CN108410906A - 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 - Google Patents

一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 Download PDF

Info

Publication number
CN108410906A
CN108410906A CN201810177881.2A CN201810177881A CN108410906A CN 108410906 A CN108410906 A CN 108410906A CN 201810177881 A CN201810177881 A CN 201810177881A CN 108410906 A CN108410906 A CN 108410906A
Authority
CN
China
Prior art keywords
shell
fish
mitochondrial genomes
crispr
editor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810177881.2A
Other languages
English (en)
Inventor
高焕
马杭柯
阎斌伦
孙金秋
徐莞媛
李光光
王玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaihai Institute of Techology
Original Assignee
Huaihai Institute of Techology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaihai Institute of Techology filed Critical Huaihai Institute of Techology
Priority to CN201810177881.2A priority Critical patent/CN108410906A/zh
Publication of CN108410906A publication Critical patent/CN108410906A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Abstract

本发明公布了一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法。该方法通过在CRISPR/Cpf1表达质粒中引入海洋甲壳类线粒体定位的MLS信号,并通过后续的gRNA设计、显微注射受精卵、受精卵的离体培养和编辑效果检测,完成对海洋甲壳类线粒体基因组的编辑。利用该方法,可以实现海洋甲壳类线粒体基因组的定向编辑,对于在海洋甲壳类线粒体基因组中引入人工增殖放流标志具有重要的价值。

Description

一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编 辑方法
技术领域
本发明属于分子生物学技术领域,涉及一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法。
背景技术
基因编辑技术是在DNA水平,通过删除、插入等方式对DNA特定序列进行改造的技术,在经历了锌指核酸酶技术(Zinc-finger nuclease, ZFNs)和类转录激活因子效应物核酸酶技术(Transcription activator-like effector,TALENs)之后,自CRISPR/Cas9技术建立起开始发生质的飞跃。在CRISPR/Cas9系统的基础上,美国麻省理工学院的张锋课题组进一步改进CRISPR/Cas9建立了CRISPR/ Cpf1基因编辑系统,其与CRISPR/Cas9系统的主要区别在于利用Cpf1核酸酶代替了Cas9,但优势更加明显:第一、与Cas9核酸酶相比,该系统表达的Cpf1酶体积变小,因此更易于进入诸如线粒体等小的细胞器和组织中;第二、Cas9行驶核酸酶剪切作用时需要两个支架RNA分子辅助,而Cpf1只需要一个,因此更简单;第三、Cpf1剪切后可以在目标序列区形成粘性末端,因此方便后续实现DNA序列连接和克隆,而Cas9是在同一个位置同时剪切DNA分子的双链形成的平末端;第四、Cpf1系统在目标位置的选择上比Cas9具有更多选择性,虽然两者形成的剪切复合物必须首先连接一个叫做PAM的短序列,但Cpf1识别5’端的TTN序列,Cas9识别3’端的NGG序列,因此Cpf1蛋白剪切位点离PAM序列较远,有更多的位点供选择编辑;第五、Cpf1系统具有更高的编辑效率,这是因为Cas9 剪切位点离 PAM 序列很近,NHEJ 修复造成的核苷酸插入或缺失会改变 PAM 邻近序列,因此Cas9 无法识别和切割靶位点,从而阻碍同源重组修复在靶位点引入正确的基因编辑;而 Cpf1剪切时离识别位点很远, NHEJ 修复造成的核苷酸插入或缺失,不会改变 PAMCRISPR/Cas9邻近序列,Cpf1 仍然可以识别和切割靶基因,同源重组修复依然可以在靶位点引入正确的基因编辑,从而提高了 CRISPR 系统的基因编辑效率,也便于对同一位点进行多轮的基因编辑,这让研究人员在编辑位置的选择上有了更多的选项。
目前,CRISPR/ Cpf1基因编辑已经成功应用于核基因组中的基因编辑研究,如小鼠、水稻和细菌等物种中,但在线粒体基因组中的应用还未见报道。Jo等人在2015年首次探讨了CRISPR/Cas9基因在人类中进行线粒体基因组编辑的可能性,其把Cas9 蛋白N端融合的核基因组定位信号NLS替换为线粒体核特异性更强的MLS,构建出了线粒体靶向的 Cas9蛋白基因编辑系统。但除此(人类)之外,目前未见其它物种,尤其是关于甲壳类线粒体基因组相关基因编辑技术的研究报道。与人类相比,甲壳类生物属于较低等的生物,其线粒体基因组与人类基因组差异较大,尤其是编码蛋白质的密码子存在着一定的差别,因此要想实现其线粒体基因组的编辑,需要做进一步的研究,而不能照搬人类研究中的相应技术。
发明内容
本发明描述了一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法,为在海洋甲壳类中开展线粒体基因组的基因编辑提供了方法,主要内容为通过密码子优化构建了一个具有海洋甲壳类线粒体定位信号的、可行使线粒体基因组基因编辑功能的质粒,通过显微注射的方式注入甲壳类受精卵中,可以对受精卵中的线粒体基因组进行基因的删除、替换和插入等目的,对建立线粒体基因组人工标志技术并用于增殖放流效果评估、遗传资源调查研究等方面具有应用价值。主要包括以下步骤:
一、质粒表达载体的构建
1、在pY094质粒(http://www.addgene.org/84743/)中把Cpf1核酸酶基因末端编码细胞核定位信号NLS的DNA序列(5’AAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAG3’)替换为“5’ATG TCC GTC CTGACG CCG CTG CTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTG CCG CGCGCC AAG ATC CAT TCG TTG3’ ”序列,该序列为我们通过统计海洋甲壳类生物如脊尾白虾(Exopalaemon carinicauda)、三疣梭子蟹(Portunus trituberculatus)、斑节对虾(Penaeus monodon)和中国明对虾(Fenneropenaeus chinensis)等物种中线粒体基因组编码氨基酸密码子的偏向性中获得的,该序列编码的多肽为MSVLTPLLLRGLTGSARRLPVPRAKIHSL(MLS)。
2、线粒体靶向引物(gRNA)设计:根据预编辑线粒体基因组序列的位置,设置线粒体靶向引物,保证靶向序列符合核酸酶Cpf1行使功能的序列特征,即含有PAM序列。
3、将上述合成的线粒体靶向引物,通过限制性内切酶酶切法导入pY094质粒的PRISPR序列区,即“重复序列(Direct Repeats)-间隔序列(Spacers)-直接重复序列(Direct Repeats)” 单元中的“间隔序列(Spacers)”区。
二、显微注射法导入受精卵进行线粒体基因组序列编辑
有两种方式可供选择:
1、将上述构建的质粒,通过显微注射法直接注射进甲壳类受精卵中,对线粒体基因组靶向序列进行编辑;
2、将上述构建的质粒进行线性化处理,分别把表达Cpf1的mRNA和crRNA+gRNA序列通过显微注射直接注射进受精卵中,对线粒体基因组靶向序列进行编辑。
三、受精卵离体培养及编辑结果检测
1、受精卵离体培养:注射后的受精卵通过人工充气的方法在体外进行孵化,孵化后变成仔虾或幼蟹时取相应个体或其部分组织提取基因组DNA(包含线粒体基因组DNA),对线粒体基因编辑的效果进行检测;
2、检测方法:在线粒体基因组靶向编辑序列两侧设计PCR扩增引物,利用PCR方法扩增相应序列区,通过测序确定相应序列区基因编辑的效果。
本发明的有益效果:首次获得了海洋甲壳类线粒体基因组的基因编辑方法,该方法操作简单,编辑效果好。
具体实施方式
在本发明中所使用的术语,除非有另外的说明,一般具有本领域普通技术人员通常理解的含义。
下面结合在三疣梭子蟹中应用的具体实施例,进一步详细地阐述本发明的实施方式。应理解,实施例仅用于说明本发明而不应当也不会用于限制本发明的范围。以下实施例中未详细描述的各种过程和方法是本领域中公知的常规方法。
1、质粒载体的构建
由于在pY094质粒Cpf1的NLS序列区无合适的限制性内切酶可用,故需要引入XcmI(位置:4870bp处)和BamHI(位置5201)两个酶切位点区,具体按照如下方式操作,人工合成“5’CACCATGGTGGCCCTGATCCGCAGCGTGCTGCAGATGCGGAACTCCAATGCCGCCACAGGCGAGGACTATATCAACAGCCCCGTGCGCGATCTGAATGGCGTGTGCTTCGACTCCCGGTTTCAGAACCCAGAGTGGCCCATGGACGCCGATGCCAATGGCGCCTACCACATCGCCCTGAAGGGCCAGCTGCTGCTGAATCACCTGAAGGAGAGCAAGGATCTGAAGCTGCAGAACGGCATCTCCAATCAGGACTGGCTGGCCTACATCCAGGAGCTGCGCAACAAAAGGCCGGCGGCCACGAAAAAGG CCGGCCAGGCAAAAAAGAAAAAG3’ ”序列时,把该序列区中蓝色划线部分置换成“5’ATG TCCGTC CTG ACG CCG CTG CTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTGCCG CGC GCC AAG ATC CAT TCG TTG3’ ”序列,同时在5’和3’端合成时各分别引入XcmI和BamHI两种酶切序列,利用这两种酶的双酶切和随后的T4连接酶介导的连接反应,把合成序列插入pY094质粒载体中。
2、线粒体靶向引物(gRNA)设计
针对三疣梭子蟹线粒体基因组中D-loop区序列,依靠http://crispr.mit.edu/网站进行Guide RNA的设计;设计好的引物分别在5’和3’端引入NruI和MluI两个酶切位点,送交公司合成,并进行3’端磷酸化封闭,并经退火过程使正反向引物形成双链结构。
3、gRNA的导入和重组表达载体构建
把上述构建的质粒载体(含MLS)和gRNA引物,分别在NruI和MluI双酶切下进行连接反应,把gRNA引物插入到511-531序列区,构建重组表达载体。
4、质粒培养与抽提
将构建的重组表达载体转化至感受态细胞,扩大培养后挑选阳性克隆,测序鉴定后,进一步扩大培养以便抽提获得大量的表达质粒。
5、显微注射导入三疣梭子蟹受精卵
把上述抽提的重组表达载体利用生理盐水稀释后,同时设置对照组(不含质粒),通过显微注射仪Eppendorf TransferMan® 4注射到三疣梭子蟹受精卵中,通过荧光显微镜观察质粒中报告基因EGFP(增强型绿色荧光蛋白)的表达情况以确定是否表达质粒起作用;如不起作用或作用不明显,进一步通过体外转录的方法,获得相应基因的mRNA序列,并把mRNA序列注射入受精卵中。
5、受精卵的离体培育
注射后的受精卵立即转入甲壳类离体孵化装置进行培育,保持温度22-25℃,盐度20-26,pH8.3-8.6,全天24h充气,直至孵化为止;孵化后经正常养殖管理程序培育至3-4期幼蟹,进行后续的检测。
6、编辑效果检测
针对三疣梭子蟹线粒体基因组D-Loop区的靶向编辑序列区设计引物,通过PCR扩增的方式及后续测序的方式,对靶向编辑序列区的编辑效果进行检测。

Claims (4)

1.一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法,其特征包括用于甲壳类线粒体定位编辑的表达载体构建、gRNA的合成和导入、受精卵的显微注射和离体培养、编辑效果的检测。
2.权利要求1中所述用于海洋甲壳类线粒体定位编辑的表达载体构建中引入了经优化的海洋甲壳类密码子偏向性的信号,该信号的序列为5’ATG TCC GTC CTG ACG CCG CTGCTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTG CCG CGC GCC AAG ATCCAT TCG TTG3’,编码的多肽为MSVLTPLLLRGLTGSARRLPVPRAKIHSL。
3.权利要求1中所述用于受精卵的显微注射和离体培养的方法为:温度22-25℃,盐度20-26,pH8.3-8.6,全天24h充气,直至孵化为止。
4.权利要求1中所述用于编辑效果的检测方法为通过构建靶向编辑序列区PCR扩增技术及测序的方式,对靶向编辑序列区的编辑效果进行检测。
CN201810177881.2A 2018-03-05 2018-03-05 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 Pending CN108410906A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810177881.2A CN108410906A (zh) 2018-03-05 2018-03-05 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810177881.2A CN108410906A (zh) 2018-03-05 2018-03-05 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法

Publications (1)

Publication Number Publication Date
CN108410906A true CN108410906A (zh) 2018-08-17

Family

ID=63129948

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810177881.2A Pending CN108410906A (zh) 2018-03-05 2018-03-05 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法

Country Status (1)

Country Link
CN (1) CN108410906A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN112760338A (zh) * 2020-12-28 2021-05-07 广东省微生物研究所(广东省微生物分析检测中心) 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602935A (zh) * 2014-10-20 2016-05-25 聂凌云 一种新型线粒体基因组编辑工具
CN105602993A (zh) * 2016-01-19 2016-05-25 上海赛墨生物技术有限公司 线粒体靶向的基因编辑系统及方法
CN106191110A (zh) * 2016-07-15 2016-12-07 湖南师范大学 一种wnt16基因缺失型斑马鱼
CN106520830A (zh) * 2016-11-16 2017-03-22 福建师范大学 利用CRISPR/Cas9对线粒体基因组进行靶向编辑的方法
CN107287245A (zh) * 2017-05-27 2017-10-24 南京农业大学 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602935A (zh) * 2014-10-20 2016-05-25 聂凌云 一种新型线粒体基因组编辑工具
CN105602993A (zh) * 2016-01-19 2016-05-25 上海赛墨生物技术有限公司 线粒体靶向的基因编辑系统及方法
CN106191110A (zh) * 2016-07-15 2016-12-07 湖南师范大学 一种wnt16基因缺失型斑马鱼
CN106520830A (zh) * 2016-11-16 2017-03-22 福建师范大学 利用CRISPR/Cas9对线粒体基因组进行靶向编辑的方法
CN107287245A (zh) * 2017-05-27 2017-10-24 南京农业大学 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARNAUD MARTIN ET AL.: "CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution", 《CURRENT BIOLOGY》 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112760338A (zh) * 2020-12-28 2021-05-07 广东省微生物研究所(广东省微生物分析检测中心) 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用
CN112760338B (zh) * 2020-12-28 2022-04-26 广东省微生物研究所(广东省微生物分析检测中心) 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用

Similar Documents

Publication Publication Date Title
CN108410906A (zh) 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法
CN105316327B (zh) 小麦TaAGO4a基因CRISPR/Cas9载体及其应用
WO2018099256A1 (zh) 一种CRISPR/nCas9介导的定点碱基替换在植物中的应用
CN104293828B (zh) 植物基因组定点修饰方法
CN109136248B (zh) 多靶点编辑载体及其构建方法和应用
CN105112435B (zh) 植物多基因敲除载体的构建及应用
US20160060637A1 (en) Improved Gene Targeting and Nucleic Acid Carrier Molecule, In Particular for Use in Plants
CN107893074A (zh) 一种用于敲除CXCR4基因的gRNA、表达载体、敲除系统、试剂盒
CN109880851B (zh) 用于富集CRISPR/Cas9介导的同源重组修复细胞的筛选报告载体及筛选方法
US11388892B2 (en) Method for preparing CKO/KI animal model by using CAS9 technology
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN102558309A (zh) 一对转录激活子样效应因子核酸酶及其编码基因与应用
CN110157726A (zh) 植物基因组定点替换的方法
CN111019971A (zh) 在rosa26位点条件性过表达hpv e6基因小鼠模型的构建方法
CN110305896B (zh) 一种斑马鱼肾脏祖细胞标记转基因系的构建方法
CN110484538A (zh) 识别猪ROSA26基因的sgRNA及其编码DNA、基因编辑方法、试剂盒和应用
CN106086031B (zh) 猪肌抑素基因编辑位点及其应用
CN113337502B (zh) 一种gRNA及其用途
CN109706148A (zh) 一种用于敲除BCL11A基因或者BCL11A基因增强子的gRNA、gRNA组合物以及电转方法
CN112080517A (zh) 一种提高获得基因编辑植株概率的筛选系统、构建方法及其应用
CN104611368A (zh) 重组后不产生移码突变的载体、在爪蛙基因组中进行基因定点敲入的方法及应用
Pritchard et al. Direct generation of conditional alleles using CRISPR/Cas9 in mouse zygotes
CN106754949B (zh) 猪肌抑素基因编辑位点864-883及其应用
CN101962657B (zh) 一种植物表达载体
CN115772523A (zh) 一种碱基编辑工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180817

WD01 Invention patent application deemed withdrawn after publication