune system.
  • TILs tumor infiltrating lymphocytes
  • tumor agents By isolating and expanding TILs in vitro, and then molecularly identifying what they are responding to, a variety of the well-known tumor agents have been discovered such as MAGE-1, and MAGE-3, GAGE-1, MART-1, Melan-A, gp100, gp75 (TRP-2), tyrosinase, NY-ESO-1, mutated p16, and beta catenin. It is interesting that in the case of some antigens, such as gp75, the peptide that elicits tumor rejection results from translation of an alternative open reading frame of the same gene.
  • the gp75 gene encodes two completely different polypeptides, gp75 as an antigen recognized by immunoglobulin G antibodies in sera from a patient with cancer, and a 24-amino acid product as a tumor rejection antigen recognized by T cells.
  • Peptides used for immunization generally are 8-9 amino acids which have been demonstrated to be displayed in association with class I MHC molecules for recognition by T cells, and tumor cells have been shown to express these naturally processed epitopes.
  • the so-called second and third generation CARs include additional activation domains from co-stimulatory molecules such as CD28 and CD137 (41BB) which serve to enhance T cell survival and proliferation.
  • CAR T cells offer the opportunity to seek out and destroy cancer cells by recognizing tumor-associated antigens (TAA) expressed on their surface. As such, the recognition of a tumor cells occurs via an MHC-independent mechanism.
  • TAA tumor-associated antigens
  • CAR T cells Various preclinical and early-phase clinical trials highlight the efficacy of CAR T cells to treat cancer patients with solid tumors and hematopoietic malignancies.
  • CAR T cells might have in treating cancer patients there are several limitations to the generalized clinical application of CAR T cells.
  • tumor antigens targeted by CAR could be down-regulated or mutated in response to treatment resulting in tumor evasion.
  • CAR T cells Since current CAR T cells recognize only one target antigen, such changes in tumors negate the therapeutic effects. Therefore, the generation of CAR T cells capable of recognizing multiple tumor antigens is highly desired. Finally, CAR T cells react with target antigen weakly expressed on non-tumor cells, potentially causing severe adverse effects. To avoid such “on-target off-tumor” reaction, use of scFvs with higher specificity to tumor antigen is required. And although ongoing studies are focused on generating methods to shut off CAR T cells in vivo this system has yet to be developed and might pose additional inherent challenges.
  • the current patent seeks to apply chimeric antigen receptor technology to activation of monocytes, which naturally home into tumors, to differentiated intratumorally said monocytes into dendritic cells which are capable of antigen presentation, as well as direct killing of tumors.
  • Chimeric antigen receptor (CAR) cellular therapeutics have revolutionized the treatment of B cell malignancies achieving stunning success rates.
  • solid tumors have yet to benefit from this treatment.
  • patients treated with CAR-T cells lack B cells for the rest of their lives, as well as having the possibility of tumor lysis syndrome. This is in part due to the permanence of the CAR-T cells in the patients after treatment.
  • the current invention applies the use of CAR technology to monocytes with the purpose of inducing differentiation to dendritic cells (DC) subsequent to contact with tumor antigens. Given that monocytes have a fixed mitotic index, fears of permanent manipulation of the host are diminished.
  • Treating a cancer refers to inhibiting or preventing oncogenic activity of cancer cells.
  • Oncogenic activity can comprise inhibiting migration, invasion, drug resistance, cell survival, anchorage-independent growth, non-responsiveness to cell death signals, angiogenesis, or combinations thereof of the cancer cells.
  • cancer refers generally to a group of diseases characterized by uncontrolled, abnormal growth of cells (e.g., a neoplasia).
  • cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body (“metastatic cancer”).
  • Ex vivo activated lymphocytes “lymphocytes with enhanced antitumor activity” and “dendritic cell cytokine induced killers” are terms used interchangeably to refer to composition of cells that have been activated ex vivo and subsequently reintroduced within the context of the current invention.
  • lymphocyte is used, this also includes heterogenous cells that have been expanded during the ex vivo culturing process including dendritic cells, NKT cells, gamma delta T cells, and various other innate and adaptive immune cells.
  • cancer refers to all types of cancer or neoplasm or malignant tumors found in animals, including leukemias, carcinomas and sarcomas.
  • Examples of cancers are cancer of the brain, melanoma, bladder, breast, cervix, colon, head and neck, kidney, lung, non-small cell lung, mesothelioma, ovary, prostate, sarcoma, stomach, uterus and Medulloblastoma.
  • leukemia is meant broadly progressive, malignant diseases of the hematopoietic organs/systems and is generally characterized by a distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow.
  • Leukemia diseases include, for example, acute nonlymphocytic leukemia, chronic lymphocytic leukemia, acute granulocytic leukemia, chronic granulocytic leukemia, acute promyelocytic leukemia, adult T-cell leukemia, aleukemic leukemia, a leukocythemic leukemia, basophilic leukemia, blast cell leukemia, bovine leukemia, chronic myelocytic leukemia, leukemia cutis, embryonal leukemia, eosinophilic leukemia, Gross' leukemia, Rieder cell leukemia, Schilling's leukemia, stem cell leukemia, subleukemic leukemia, undifferentiated cell leukemia, hairy-cell
  • carcinoma refers to a malignant new growth made up of epithelial cells tending to infiltrate the surrounding tissues, and/or resist physiological and non-physiological cell death signals and give rise to metastases.
  • exemplary carcinomas include, for example, acinar carcinoma, acinous carcinoma, adenocystic carcinoma, adenoid cystic carcinoma, carcinoma adenomatosum, carcinoma of adrenal cortex, alveolar carcinoma, alveolar cell carcinoma, basal cell carcinoma, carcinoma basocellulare, basaloid carcinoma, basosquamous cell carcinoma, bronchioalveolar carcinoma, bronchiolar carcinoma, bronchogenic carcinoma, cerebriform carcinoma, cholangiocellular carcinoma, chorionic carcinoma, colloid carcinoma, comedo carcinoma, corpus carcinoma, cribriform carcinoma, carcinoma en cuirasse, carcinoma cutaneum , cylindrical carcinoma, cylindrical cell carcinoma, duct carcinoma, carcinoma durum, embryonal carcinoma, encephaloid carcinoma, epiennoid carcinoma, carcinoma epitheliale adenoides
  • sarcoma generally refers to a tumor which is made up of a substance like the embryonic connective tissue and is generally composed of closely packed cells embedded in a fibrillar, heterogeneous, or homogeneous substance.
  • Sarcomas include, chondrosarcoma, fibrosarcoma, lymphosarcoma, melanosarcoma, myxosarcoma, osteosarcoma, endometrial sarcoma, stromal sarcoma, Ewing's sarcoma, fascial sarcoma, fibroblastic sarcoma, giant cell sarcoma, Abemethy's sarcoma, adipose sarcoma, liposarcoma, alveolar soft part sarcoma, ameloblastic sarcoma, botryoid sarcoma, chloroma sarcoma, chorio carcinoma, embryonal sarcoma, Wilm
  • Additional exemplary neoplasias include, for example, Hodgkin's Disease, Non-Hodgkin's Lymphoma, multiple myeloma, neuroblastoma, breast cancer, ovarian cancer, lung cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, small-cell lung tumors, primary brain tumors, stomach cancer, colon cancer, malignant pancreatic insulanoma, malignant carcinoid, premalignant skin lesions, testicular cancer, lymphomas, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, cervical cancer, endometrial cancer, and adrenal cortical cancer.
  • the cancer treated is a melanoma.
  • melanoma is taken to mean a tumor arising from the melanocytic system of the skin and other organs.
  • Melanomas include, for example, Harding-Passey melanoma, juvenile melanoma, lentigo maligna melanoma, malignant melanoma, acral-lentiginous melanoma, amelanotic melanoma, benign juvenile melanoma, Cloudman's melanoma, S91 melanoma, nodular melanoma subungal melanoma, and superficial spreading melanoma.
  • polypeptide is used interchangeably with “peptide”, “altered peptide ligand”, and “flourocarbonated peptides.”
  • pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the therapeutic compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • T cell is also referred to as T lymphocyte, and means a cell derived from thymus among lymphocytes involved in an immune response.
  • the T cell includes any of a CD8-positive T cell (cytotoxic T cell: CTL), a CD4-positive T cell (helper T cell), a suppressor T cell, a regulatory T cell such as a controlling T cell, an effector cell, a naive T cell, a memory T cell, an ⁇ T cell expressing TCR ⁇ and ⁇ chains, and a ⁇ T cell expressing TCR ⁇ and ⁇ chains.
  • the T cell includes a precursor cell of a T cell in which differentiation into a T cell is directed.
  • cell populations containing T cells include, in addition to body fluids such as blood (peripheral blood, umbilical blood etc.) and bone marrow fluids, cell populations containing peripheral blood mononuclear cells (PBMC), hematopoietic cells, hematopoietic stem cells, umbilical blood mononuclear cells etc., which have been collected, isolated, purified or induced from the body fluids. Further, a variety of cell populations containing T cells and derived from hematopoietic cells can be used in the present invention. These cells may have been activated by cytokine such as IL-2 in vivo or ex vivo. As these cells, any of cells collected from a living body, or cells obtained via ex vivo culture, for example, a T cell population obtained by the method of the present invention as it is, or obtained by freeze preservation, can be used.
  • body fluids such as blood (peripheral blood, umbilical blood etc.) and bone marrow fluids
  • PBMC peripheral blood
  • antibody is meant to include both intact molecules as well as fragments thereof that include the antigen-binding site.
  • Whole antibody structure is often given as H 2 L 2 and refers to the fact that antibodies commonly comprise 2 light (L) amino acid chains and 2 heavy (H) amino acid chains. Both chains have regions capable of interacting with a structurally complementary antigenic target. The regions interacting with the target are referred to as “variable” or “V” regions and are characterized by differences in amino acid sequence from antibodies of different antigenic specificity.
  • the variable regions of either H or L chains contains the amino acid sequences capable of specifically binding to antigenic targets. Within these sequences are smaller sequences dubbed “hypervariable” because of their extreme variability between antibodies of differing specificity.
  • Such hypervariable regions are also referred to as “complementarity determining regions” or “CDR” regions. These CDR regions account for the basic specificity of the antibody for a particular antigenic determinant structure.
  • the CDRs represent non-contiguous stretches of amino acids within the variable regions but, regardless of species, the positional locations of these critical amino acid sequences within the variable heavy and light chain regions have been found to have similar locations within the amino acid sequences of the variable chains.
  • the variable heavy and light chains of all antibodies each have 3 CDR regions, each non-contiguous with the others (termed L1, L2, L3, H1, H2, H3) for the respective light (L) and heavy (H) chains.
  • the antibodies disclosed according to the invention may also be wholly synthetic, wherein the polypeptide chains of the antibodies are synthesized and, possibly, optimized for binding to the polypeptides disclosed herein as being receptors.
  • Such antibodies may be chimeric or humanized antibodies and may be fully tetrameric in structure, or may be dimeric and comprise only a single heavy and a single light chain.
  • an effective amount or “therapeutically effective amount” means a dosage sufficient to treat, inhibit, or alleviate one or more symptoms of a disease state being treated or to otherwise provide a desired pharmacologic and/or physiologic effect, especially enhancing T cell response to a selected antigen.
  • the precise dosage will vary according to a variety of factors such as subject-dependent variables (e.g., age, immune system health, etc.), the disease, and the treatment being administered.
  • the terms “individual”, “host”, “subject”, and “patient” are used interchangeably herein, and refer to a mammal, including, but not limited to, primates, for example, human beings, as well as rodents, such as mice and rats, and other laboratory animals.
  • treatment regimen refers to a treatment of a disease or a method for achieving a desired physiological change, such as increased or decreased response of the immune system to an antigen or immunogen, such as an increase or decrease in the number or activity of one or more cells, or cell types, that are involved in such response, wherein said treatment or method comprises administering to an animal, such as a mammal, especially a human being, a sufficient amount of two or more chemical agents or components of said regimen to effectively treat a disease or to produce said physiological change, wherein said chemical agents or components are administered together, such as part of the same composition, or administered separately and independently at the same time or at different times (i.e., administration of each agent or component is separated by a finite period of time from one or more of the agents or components) and where administration of said one or more agents or components achieves a result greater than that of any of said agents or components when administered alone or in isolation.
  • a desired physiological change such as increased or decreased response of the immune system to an antigen or immunogen, such as an increase or decrease
  • the term “anergy” and “unresponsiveness” includes unresponsiveness to an immune cell to stimulation, for example, stimulation by an activation receptor or cytokine.
  • the anergy may occur due to, for example, exposure to an immune suppressor or exposure to an antigen in a high dose.
  • Such anergy is generally antigen-specific, and continues even after completion of exposure to a tolerized antigen.
  • the anergy in a T cell and/or NK cell is characterized by failure of production of cytokine, for example, interleukin (IL)-2.
  • IL interleukin
  • the T cell anergy and/or NK cell anergy occurs in part when a first signal (signal via TCR or CD-3) is received in the absence of a second signal (costimulatory signal) upon exposure of a T cell and/or NK cell to an antigen.
  • the term “enhanced function of a T cell”, “enhanced cytotoxicity” and “augmented activity” means that the effector function of the T cell and/or NK cell is improved.
  • the enhanced function of the T cell and/or NK cell which does not limit the present invention, includes an improvement in the proliferation rate of the T cell and/or NK cell, an increase in the production amount of cytokine, or an improvement in cytotoxity.
  • the enhanced function of the T cell and/or NK cell includes cancellation and suppression of tolerance of the T cell and/or NK cell in the suppressed state such as the anergy (unresponsive) state, or the rest state, that is, transfer of the T cell and/or NK cell from the suppressed state into the state where the T cell and/or NK cell responds to stimulation from the outside.
  • expression means generation of mRNA by transcription from nucleic acids such as genes, polynucleotides, and oligonucleotides, or generation of a protein or a polypeptide by transcription from mRNA. Expression may be detected by means including RT-PCR, Northern Blot, or in situ hybridization.
  • “Suppression of expression” refers to a decrease of a transcription product or a translation product in a significant amount as compared with the case of no suppression.
  • the suppression of expression herein shows, for example, a decrease of a transcription product or a translation product in an amount of 30% or more, preferably 50% or more, more preferably 70% or more, and further preferably 90% or more.
  • the CAR-DC are antigen-loaded and co-cultured with T-lymphocytes to produce antigen-specific T-cells.
  • antigen-specific T-cells refers to T-cells that proliferate upon exposure to the antigen-loaded APCs of the present invention, as well as to develop the ability to attack cells having the specific antigen on their surfaces.
  • T-cells e.g., cytotoxic T-cells, lyse target cells by a number of methods, e.g., releasing toxic enzymes such as granzymes and perforin onto the surface of the target cells or by effecting the entrance of these lytic enzymes into the target cell interior.
  • cytotoxic T-cells express CD8 on their cell surface.
  • T-cells that express the CD4 antigen CD4 commonly known as “helper” T-cells, can also help promote specific cytotoxic activity and may also be activated by the antigen-loaded APCs of the present invention.
  • the cancer cells, the APCs and even the T-cells can be derived from the same donor whose MNC yielded the DC, which can be the patient or an HLA—or obtained from the individual patient that is going to be treated.
  • the cancer cells, the APCs and/or the T-cells can be allogeneic.
  • the invention provides means of inducing an anti-cancer response in a mammal, comprising the steps of initially “priming” the mammal by administering an agent that causes local accumulation of CAR-DC. Subsequently, a tumor antigen is administered in the local area where said agents causing accumulation of antigen presenting cells is administered. A time period is allowed to pass to allow for said antigen presenting cells to traffic to the lymph nodes. Subsequently a maturation signal, or a plurality of maturation signals are administered to enhance the ability of said antigen presenting cell to activate adaptive immunity. In some embodiments of the invention activators of adaptive immunity are concurrently given, as well as inhibitors of the tumor derived inhibitors are administered to derepress the immune system.
  • priming of the patient is achieved by administration of GM-CSF subcutaneously in the area in which antigen is to be injected.
  • GM-CSF subcutaneously in the area in which antigen is to be injected.
  • Various scenarios are known in the art for administration of GM-CSF prior to administration, or concurrently with administration of antigen.
  • the practitioner of the invention is referred to the following publications for dosage regimens of GM-CSF and also of peptide antigens.
  • tumor antigens may be utilized, in one preferred embodiment, lysed tumor cells from the same patient area utilized.
  • Means for generation of lyzed tumor cells are well known in the art and described in the following references.
  • One example method for generation of tumor lysate involves obtaining frozen autologous samples which are placed in hanks buffered saline solution (HBSS) and gentamycin 50 ⁇ g/ml followed by homogenization by a glass homogenizer. After repeated freezing and thawing, particle-containing samples are selected and frozen in aliquots after radiation with 25 kGy. Quality assessment for sterility and endotoxin content is performed before freezing.
  • HBSS hanks buffered saline solution
  • gentamycin 50 ⁇ g/ml gentamycin 50 ⁇ g/ml
  • Cell lysates are subsequently administered into the patient in a preferred manner subcutaneously at the local areas where DC priming was initiated. After 12-72 hours, the patient is subsequently administered with an agent capable of inducing maturation of DC.
  • Agents useful for the practice of the invention include BCG and HMGB1 peptide.
  • Other useful agents include: a) histone DNA; b) imiqimod; c) beta-glucan; d) hsp65; e) hsp90; f) HMGB-1; g) lipopolysaccharide; h) Pam3CSK4; i) Poly I: Poly C; j) Flagellin; k) MALP-2; l) Imidazoquinoline; m) Resiquimod; n) CpG oligonucleotides; o) zymosan; p) peptidoglycan; q) lipoteichoic acid; r) lipoprotein from gram-positive bacteria; s) lipoarabinomannan from mycobacteria; t) Polyadenylic-polyuridylic acid; u) monophosphoryl lipid A; v) single stranded RNA; w) double stranded RNA; x) 852A; y) rintatoli
  • siRNA or shRNA containing the effector sequences a) UUAUAAUGACUGGAUGUUC; b) GUCUGGUGUAUGAAGGGUU; c) CUCCUAUUUUGGUUUAUGC and d) GCAGCGUCUUUCAGUGCUU.
  • siRNA or shRNA may be administered through various modalities including biodegradable matrices, pressure gradients or viral transfect.
  • autologous dendritic cells are generated and IDO is silenced, prior to, concurrent with or subsequent to silencing, said dendritic cells are pulsed with tumor antigen and administered systemically.
  • mature DC are modified with CAR transfection prior to administration.
  • Culture of dendritic cells is well known in the art, for example, U.S. Pat. No. 6,936,468, issued to Robbins, et al., for the use of tolerogenic dendritic cells for enhancing tolerogenicity in a host and methods for making the same.
  • the current invention aims to reduce tolerogenesis, the essential means of dendritic cell generation are disclosed in the patent.
  • U.S. Pat. No. 6,734,014 issued to Hwu, et al., for methods and compositions for transforming dendritic cells and activating T cells.
  • recombinant dendritic cells are made by transforming a stem cell and differentiating the stem cell into a dendritic cell.
  • the resulting dendritic cell is said to be an antigen presenting cell which activates T cells against MHC class I-antigen targets.
  • Antigens for use in dendritic cell loading are taught in, e.g., U.S. Pat. No. 6,602,709, issued to Albert, et al. This patent teaches methods for use of apoptotic cells to deliver antigen to dendritic cells for induction or tolerization of T cells.
  • the methods and compositions are said to be useful for delivering antigens to dendritic cells that are useful for inducing antigen-specific cytotoxic T lymphocytes and T helper cells.
  • the disclosure includes assays for evaluating the activity of cytotoxic T lymphocytes.
  • the antigens targeted to dendritic cells are apoptotic cells that may also be modified to express non-native antigens for presentation to the dendritic cells.
  • the dendritic cells are said to be primed by the apoptotic cells (and fragments thereof) capable of processing and presenting the processed antigen and inducing cytotoxic T lymphocyte activity or may also be used in vaccine therapies.
  • 6,455,299 issued to Steinman, et al., teaches methods of use for viral vectors to deliver antigen to dendritic cells. Methods and compositions are said to be useful for delivering antigens to dendritic cells, which are then useful for inducing T antigen specific cytotoxic T lymphocytes.
  • the disclosure provides assays for evaluating the activity of cytotoxic T lymphocytes.
  • Antigens are provided to dendritic cells using a viral vector such as influenza virus that may be modified to express non-native antigens for presentation to the dendritic cells.
  • the dendritic cells are infected with the vector and are said to be capable of presenting the antigen and inducing cytotoxic T lymphocyte activity or may also be used as vaccines.
  • Immune cells for use in the practice of the invention include DCs, the presence of which may be checked in the previously described method, are preferably selected from myeloid cells (such as monocytic cells and macrophages) expressing langerin, MHC (major histocompatibility complex) class II, CCR2 (chemokine (C—C motif) receptor 2), CX3CR1 and/or Gr1 molecules in mice; myeloid cells expressing CD14, CD16, HLA dR (human leukocyte antigen disease resistance) molecule, langerin, CCR2 and/or CX3CR1 in humans; dendritic cells expressing CD11c, MHC class II molecules, and/or CCR7 molecules; and IL-1 ⁇ producing dendritic cells.
  • myeloid cells such as monocytic cells and macrophages
  • myeloid cells such as monocytic cells and macrophages
  • myeloid cells such as monocytic cells and macrophages
  • MHC major histocompatibility complex
  • CD8 T cells are preferably selected from CD3+, CD4+ and/or CD8+T lymphocytes, FOXP3 (forkhead box P3) T lymphocytes, Granzyme B/TIA (Tcell-restricted intracellular antigen) T lymphocytes, and Tc1 cells (IFN-.gamma. producing CD8+T lymphocytes).
  • Immune cells expressing a protein that binds calreticulin may be selected from cells expressing at least one of the following proteins: LRP1 (Low density lipoprotein receptor-related protein 1, CD91), Ca.sup.++-binding proteins such as SCARF1 and SCARF2, MSR1 (Macrophage scavenger receptor 1), SRA, CD59 (protectin), CD207 (langerin), and THSD1 (thrombospondin).
  • LRP1 Low density lipoprotein receptor-related protein 1, CD91
  • Ca.sup.++-binding proteins such as SCARF1 and SCARF2, MSR1 (Macrophage scavenger receptor 1), SRA, CD59 (protectin), CD207 (langerin), and THSD1 (thrombospondin).
  • Macrophages selectively phagocytose tumor cells, but this process is countered by protective molecules on tumor cells such as CD47, which binds macrophage signal-regulatory protein a to inhibit phagocytosis.
  • Blockade of CD47 on tumor cells leads to phagocytosis by macrophages.
  • CAR-MSC are administered together with an agent that blocks CD47 activity. It has been demonstrated that activation of TLR signaling pathways in macrophages synergizes with blocking CD47 on tumor cells to enhance tumor phagocytosis.
  • Bruton's tyrosine kinase (Btk) mediates TLR signaling in macrophages.
  • Calreticulin previously shown to be a protein found on cancer cells that activated macrophage phagocytosis of tumors, is activated in macrophages for secretion and cell-surface exposure by TLR and Btk to target cancer cells for phagocytosis, even if the cancer cells themselves do not express calreticulin.
  • TLR agonists are administered that stimulate expression of calreticulin and/or enhance macrophage phagocytosis of tumors.
  • IL-27 induces macrophage ability to kill tumor cells in vitro and in vivo, as well as altering the tumor promoting M2/myeloid suppressor cells into tumoricidal cells.
  • addition of IL-27 or compounds capable of activating the IL-27 receptor signaling are administered together with IL-27 to enhance tumor phagocytosis by macrophages.
  • Tumor-associated macrophages deriving from monocytes or migrating into the tumor, are an important constituent of tumor microenvironments, which in many cases modulates tumor growth, tumor angiogenesis, immune suppression, metastasis and chemoresistance.
  • Mechanisms of macrophage promotion of tumor growth include production of EGF, M-CSF, VEGF.
  • Macrophage infiltration of tumors is associated with poor prognosis in renal, melanoma, breast, pancreatic, lung, endometrial, bladder, prostate.
  • CAR-DC CAR-monocytes
  • CAR-macrophages are utilized to force the tumor microenvironment to stimulate tumor killing and inhibit macrophage or macrophage related cells from promoting tumor growth.
  • drugs targeting tumor-associated macrophages especially c-Fms kinase inhibitors and humanized antibodies targeting colony-stimulating factor-1 receptor, are envisioned.
  • Tumors mediate various effects to reprogram macrophages, these are usually mediated via IL-10 and other cytokines such as VEGF, TGF-beta, and M-CSF, which cause macrophages to lose tumor cytotoxicity and shift into tumor promoting, immune suppressive, angiogenic supporting cells.
  • cytokines such as VEGF, TGF-beta, and M-CSF
  • myeloid derived suppressor cells are similar to myeloid progenitor cells, or the previously described “natural suppressor” cell.
  • Irradiated tissues induce a TLR-1 reprogramming of macrophages to promote tumor growth and angiogenesis.
  • Macrophage promotion of tumor growth is seen in numerous situations, in one example, treating of tumor bearing animals with BRAF inhibitors results in upregulation of macrophage production of VEGF which accelerates tumor growth.
  • tumors produce factors such as GM-CSF which in part stimulate macrophages to produce CCL18, which promotes tumor metastasis.
  • the lactic acid microenvironment of the tumor has been shown to promote skewing of macrophages towards at tumor-promoting M2 type.
  • lactic acid produced by tumour cells as a by-product of aerobic or anaerobic glycolysis, possesses an essential role in inducing the expression of VEGF and the M2-like polarization of tumour-associated macrophages, specifically inducing expression of arginase 1 through a HIF-1alpha dependent pathway.
  • LDH-A lactate dehydrogenase-A
  • siRNA silencing of LDH-A in Pan02 pancreatic cancer cells that are injected in C57BL/6 mice results in development of smaller tumors than mice injected with wild type, non-silenced Pan02 cells.
  • NK cells from LDH-A-depleted tumors had improved cytolytic function.
  • Exogenous lactate administration was shown to increase the frequency of MDSCs generated from mouse bone marrow cells with GM-CSF and IL-6 in vitro.
  • lactate pretreatment of NK cells in vitro inhibited cytolytic function of both human and mouse NK cells. This reduction of NK cytotoxic activity was accompanied by lower expression of perforin and granzyme in NK cells. The expression of NKp46 was lower in lactate-treated NK cells.
  • depletion of glucose levels using a ketogenic diet to lower lactate production by glycolytic tumors is utilized to augment therapeutic effects of CAR-DC.
  • Utilization of ketogenic diet has been previously described for immune modulation, and cancer therapy.
  • Specific quantification of intratumoral lactate and its manipulation has been described and incorporated by reference.
  • Potentiation of chemotherapeutic and radiotherapeutic effects by ketogenic diets have been reported and techniques are incorporated by reference for use with the current CAR-DC invention.
  • ketogenic diet Suppression of tumor growth and activity induced by ketogenic diet may be augmented by addition of hyperbaric oxygen, thus in one embodiment of the invention, the utilization of oxidative therapies, as disclosed in references incorporated, together with ketogenic diet is utilized to augment therapeutic efficacy of CAR-DC.
  • Dopamine possesses antiangiogenic effects as well as myeloprotective effects, in one embodiment of the invention addition of dopamine to the CAR-DC treatment is disclosed.
  • Vinblastine is a widely used chemotherapeutic agent that has been demonstrated to induce dendritic cell maturation.
  • CAR-DC are utilized together with vinblastine therapy to induce augmented anticancer activity.
  • Oxiplatin and anthracyclines have been demonstrated to not only directly kill tumor cells but also stimulate T cell immunity against tumor cells. It was demonstrated that these agents induce a rapid and prominent invasion of interleukin (IL)-17-producing ⁇ (V ⁇ 4(+) and V ⁇ 6(+)) T lymphocytes ( ⁇ T17 cells) that precedes the accumulation of CD8 CTLs within the tumor bed.
  • IL interleukin
  • T cell receptor ⁇ ( ⁇ / ⁇ ) or V ⁇ 4/6( ⁇ / ⁇ ) mice the therapeutic efficacy of chemotherapy was reduced and furthermore no IL-17 was produced by tumor-infiltrating T cells, and CD8 CTLs did not invade the tumor after treatment.
  • ⁇ Th17 cells could produce both IL-17A and IL-22
  • the absence of a functional IL-17A-IL-17R pathway significantly reduced tumor-specific T cell responses elicited by tumor cell death, and the efficacy of chemotherapy in four independent transplantable tumor models.
  • the adoptive transfer of ⁇ T cells to na ⁇ ve mice restored the efficacy of chemotherapy in IL-17A( ⁇ / ⁇ ) hosts.
  • the anticancer effect of infused ⁇ T cells was lost when they lacked either IL-1R1 or IL-17A.
  • Intratumoral injection of dendritic cells stimulates antitumor immunity in vivo in clinical situations, suggesting that modulating the antigen presenting cell in the tumor microenvironment will induce an antitumor response.
  • Administration of radiotherapy to tumors to induce immunogenic cell death, followed by intratumoral administration of DC has been demonstrated to result in enhanced antigen presentation, accordingly, this technique may be modified to enhance effects of CAR-DC.
  • the induction of immunity to tumors in the present invention is associated with the unique nature of: a) ongoing basal cell death within the tumor; and b) cell death induced by chemotherapy, radiotherapy, hyperthermia, or otherwise induced cell death.
  • Cell death can be classified according to the morphological appearance of the lethal process (that may be apoptotic, necrotic, autophagic or associated with mitosis), enzymological criteria (with and without the involvement of nucleases or distinct classes of proteases, like caspases), functional aspects (programmed or accidental, physiological or pathological) or immunological characteristics (immunogenic or non-immunogenic).
  • Cell death is defined as “immunogenic” or “immune stimulatory” if dying cells that express a specific antigen (for example a tumor associated antigen, phosphotidyl serine, or calreticulin), yet are uninfected (and hence lack pathogen-associated molecular patterns), and are injected subcutaneously into mice, in the absence of any adjuvant, cause a protective immune response against said specific antigen.
  • a protective immune response precludes the growth of living transformed cells expressing the specific antigen injected into mice.
  • cancer cells succumb to an immunogenic cell death (or immunogenic apoptosis) modality, they stimulate the immune system, which then mounts a therapeutic anti-cancer immune response and contributes to the eradication of residual tumor cells.
  • cancer cells succumb to a non-immunogenic death modality, they fail to elicit such a protective immune response. Regardless of the types of cell death that are ongoing, the tumor derived immune suppressive molecules contribute to general inhibition or inability of the tumor to be eliminated.
  • CAR-DC are administered concurrently, prior to, or subsequent to administration of an agent that induces immunogenic cell death in a patient.
  • Methods of determining whether compounds induce immunogenic cell death are known in the art and include the following, which was described by Zitvogel et al.
  • step (a) treating the cells, the mammalian cells and inducing the cell death or apoptosis, typically of mammalian cancer cells capable of expressing calreticulin (CRT), by exposing said mammalian cells to a particular drug (the test drug), for example 18 hours;
  • step (b) inoculating (for example intradermally) the dying mammalian cells from step (a) in a particular area (for example a flank) of the mammal, typically a mouse, to induce an immune response in this area of the mammal;
  • step (d) comparing the size of the tumor in the inoculated mammal with a control mammal also exposed to the minimal tumorigenic dose of syngeneic live tumor cells of step (c) [for example a
  • in vitro means are available for assessing the ability of various drugs or therapeutic approaches to induce immunogenic cell death.
  • Specific characteristics to assess when screening for immunogenic cell death include: a) ability to induce dendritic cell maturation in vitro; b) ability to activate NK cells; and c) ability to induce activation of gamma delta T cells or NKT cells.
  • Specific drugs known to induce immunogenic cell death include oxiplatine and anthracyclines, as well as radiotherapy, and hyperthermia.
  • certain chemotherapies that activate TLR4 through induction of HMGB1 have been observed to function suboptimally in patients that have a TLR4 polymorphism, thus suggesting actual contribution of TLR activation as a means of chemotherapy inhibition of cancer.
  • oncoviruses or oncolytic viruses are known to induce immunogenic cell death and may be useful for the practice of the invention.
  • the CAR-DC disclosed in the invention may be utilized in combination with conventional immune modulators including BCG, CpG DNA, interferon alpha, tumor bacterial therapy, checkpoint inhibitors, Treg depleting agents, and low dose cyclophosphamide.
  • conventional immune modulators including BCG, CpG DNA, interferon alpha, tumor bacterial therapy, checkpoint inhibitors, Treg depleting agents, and low dose cyclophosphamide.
  • CAR-DC cells are generated with specificity towards ROBO-4.
  • Numerous means of generating CAR-T cells are known in the art, which are applied to CAR-DC.
  • FMC63-28z CAR (Genebank identifier HM852952.1), is used as the template for the CAR except the anti-CD19, single-chain variable fragment sequence is replaced with an ROBO-4 fragment.
  • the construct is synthesized and inserted into a pLNCX retroviral vector.
  • Retroviruses encoding the ROBO-4-specific CAR are generated using the retrovirus packaging kit, Ampho (Takara), following the manufacturer's protocol.
  • PBMCs are plated at 2 ⁇ 10(6) cells/mL in cell culture for 2 hours and the adherent cells are collected. The cells were then stimulated for 2 days on a tissue-culture-treated 24-well plate containing M-CSF at a concentration of 100 ng/ml
  • a 24-well plate are coated with RetroNectin (Takara) at 4° C. overnight, according to the manufacturer's protocol, and then blocked with 2% BSA at room temperature for 30 min. The plate was then loaded with retrovirus supernatants at 300 ⁇ L/well and incubated at 37° C.
  • CARs Other means of generating CARs are known in the art and incorporated by reference. For example, Groner's group genetically modified T lymphocytes and endowed them with the ability to specifically recognize cancer cells. Tumor cells overexpressing the ErbB-2 receptor served as a model. The target cell recognition specificity was conferred to T lymphocytes by transduction of a chimeric gene encoding the zeta-chain of the TCR and a single chain antibody (scFv(FRPS)) directed against the human ErbB-2 receptor. The chimeric scFv(FRPS)-zeta gene was introduced into primary mouse T lymphocytes via retroviral gene transfer. Naive T lymphocytes were activated and infected by cocultivation with a retrovirus-producing packaging cell line.
  • scFv(FRPS) single chain antibody
  • the scFv(FRPS)-zeta fusion gene was expressed in >75% of the T cells. These T cells lysed ErbB-2-expressing target cells in vitro with high specificity.
  • mice were treated with autologous, transduced T cells.
  • the adoptively transferred scFv(FRP5)-zeta-expressing T cells caused total regression of ErbB-2-expressing tumors.
  • the presence of the transduced T lymphocytes in the tumor tissue was monitored. No humoral response directed against the transduced T cells was observed. Abs directed against the ErbB-2 receptor were detected upon tumor lysis. Hombach et al.
  • an anti-CEA chimeric receptor whose extracellular moiety is composed of a humanized scFv derived from the anti-CEA mAb BW431/26 and the CH2/CH3 constant domains of human IgG.
  • the intracellular moiety consists of the gamma-signaling chain of the human Fc epsilon RI receptor constituting a completely humanized chimeric receptor.
  • the humBW431/26 scFv-CH2CH3-gamma receptor is expressed as a homodimer on the surface of MD45 T cells. Co-incubation with CEA+ tumor cells specifically activates grafted MD45 T cells indicated by IL-2 secretion and cytolytic activity against CEA+ tumor cells.
  • the efficacy of receptor-mediated activation is not affected by soluble CEA up to 25 micrograms/ml demonstrating the usefulness of this chimeric receptor for specific cellular activation by membrane-bound CEA even in the presence of high concentrations of CEA, as found in patients during progression of the disease (200).
  • CAR T cells Targeting of mucins associated with cancers has been performed with CAR T cells by grafting the antibody that binds to the mucin with CD3 zeta chain.
  • this procedure is modified for CAR-DC.
  • chimeric immune receptor consisting of an extracellular antigen-binding domain derived from the CC49 humanized single-chain antibody, linked to the CD3zeta signaling domain of the T cell receptor, was generated (CC49-zeta). This receptor binds to TAG-72, a mucin antigen expressed by most human adenocarcinomas.
  • CC49-zeta was expressed in CD4+ and CD8+ T cells and induced cytokine production on stimulation.
  • CC49-zeta Human T cells expressing CC49-zeta recognized and killed tumor cell lines and primary tumor cells expressing TAG-72. CC49-zeta T cells did not mediate bystander killing of TAG-72-negative cells. In addition, CC49-zeta T cells not only killed FasL-positive tumor cells in vitro and in vivo, but also survived in their presence, and were immunoprotective in intraperitoneal and subcutaneous murine tumor xenograft models with TAG-72-positive human tumor cells. Finally, receptor-positive T cells were still effective in killing TAG-72-positive targets in the presence of physiological levels of soluble TAG-72, and did not induce killing of TAG-72-negative cells under the same conditions.
  • CAR T cells have been utilized targeting surface tumor antigens
  • the main issue with this approach is the difficulty of T cells to enter tumors due to features specific to the tumor microenvironment. These include higher interstitial pressure inside the tumor compared to the surroundings, acidosis inside the tumor, and expression in the tumor of FasL which kills activated T cells.
  • the invention seeks to more effectively utilize CAR-DC cells by directly targeting them to tumor endothelium, which is in direct contact with blood and therefore not susceptible to intratumoral factors the limit efficacy of conventional T cell therapies.
  • CAR-DC are targeting to tumor antigens.
  • protocols similar to Kershaw et al. are utilized with the exception that tumor endothelial antigens are targeted as opposed to conventional tumor antigens.
  • tumor endothelial antigens include CD93, TEM-1, VEGFR1, and survivin.
  • Antibodies can be made for these proteins, methodologies for which are described in U.S. Pat. Nos. 5,225,539, 5,585,089, 5,693,761, and 5,639,641.
  • T cells with reactivity against the ovarian cancer-associated antigen alpha-folate receptor were generated by genetic modification of autologous T cells with a chimeric gene incorporating an anti-FR single-chain antibody linked to the signaling domain of the Fc receptor gamma chain.
  • Patients were assigned to one of two cohorts in the study. Eight patients in cohort 1 received a dose escalation of T cells in combination with high-dose interleukin-2, and six patients in cohort 2 received dual-specific T cells (reactive with both FR and allogeneic cells) followed by immunization with allogeneic peripheral blood mononuclear cells.
  • PBMCs are derived from leukapheresis and CD14 monocytes are collected by MACS. After 3 days of culture, M-CSF at 100 ng/ml plasmid encoding the chimeric CAR-DC recognizing tumor-endothelium specific antigen and subsequently selected for gene integration by culture in G418.
  • M-CSF 100 ng/ml plasmid encoding the chimeric CAR-DC recognizing tumor-endothelium specific antigen and subsequently selected for gene integration by culture in G418.
  • stimulation of allogeneic monocytic cells is achieved by coculture of patient PBMCs with irradiated (5,000 cGy) allogeneic donor PBMCs from cryopre-served apheresis product (mixed lymphocyte reaction).
  • the MHC haplotype of allogeneic donors is determined before use, and donors that differed in at least four MHC class I alleles from the patient are used.
  • Culture medium consisted of AimV medium (Invitrogen, Carlsbad, Calif.) supplemented with 5% human AB ⁇ serum (Valley Biomedical, Winchester, Va.), penicillin (50 units/mL), streptomycin (50 mg/mL; Bio Whittaker, Walkersville, Md.), amphotericin B (Fungizone, 1.25 mg/mL; Biofluids, Rockville, Md.), L-glutamine (2 mmol/L; Mediatech, Herndon, Va.), and human recombinant IL-2 (Proleukin, 300 IU/mL; Chiron).
  • Cells are then resuspended at 1 ⁇ 10 6 /mL in fresh medium containing 0.5 mg/mL G418 (Invitrogen) in 175-cm 2 flasks for 5 days before resuspension in media lacking G418.
  • Cells are expanded to 2 ⁇ 10 9 and then restimulated with allogeneic PBMCs from the same donor to enrich for T cells specific for the donor allogeneic haplotype. Restimulation is done by incubating patient T cells (1 ⁇ 10 6 /mL) and stimulator PBMCs (2 ⁇ 10 6 /mL) in 3-liter Fenwall culture bags in AimV+additives and IL-2 (no G418). Cell numbers were adjusted to 1 ⁇ 10 6 /mL, and IL-2 was added every 2 days, until sufficient numbers for treatment were achieved.
  • the present invention relates to a strategy of adoptive cell transfer of monocytes or DC transduced to express a chimeric antigen receptor (CAR).
  • CARs are molecules that combine antibody-based specificity for a desired antigen (e.g., tumor endothelial antigen) with a T cell receptor-activating intracellular domain to generate a chimeric protein that exhibits a specific anti-tumor endothelium cellular immune activity.
  • the present invention relates generally to the use of monocytes or DC cells genetically modified to stably express a desired CAR that possesses high affinity towards tumor associated endothelium.
  • Monocytes or DC cells expressing a CAR are referred to herein as CAR-DC cells or CAR modified DC cells.
  • the cell can be genetically modified to stably express an antibody binding domain on its surface, conferring novel antigen specificity that is MHC independent.
  • the monocyte or DC cell is genetically modified to stably express a CAR that combines an antigen recognition domain of a specific antibody with an intracellular domain of the CD3-zeta chain or Fc.gamma.RI protein into a single chimeric protein.
  • TLR signaling molecules are engineered in the intracellular portion of the CAR, said molecules include TRIF, TRADD, and MyD99.
  • the CAR of the invention comprises an extracellular domain having an antigen recognition domain, a transmembrane domain, and a cytoplasmic domain.
  • the transmembrane domain that naturally is associated with one of the domains in the CAR is used.
  • the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins to minimize interactions with other members of the receptor complex.
  • the transmembrane domain is the CD8a hinge domain.
  • the CAR of the invention can be designed to comprise the CD80 and/or CD86 and/or CD40L and/or OX40L signaling domain by itself or be combined with any other desired cytoplasmic domain(s) useful in the context of the CAR of the invention.
  • the cytoplasmic domain of the CAR can be designed to further comprise the signaling domain of MyD88.
  • the cytoplasmic domain of the CAR can include but is not limited to CD80 and/or CD86 and/or CD40L and/or OX40L signaling modules and combinations thereof.
  • the invention provides CAR-DC cells and methods of their use for adoptive therapy.
  • the CAR-DC cells of the invention can be generated by introducing a lentiviral vector comprising a desired CAR, for example a CAR comprising anti-CD19, CD8a hinge and transmembrane domain, and MyD88, into the cells.
  • the CAR-DC cells of the invention are able to replicate in vivo resulting in long-term persistence that can lead to sustained tumor control.

Abstract

The current invention provides monocytic cells transfected with chimeric antigen receptor (CAR) to selectively home to tumors and upon homing differentiate into dendritic cells capable of activating immunity which is inhibitory to said tumor. In one embodiment of the invention, monocytic cells are transfected with a construct encoding an antigen binding domain, a transcellular or structural domain, and an intracellular signaling domain. In one specific aspect of the invention, the antigen binding domain interacts with sufficient affinity to a tumor antigen, capable of triggering said intracellular domain to induce an activation signal to induce monocyte differentiation into DC.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application No. 62/118,027 filed on Feb. 19, 2015, the contents of which are incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present disclosure generally relates to the fields of genetics, immunology and medicine. The invention pertains to the field of immunotherapy, more specifically the invention pertains to the utilization of monocytes that have been manipulated to home to tumor cells and upon binding to tumor antigens differentiating into monocytes with cytotoxic properties to tumors, or dendritic cells.
  • BACKGROUND OF THE INVENTION
  • The immune system possesses the power to cure cancers based on published reports of immunologically mediated spontaneous regressions, which have been document in colon, lung, melanoma, liver, breast. Intriguingly, spontaneous regression clinically, as well as in an animal model of spontaneous regression, seems to be associated primarily with stimulation of the innate immune system, comprising of macrophages, NK cells, NKT cells and neutrophils. Despite the original promising of immunotherapy, which will be mentioned, the field has focused on the adaptive immune response, specifically stimulation of T and B cells, and only recently has interest re-ignited in the innate immune system.
  • The use of the immune system to treat cancer is theoretically appealing due to the possibility of low toxicity, immunological memory, and ability to attack metastatic disease. Early studies suggested that vaccination to tumor antigens and tumors themselves may be possible. Specifically, Prehn back in 1957, obtained murine tumors and exposed them to irradiation to increase immunogenicity. When these tumors were implanted into animals they were rejected. Subsequent administration of the original tumors resulted in rejection of the tumors, thus suggesting that tumor specific antigens exist, which can stimulate immunity, especially subsequent to addition of a cellular stress such as irradiation. Twenty years later, using the same system it was demonstrated that cytotoxic T cells infiltrated the tumors that were implanted after rejection of the radiation induced tumors, thus demonstrating conclusively that rejection was immunologically mediated, despite the fact that the tumors were syngeneic. In humans, one of the original observations of immunological response to neoplasia was in patients with paraneoplastic disease in which immune response to breast cancer antigens results in a multiple sclerosis-like disease caused by cross reactive immunity to neural antigens that are found on the breast cancer. Specific identification of tumor antigens on a molecular basis led to the discovery that some of the antigens are either self-proteins aberrantly expressed, or mutations of self proteins.
  • Originally observations were made in patients bearing metastatic melanomas, and then subsequently in other tumors, that the tumors are infiltrated with various immunological components. These tumor infiltrating lymphocytes (TILs), contain populations of cells and individual clones that demonstrate tumor specificity; they lyse autologous tumor cells but not natural killer targets, allogeneic tumor cells, or autologous fibroblasts.
  • By isolating and expanding TILs in vitro, and then molecularly identifying what they are responding to, a variety of the well-known tumor agents have been discovered such as MAGE-1, and MAGE-3, GAGE-1, MART-1, Melan-A, gp100, gp75 (TRP-2), tyrosinase, NY-ESO-1, mutated p16, and beta catenin. It is interesting that in the case of some antigens, such as gp75, the peptide that elicits tumor rejection results from translation of an alternative open reading frame of the same gene. Thus, the gp75 gene encodes two completely different polypeptides, gp75 as an antigen recognized by immunoglobulin G antibodies in sera from a patient with cancer, and a 24-amino acid product as a tumor rejection antigen recognized by T cells. Peptides used for immunization generally are 8-9 amino acids which have been demonstrated to be displayed in association with class I MHC molecules for recognition by T cells, and tumor cells have been shown to express these naturally processed epitopes.
  • Despite the intellectual appeal of peptide based cancer vaccines, the response rate has been disappointingly low. According to a review by Steven Rosenberg's group at the NIH, the rate of objective response out of 440 patients treated at his institute was a dismal 2.6%.
  • The ability to make a universal yet versatile system to generate T cells that are capable of recognizing various types of cancers has important clinical implications for the use of T cell-based therapies, this concept was approach initially by Rosenberg's group in the ex vivo expansion of tumor infiltrating lymphocytes. One current strategy incorporates the use of genetic engineering to express a chimeric antigen receptor (CAR) on T cells. The extracellular domain of a typical CAR consists of the VH and VL domains—single-chain fragment variable (scFv)—from the antigen binding sites of a monoclonal antibody. The scFv is linked to a flexible transmembrane domain followed by a tyrosine-based activation motif such as that from CD3ζ. The so-called second and third generation CARs include additional activation domains from co-stimulatory molecules such as CD28 and CD137 (41BB) which serve to enhance T cell survival and proliferation. CAR T cells offer the opportunity to seek out and destroy cancer cells by recognizing tumor-associated antigens (TAA) expressed on their surface. As such, the recognition of a tumor cells occurs via an MHC-independent mechanism.
  • Various preclinical and early-phase clinical trials highlight the efficacy of CAR T cells to treat cancer patients with solid tumors and hematopoietic malignancies. Despite of the promise that CAR T cells might have in treating cancer patients there are several limitations to the generalized clinical application of CAR T cells. First, since no single tumor antigen is universally expressed by all cancer types, scFv in CAR needs to be constructed for each tumor antigen to be targeted. Second, the financial cost and labor-intensive tasks associated with identifying and engineering scFvs against a variety of tumor antigens poses a major challenge. Third, tumor antigens targeted by CAR could be down-regulated or mutated in response to treatment resulting in tumor evasion. Since current CAR T cells recognize only one target antigen, such changes in tumors negate the therapeutic effects. Therefore, the generation of CAR T cells capable of recognizing multiple tumor antigens is highly desired. Finally, CAR T cells react with target antigen weakly expressed on non-tumor cells, potentially causing severe adverse effects. To avoid such “on-target off-tumor” reaction, use of scFvs with higher specificity to tumor antigen is required. And although ongoing studies are focused on generating methods to shut off CAR T cells in vivo this system has yet to be developed and might pose additional inherent challenges.
  • The current patent seeks to apply chimeric antigen receptor technology to activation of monocytes, which naturally home into tumors, to differentiated intratumorally said monocytes into dendritic cells which are capable of antigen presentation, as well as direct killing of tumors.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Chimeric antigen receptor (CAR) cellular therapeutics have revolutionized the treatment of B cell malignancies achieving stunning success rates. Unfortunately, solid tumors have yet to benefit from this treatment. Additionally, patients treated with CAR-T cells lack B cells for the rest of their lives, as well as having the possibility of tumor lysis syndrome. This is in part due to the permanence of the CAR-T cells in the patients after treatment. The current invention applies the use of CAR technology to monocytes with the purpose of inducing differentiation to dendritic cells (DC) subsequent to contact with tumor antigens. Given that monocytes have a fixed mitotic index, fears of permanent manipulation of the host are diminished.
  • “Treating a cancer”, “inhibiting cancer”, “reducing cancer growth” refers to inhibiting or preventing oncogenic activity of cancer cells. Oncogenic activity can comprise inhibiting migration, invasion, drug resistance, cell survival, anchorage-independent growth, non-responsiveness to cell death signals, angiogenesis, or combinations thereof of the cancer cells.
  • The terms “cancer”, “cancer cell”, “tumor”, and “tumor cell” are used interchangeably herein and refer generally to a group of diseases characterized by uncontrolled, abnormal growth of cells (e.g., a neoplasia). In some forms of cancer, the cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body (“metastatic cancer”).
  • “Ex vivo activated lymphocytes”, “lymphocytes with enhanced antitumor activity” and “dendritic cell cytokine induced killers” are terms used interchangeably to refer to composition of cells that have been activated ex vivo and subsequently reintroduced within the context of the current invention. Although the word “lymphocyte” is used, this also includes heterogenous cells that have been expanded during the ex vivo culturing process including dendritic cells, NKT cells, gamma delta T cells, and various other innate and adaptive immune cells.
  • As used herein, “cancer” refers to all types of cancer or neoplasm or malignant tumors found in animals, including leukemias, carcinomas and sarcomas. Examples of cancers are cancer of the brain, melanoma, bladder, breast, cervix, colon, head and neck, kidney, lung, non-small cell lung, mesothelioma, ovary, prostate, sarcoma, stomach, uterus and Medulloblastoma.
  • The term “leukemia” is meant broadly progressive, malignant diseases of the hematopoietic organs/systems and is generally characterized by a distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemia diseases include, for example, acute nonlymphocytic leukemia, chronic lymphocytic leukemia, acute granulocytic leukemia, chronic granulocytic leukemia, acute promyelocytic leukemia, adult T-cell leukemia, aleukemic leukemia, a leukocythemic leukemia, basophilic leukemia, blast cell leukemia, bovine leukemia, chronic myelocytic leukemia, leukemia cutis, embryonal leukemia, eosinophilic leukemia, Gross' leukemia, Rieder cell leukemia, Schilling's leukemia, stem cell leukemia, subleukemic leukemia, undifferentiated cell leukemia, hairy-cell leukemia, hemoblastic leukemia, hemocytoblastic leukemia, histiocytic leukemia, stem cell leukemia, acute monocytic leukemia, leukopenic leukemia, lymphatic leukemia, lymphoblastic leukemia, lymphocytic leukemia, lymphogenous leukemia, lymphoid leukemia, lymphosarcoma cell leukemia, mast cell leukemia, megakaryocytic leukemia, micromyeloblastic leukemia, monocytic leukemia, myeloblastic leukemia, myelocytic leukemia, myeloid granulocytic leukemia, myelomonocytic leukemia, Naegeli leukemia, plasma cell leukemia, plasmacytic leukemia, and promyelocytic leukemi.
  • The term “carcinoma” refers to a malignant new growth made up of epithelial cells tending to infiltrate the surrounding tissues, and/or resist physiological and non-physiological cell death signals and give rise to metastases. Exemplary carcinomas include, for example, acinar carcinoma, acinous carcinoma, adenocystic carcinoma, adenoid cystic carcinoma, carcinoma adenomatosum, carcinoma of adrenal cortex, alveolar carcinoma, alveolar cell carcinoma, basal cell carcinoma, carcinoma basocellulare, basaloid carcinoma, basosquamous cell carcinoma, bronchioalveolar carcinoma, bronchiolar carcinoma, bronchogenic carcinoma, cerebriform carcinoma, cholangiocellular carcinoma, chorionic carcinoma, colloid carcinoma, comedo carcinoma, corpus carcinoma, cribriform carcinoma, carcinoma en cuirasse, carcinoma cutaneum, cylindrical carcinoma, cylindrical cell carcinoma, duct carcinoma, carcinoma durum, embryonal carcinoma, encephaloid carcinoma, epiennoid carcinoma, carcinoma epitheliale adenoides, exophytic carcinoma, carcinoma ex ulcere, carcinoma fibrosum, gelatiniform carcinoma, gelatinous carcinoma, giant cell carcinoma, signet-ring cell carcinoma, carcinoma simplex, small-cell carcinoma, solanoid carcinoma, spheroidal cell carcinoma, spindle cell carcinoma, carcinoma spongiosum, squamous carcinoma, squamous cell carcinoma, string carcinoma, carcinoma telangiectaticum, carcinoma telangiectodes, transitional cell carcinoma, carcinoma tuberosum, tuberous carcinoma, verrmcous carcinoma, carcinoma villosum, carcinoma gigantocellulare, glandular carcinoma, granulosa cell carcinoma, hair-matrix carcinoma, hematoid carcinoma, hepatocellular carcinoma, Hurthle cell carcinoma, hyaline carcinoma, hypemephroid carcinoma, infantile embryonal carcinoma, carcinoma in situ, intraepidermal carcinoma, intraepithelial carcinoma, Krompecher's carcinoma, Kulchitzky-cell carcinoma, large-cell carcinoma, lenticular carcinoma, carcinoma lenticulare, lipomatous carcinoma, lymphoepithelial carcinoma, carcinoma medullare, medullary carcinoma, melanotic carcinoma, carcinoma molle, mucinous carcinoma, carcinoma muciparum, carcinoma mucocellulare, mucoepidermoid carcinoma, carcinoma mucosum, mucous carcinoma, carcinoma myxomatodes, naspharyngeal carcinoma, oat cell carcinoma, carcinoma ossificans, osteoid carcinoma, papillary carcinoma, periportal carcinoma, preinvasive carcinoma, prickle cell carcinoma, pultaceous carcinoma, renal cell carcinoma of kidney, reserve cell carcinoma, carcinoma sarcomatodes, schneiderian carcinoma, scirrhous carcinoma, and carcinoma scroti.
  • The term “sarcoma” generally refers to a tumor which is made up of a substance like the embryonic connective tissue and is generally composed of closely packed cells embedded in a fibrillar, heterogeneous, or homogeneous substance. Sarcomas include, chondrosarcoma, fibrosarcoma, lymphosarcoma, melanosarcoma, myxosarcoma, osteosarcoma, endometrial sarcoma, stromal sarcoma, Ewing's sarcoma, fascial sarcoma, fibroblastic sarcoma, giant cell sarcoma, Abemethy's sarcoma, adipose sarcoma, liposarcoma, alveolar soft part sarcoma, ameloblastic sarcoma, botryoid sarcoma, chloroma sarcoma, chorio carcinoma, embryonal sarcoma, Wilms' tumor sarcoma, granulocytic sarcoma, Hodgkin's sarcoma, idiopathic multiple pigmented hemorrhagic sarcoma, immunoblastic sarcoma of B cells, lymphoma, immunoblastic sarcoma of T-cells, Jensen's sarcoma, Kaposi's sarcoma, Kupffer cell sarcoma, angiosarcoma, leukosarcoma, malignant mesenchymoma sarcoma, parosteal sarcoma, reticulocytic sarcoma, Rous sarcoma, serocystic sarcoma, synovial sarcoma, and telangiectaltic sarcoma. Additional exemplary neoplasias include, for example, Hodgkin's Disease, Non-Hodgkin's Lymphoma, multiple myeloma, neuroblastoma, breast cancer, ovarian cancer, lung cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, small-cell lung tumors, primary brain tumors, stomach cancer, colon cancer, malignant pancreatic insulanoma, malignant carcinoid, premalignant skin lesions, testicular cancer, lymphomas, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, cervical cancer, endometrial cancer, and adrenal cortical cancer.
  • In some particular embodiments of the invention, the cancer treated is a melanoma. The term “melanoma” is taken to mean a tumor arising from the melanocytic system of the skin and other organs. Melanomas include, for example, Harding-Passey melanoma, juvenile melanoma, lentigo maligna melanoma, malignant melanoma, acral-lentiginous melanoma, amelanotic melanoma, benign juvenile melanoma, Cloudman's melanoma, S91 melanoma, nodular melanoma subungal melanoma, and superficial spreading melanoma.
  • The term “polypeptide” is used interchangeably with “peptide”, “altered peptide ligand”, and “flourocarbonated peptides.”
  • The term “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the therapeutic compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • The term “T cell” is also referred to as T lymphocyte, and means a cell derived from thymus among lymphocytes involved in an immune response. The T cell includes any of a CD8-positive T cell (cytotoxic T cell: CTL), a CD4-positive T cell (helper T cell), a suppressor T cell, a regulatory T cell such as a controlling T cell, an effector cell, a naive T cell, a memory T cell, an αβT cell expressing TCR α and β chains, and a γδ T cell expressing TCR γ and δ chains. The T cell includes a precursor cell of a T cell in which differentiation into a T cell is directed.
  • Examples of “cell populations containing T cells” include, in addition to body fluids such as blood (peripheral blood, umbilical blood etc.) and bone marrow fluids, cell populations containing peripheral blood mononuclear cells (PBMC), hematopoietic cells, hematopoietic stem cells, umbilical blood mononuclear cells etc., which have been collected, isolated, purified or induced from the body fluids. Further, a variety of cell populations containing T cells and derived from hematopoietic cells can be used in the present invention. These cells may have been activated by cytokine such as IL-2 in vivo or ex vivo. As these cells, any of cells collected from a living body, or cells obtained via ex vivo culture, for example, a T cell population obtained by the method of the present invention as it is, or obtained by freeze preservation, can be used.
  • The term “antibody” is meant to include both intact molecules as well as fragments thereof that include the antigen-binding site. Whole antibody structure is often given as H2L2 and refers to the fact that antibodies commonly comprise 2 light (L) amino acid chains and 2 heavy (H) amino acid chains. Both chains have regions capable of interacting with a structurally complementary antigenic target. The regions interacting with the target are referred to as “variable” or “V” regions and are characterized by differences in amino acid sequence from antibodies of different antigenic specificity. The variable regions of either H or L chains contains the amino acid sequences capable of specifically binding to antigenic targets. Within these sequences are smaller sequences dubbed “hypervariable” because of their extreme variability between antibodies of differing specificity. Such hypervariable regions are also referred to as “complementarity determining regions” or “CDR” regions. These CDR regions account for the basic specificity of the antibody for a particular antigenic determinant structure. The CDRs represent non-contiguous stretches of amino acids within the variable regions but, regardless of species, the positional locations of these critical amino acid sequences within the variable heavy and light chain regions have been found to have similar locations within the amino acid sequences of the variable chains. The variable heavy and light chains of all antibodies each have 3 CDR regions, each non-contiguous with the others (termed L1, L2, L3, H1, H2, H3) for the respective light (L) and heavy (H) chains. The antibodies disclosed according to the invention may also be wholly synthetic, wherein the polypeptide chains of the antibodies are synthesized and, possibly, optimized for binding to the polypeptides disclosed herein as being receptors. Such antibodies may be chimeric or humanized antibodies and may be fully tetrameric in structure, or may be dimeric and comprise only a single heavy and a single light chain.
  • The term “effective amount” or “therapeutically effective amount” means a dosage sufficient to treat, inhibit, or alleviate one or more symptoms of a disease state being treated or to otherwise provide a desired pharmacologic and/or physiologic effect, especially enhancing T cell response to a selected antigen. The precise dosage will vary according to a variety of factors such as subject-dependent variables (e.g., age, immune system health, etc.), the disease, and the treatment being administered.
  • The terms “individual”, “host”, “subject”, and “patient” are used interchangeably herein, and refer to a mammal, including, but not limited to, primates, for example, human beings, as well as rodents, such as mice and rats, and other laboratory animals.
  • As used herein, the term “treatment regimen” refers to a treatment of a disease or a method for achieving a desired physiological change, such as increased or decreased response of the immune system to an antigen or immunogen, such as an increase or decrease in the number or activity of one or more cells, or cell types, that are involved in such response, wherein said treatment or method comprises administering to an animal, such as a mammal, especially a human being, a sufficient amount of two or more chemical agents or components of said regimen to effectively treat a disease or to produce said physiological change, wherein said chemical agents or components are administered together, such as part of the same composition, or administered separately and independently at the same time or at different times (i.e., administration of each agent or component is separated by a finite period of time from one or more of the agents or components) and where administration of said one or more agents or components achieves a result greater than that of any of said agents or components when administered alone or in isolation.
  • The term “anergy” and “unresponsiveness” includes unresponsiveness to an immune cell to stimulation, for example, stimulation by an activation receptor or cytokine. The anergy may occur due to, for example, exposure to an immune suppressor or exposure to an antigen in a high dose. Such anergy is generally antigen-specific, and continues even after completion of exposure to a tolerized antigen. For example, the anergy in a T cell and/or NK cell is characterized by failure of production of cytokine, for example, interleukin (IL)-2. The T cell anergy and/or NK cell anergy occurs in part when a first signal (signal via TCR or CD-3) is received in the absence of a second signal (costimulatory signal) upon exposure of a T cell and/or NK cell to an antigen.
  • The term “enhanced function of a T cell”, “enhanced cytotoxicity” and “augmented activity” means that the effector function of the T cell and/or NK cell is improved. The enhanced function of the T cell and/or NK cell, which does not limit the present invention, includes an improvement in the proliferation rate of the T cell and/or NK cell, an increase in the production amount of cytokine, or an improvement in cytotoxity. Further, the enhanced function of the T cell and/or NK cell includes cancellation and suppression of tolerance of the T cell and/or NK cell in the suppressed state such as the anergy (unresponsive) state, or the rest state, that is, transfer of the T cell and/or NK cell from the suppressed state into the state where the T cell and/or NK cell responds to stimulation from the outside.
  • The term “expression” means generation of mRNA by transcription from nucleic acids such as genes, polynucleotides, and oligonucleotides, or generation of a protein or a polypeptide by transcription from mRNA. Expression may be detected by means including RT-PCR, Northern Blot, or in situ hybridization.
  • “Suppression of expression” refers to a decrease of a transcription product or a translation product in a significant amount as compared with the case of no suppression. The suppression of expression herein shows, for example, a decrease of a transcription product or a translation product in an amount of 30% or more, preferably 50% or more, more preferably 70% or more, and further preferably 90% or more.
  • In one embodiment of the invention the CAR-DC are antigen-loaded and co-cultured with T-lymphocytes to produce antigen-specific T-cells. As used herein, the term “antigen-specific T-cells” refers to T-cells that proliferate upon exposure to the antigen-loaded APCs of the present invention, as well as to develop the ability to attack cells having the specific antigen on their surfaces. Such T-cells, e.g., cytotoxic T-cells, lyse target cells by a number of methods, e.g., releasing toxic enzymes such as granzymes and perforin onto the surface of the target cells or by effecting the entrance of these lytic enzymes into the target cell interior. Generally, cytotoxic T-cells express CD8 on their cell surface. T-cells that express the CD4 antigen CD4, commonly known as “helper” T-cells, can also help promote specific cytotoxic activity and may also be activated by the antigen-loaded APCs of the present invention. In certain embodiments, the cancer cells, the APCs and even the T-cells can be derived from the same donor whose MNC yielded the DC, which can be the patient or an HLA—or obtained from the individual patient that is going to be treated. Alternatively, the cancer cells, the APCs and/or the T-cells can be allogeneic.
  • The invention provides means of inducing an anti-cancer response in a mammal, comprising the steps of initially “priming” the mammal by administering an agent that causes local accumulation of CAR-DC. Subsequently, a tumor antigen is administered in the local area where said agents causing accumulation of antigen presenting cells is administered. A time period is allowed to pass to allow for said antigen presenting cells to traffic to the lymph nodes. Subsequently a maturation signal, or a plurality of maturation signals are administered to enhance the ability of said antigen presenting cell to activate adaptive immunity. In some embodiments of the invention activators of adaptive immunity are concurrently given, as well as inhibitors of the tumor derived inhibitors are administered to derepress the immune system.
  • In one embodiment priming of the patient is achieved by administration of GM-CSF subcutaneously in the area in which antigen is to be injected. Various scenarios are known in the art for administration of GM-CSF prior to administration, or concurrently with administration of antigen. The practitioner of the invention is referred to the following publications for dosage regimens of GM-CSF and also of peptide antigens.
  • Subsequent to priming, the invention calls for administration of tumor antigen. Various tumor antigens may be utilized, in one preferred embodiment, lysed tumor cells from the same patient area utilized. Means for generation of lyzed tumor cells are well known in the art and described in the following references. One example method for generation of tumor lysate involves obtaining frozen autologous samples which are placed in hanks buffered saline solution (HBSS) and gentamycin 50 μg/ml followed by homogenization by a glass homogenizer. After repeated freezing and thawing, particle-containing samples are selected and frozen in aliquots after radiation with 25 kGy. Quality assessment for sterility and endotoxin content is performed before freezing. Cell lysates are subsequently administered into the patient in a preferred manner subcutaneously at the local areas where DC priming was initiated. After 12-72 hours, the patient is subsequently administered with an agent capable of inducing maturation of DC. Agents useful for the practice of the invention, in a preferred embodiment include BCG and HMGB1 peptide. Other useful agents include: a) histone DNA; b) imiqimod; c) beta-glucan; d) hsp65; e) hsp90; f) HMGB-1; g) lipopolysaccharide; h) Pam3CSK4; i) Poly I: Poly C; j) Flagellin; k) MALP-2; l) Imidazoquinoline; m) Resiquimod; n) CpG oligonucleotides; o) zymosan; p) peptidoglycan; q) lipoteichoic acid; r) lipoprotein from gram-positive bacteria; s) lipoarabinomannan from mycobacteria; t) Polyadenylic-polyuridylic acid; u) monophosphoryl lipid A; v) single stranded RNA; w) double stranded RNA; x) 852A; y) rintatolimod; z) Gardiquimod; and aa) lipopolysaccharide peptides. The procedure is performed in a preferred embodiment with the administration of IDO silencing siRNA or shRNA containing the effector sequences a) UUAUAAUGACUGGAUGUUC; b) GUCUGGUGUAUGAAGGGUU; c) CUCCUAUUUUGGUUUAUGC and d) GCAGCGUCUUUCAGUGCUU. siRNA or shRNA may be administered through various modalities including biodegradable matrices, pressure gradients or viral transfect. In another embodiment, autologous dendritic cells are generated and IDO is silenced, prior to, concurrent with or subsequent to silencing, said dendritic cells are pulsed with tumor antigen and administered systemically.
  • In one embodiment of the invention mature DC are modified with CAR transfection prior to administration. Culture of dendritic cells is well known in the art, for example, U.S. Pat. No. 6,936,468, issued to Robbins, et al., for the use of tolerogenic dendritic cells for enhancing tolerogenicity in a host and methods for making the same. Although the current invention aims to reduce tolerogenesis, the essential means of dendritic cell generation are disclosed in the patent. U.S. Pat. No. 6,734,014, issued to Hwu, et al., for methods and compositions for transforming dendritic cells and activating T cells. Briefly, recombinant dendritic cells are made by transforming a stem cell and differentiating the stem cell into a dendritic cell. The resulting dendritic cell is said to be an antigen presenting cell which activates T cells against MHC class I-antigen targets. Antigens for use in dendritic cell loading are taught in, e.g., U.S. Pat. No. 6,602,709, issued to Albert, et al. This patent teaches methods for use of apoptotic cells to deliver antigen to dendritic cells for induction or tolerization of T cells. The methods and compositions are said to be useful for delivering antigens to dendritic cells that are useful for inducing antigen-specific cytotoxic T lymphocytes and T helper cells. The disclosure includes assays for evaluating the activity of cytotoxic T lymphocytes. The antigens targeted to dendritic cells are apoptotic cells that may also be modified to express non-native antigens for presentation to the dendritic cells. The dendritic cells are said to be primed by the apoptotic cells (and fragments thereof) capable of processing and presenting the processed antigen and inducing cytotoxic T lymphocyte activity or may also be used in vaccine therapies. U.S. Pat. No. 6,455,299, issued to Steinman, et al., teaches methods of use for viral vectors to deliver antigen to dendritic cells. Methods and compositions are said to be useful for delivering antigens to dendritic cells, which are then useful for inducing T antigen specific cytotoxic T lymphocytes. The disclosure provides assays for evaluating the activity of cytotoxic T lymphocytes. Antigens are provided to dendritic cells using a viral vector such as influenza virus that may be modified to express non-native antigens for presentation to the dendritic cells. The dendritic cells are infected with the vector and are said to be capable of presenting the antigen and inducing cytotoxic T lymphocyte activity or may also be used as vaccines.
  • Immune cells for use in the practice of the invention include DCs, the presence of which may be checked in the previously described method, are preferably selected from myeloid cells (such as monocytic cells and macrophages) expressing langerin, MHC (major histocompatibility complex) class II, CCR2 (chemokine (C—C motif) receptor 2), CX3CR1 and/or Gr1 molecules in mice; myeloid cells expressing CD14, CD16, HLA dR (human leukocyte antigen disease resistance) molecule, langerin, CCR2 and/or CX3CR1 in humans; dendritic cells expressing CD11c, MHC class II molecules, and/or CCR7 molecules; and IL-1β producing dendritic cells. CD8 T cells, the presence of which may be checked in the previously described method, are preferably selected from CD3+, CD4+ and/or CD8+T lymphocytes, FOXP3 (forkhead box P3) T lymphocytes, Granzyme B/TIA (Tcell-restricted intracellular antigen) T lymphocytes, and Tc1 cells (IFN-.gamma. producing CD8+T lymphocytes). Immune cells expressing a protein that binds calreticulin, such immune cells may be selected from cells expressing at least one of the following proteins: LRP1 (Low density lipoprotein receptor-related protein 1, CD91), Ca.sup.++-binding proteins such as SCARF1 and SCARF2, MSR1 (Macrophage scavenger receptor 1), SRA, CD59 (protectin), CD207 (langerin), and THSD1 (thrombospondin). There are numerous means known in the art to identify cells expressing various antigens, these include immunochemistry, immunophenotyping, flow cytometry, Elispots assays, classical tetramer staining, and intracellular cytokine stainings.
  • Macrophages selectively phagocytose tumor cells, but this process is countered by protective molecules on tumor cells such as CD47, which binds macrophage signal-regulatory protein a to inhibit phagocytosis. Blockade of CD47 on tumor cells leads to phagocytosis by macrophages. In one embodiment of the invention CAR-MSC are administered together with an agent that blocks CD47 activity. It has been demonstrated that activation of TLR signaling pathways in macrophages synergizes with blocking CD47 on tumor cells to enhance tumor phagocytosis. Bruton's tyrosine kinase (Btk) mediates TLR signaling in macrophages. Calreticulin, previously shown to be a protein found on cancer cells that activated macrophage phagocytosis of tumors, is activated in macrophages for secretion and cell-surface exposure by TLR and Btk to target cancer cells for phagocytosis, even if the cancer cells themselves do not express calreticulin. In one embodiment of the invention TLR agonists are administered that stimulate expression of calreticulin and/or enhance macrophage phagocytosis of tumors.
  • IL-27 induces macrophage ability to kill tumor cells in vitro and in vivo, as well as altering the tumor promoting M2/myeloid suppressor cells into tumoricidal cells. In one embodiment of the invention addition of IL-27 or compounds capable of activating the IL-27 receptor signaling are administered together with IL-27 to enhance tumor phagocytosis by macrophages.
  • Tumor-associated macrophages, deriving from monocytes or migrating into the tumor, are an important constituent of tumor microenvironments, which in many cases modulates tumor growth, tumor angiogenesis, immune suppression, metastasis and chemoresistance. Mechanisms of macrophage promotion of tumor growth include production of EGF, M-CSF, VEGF.
  • Macrophage infiltration of tumors is associated with poor prognosis in renal, melanoma, breast, pancreatic, lung, endometrial, bladder, prostate.
  • Tumor growth are inhibited when monocytes/macrophages are ablated. There is ample evidence that many anticancer modalities currently used in the clinic have unique and distinct properties that modulate the recruitment, polarization and tumorigenic activities of macrophages in the tumor microenvironments. By manipulating tumor-associated macrophages significant impact on the clinical efficacies of and resistance to these anticancer modalities. Accordingly, in one aspect of the invention, CAR-DC, CAR-monocytes, or CAR-macrophages are utilized to force the tumor microenvironment to stimulate tumor killing and inhibit macrophage or macrophage related cells from promoting tumor growth. Within the context of the invention, the use of drugs targeting tumor-associated macrophages, especially c-Fms kinase inhibitors and humanized antibodies targeting colony-stimulating factor-1 receptor, are envisioned.
  • Tumors mediate various effects to reprogram macrophages, these are usually mediated via IL-10 and other cytokines such as VEGF, TGF-beta, and M-CSF, which cause macrophages to lose tumor cytotoxicity and shift into tumor promoting, immune suppressive, angiogenic supporting cells. Related to tumor manipulated monocytes are myeloid derived suppressor cells, which are similar to myeloid progenitor cells, or the previously described “natural suppressor” cell.
  • Irradiated tissues induce a TLR-1 reprogramming of macrophages to promote tumor growth and angiogenesis. Macrophage promotion of tumor growth is seen in numerous situations, in one example, treating of tumor bearing animals with BRAF inhibitors results in upregulation of macrophage production of VEGF which accelerates tumor growth. Mechanistically, it is known that tumors produce factors such as GM-CSF which in part stimulate macrophages to produce CCL18, which promotes tumor metastasis. Additionally, the lactic acid microenvironment of the tumor has been shown to promote skewing of macrophages towards at tumor-promoting M2 type. It has been shown that lactic acid produced by tumour cells, as a by-product of aerobic or anaerobic glycolysis, possesses an essential role in inducing the expression of VEGF and the M2-like polarization of tumour-associated macrophages, specifically inducing expression of arginase 1 through a HIF-1alpha dependent pathway. Mechanistically, it is known that lactic acid in tumors is generated in a large part by lactate dehydrogenase-A (LDH-A), which converts pyruvate to lactate. siRNA silencing of LDH-A in Pan02 pancreatic cancer cells that are injected in C57BL/6 mice results in development of smaller tumors than mice injected with wild type, non-silenced Pan02 cells. Associated with the reduced tumor growth were observations of a decrease in the frequency of myeloid-derived suppressor cells (MDSCs) in the spleens of mice carrying LDH-A-silenced tumors. NK cells from LDH-A-depleted tumors had improved cytolytic function. Exogenous lactate administration was shown to increase the frequency of MDSCs generated from mouse bone marrow cells with GM-CSF and IL-6 in vitro. Furthermore lactate pretreatment of NK cells in vitro inhibited cytolytic function of both human and mouse NK cells. This reduction of NK cytotoxic activity was accompanied by lower expression of perforin and granzyme in NK cells. The expression of NKp46 was lower in lactate-treated NK cells. Accordingly, in one embodiment of the invention, depletion of glucose levels using a ketogenic diet to lower lactate production by glycolytic tumors is utilized to augment therapeutic effects of CAR-DC. Utilization of ketogenic diet has been previously described for immune modulation, and cancer therapy. Specific quantification of intratumoral lactate and its manipulation has been described and incorporated by reference. Potentiation of chemotherapeutic and radiotherapeutic effects by ketogenic diets have been reported and techniques are incorporated by reference for use with the current CAR-DC invention. Suppression of tumor growth and activity induced by ketogenic diet may be augmented by addition of hyperbaric oxygen, thus in one embodiment of the invention, the utilization of oxidative therapies, as disclosed in references incorporated, together with ketogenic diet is utilized to augment therapeutic efficacy of CAR-DC.
  • Not only has it been well known that monocytes and macrophages infiltrate tumors and appear to support tumor growth through growth factor production and secretion of angiogenic agents, but suggestions have been made that tumors themselves, as part of the epithelial mesenchymal transition may actually differentiate into monocytes in part associated with TGF-beta production. Specifically, a study reported performing gene-profiling analysis of mouse mammary EpRas tumor cells that had been allowed to adopt an epithelial to mesenchymal transition program after long-term treatment with TGF-β1 for 2 weeks. While the treated cells acquired traits of mesenchymal cell differentiation and migration, gene analysis revealed another cluster of induced genes, which was specifically enriched in monocyte-derived macrophages, mast cells, and myeloid dendritic cells, but less in other types of immune cells. Further studies revealed that this monocyte/macrophage gene cluster was enriched in human breast cancer cell lines displaying an EMT or a Basal B profile, and in human breast tumors with EMT and undifferentiated (ER−/PR−) characteristics. The plasticity of tumor cells to potentially monocytic lineages should come as no surprise given that tumor cells have been shown to differentiate directly into pericytes, and endothelial cells/vascular channels.
  • Dopamine possesses antiangiogenic effects as well as myeloprotective effects, in one embodiment of the invention addition of dopamine to the CAR-DC treatment is disclosed.
  • Vinblastine is a widely used chemotherapeutic agent that has been demonstrated to induce dendritic cell maturation. In one embodiment of the invention CAR-DC are utilized together with vinblastine therapy to induce augmented anticancer activity. Oxiplatin and anthracyclines have been demonstrated to not only directly kill tumor cells but also stimulate T cell immunity against tumor cells. It was demonstrated that these agents induce a rapid and prominent invasion of interleukin (IL)-17-producing γδ (Vγ4(+) and Vγ6(+)) T lymphocytes (γδ T17 cells) that precedes the accumulation of CD8 CTLs within the tumor bed. In T cell receptor δ(−/−) or Vγ4/6(−/−) mice, the therapeutic efficacy of chemotherapy was reduced and furthermore no IL-17 was produced by tumor-infiltrating T cells, and CD8 CTLs did not invade the tumor after treatment. Although γδ Th17 cells could produce both IL-17A and IL-22, the absence of a functional IL-17A-IL-17R pathway significantly reduced tumor-specific T cell responses elicited by tumor cell death, and the efficacy of chemotherapy in four independent transplantable tumor models. The adoptive transfer of γδ T cells to naïve mice restored the efficacy of chemotherapy in IL-17A(−/−) hosts. The anticancer effect of infused γδ T cells was lost when they lacked either IL-1R1 or IL-17A.
  • Intratumoral injection of dendritic cells stimulates antitumor immunity in vivo in clinical situations, suggesting that modulating the antigen presenting cell in the tumor microenvironment will induce an antitumor response. Administration of radiotherapy to tumors to induce immunogenic cell death, followed by intratumoral administration of DC has been demonstrated to result in enhanced antigen presentation, accordingly, this technique may be modified to enhance effects of CAR-DC. The induction of immunity to tumors in the present invention is associated with the unique nature of: a) ongoing basal cell death within the tumor; and b) cell death induced by chemotherapy, radiotherapy, hyperthermia, or otherwise induced cell death. Cell death can be classified according to the morphological appearance of the lethal process (that may be apoptotic, necrotic, autophagic or associated with mitosis), enzymological criteria (with and without the involvement of nucleases or distinct classes of proteases, like caspases), functional aspects (programmed or accidental, physiological or pathological) or immunological characteristics (immunogenic or non-immunogenic). Cell death is defined as “immunogenic” or “immune stimulatory” if dying cells that express a specific antigen (for example a tumor associated antigen, phosphotidyl serine, or calreticulin), yet are uninfected (and hence lack pathogen-associated molecular patterns), and are injected subcutaneously into mice, in the absence of any adjuvant, cause a protective immune response against said specific antigen. Such a protective immune response precludes the growth of living transformed cells expressing the specific antigen injected into mice. When cancer cells succumb to an immunogenic cell death (or immunogenic apoptosis) modality, they stimulate the immune system, which then mounts a therapeutic anti-cancer immune response and contributes to the eradication of residual tumor cells. Conversely, when cancer cells succumb to a non-immunogenic death modality, they fail to elicit such a protective immune response. Regardless of the types of cell death that are ongoing, the tumor derived immune suppressive molecules contribute to general inhibition or inability of the tumor to be eliminated.
  • Within the practice of the invention, CAR-DC are administered concurrently, prior to, or subsequent to administration of an agent that induces immunogenic cell death in a patient. Methods of determining whether compounds induce immunogenic cell death are known in the art and include the following, which was described by Zitvogel et al. (a) treating the cells, the mammalian cells and inducing the cell death or apoptosis, typically of mammalian cancer cells capable of expressing calreticulin (CRT), by exposing said mammalian cells to a particular drug (the test drug), for example 18 hours; (b) inoculating (for example intradermally) the dying mammalian cells from step (a) in a particular area (for example a flank) of the mammal, typically a mouse, to induce an immune response in this area of the mammal; (c) inoculating (for example intradermally) the minimal tumorigenic dose of syngeneic live tumor cells in a distinct area (for example the opposite flank) from the same mammal, for example 7 days after step (b); and (d) comparing the size of the tumor in the inoculated mammal with a control mammal also exposed to the minimal tumorigenic dose of syngeneic live tumor cells of step (c) [for example a mouse devoid of T lymphocyte], the stabilization or regression of the tumor in the inoculated mammal being indicative of the drug immunogenicity. Other in vitro means are available for assessing the ability of various drugs or therapeutic approaches to induce immunogenic cell death. Specific characteristics to assess when screening for immunogenic cell death include: a) ability to induce dendritic cell maturation in vitro; b) ability to activate NK cells; and c) ability to induce activation of gamma delta T cells or NKT cells. Specific drugs known to induce immunogenic cell death include oxiplatine and anthracyclines, as well as radiotherapy, and hyperthermia. In the case of chemotherapies, certain chemotherapies that activate TLR4 through induction of HMGB1 have been observed to function suboptimally in patients that have a TLR4 polymorphism, thus suggesting actual contribution of TLR activation as a means of chemotherapy inhibition of cancer. Additionally, oncoviruses or oncolytic viruses are known to induce immunogenic cell death and may be useful for the practice of the invention.
  • The CAR-DC disclosed in the invention may be utilized in combination with conventional immune modulators including BCG, CpG DNA, interferon alpha, tumor bacterial therapy, checkpoint inhibitors, Treg depleting agents, and low dose cyclophosphamide.
  • In one embodiment of the invention CAR-DC cells are generated with specificity towards ROBO-4. Numerous means of generating CAR-T cells are known in the art, which are applied to CAR-DC. In one embodiment of the invention FMC63-28z CAR (Genebank identifier HM852952.1), is used as the template for the CAR except the anti-CD19, single-chain variable fragment sequence is replaced with an ROBO-4 fragment. The construct is synthesized and inserted into a pLNCX retroviral vector. Retroviruses encoding the ROBO-4-specific CAR are generated using the retrovirus packaging kit, Ampho (Takara), following the manufacturer's protocol. For generation of CAR-DC cells donor blood is obtained and after centrifugation on Ficoll-Hypaque density gradients (Sigma-Aldrich), PBMCs are plated at 2×10(6) cells/mL in cell culture for 2 hours and the adherent cells are collected. The cells were then stimulated for 2 days on a tissue-culture-treated 24-well plate containing M-CSF at a concentration of 100 ng/ml For retrovirus transduction, a 24-well plate are coated with RetroNectin (Takara) at 4° C. overnight, according to the manufacturer's protocol, and then blocked with 2% BSA at room temperature for 30 min. The plate was then loaded with retrovirus supernatants at 300 μL/well and incubated at 37° C. for 6 h. Next, 1×10(6) stimulated adherent cells in 1 mL of medium are added to 1 mL of retrovirus supernatants before being transferred to the pre-coated wells and cultured at 37° C. for 2 d. The cells are then transferred to a tissue-culture-treated plate at 1×10 (6)cells/mL and cultured in the presence of 100 U/mL of recombinant human M-CSF, applying the T cell protocol but not utilizing IL-2 or antiCD3/antiCD28.
  • Other means of generating CARs are known in the art and incorporated by reference. For example, Groner's group genetically modified T lymphocytes and endowed them with the ability to specifically recognize cancer cells. Tumor cells overexpressing the ErbB-2 receptor served as a model. The target cell recognition specificity was conferred to T lymphocytes by transduction of a chimeric gene encoding the zeta-chain of the TCR and a single chain antibody (scFv(FRPS)) directed against the human ErbB-2 receptor. The chimeric scFv(FRPS)-zeta gene was introduced into primary mouse T lymphocytes via retroviral gene transfer. Naive T lymphocytes were activated and infected by cocultivation with a retrovirus-producing packaging cell line. The scFv(FRPS)-zeta fusion gene was expressed in >75% of the T cells. These T cells lysed ErbB-2-expressing target cells in vitro with high specificity. In a syngeneic mouse model, mice were treated with autologous, transduced T cells. The adoptively transferred scFv(FRP5)-zeta-expressing T cells caused total regression of ErbB-2-expressing tumors. The presence of the transduced T lymphocytes in the tumor tissue was monitored. No humoral response directed against the transduced T cells was observed. Abs directed against the ErbB-2 receptor were detected upon tumor lysis. Hombach et al. constructed an anti-CEA chimeric receptor whose extracellular moiety is composed of a humanized scFv derived from the anti-CEA mAb BW431/26 and the CH2/CH3 constant domains of human IgG. The intracellular moiety consists of the gamma-signaling chain of the human Fc epsilon RI receptor constituting a completely humanized chimeric receptor. After transfection, the humBW431/26 scFv-CH2CH3-gamma receptor is expressed as a homodimer on the surface of MD45 T cells. Co-incubation with CEA+ tumor cells specifically activates grafted MD45 T cells indicated by IL-2 secretion and cytolytic activity against CEA+ tumor cells. Notably, the efficacy of receptor-mediated activation is not affected by soluble CEA up to 25 micrograms/ml demonstrating the usefulness of this chimeric receptor for specific cellular activation by membrane-bound CEA even in the presence of high concentrations of CEA, as found in patients during progression of the disease (200). These methods are described to guide one of skill in the art to practicing the invention, which in one embodiment is the utilization of CAR T cell approaches towards targeting tumor endothelium as comparted to simply targeting the tumor itself.
  • Targeting of mucins associated with cancers has been performed with CAR T cells by grafting the antibody that binds to the mucin with CD3 zeta chain. For the purpose of the invention, this procedure is modified for CAR-DC. In an older publication chimeric immune receptor consisting of an extracellular antigen-binding domain derived from the CC49 humanized single-chain antibody, linked to the CD3zeta signaling domain of the T cell receptor, was generated (CC49-zeta). This receptor binds to TAG-72, a mucin antigen expressed by most human adenocarcinomas. CC49-zeta was expressed in CD4+ and CD8+ T cells and induced cytokine production on stimulation. Human T cells expressing CC49-zeta recognized and killed tumor cell lines and primary tumor cells expressing TAG-72. CC49-zeta T cells did not mediate bystander killing of TAG-72-negative cells. In addition, CC49-zeta T cells not only killed FasL-positive tumor cells in vitro and in vivo, but also survived in their presence, and were immunoprotective in intraperitoneal and subcutaneous murine tumor xenograft models with TAG-72-positive human tumor cells. Finally, receptor-positive T cells were still effective in killing TAG-72-positive targets in the presence of physiological levels of soluble TAG-72, and did not induce killing of TAG-72-negative cells under the same conditions.
  • For clinical practice of the invention several reports exist in the art that would guide the skilled artisan as to concentrations, cell numbers, and dosing protocols useful. While in the art CAR T cells have been utilized targeting surface tumor antigens, the main issue with this approach is the difficulty of T cells to enter tumors due to features specific to the tumor microenvironment. These include higher interstitial pressure inside the tumor compared to the surroundings, acidosis inside the tumor, and expression in the tumor of FasL which kills activated T cells. Accordingly the invention seeks to more effectively utilize CAR-DC cells by directly targeting them to tumor endothelium, which is in direct contact with blood and therefore not susceptible to intratumoral factors the limit efficacy of conventional T cell therapies. In other embodiments CAR-DC are targeting to tumor antigens.
  • In one embodiment of the invention, protocols similar to Kershaw et al. are utilized with the exception that tumor endothelial antigens are targeted as opposed to conventional tumor antigens. Such tumor endothelial antigens include CD93, TEM-1, VEGFR1, and survivin. Antibodies can be made for these proteins, methodologies for which are described in U.S. Pat. Nos. 5,225,539, 5,585,089, 5,693,761, and 5,639,641. In one example that may be utilized as a template for clinical development, T cells with reactivity against the ovarian cancer-associated antigen alpha-folate receptor (FR) were generated by genetic modification of autologous T cells with a chimeric gene incorporating an anti-FR single-chain antibody linked to the signaling domain of the Fc receptor gamma chain. Patients were assigned to one of two cohorts in the study. Eight patients in cohort 1 received a dose escalation of T cells in combination with high-dose interleukin-2, and six patients in cohort 2 received dual-specific T cells (reactive with both FR and allogeneic cells) followed by immunization with allogeneic peripheral blood mononuclear cells. Five patients in cohort 1 experienced some grade 3 to 4 treatment-related toxicity that was probably due to interleukin-2 administration, which could be managed using standard measures. Patients in cohort 2 experienced relatively mild side effects with grade 1 to 2 symptoms. No reduction in tumor burden was seen in any patient. Tracking 111In-labeled adoptively transferred T cells in cohort 1 revealed a lack of specific localization of T cells to tumor except in one patient where some signal was detected in a peritoneal deposit. PCR analysis showed that gene-modified T cells were present in the circulation in large numbers for the first 2 days after transfer, but these quickly declined to be barely detectable 1 month later in most patients. Similar CAR-T clinical studies have been reported for neuroblastoma, B cell malignancies, melanoma, ovarian cancer, renal cancer, mesothelioma, and head and neck cancer.
  • In one embodiment of the invention, PBMCs are derived from leukapheresis and CD14 monocytes are collected by MACS. After 3 days of culture, M-CSF at 100 ng/ml plasmid encoding the chimeric CAR-DC recognizing tumor-endothelium specific antigen and subsequently selected for gene integration by culture in G418. In another embodiment the generation of dual-specific T cells is performed, stimulation of allogeneic monocytic cells is achieved by coculture of patient PBMCs with irradiated (5,000 cGy) allogeneic donor PBMCs from cryopre-served apheresis product (mixed lymphocyte reaction). The MHC haplotype of allogeneic donors is determined before use, and donors that differed in at least four MHC class I alleles from the patient are used. Culture medium consisted of AimV medium (Invitrogen, Carlsbad, Calif.) supplemented with 5% human AB serum (Valley Biomedical, Winchester, Va.), penicillin (50 units/mL), streptomycin (50 mg/mL; Bio Whittaker, Walkersville, Md.), amphotericin B (Fungizone, 1.25 mg/mL; Biofluids, Rockville, Md.), L-glutamine (2 mmol/L; Mediatech, Herndon, Va.), and human recombinant IL-2 (Proleukin, 300 IU/mL; Chiron). Mixed lymphocyte reaction consisted of 2×106 patient monocytes and 1×107 allogeneic stimulator PBMCs in 2 mL AimV per well in 24-well plates. Between 24 and 48 wells are cultured per patient for 3 days, at which time transduction is done by aspirating 1.5 mL of medium and replacing with 2.0 mL retroviral supernatant containing 300 IU/mL IL-2, 10 mmol/L HEPES, and 8 μg/mL polybrene (Sigma, St. Louis, Mo.) followed by covering with plastic wrap and centrifugation at 1,000×g for 1 hour at room temperature. After overnight culture at 37° C./5% CO2, transduction is repeated on the following day, and then medium was replaced after another 24 hours. Cells are then resuspended at 1×106/mL in fresh medium containing 0.5 mg/mL G418 (Invitrogen) in 175-cm2 flasks for 5 days before resuspension in media lacking G418. Cells are expanded to 2×109 and then restimulated with allogeneic PBMCs from the same donor to enrich for T cells specific for the donor allogeneic haplotype. Restimulation is done by incubating patient T cells (1×106/mL) and stimulator PBMCs (2×106/mL) in 3-liter Fenwall culture bags in AimV+additives and IL-2 (no G418). Cell numbers were adjusted to 1×106/mL, and IL-2 was added every 2 days, until sufficient numbers for treatment were achieved.
  • The present invention relates to a strategy of adoptive cell transfer of monocytes or DC transduced to express a chimeric antigen receptor (CAR). CARs are molecules that combine antibody-based specificity for a desired antigen (e.g., tumor endothelial antigen) with a T cell receptor-activating intracellular domain to generate a chimeric protein that exhibits a specific anti-tumor endothelium cellular immune activity. In one embodiment the present invention relates generally to the use of monocytes or DC cells genetically modified to stably express a desired CAR that possesses high affinity towards tumor associated endothelium. Monocytes or DC cells expressing a CAR are referred to herein as CAR-DC cells or CAR modified DC cells. Preferably, the cell can be genetically modified to stably express an antibody binding domain on its surface, conferring novel antigen specificity that is MHC independent. In some instances, the monocyte or DC cell is genetically modified to stably express a CAR that combines an antigen recognition domain of a specific antibody with an intracellular domain of the CD3-zeta chain or Fc.gamma.RI protein into a single chimeric protein. In another embodiment, TLR signaling molecules are engineered in the intracellular portion of the CAR, said molecules include TRIF, TRADD, and MyD99. In one embodiment, the CAR of the invention comprises an extracellular domain having an antigen recognition domain, a transmembrane domain, and a cytoplasmic domain. In one embodiment, the transmembrane domain that naturally is associated with one of the domains in the CAR is used. In another embodiment, the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins to minimize interactions with other members of the receptor complex. Preferably, the transmembrane domain is the CD8a hinge domain.
  • With respect to the cytoplasmic domain, the CAR of the invention can be designed to comprise the CD80 and/or CD86 and/or CD40L and/or OX40L signaling domain by itself or be combined with any other desired cytoplasmic domain(s) useful in the context of the CAR of the invention. In one embodiment, the cytoplasmic domain of the CAR can be designed to further comprise the signaling domain of MyD88. For example, the cytoplasmic domain of the CAR can include but is not limited to CD80 and/or CD86 and/or CD40L and/or OX40L signaling modules and combinations thereof. In another embodiment of the invention inhibition of TGF-beta is performed either by transfection with an shRNA possessing selectively towards TGF-beta or by constructing the CAR to possess a dominant negative mutant of TGF-beta receptor. This would render the CAR-DC cell resistant to inhibitory activities of the tumors. Accordingly, the invention provides CAR-DC cells and methods of their use for adoptive therapy. In one embodiment, the CAR-DC cells of the invention can be generated by introducing a lentiviral vector comprising a desired CAR, for example a CAR comprising anti-CD19, CD8a hinge and transmembrane domain, and MyD88, into the cells. The CAR-DC cells of the invention are able to replicate in vivo resulting in long-term persistence that can lead to sustained tumor control.
  • One skilled in the art will appreciate that these methods, compositions, and cells are and may be adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods, procedures, and devices described herein are presently representative of preferred embodiments and are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the disclosure. It will be apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. Those skilled in the art recognize that the aspects and embodiments of the invention set forth herein may be practiced separate from each other or in conjunction with each other. Therefore, combinations of separate embodiments are within the scope of the invention as disclosed herein. All patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
  • The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising,” “consisting essentially of” and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions indicates the exclusion of equivalents of the features shown and described or portions thereof. It is recognized that various modifications are possible within the scope of the invention disclosed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the disclosure.

Claims (26)

1. A method of treating cancer comprising of: a) extracting a blood sample from a cancer patient; b) isolating monocytes from said blood sample; c) transfecting said monocytes from said blood sample with a construct encoding a chimeric antigen receptor; and d) infusing said transfected monocytes into said cancer patient.
2. The method of claim 1, wherein peripheral blood mononuclear cells (PBMC) are purified from said blood sample.
3. The method of claim 2, wherein said purification of said PBMC is performed using a density gradient.
4. The method of claim 3, wherein said density gradient is ficoll.
5. The method of claim 1, wherein said monocytes are isolated from said blood sample by isolation of cells expressing CD14.
6. The method of claim 1, wherein said monocytes are isolated from said blood sample by collection of cells adhering to a plastic vessel after a culture period of at least one hour.
7. The method of claim 5, wherein said CD14 expressing cells are isolated by magnetic activated cell sorting (MACS).
8. The method of claim 5, wherein said CD14 expressing cells are isolated by fluorescent activated cell sorting (FACS).
9. The method of claim 1, wherein said chimeric antigen receptor construct encodes a protein comprising of: a) an antigen binding domain; b) a transmembrane domain; and c) an intracellular domain.
10. The method of claim 9, wherein said antigen binding domain is an antibody or fragment thereof.
11. The method of claim 9, wherein said antigen binding domain is single chain antibody or fragment thereof.
12. The method of claim 9, wherein said antibody domain is a molecular entity possessing affinity towards a tumor antigen or a tumor endothelial antigen.
13. The method of claim 1, wherein said antibody binding domain possesses affinity towards a tumor endothelial cell antigen.
14. The method of claim 13, wherein said tumor endothelial cell antigen is selected from a group of antigens comprising of:
a) TEM-1;
b) ROBO-1-8;
c) VEGFR2;
d) CD109;
e) survivin; and
f) CD93.
15. The method of claim 1, wherein said antibody binding domain possesses affinity towards a tumor antigen.
16. The method of claim 15, wherein said tumor antigens are selected from a group comprising of: CLPP, 707-AP, AFP, ART-4, BAGE, MAGE, GAGE, SAGE, b-catenin/m, bcr-abl, CAMEL, CAP-1, CEA, CASP-8, CDK/4, CDC-27, Cyp-B, DAM-8, DAM-10, ELV-M2, ETV6, G250, Gp100, HAGE, HER-2/neu, EPV-E6, LAGE, hTERT, survivin, iCE, MART-1, tyrosinase, MUC-1, MC1-R, TEL/AML, and WT-1.
17. The method of claim 1, wherein said intracellular domain of said CAR is capable of inducing monocytic differentiation to DC.
18. The method of claim 1, wherein said intracellular domain of said CAR is capable of inducing monocytic differentiation to M1 macrophages.
19. The method of claim 1, wherein said intracellular domain of said CAR is capable of activating a toll like receptor signaling pathway.
20. The method of claim 1, wherein said intracellular domain of said CAR is capable of activating TLR4 signaling.
21. The method of claim 1, wherein said intracellular domain of said CAR is capable of inducing monocytic differentiation to DC.
22. The method of claim 1, wherein said intracellular domain of said CAR contains a signaling portion of the intracellular domain of the TLR-4 protein.
23. The method of claim 1, wherein said intracellular domain of said CAR contains an activator of molecular pathways endowing M1 phenotype is the functional portion of said TLR-4 protein which interacts with MyD88 at a sufficient affinity to trigger said MyD88 signal transduction.
24. The method of claim 1, wherein said intracellular domain of said CAR contains an activator of molecular pathways endowing DC phenotype is the functional portion of said TLR-4 protein which interacts with MyD88 at a sufficient affinity to trigger said MyD88 signal transduction.
25. The method of claim 1, wherein said activator of molecular pathways endowing M1 phenotype is the functional portion of said TLR-4 protein which interacts with TRAM and MAL at a sufficient affinity to trigger said TLR4 signal transduction.
26. The method of claim 1, wherein said activator of molecular pathways endowing DC phenotype is the functional portion of said TLR-4 protein which interacts with TRAM and MAL at a sufficient affinity to trigger said TLR4 signal transduction.
US15/048,922 2015-02-19 2016-02-19 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer Abandoned US20170151281A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US15/048,922 US20170151281A1 (en) 2015-02-19 2016-02-19 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/227,193 US20210252053A1 (en) 2015-02-19 2021-04-09 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/559,967 US20220118010A1 (en) 2015-02-19 2021-12-22 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/672,415 US20220202856A1 (en) 2015-02-19 2022-02-15 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/675,519 US20220175830A1 (en) 2015-02-19 2022-02-18 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/675,559 US20220175831A1 (en) 2015-02-19 2022-02-18 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/715,710 US11918604B2 (en) 2015-02-19 2022-04-07 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US17/715,558 US11517589B2 (en) 2015-02-19 2022-04-07 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US17/975,187 US11918605B1 (en) 2015-02-19 2022-10-27 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562118027P 2015-02-19 2015-02-19
US15/048,922 US20170151281A1 (en) 2015-02-19 2016-02-19 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/048,922 Continuation US20170151281A1 (en) 2015-02-19 2016-02-19 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/048,922 Continuation US20170151281A1 (en) 2015-02-19 2016-02-19 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/227,193 Continuation US20210252053A1 (en) 2015-02-19 2021-04-09 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/559,967 Continuation US20220118010A1 (en) 2015-02-19 2021-12-22 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer

Publications (1)

Publication Number Publication Date
US20170151281A1 true US20170151281A1 (en) 2017-06-01

Family

ID=58776703

Family Applications (9)

Application Number Title Priority Date Filing Date
US15/048,922 Abandoned US20170151281A1 (en) 2015-02-19 2016-02-19 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/227,193 Abandoned US20210252053A1 (en) 2015-02-19 2021-04-09 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/559,967 Pending US20220118010A1 (en) 2015-02-19 2021-12-22 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/672,415 Pending US20220202856A1 (en) 2015-02-19 2022-02-15 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/675,519 Pending US20220175830A1 (en) 2015-02-19 2022-02-18 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/675,559 Pending US20220175831A1 (en) 2015-02-19 2022-02-18 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/715,710 Active US11918604B2 (en) 2015-02-19 2022-04-07 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US17/715,558 Active US11517589B2 (en) 2015-02-19 2022-04-07 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US17/975,187 Active US11918605B1 (en) 2015-02-19 2022-10-27 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer

Family Applications After (8)

Application Number Title Priority Date Filing Date
US17/227,193 Abandoned US20210252053A1 (en) 2015-02-19 2021-04-09 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/559,967 Pending US20220118010A1 (en) 2015-02-19 2021-12-22 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/672,415 Pending US20220202856A1 (en) 2015-02-19 2022-02-15 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/675,519 Pending US20220175830A1 (en) 2015-02-19 2022-02-18 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/675,559 Pending US20220175831A1 (en) 2015-02-19 2022-02-18 Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
US17/715,710 Active US11918604B2 (en) 2015-02-19 2022-04-07 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US17/715,558 Active US11517589B2 (en) 2015-02-19 2022-04-07 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US17/975,187 Active US11918605B1 (en) 2015-02-19 2022-10-27 Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer

Country Status (1)

Country Link
US (9) US20170151281A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287163A (en) * 2016-12-28 2017-10-24 时力生物科技(北京)有限公司 Express dendritic cells of Chimeric antigen receptor and application thereof
WO2019139987A1 (en) * 2018-01-09 2019-07-18 Elstar Therapeutics, Inc. Calreticulin binding constructs and engineered t cells for the treatment of diseases
US20190233516A1 (en) * 2016-10-10 2019-08-01 The National Institute for Biotechnology in the Negev Ltd. Non-cytotoxic modified cells and use thereof
WO2019152781A1 (en) * 2018-02-02 2019-08-08 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophages/dendritic cells expressing chimeric antigen receptors and uses in diseases and disorders associated with protein aggregates
EP3567049A4 (en) * 2016-12-28 2020-08-26 Green Cross Lab Cell Corporation Chimeric antigen receptor and natural killer cells expressing same
US20200283495A1 (en) * 2019-03-08 2020-09-10 ST Phi Therapeutics Chimeric Endocytic Receptors and Method of Use Thereof
CN111647563A (en) * 2020-08-06 2020-09-11 北京翊博普惠生物科技发展有限公司 DC cell and CTL cell of targeted Survivin holoantigen and preparation method and application thereof
US10980836B1 (en) * 2019-12-11 2021-04-20 Myeloid Therapeutics, Inc. Therapeutic cell compositions and methods of manufacturing and use thereof
US11013764B2 (en) 2019-04-30 2021-05-25 Myeloid Therapeutics, Inc. Engineered phagocytic receptor compositions and methods of use thereof
US11034749B2 (en) 2015-07-28 2021-06-15 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11041023B2 (en) 2018-11-06 2021-06-22 The Regents Of The University Of California Chimeric antigen receptors for phagocytosis
US11312939B2 (en) 2020-06-04 2022-04-26 Carisma Therapeutics Inc. Constructs for chimeric antigen receptors
EP3843758A4 (en) * 2018-08-27 2022-06-08 Figene, LLC Chimeric antigen receptor fibroblast cells for treatment of cancer
WO2022153698A1 (en) 2021-01-15 2022-07-21 国立大学法人東海国立大学機構 Chimeric target factor receptor
WO2022216144A1 (en) * 2021-04-08 2022-10-13 GC Cell Corporation Fusion proteins comprising chimeric antigen receptors and il-15
WO2022215920A1 (en) * 2021-04-06 2022-10-13 주식회사 이뮤노로지컬디자이닝랩 Transformed antigen-specific professional antigen-presenting cells comprising chimeric antigen receptor (car) and use thereof
US11472856B2 (en) 2016-06-13 2022-10-18 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
EP3935086A4 (en) * 2019-03-02 2022-11-23 The Board Of Trustees Of The Leland Stanford Junior University Therapeutic antigen binding proteins specific for cd93 and methods of use thereof
WO2022248602A1 (en) * 2021-05-25 2022-12-01 Institut Curie Myeloid cells overexpressing bcl2
US11517589B2 (en) 2015-02-19 2022-12-06 Myeloid Therapeutics, Inc. Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US11524033B2 (en) 2017-09-05 2022-12-13 Torque Therapeutics, Inc. Therapeutic protein compositions and methods of making and using the same
US11628218B2 (en) 2020-11-04 2023-04-18 Myeloid Therapeutics, Inc. Engineered chimeric fusion protein compositions and methods of use thereof
US11649294B2 (en) 2017-11-14 2023-05-16 GC Cell Corporation Anti-HER2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same
CN116240173A (en) * 2023-02-02 2023-06-09 西安电子科技大学 Cold and hot tumor regulation type CAR-mononuclear/macrophage, and preparation method and application thereof
US11672874B2 (en) 2019-09-03 2023-06-13 Myeloid Therapeutics, Inc. Methods and compositions for genomic integration
WO2023134600A1 (en) * 2022-01-11 2023-07-20 Shenzhen Frontiergate Biotechnology Co., Ltd Dendritic cell tumor vaccine and uses thereof
US11708423B2 (en) * 2017-09-26 2023-07-25 Cero Therapeutics, Inc. Chimeric engulfment receptor molecules and methods of use
US11970547B2 (en) 2017-11-14 2024-04-30 GC Cell Corporation Anti-HER2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220373462A1 (en) * 2021-05-14 2022-11-24 MBD Co., Ltd. Measuring method of cell migration using the rate of cell invasion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013185552A1 (en) * 2012-06-12 2013-12-19 中国人民解放军第二军医大学东方肝胆外科医院 Dual-signal independent chimeric antigen receptor and use thereof

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
GB8809129D0 (en) 1988-04-18 1988-05-18 Celltech Ltd Recombinant dna methods vectors and host cells
KR0184860B1 (en) 1988-11-11 1999-04-01 메디칼 리써어치 카운실 Single domain ligands receptors comprising said ligands methods for their production and use of said ligands
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
DE3920358A1 (en) 1989-06-22 1991-01-17 Behringwerke Ag BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE
EP0542874A4 (en) 1990-07-25 1994-05-11 Syngene Inc Circular extension for generating multiple nucleic acid complements
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
GB9114948D0 (en) 1991-07-11 1991-08-28 Pfizer Ltd Process for preparing sertraline intermediates
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
US5858784A (en) 1991-12-17 1999-01-12 The Regents Of The University Of California Expression of cloned genes in the lung by aerosol- and liposome-based delivery
US5633234A (en) 1993-01-22 1997-05-27 The Johns Hopkins University Lysosomal targeting of immunogens
AU6796094A (en) 1993-04-29 1994-11-21 Raymond Hamers Production of antibodies or (functionalized) fragments thereof derived from heavy chain immunoglobulins of (camelidae)
US5773244A (en) 1993-05-19 1998-06-30 Regents Of The University Of California Methods of making circular RNA
FR2709309B1 (en) 1993-08-25 1995-11-10 Centre Nat Rech Scient Cellular compositions, preparation and therapeutic uses.
US5631236A (en) 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
US5641863A (en) 1993-09-30 1997-06-24 University Of Pennsylvania Chimeric IgG Fc receptors
US5639642A (en) 1994-06-16 1997-06-17 Novo Nordisk A/S Synthetic leader peptide sequences
US6300090B1 (en) 1994-07-29 2001-10-09 The Rockefeller University Methods of use of viral vectors to deliver antigen to dendritic cells
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US5766903A (en) 1995-08-23 1998-06-16 University Technology Corporation Circular RNA and uses thereof
US6734014B1 (en) 1996-02-08 2004-05-11 The United States Of America As Represented By The Department Of Health And Human Services Methods and compositions for transforming dendritic cells and activating T cells
WO1999042564A2 (en) 1998-02-20 1999-08-26 The Rockefeller University Apoptotic cell-mediated antigen presentation to dendritic cells
US6210931B1 (en) 1998-11-30 2001-04-03 The United States Of America As Represented By The Secretary Of Agriculture Ribozyme-mediated synthesis of circular RNA
WO2001083713A2 (en) 2000-04-28 2001-11-08 University Of Pittsburgh Of The Commonwealth System Of Higher Education The use of tolerogenic dendritic cells for enhancing tolerogenicity in a host and methods for making the same
JP5312721B2 (en) 2000-11-07 2013-10-09 シティ・オブ・ホープ CD19-specific redirecting immune cells
US8709412B2 (en) 2001-06-29 2014-04-29 The Board Of Trustees Of The Leland Stanford Junior University Modulation of TIM receptor activity in combination with cytoreductive therapy
JP2005530695A (en) 2002-02-15 2005-10-13 ザイコス インク. Electroporation method for introducing physiologically active substances into cells
US20080254027A1 (en) 2002-03-01 2008-10-16 Bernett Matthew J Optimized CD5 antibodies and methods of using the same
EP1567014B1 (en) 2002-12-04 2011-09-28 Baylor Research Institute Rapid one-step method for generation of antigen loaded dendritic cell vaccine from precursors
US8007805B2 (en) 2003-08-08 2011-08-30 Paladin Labs, Inc. Chimeric antigens for breaking host tolerance to foreign antigens
US8198020B2 (en) 2003-08-22 2012-06-12 Potentia Pharmaceuticals, Inc. Compositions and methods for enhancing phagocytosis or phagocyte activity
US7709625B2 (en) 2004-06-10 2010-05-04 The Board Of Regents Of The University Of Texas Methods and compositions for bone marrow stem cell-derived macrophage delivery of genes for gene therapy
WO2006047569A2 (en) 2004-10-25 2006-05-04 Cellerant Therapeutics, Inc. Methods of expanding myeloid cell populations and uses thereof
US20060188891A1 (en) 2005-02-23 2006-08-24 Bickmore William D Jr Methods and apparatus for controlling DNA amplification
US20060257359A1 (en) 2005-02-28 2006-11-16 Cedric Francois Modifying macrophage phenotype for treatment of disease
US20090191202A1 (en) 2005-09-29 2009-07-30 Jamieson Catriona Helen M Methods for manipulating phagocytosis mediated by CD47
US7926300B2 (en) 2005-11-18 2011-04-19 Cree, Inc. Adaptive adjustment of light output of solid state lighting panels
AU2007232356A1 (en) 2006-04-03 2007-10-11 Keele University Targeted therapy
US20080171002A1 (en) 2006-07-20 2008-07-17 Gourmetceuticals, Llc Products For Receptor Mediated Activation And Maturation Of Monocyte-Derived Dendritic Cells By A Phosphorylated Glucomannane Polysaccharide
US7833789B2 (en) 2006-08-01 2010-11-16 Fondazione Centro San Raffaele Del Monte Tabor Monocyte cell
US10155038B2 (en) 2007-02-02 2018-12-18 Yale University Cells prepared by transient transfection and methods of use thereof
AU2009205665B2 (en) 2008-01-15 2013-12-05 The Board Of Trustees Of The Leland Stanford Junior University Methods for manipulating phagocytosis mediated by CD47
EP2313436B1 (en) 2008-07-22 2014-11-26 Ablynx N.V. Amino acid sequences directed against multitarget scavenger receptors and polypeptides
KR20110050541A (en) 2008-08-29 2011-05-13 심포젠 에이/에스 Anti-cd5 antibodies
ES2840750T3 (en) 2008-09-22 2021-07-07 Baylor College Medicine Methods and compositions for generating an immune response by inducing CD40 and pattern recognition receptor adapters
EP2248903A1 (en) 2009-04-29 2010-11-10 Universitat Autònoma De Barcelona Methods and reagents for efficient and targeted gene transfer to monocytes and macrophages
CA2755981C (en) 2009-08-24 2015-11-03 Abengoa Bioenergy New Technologies, Inc. Method for producing ethanol and co-products from cellulosic biomass
US9101674B2 (en) 2010-03-29 2015-08-11 Vib Vzw Targeting and in vivo imaging of tumor-associated macrophages
US20110287038A1 (en) 2010-04-16 2011-11-24 Kevin Slawin Method for treating solid tumors
WO2012005763A1 (en) 2010-07-06 2012-01-12 The Scripps Research Institute Use of myeloid-like progenitor cell populations to treat tumors
ES2656414T3 (en) 2010-09-08 2018-02-27 Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus Chimeric antigen receptors with an optimized hinge region
WO2012043651A1 (en) 2010-09-30 2012-04-05 国立大学法人 熊本大学 Production method for myeloid blood cells
DE102010047966A1 (en) 2010-10-08 2012-04-12 Rheinmetall Waffe Munition Gmbh Non-lethal ammunition for neutralizing targets
EP4043025A1 (en) 2011-06-08 2022-08-17 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mrna delivery
EP2765193B1 (en) 2011-10-07 2017-08-09 Mie University Chimeric antigen receptor
US9149519B2 (en) 2012-01-17 2015-10-06 New York University Chimeric human immunodeficiency virus type 1 (HIV-1) with enhanced dendritic cell and macrophage tropism comprising the simian immunodeficiency virus (SIV) minimal Vpx packaging domain
US20140140989A1 (en) 2012-02-06 2014-05-22 Inhibrx Llc Non-Platelet Depleting and Non-Red Blood Cell Depleting CD47 Antibodies and Methods of Use Thereof
SI2812443T1 (en) 2012-02-06 2019-10-30 Inhibrx Inc Cd47 antibodies and methods of use thereof
EP2753365B1 (en) 2012-02-14 2017-03-22 Loma Linda University Agents for treating inflammation-related conditions and diseases
EP2639313A1 (en) 2012-03-14 2013-09-18 Rheinische Friedrich-Wilhelms-Universität Bonn High-resolution transcriptome of human macrophages
EP3964567A1 (en) 2012-05-25 2022-03-09 Cellectis Methods for engineering allogeneic and immunosuppressive resistant t cell for immunotherapy
WO2014055668A1 (en) 2012-10-02 2014-04-10 Memorial Sloan-Kettering Cancer Center Compositions and methods for immunotherapy
US9221908B2 (en) 2012-12-12 2015-12-29 Vasculox, Inc. Therapeutic CD47 antibodies
AU2013359167B2 (en) 2012-12-12 2018-08-23 Arch Oncology, Inc. Therapeutic CD47 antibodies
KR102276974B1 (en) 2013-02-06 2021-07-13 인히브릭스, 인크. Non-platelet depleting and non-red blood cell depleting cd47 antibodies and methods of use thereof
SE537429C2 (en) 2013-02-14 2015-04-28 Scania Cv Ab Simultaneous estimation of at least mass and rolling resistance of vehicles
KR102363191B1 (en) * 2013-02-26 2022-02-17 메모리얼 슬로안 케터링 캔서 센터 Compositions and methods for immunotherapy
US20160145348A1 (en) 2013-03-14 2016-05-26 Fred Hutchinson Cancer Research Center Compositions and methods to modify cells for therapeutic objectives
EP2970426B1 (en) 2013-03-15 2019-08-28 Michael C. Milone Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
BR112016009898A2 (en) 2013-10-31 2017-12-05 Hutchinson Fred Cancer Res unmodified hematopoietic and effector stem cells / progenitors and their uses
AU2014371934B2 (en) 2013-12-25 2020-01-23 Daiichi Sankyo Company, Limited Anti-TROP2 antibody-drug conjugate
WO2015138600A2 (en) 2014-03-11 2015-09-17 The Board Of Trustees Of The Leland Stanford Junior University Anti sirp-alpha antibodies and bi-specific macrophage enhancing antibodies
US20170233452A1 (en) 2014-04-23 2017-08-17 Immusoft Corporation Chimeric antigen receptors specific to avb6 integrin and methods of use thereof to treat cancer
CN104004095B (en) 2014-06-04 2016-11-23 博生吉医药科技(苏州)有限公司 A kind of CD7 nano antibody, its coded sequence and application
JP2017522893A (en) 2014-07-31 2017-08-17 セレクティスCellectis ROR1-specific multi-chain chimeric antigen receptor
MY189028A (en) 2014-08-19 2022-01-20 Novartis Ag Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment
AU2015308818B2 (en) 2014-08-28 2021-02-25 Bioatla Llc Conditionally active chimeric antigen receptors for modified T-cells
CN107074969A (en) 2014-09-09 2017-08-18 优努姆治疗公司 Chimerical receptor and its application in immunization therapy
CN106999585A (en) 2014-09-28 2017-08-01 加利福尼亚大学董事会 Regulation to excitant and non-irritating bone marrow cell
AU2015330017A1 (en) 2014-10-07 2017-04-27 Cellectis Method for modulating car-induced immune cells activity
MA41538A (en) 2014-10-17 2017-12-26 Baylor College Medicine BIPARTITE AND TRIPARTITE IMMUNE CELLS OF SIGNALING
US11111472B2 (en) 2014-10-31 2021-09-07 Massachusetts Institute Of Technology Delivery of biomolecules to immune cells
EA201791093A1 (en) 2014-11-18 2018-04-30 Янссен Фармацевтика Нв ANTIBODIES TO CD47, METHODS AND USE
WO2016126608A1 (en) 2015-02-02 2016-08-11 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
WO2016130845A1 (en) 2015-02-11 2016-08-18 Loma Linda University A method for utilizing engineered dendritic cells to induce gut-homing regulatory t cells and treat gut inflammation
US20170151281A1 (en) 2015-02-19 2017-06-01 Batu Biologics, Inc. Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer
JP6784687B2 (en) 2015-02-24 2020-11-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Binding-induced transcription switch and how to use it
AU2016225012B2 (en) 2015-02-27 2020-09-03 Kevin Chen Chimeric antigen receptors (CARS) targeting hematologic malignancies, compositions and methods of use thereof
US9777064B2 (en) 2015-03-17 2017-10-03 Chimera Bioengineering, Inc. Smart CAR devices, DE CAR polypeptides, side CARs and uses thereof
MA41962A (en) 2015-04-23 2018-02-28 Baylor College Medicine CHEMERICAL ANTIGENIC RECEPTOR TARGETING CD5 FOR ADOPTIVE T-CELL THERAPY
JP7064234B2 (en) 2015-05-18 2022-05-10 エービー イニチオ バイオセラピューティクス,インク. SIRP polypeptide composition and method of use
US10434153B1 (en) 2015-05-20 2019-10-08 Kim Leslie O'Neill Use of car and bite technology coupled with an scFv from an antibody against human thymidine kinase 1 to specifically target tumors
GB201509413D0 (en) 2015-06-01 2015-07-15 Ucl Business Plc Fusion protein
EP3302558A4 (en) 2015-06-01 2019-01-16 The Rockefeller University Anti-tumor agents and methods of use
US20190008897A1 (en) 2015-07-22 2019-01-10 University Of Washington Compositions and methods for producing pro-inflammatory macrophages
IL297905A (en) 2015-07-28 2023-01-01 Univ Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
AU2016303497A1 (en) 2015-07-31 2018-03-01 Tarveda Therapeutics, Inc. Compositions and methods for immuno-oncology therapies
PE20180778A1 (en) 2015-08-07 2018-05-07 Alexo Therapeutics Inc CONSTRUCTIONS WITH A SIRP-ALPHA DOMAIN OR ITS VARIANTS
WO2017025944A2 (en) 2015-08-13 2017-02-16 Brigham Young University Macrophage car (moto-car) in imunotherapy
US11352439B2 (en) 2015-08-13 2022-06-07 Kim Leslie O'Neill Macrophage CAR (MOTO-CAR) in immunotherapy
EP3347026A4 (en) 2015-09-09 2019-05-08 Seattle Children's Hospital (DBA Seattle Children's Research Institute) Genetic engineering of macrophages for immunotherapy
CA2999608A1 (en) 2015-09-22 2017-03-30 Julius-Maximilians-Universitat Wurzburg A method for high level and stable gene transfer in lymphocytes
MX2018005825A (en) 2015-11-09 2019-07-04 Aperisys Inc Modified immune cells and uses thereof.
US10946042B2 (en) 2015-12-01 2021-03-16 The Trustees Of The University Of Pennsylvania Compositions and methods for selective phagocytosis of human cancer cells
EP3202783A1 (en) 2016-02-02 2017-08-09 Ecole Polytechnique Federale de Lausanne (EPFL) Engineered antigen presenting cells and uses thereof
WO2017133175A1 (en) 2016-02-04 2017-08-10 Nanjing Legend Biotech Co., Ltd. Engineered mammalian cells for cancer therapy
WO2017136633A1 (en) 2016-02-04 2017-08-10 Duke University Cell-based vaccine compositions and methods of use
US9820350B2 (en) 2016-02-19 2017-11-14 Cooper Technologies Company Configurable lighting system
US20180186855A1 (en) 2016-03-23 2018-07-05 Alector Llc Chimeric receptors and methods of use thereof
WO2017184553A1 (en) 2016-04-18 2017-10-26 Baylor College Of Medicine Cancer gene therapy targeting cd47
US10875919B2 (en) 2016-04-26 2020-12-29 Alector Llc Chimeric receptors and methods of use thereof
US11390658B2 (en) 2016-06-06 2022-07-19 St. Jude Children's Research Hospital Anti-CD7 chimeric antigen receptor and method of use thereof
WO2018038684A1 (en) 2016-08-26 2018-03-01 Agency For Science, Technology And Research Macrophage stimulating protein receptor (or ron - recepteur d' origine nantais) antibodies and uses thereof
JOP20190009A1 (en) 2016-09-21 2019-01-27 Alx Oncology Inc Antibodies against signal-regulatory protein alpha and methods of use
JP2019536471A (en) 2016-09-27 2019-12-19 セロ・セラピューティクス・インコーポレイテッドCERO Therapeutics, Inc. Chimeric engulfment receptor molecule
US20190263928A1 (en) 2016-09-30 2019-08-29 Baylor College Of Medicine Adaptive chimeric antigen receptor t-cell design
US11376332B2 (en) 2016-10-15 2022-07-05 Baylor College Of Medicine Platform for enhanced targeted delivery
WO2018075960A1 (en) 2016-10-21 2018-04-26 Tioma Therapeutics, Inc. Therapeutic cd47 antibodies
CA3044684A1 (en) 2016-12-09 2018-06-14 Alector Llc Anti-sirp-alpha antibodies and methods of use thereof
CA3049791A1 (en) 2017-01-27 2018-08-02 Silverback Therapeutics, Inc. Tumor targeting conjugates and methods of use thereof
WO2018169948A1 (en) 2017-03-13 2018-09-20 Poseida Therapeutics, Inc. Compositions and methods for selective elimination and replacement of hematopoietic stem cells
US10415017B2 (en) 2017-05-17 2019-09-17 Thunder Biotech, Inc. Transgenic macrophages, chimeric antigen receptors, and associated methods
CN110944652A (en) 2017-06-12 2020-03-31 爱莫里大学 T cell antigen-targeted Chimeric Antigen Receptors (CARs) and uses in cell therapy
TW201904588A (en) 2017-06-25 2019-02-01 美商西雅圖免疫公司 Methods of making and using guidance and navigation control proteins
EP3658589B1 (en) 2017-07-26 2023-09-27 Forty Seven, Inc. Anti-sirp-alpha antibodies and related methods
US20200247889A1 (en) 2017-08-08 2020-08-06 Pionyr Immunotherapeutics, Inc. Compositions and methods for disabling myeloid cells expressing trem1
CA3073421A1 (en) 2017-09-26 2019-04-04 Daniel Mark COREY Chimeric engulfment receptor molecules and methods of use
US20200299686A1 (en) 2017-10-02 2020-09-24 Georgia Tech Research Corporation Methods and Compositions for Engineering Synthetic Bioswitches for Remote Control of Biological Activity
GB201717974D0 (en) 2017-10-31 2017-12-13 Univ Court Of The Univ Of Aberdeen Modified receptors
CN109971716B (en) 2017-12-28 2023-08-01 上海细胞治疗研究院 EGFR-specific CAR-T cells from autocrine CD47 antibodies and uses thereof
SG11202007171PA (en) 2018-02-02 2020-08-28 Univ Pennsylvania Modified monocytes/macrophages/dendritic cells expressing chimeric antigen receptors and uses in diseases and disorders associated with protein aggregates
GB2572005A (en) 2018-03-16 2019-09-18 Univ Court Univ Of Edinburgh Macrophage-based therapy
US20210015865A1 (en) 2018-03-28 2021-01-21 Cero Therapeutics, Inc. Chimeric engulfment receptors and uses thereof for neurodegenerative diseases
RU2020135107A (en) 2018-03-28 2022-04-29 Серо Терапьютикс, Инк. CELLULAR IMMUNOTHERAPEUTIC COMPOSITIONS AND THEIR APPLICATIONS
US20210087251A1 (en) 2018-03-28 2021-03-25 Cero Therapeutics, Inc. Chimeric tim4 receptors and uses thereof
WO2019201995A1 (en) 2018-04-20 2019-10-24 Medizinische Hochschule Hannover Chimeric antigen receptor and car-t cells that bind a herpes virus antigen
CA3098865A1 (en) 2018-05-02 2019-11-07 The Trustees Of The University Of Pennsylvania Compositions and methods of phospholipase a2 receptor chimeric autoantibody receptor t cells
GB201818110D0 (en) 2018-11-06 2018-12-19 Macrophox Ltd Monocytes for cancer targeting
WO2020097193A1 (en) 2018-11-06 2020-05-14 The Regents Of The University Of California Chimeric antigen receptors for phagocytosis
US11673964B2 (en) 2018-12-19 2023-06-13 The Trustees Of The University Of Pennsylvania Use of CD2/5/7 knock-out anti-CD2/5/7 chimeric antigen receptor T cells against T cell lymphomas and leukemias
CA3135531A1 (en) 2019-04-30 2020-11-05 Daniel Getts Engineered chimeric fusion protein compositions and methods of use thereof
US11013764B2 (en) 2019-04-30 2021-05-25 Myeloid Therapeutics, Inc. Engineered phagocytic receptor compositions and methods of use thereof
CN114340681A (en) 2019-06-11 2022-04-12 美洛德生物医药公司 Macrophage specific adapter compositions and methods of use thereof
US10980836B1 (en) 2019-12-11 2021-04-20 Myeloid Therapeutics, Inc. Therapeutic cell compositions and methods of manufacturing and use thereof
EP4161536A1 (en) 2020-06-04 2023-04-12 Carisma Therapeutics Inc. Novel constructs for chimeric antigen receptors
IL299288A (en) 2020-06-26 2023-02-01 Carisma Therapeutics Inc mRNA TRANSFECTION OF IMMUNE CELLS
WO2022036265A1 (en) 2020-08-14 2022-02-17 Cero Therapeutics, Inc. Chimeric tim receptors and uses thereof
AU2021350024A1 (en) 2020-09-24 2023-05-04 Flagship Pioneering Innovations V, Inc. Compositions and methods for inhibiting gene expression

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013185552A1 (en) * 2012-06-12 2013-12-19 中国人民解放军第二军医大学东方肝胆外科医院 Dual-signal independent chimeric antigen receptor and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dotti et al., Immunol Rev. 2014, 257(1)1-35 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11517589B2 (en) 2015-02-19 2022-12-06 Myeloid Therapeutics, Inc. Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US11918604B2 (en) 2015-02-19 2024-03-05 Myeloid Therapeutics, Inc. Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US11918605B1 (en) 2015-02-19 2024-03-05 Myeloid Therapeutics, Inc. Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US11359002B2 (en) 2015-07-28 2022-06-14 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11306133B2 (en) 2015-07-28 2022-04-19 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11332511B2 (en) 2015-07-28 2022-05-17 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11407805B2 (en) 2015-07-28 2022-08-09 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11306134B2 (en) 2015-07-28 2022-04-19 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11498954B2 (en) 2015-07-28 2022-11-15 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11325963B2 (en) 2015-07-28 2022-05-10 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11034749B2 (en) 2015-07-28 2021-06-15 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11319358B2 (en) 2015-07-28 2022-05-03 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof
US11472856B2 (en) 2016-06-13 2022-10-18 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
US20190233516A1 (en) * 2016-10-10 2019-08-01 The National Institute for Biotechnology in the Negev Ltd. Non-cytotoxic modified cells and use thereof
EP3567049A4 (en) * 2016-12-28 2020-08-26 Green Cross Lab Cell Corporation Chimeric antigen receptor and natural killer cells expressing same
CN107287163A (en) * 2016-12-28 2017-10-24 时力生物科技(北京)有限公司 Express dendritic cells of Chimeric antigen receptor and application thereof
US11524033B2 (en) 2017-09-05 2022-12-13 Torque Therapeutics, Inc. Therapeutic protein compositions and methods of making and using the same
US11708423B2 (en) * 2017-09-26 2023-07-25 Cero Therapeutics, Inc. Chimeric engulfment receptor molecules and methods of use
US11970547B2 (en) 2017-11-14 2024-04-30 GC Cell Corporation Anti-HER2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same
US11649294B2 (en) 2017-11-14 2023-05-16 GC Cell Corporation Anti-HER2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same
WO2019139987A1 (en) * 2018-01-09 2019-07-18 Elstar Therapeutics, Inc. Calreticulin binding constructs and engineered t cells for the treatment of diseases
WO2019152781A1 (en) * 2018-02-02 2019-08-08 The Trustees Of The University Of Pennsylvania Modified monocytes/macrophages/dendritic cells expressing chimeric antigen receptors and uses in diseases and disorders associated with protein aggregates
EP3843758A4 (en) * 2018-08-27 2022-06-08 Figene, LLC Chimeric antigen receptor fibroblast cells for treatment of cancer
US11041023B2 (en) 2018-11-06 2021-06-22 The Regents Of The University Of California Chimeric antigen receptors for phagocytosis
EP3935086A4 (en) * 2019-03-02 2022-11-23 The Board Of Trustees Of The Leland Stanford Junior University Therapeutic antigen binding proteins specific for cd93 and methods of use thereof
US20200283495A1 (en) * 2019-03-08 2020-09-10 ST Phi Therapeutics Chimeric Endocytic Receptors and Method of Use Thereof
US11026973B2 (en) 2019-04-30 2021-06-08 Myeloid Therapeutics, Inc. Engineered phagocytic receptor compositions and methods of use thereof
US11013764B2 (en) 2019-04-30 2021-05-25 Myeloid Therapeutics, Inc. Engineered phagocytic receptor compositions and methods of use thereof
US11672874B2 (en) 2019-09-03 2023-06-13 Myeloid Therapeutics, Inc. Methods and compositions for genomic integration
US20210361703A1 (en) * 2019-12-11 2021-11-25 Myeloid Therapeutics, Inc. Therapeutic cell compositions and methods of manufacturing and use thereof
US10980836B1 (en) * 2019-12-11 2021-04-20 Myeloid Therapeutics, Inc. Therapeutic cell compositions and methods of manufacturing and use thereof
US11312939B2 (en) 2020-06-04 2022-04-26 Carisma Therapeutics Inc. Constructs for chimeric antigen receptors
US11739297B2 (en) 2020-06-04 2023-08-29 Carisma Therapeutics Inc. Method of increasing tumor killing activity of macrophages or monocytes comprising chimeric antigen receptor
CN111647563A (en) * 2020-08-06 2020-09-11 北京翊博普惠生物科技发展有限公司 DC cell and CTL cell of targeted Survivin holoantigen and preparation method and application thereof
US11628218B2 (en) 2020-11-04 2023-04-18 Myeloid Therapeutics, Inc. Engineered chimeric fusion protein compositions and methods of use thereof
KR20230132806A (en) 2021-01-15 2023-09-18 고쿠리츠 다이가쿠 호우징 도우카이 고쿠리츠 다이가쿠 기코우 Chimeric targeting factor receptor
WO2022153698A1 (en) 2021-01-15 2022-07-21 国立大学法人東海国立大学機構 Chimeric target factor receptor
WO2022215920A1 (en) * 2021-04-06 2022-10-13 주식회사 이뮤노로지컬디자이닝랩 Transformed antigen-specific professional antigen-presenting cells comprising chimeric antigen receptor (car) and use thereof
WO2022216144A1 (en) * 2021-04-08 2022-10-13 GC Cell Corporation Fusion proteins comprising chimeric antigen receptors and il-15
WO2022248602A1 (en) * 2021-05-25 2022-12-01 Institut Curie Myeloid cells overexpressing bcl2
WO2023134600A1 (en) * 2022-01-11 2023-07-20 Shenzhen Frontiergate Biotechnology Co., Ltd Dendritic cell tumor vaccine and uses thereof
CN116240173A (en) * 2023-02-02 2023-06-09 西安电子科技大学 Cold and hot tumor regulation type CAR-mononuclear/macrophage, and preparation method and application thereof

Also Published As

Publication number Publication date
US20220249552A1 (en) 2022-08-11
US20210252053A1 (en) 2021-08-19
US11918605B1 (en) 2024-03-05
US20220175831A1 (en) 2022-06-09
US11517589B2 (en) 2022-12-06
US20220118010A1 (en) 2022-04-21
US20220202856A1 (en) 2022-06-30
US20220175830A1 (en) 2022-06-09
US20220233586A1 (en) 2022-07-28
US11918604B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
US11517589B2 (en) Chimeric antigen receptor dendritic cell (CAR-DC) for treatment of cancer
US20240115609A1 (en) METHODS FOR EXPANDING AND ACTIVATING yo T CELLS FOR THE TREATMENT OF CANCER AND RELATED MALIGNANCIES
Salmon et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition
Garzon-Muvdi et al. Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma
Nierkens et al. Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells
AU2007269245B2 (en) Dendritic cells generated using GM-CSF and interferon alpha and loaded with heat-treated and killed cancer cells
Mohme et al. Immunological challenges for peptide-based immunotherapy in glioblastoma
US20180008670A1 (en) Chimeric antigen receptor targeting of tumor endothelium
US20180305666A1 (en) Methods for generating engineered human primary blood dendritic cell lines
US20120082687A1 (en) Use of cell adhesion inhibitor for the mobilization of antigen presenting cells and immune cells in a cell mixture (AIM) from the peripheral blood and methods of use
Alaniz et al. Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma
CN103002915B (en) Suppress the method and composition of Treg cell
Zhao et al. Recent advances and future challenges of tumor vaccination therapy for recurrent glioblastoma
Liu et al. Engineering T cells to express tumoricidal MDA-7/IL24 enhances cancer immunotherapy
US20220387516A1 (en) Fibroblast-derived universal immunological composition
Fakhoury et al. Immunotherapy and radiation for high-grade glioma: a narrative review
WO2015168503A1 (en) Compositions and means for induction of tumor immunity
Sanchez et al. T9 glioma cells expressing membrane-macrophage colony stimulating factor produce CD4+ T cell-associated protective immunity against T9 intracranial gliomas and systemic immunity against different syngeneic gliomas
Sega et al. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor–Targeted Hapten Therapy
US20230355678A1 (en) Methods for improving t cell efficacy
US20240066126A1 (en) Combination therapy of solid tumors using chimeric antigen receptor cells representing adaptive and innate immunity
Sonabend et al. Immunopathology and immunotherapy of central nervous system cancer
Parija Immunology of Transplantation and Malignancy
US20170100468A1 (en) Amplification of epitope specific personalized anti-angiogenic immune responses
US20210317180A1 (en) Nr2f6 inhibited chimeric antigen receptor cells

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BATU BIOLOGICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MINEV, BORIS;REEL/FRAME:055516/0327

Effective date: 20150414

Owner name: BATU BIOLOGICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WAGNER, SAMUEL C.;REEL/FRAME:055516/0260

Effective date: 20150423

Owner name: BATU BIOLOGICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ICHIM, THOMAS E.;REEL/FRAME:055509/0531

Effective date: 20150415

Owner name: BATU BIOLOGICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KESARI, SANTOSH;REEL/FRAME:055509/0588

Effective date: 20150415

Owner name: BATU BIOLOGICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SZYMANSKI, JULIA S.;REEL/FRAME:055509/0417

Effective date: 20160603

Owner name: BATU BIOLOGICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PATEL, AMIT;REEL/FRAME:055510/0001

Effective date: 20150422

STCC Information on status: application revival

Free format text: WITHDRAWN ABANDONMENT, AWAITING EXAMINER ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: MYELOID THERAPEUTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BATU BIOLOGICS INC.;REEL/FRAME:055634/0356

Effective date: 20210304

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION