CN108148873A - 一种cav-1基因缺失斑马鱼及其制备方法 - Google Patents

一种cav-1基因缺失斑马鱼及其制备方法 Download PDF

Info

Publication number
CN108148873A
CN108148873A CN201711273893.7A CN201711273893A CN108148873A CN 108148873 A CN108148873 A CN 108148873A CN 201711273893 A CN201711273893 A CN 201711273893A CN 108148873 A CN108148873 A CN 108148873A
Authority
CN
China
Prior art keywords
cav
gene
seq
zebra fish
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711273893.7A
Other languages
English (en)
Inventor
吕志平
高磊
刘强
黄鹏
林海燕
周振婷
周楚莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern Medical University
Original Assignee
Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern Medical University filed Critical Southern Medical University
Priority to CN201711273893.7A priority Critical patent/CN108148873A/zh
Publication of CN108148873A publication Critical patent/CN108148873A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Animal Husbandry (AREA)
  • Plant Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种CAV‑1基因缺失斑马鱼突变体及其制备方法,CAV‑1基因缺失斑马鱼突变体的构建是通过CRISPR/Cas9技术实现的。本发明的突变体模型可用于研究CAV‑1基因在肿瘤发生和远端转移过程中的作用。

Description

一种CAV-1基因缺失斑马鱼及其制备方法
技术领域
本发明涉及分子生物学领域,涉及一种基因敲除的斑马鱼突变体,具体涉及CAV-1基因缺失斑马鱼突变体及其制备方法。
背景技术
成簇规律间隔回文重复序列CRISPR(Clustered Regularly Interspaced ShortPalind-romic Repeats)和CRISPR相关核酸酶Cas(CRISPR-associated nuclease)系统是细菌和古细菌在长期演化过程中形成的一种适应性免疫防御机制。该系统能够识别自身序列和外源入侵DNA 片段,并剪切掉外源片段,从而达到保护自己的目的。科学家将这种免疫机制开发成为一种基因定点编辑技术,广泛应用于生物学和医学研究,目前最常见的基因编辑技术为 CRISPR/Cas9系统。该系统通过向导RNA(single guide RNA,sgRNA)序列,一方面特异识别靶序列,另一方面引导Cas9蛋白定点切割靶位点,使DNA靶位点形成双链缺口,细胞通过同源重组修复或者非同源性末端连接对断裂的DNA进行修复,从而实现基因的编辑。
Caveolae结构细胞质膜向内凹陷所形成的囊泡状结构,参与细胞内外物质转运和细胞信号传导过程。微囊蛋白-1(Caveolin-1)是Caveolae结构的主要成分,对许多关键信号分子的活性状态起直接调节作用。有研究表明,Caveolin-1与肿瘤的发生与远处转移、癌细胞的转化等过程相关。CAV-1基因是编码Caveolin-1蛋白的DNA序列,可以通过对CAV-1基因进行定点编辑,从而研究Caveolin-1蛋白在肿瘤中的具体作用,以实现治疗疾病的目的。
斑马鱼具有生长发育快,繁殖周期短、子代数量多、体外受精、胚胎透明等生物学特性,十分适合进行基因编辑。构建CAV-1基因突变斑马鱼作为疾病模型,能深入探究CAV-1基因与相关疾病的联系及发生机制,为靶向药物的筛选提供一种稳定可靠的模式生物。
发明内容
基于此,本发明的目的在于,提供一种CAV-1基因缺失斑马鱼及其制备方法。
为了实现上述目的,本发明采用了如下技术方案:
一种CAV-1基因敲除方法,其过程包括,设计识别CAV-1基因靶位点的sgRNA序列,所述的sgRNA序列与核酸酶结合并引导核酸酶结合到CAV-1基因靶位点处,核酸酶对靶位点处的序列进行随机剪切,通过细胞自身的非同源末端连接修复机制修复CAV-1基因双链,造成移码突变,完成CAV-1基因被敲除。
进一步地,所述的sgRNA序列具有序列表中SEQ ID NO:1或SEQ ID NO:2所示的核苷酸序列;所述的核酸酶为Cas9蛋白。
进一步地,所述的SEQ ID NO:1记载的核苷酸序列含有HaeⅡ酶切位点;所述的SEQID NO:2记载的核苷酸序列含有StyⅠ酶切位点。
本发明所述的CAV-1基因缺失斑马鱼突变体的制备方法,包括以下步骤:
1)设计识别CAV-1基因靶位点的sgRNA序列,所述的sgRNA序列具有序列表中SEQID NO:1或SEQ ID NO:2所示的核苷酸序列;
2)将所述的sgRNA序列和Cas9mRNA共同显微注射到斑马鱼胚胎中,然后对得到的斑马鱼胚胎进行培养,得到所述的CAV-1基因缺失斑马鱼突变体。
进一步地,所述步骤1)具体包括:查询斑马鱼CAV-1基因序列及功能结构域,结合CRISPR/Cas9敲除原理,设计并合成包含sgRNA序列的引物序列,然后通过PCR扩增得到大量双链sgRNA序列,接着通过体外转录双链sgRNA序列得到单链sgRNA序列。
进一步地,所述的引物序列具有序列表中SEQ ID NO:3或者SEQ ID NO:4所示的核苷酸序列,以及具有序列表中SEQ ID NO:5所示的核苷酸序列。
进一步地,步骤2)中,所述的Cas9mRNA来自于pGH-T7-zCas9质粒,XbaI酶切 pGH-T7-zCas9质粒得到Cas9DNA双链,然后通过体外转录Cas9DNA双链得到Cas9mRNA单链。
进一步地,步骤2)中,所述的斑马鱼胚胎为单细胞期胚胎,显微注射剂量为2nL;其中, sgRNA的注射浓度为300ng/μL,Cas9mRNA的注射浓度为120ng/μL。
一种CAV-1基因缺失斑马鱼突变体的检测方法,包括以下步骤:以待检测的斑马鱼基因组DNA为模板,PCR扩增含有权利要求2中所述的sgRNA序列的DNA片段,然后HaeⅡ或者StyⅠ酶切该DNA片段,实现CAV-1基因缺失斑马鱼突变体的检测。
进一步地,所述PCR扩增的引物序列具有序列表中SEQ ID NO:6和SEQ ID NO:7所示的核苷酸序列,或者具有序列表中SEQ ID NO:8和SEQ ID NO:9所示的核苷酸序列。
本发明基于CAV-1基因与肿瘤的发生和远端转移、癌细胞的转化有关,构建了CAV-1基因缺失斑马鱼突变体,方便对CAV-1基因在疾病中的作用进行在体研究。
附图说明
图1为CAV-1突变体的繁育及筛选流程图;
图2为XbaI酶切pGH-T7-zCas9质粒示意图;
图3为显微注射和Cas9蛋白工作原理示意图;
图4为显微注射胚胎CAV-1靶位点1酶切鉴定电泳图;
图5为显微注射胚胎CAV-1靶位点2酶切鉴定电泳图;
图6为F1的CAV-1靶位点1酶切鉴定电泳图;
图7为F1的CAV-1靶位点2酶切鉴定电泳图;
图8为qPCR检测F2突变体的CAV-1的mRNA表达水平柱状图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例一:选择斑马鱼CAV-1基因靶位点
查找斑马鱼CAV-1基因生物信息,基于CAV-1基因编码的蛋白Caveolin-1具有跨膜物质运输和信号传导作用,因此,将靶位点设置在CAV-1基因编码跨膜域的位置。同时,为了便于检测,靶位点序列中最好含有酶切位点。
靶位点1位于Caveolin-1蛋白跨膜域5’端交界处,该序列中含有HaeⅡ酶切位点;靶位点2位于Caveolin-1蛋白跨膜域5’端前159碱基处,该序列中含有StyⅠ酶切位点。靶位点的核苷酸序列如下:
靶位点1:ggctgctgacagcgctggt;(下划线部分为HaeⅡ酶切位点)
靶位点2:gaccaggtcaatctccttggtg。(下划线部分为StyⅠ酶切位点)
实施例二:筛选斑马鱼亲本
单核苷酸多态性(Single nucleotide polymorphism,SNP)是指在基因组水平上由单个核苷酸的变异而引起的DNA序列多态性,是自然界中的普遍现象。为了使sgRNA序列精确识别靶位点,需要筛选靶位点序列不存在SNP的胚胎,即需要筛选靶位点不存在SNP的斑马鱼亲本。
本发明通过扩增包含靶位点序列的片段,对其测序,并比对其与靶位点序列的一致性,进行斑马鱼亲本的筛选。具体过程如下:
选取6~8对AB品系野生型斑马鱼,剪背鳍,抽RNA并反转录得到cDNA,该cDNA作为PCR扩增模板。根据CAV-1基因靶位点处的序列,设计特异性引物,使得扩增得到的序列包含完整的靶位点序列,且只含有一个HaeⅡ或者StyⅠ酶切位点。引物如下:
靶位点1的正向引物:aggtcttagaatccagtcagtg;反向引物:cactctgtccttacaccacc。
靶位点2的正向引物:gtgtggtgcttcatttctatcc;反向引物:atggtcttacttagcagtgtg。
包含靶位点1序列在内的片段长度为472bp,只含有一个HaeⅡ酶切位点;包含靶位点2 序列在内的片段长度为574bp,只含有一个StyⅠ酶切位点。
PCR反应体系如下(25μL):
PCR反应条件如下:94℃预变性5分钟,94℃变性30秒,59℃退火30秒,72℃延伸30秒, 40个循环,最后72℃延伸7分钟。其中,包含靶点1序列片段的PCR退火温度为59℃,而包含靶点2序列片段的PCR退火温度为56℃。
对所得的PCR产物进行测序,并将测序结果与靶位点序列进行比对,保留与靶位点序列完全一致的成鱼,即为靶位点无SNP的斑马鱼成鱼。以靶位点无SNP的斑马鱼成鱼为亲本,交配获得靶位点无SNP的单细胞胚胎,该胚胎用于显微注射。
实施例三:体外合成sgRNA
本发明采用T7转录体系进行sgRNA的转录。sgRNA序列能够引导Cas9蛋白剪切靶位点处的DNA序列,其序列包含两部分:一部分与Cas9蛋白结合;另一部分识别靶位点序列。根据 CAV-1基因靶位点序列,设计T7启动子的下游区域,使得最终转录出来的RNA序列包含sgRNA的完整序列。
根据T7启动子序列和CAV-1基因靶位点序列,设计特异性引物,如下:
靶位点1的正向引物:taatacgactcactatagggctgctgacagcgctggtgttttagagctagaaatagc;(斜体部分是T7启动子序列,下划线部分是靶位点1序列)
靶位点1的反向引物:agcaccgactcggtgccact。
靶位点2的正向引物:taatacgactcactataggaccaggtcaatctccttggtggttttagagctagaaatagc;(斜体部分是T7启动子序列,下划线部分是靶位点2序列)
靶位点2的反向引物:agcaccgactcggtgccact。
以sgRNA的骨架载体pT7-gRNA质粒为模板,和上述引物进行PCR扩增。所得扩增产物作为体外转录模板。该转录模板序列按功能可分为三个区域:分别是转录启动子区、sgRNA 基因靶向序列和Cas9蛋白铆定序列。
PCR反应体系如下(50.0μL):
PCR反应条件如下:94℃预变性5分钟,94℃变性30秒,60℃退火30秒,72℃延伸30秒,40个循环,最后72℃延伸7分钟。
所得的PCR产物经纯化处理后,作为体外转录sgRNA的模板,用T7聚合酶介导的转录反应体系进行体外转录。
体外转录反应体系如下(50.0μL):
体外转录反应条件如下:37℃下转录反应3小时。
体外转录所得的sgRNA中含有DNA,通过加入DNase1去除DNA只保留sgRNA,反应体系如下:
sgRNA 50.0μL,
DNase1 2.0μL。
反应条件如下:37℃反应15~30分钟。
体外转录得到的sgRNA经去DNA和纯化后,通过琼脂糖凝胶电泳进行分析,并用超微量紫外分光光度计进行定量,随后于-80℃储存。
实施例四:制备Cas9mRNA
本发明的Cas9基因序列来自于pGH-T7-zCas9质粒。如图2所示,pGH-T7-zCas9质粒经XbaⅠ酶切后,可得到含有Amp基因序列、T7启动子序列、核定位信号(Nuclear SignalLocalization,NSL)序列、Cas9基因序列和核定位信号系列的片段。
酶切反应体系如下(50.0μL):
酶切反应条件如下:37℃下酶切反应10小时。
所得的酶切产物经纯化处理后,作为体外转录Cas9mRNA的模板,用T7聚合酶介导的转录反应体系进行体外转录。
体外转录反应体系如下(20.0μL):
体外转录反应条件如下:37℃下转录反应2小时。
体外转录所得的Cas9mRNA中含有DNA,通过加入DNase1去除DNA只保留Cas9 mRNA,反应体系如下:
Cas9mRNA 20.0μL,
DNase1 2.0μL。
反应条件如下:37℃反应15~30分钟。
去除DNA之后的Cas9mRNA经氯化锂沉淀法回收并纯化后,通过聚丙烯酰胺凝胶电泳 (PAGE)进行分析,并用超微量紫外分光光度计进行定量,随后于-80℃储存。
实施例五:显微注射斑马鱼胚胎
选择靶位点无SNP的雌雄鱼交配得到受精卵,约18h后取上述受精卵进行显微注射。显微注射前,先混匀sgRNA和Cas9mRNA,其中,sgRNA的终浓度为300ng/μL,Cas9mRNA 的终浓度为120ng/μL。
如图3所示,在显微镜下,将预混好的Cas9mRNA和sgRNA溶液注射入单细胞期斑马鱼胚胎中,每个受精卵注射剂量为2nL。至少注射200枚胚胎,同时预留部分未经注射的同批胚胎作为实验对照。注射胚胎2小时后,于显微镜下挑出未受精和已死亡的胚胎,正常胚胎放入孵育溶液中培养。
胚胎孵育溶液的配方如下(800mL):
水 800mL,
美兰溶液 1~2滴。
胚胎孵育条件如下:28.5℃条件下培养至受精后5天,在此期间每12小时更换孵育溶液,同时清除死卵并记录死亡情况。
实施例六:Cas9突变效率检测
从注射组中随机挑取5~10条受精后一天的(1day post fertilization,1dpf)无畸形的胚胎,提取胚胎基因组DNA。以该基因组DNA为模板,与序列表中的SEQ ID NO:6和SEQID NO:7所示的核苷酸序列为引物,或者与序列表中的SEQ ID NO:8和SEQ ID NO:9所示的核苷酸序列为引物进行PCR扩增。PCR反应体系与条件参照实施例1。由于该PCR产物包含靶位点序列,和唯一的HaeⅡ或Sty I酶切位点,因此,对该片段进行酶切检测即可掌握靶位点突变情况。
为了确定酶切是否完全,实验需选取同一批次未经注射的胚胎作为对照组。
酶切体系如下:(10.0μL)
酶切反应条件如下:37℃下酶切反应10~12h。其中,PCR产物为含有靶位点1序列的片段时,使用HaeⅡ酶,PCR产物为含有靶位点2序列的片段时,使用StyⅠ酶。
CAV-1基因靶位点1突变效率检测结果如图4所示。经过PCR扩增,实验组(第3~24条带)和对照组(第1~2条带)均得到471bp长度的片段。该片段含有靶位点1序列,即含有一个 HaeⅡ酶切位点。
上述片段经过HaeⅡ酶切反应后,阳性对照组,即加入HaeⅡ的第1条带被完全切开;阴性对照组,未加入HaeⅡ的第2条带未被切开;实验组(第3~24条带)中,除了第20条带被HaeⅡ完全切开之外,其余21条条带均未被完全切开,且其最上面的条带与阴性对照组位置相同。未能被HaeⅡ酶完全切开,说明该酶切位点的序列已被破坏,HaeⅡ限制性内切酶无法识别破坏后的酶切位点,故而不能够完全酶切片段。
本实验结果表明:经过注射包含靶位点1序列的sgRNA和Cas9mRNA的22个斑马鱼胚胎,有21个胚胎的靶位点1序列已被敲除,存在潜在突变,并且本次靶位点1的突变效率为21条:22条=95.5%。
CAV-1基因靶位点1突变效率检测结果如图5所示。经过PCR扩增,实验组(第3~16条带)和对照组(第1~2条带)均得到573bp长度的片段。该片段含有靶位点2序列,即含有一个 StyⅠ酶切位点。
上述片段经过StyⅠ酶切之后,阳性对照组,即加入StyⅠ的第1条带被完全切开;阴性对照组,未加入StyⅠ的第2条带未被切开;实验组(第3~16条带)中,第3、4、6、8、9、 10、11、12、13条带未被StyⅠ完全切开之外,且其最上面的条带与阴性对照组位置相同。未能被StyⅠ酶完全切开,说明该酶切位点的序列已被破坏,StyⅠ限制性内切酶无法识别破坏后的酶切位点,故而不能够完全酶切片段。
本实验结果表明:经过注射包含靶位点2序列的sgRNA和Cas9mRNA的14个斑马鱼胚胎,有9个胚胎的靶位点2序列已被敲除,存在潜在突变,且本次靶位点2的突变效率为9 条:14条=64.3%。
实施例七:筛选突变的成鱼
饲养注射后未畸形的胚胎至3月龄,剪其尾鳍,筛选具有潜在突变的F0。逐条剪尾鳍并分别提基因组DNA,以该基因组DNA为模板,与实施例1中的引物进行PCR扩增并酶切该PCR片段。通过PCR扩增含靶点序列和酶切检测靶位点的突变情况逐条进行检测,筛选出有潜在突变F0。选取具有潜在突变的F0与无SNP的AB品系斑马鱼杂交,得到F1胚胎,饲养胚胎至适合剪尾鳍。同理筛选F1突变体。F1突变体与健康成熟已检测无SNP的野生型AB 杂交,大量繁殖F2。
斑马鱼饲养条件如下:pH 7.2~7.6,水温28.5~29.5℃,每日光照时间14小时,8:30~22:30。另外,根据食物和环境的变化,将斑马鱼的饲养分为两个阶段。第一阶段,将受精后5天(5 days post fertilization,5dpf)的胚胎从28.5℃恒温箱转置于小缸中饲养至受精后15天(15days post fertilization,15dpf),在此期间,每日喂食2~3次虾虫,同时每日更换养殖水;第二阶段,将15天的幼鱼转置于循环开放的大缸中饲养至3月龄,受精后15天至30天期间,每日两次喂食虾虫,受精后30天(30days post fertilization,30dpf)开始逐渐添加丰年虾,2月龄开始每日上午喂食粗虾粉,下午喂食丰年虾,期间每周定时清洗鱼缸。
实施例八:检测突变体基因型
经过筛选的F1突变体,以其基因组DNA为模板,PCR扩增含有靶位点序列的片段,并对该片段进行测序。将测序结果与原序列进行比对,从而确定突变体的基因型。实验结果显示,靶位点1的突变基因型有10种,分为两类。第一类基因型:缺失或增加的碱基数量为3 的倍数,包括(-3+9)、(-4+10)、(-6)、(-12)、(-15)5种基因型;第二类基因型:缺失或增加的碱基数量非3的倍数,包括(-13)、(-6+31)、(-8)、(-25+3)、(-17+4) 5种基因型。
实施例九:检测突变的遗传效率
选取有潜在突变的F0突变体与无SNP的AB品系斑马鱼杂交,获取F1。随机挑取10个以上F1胚胎,分别提取基因组DNA。PCR扩增含有靶位点序列的片段,并酶切该片段,检测F1靶位点的突变情况,从而获得F0的突变遗传效率。
随机挑取22条F1胚胎作为实验组(第1~22条带),和2条AB品系胚胎(第23~24 条带)作为对照组。分别提取基因组DNA并PCR扩增含靶位点1的片段,电泳跑胶结果,如图6所示,均可见约471bp长度的条带。经HaeⅡ酶切后,对照组条带均被完全切开,实验组有16条未被完全切开。本次实验结果表明:CAV-1基因靶位点1突变体的F0遗传效率为16条:22条=72.7%。
同理随机挑取12条F1胚胎实验组(第1~12条带),取2条AB品系胚胎(第13~14条带)作为对照组。分别提取基因组DNA并PCR扩增含靶位点2的片段,电泳跑胶结果,如图7所示,均可见573bp长度的条带。经StyI酶切后,对照组条带均被完全切开,实验组有 2条未被完全切开。本次实验结果表明:CAV-1基因靶位点2突变体的F0遗传效率为2条:12 条=16.7%。
实施例十:检测F2中CAV-1mRNA表达水平
将CAV-1基因靶位点1的10种F1基因型突变体培养为成鱼,与无SNP的AB品系斑马鱼交配,获得F2。提取F2个体的RNA,通过反转录得到cDNA。以该cDNA为模板,进行实时荧光定量核酸扩增(Real-time Quantitative PCR,qPCR),检测F2个体的CAV-1mRNA 表达水平。qPCR实验以RPP0为内参基因,设计RPP0和CAV-1的特异性引物如下:
内参RPP0基因的正向引物:ctgaacatctcgcccttctc;
RPP0基因的反向引物:tagccgatctgcagacacac。
CAV-1基因的正向引物:ggaaccgcaggaatacgct;
CAV-1基因的正向引物:ctgaagtgtcttttcgttgatgct。
qPCR反应体系如下:(10.0μL)
qPCR反应条件如下:95℃预变性10分钟,95℃变性10秒,60℃退火10秒,72℃延伸10秒,45个循环,最后95℃反应10秒,65℃反应60秒,97℃反应1秒。
本实验结果,如图8所示,相对于无SNP的AB品系斑马鱼,F2个体中CAV-1的mRNA 水平明显较低,尤其是基因型为(-25+3)和(-6+31)的突变体,CAV-1的mRNA水平更低。本实验结果表明:CAV-1基因被有效敲除,且该敲除可遗传,缺失或增加碱基数量为非3倍数的基因型敲除效果更佳。
序列表
<110> 南方医科大学
<120> 一种CAV-1基因缺失斑马鱼及其制备方法
<160> 13
<170> SIPOSequenceListing 1.0
<210> 1
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggctgctgac agcgctggt 19
<210> 2
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gaccaggtca atctccttgg tg 22
<210> 3
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
taatacgact cactataggg ctgctgacag cgctggtgtt ttagagctag aaatagc 57
<210> 4
<211> 60
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
taatacgact cactatagga ccaggtcaat ctccttggtg gttttagagc tagaaatagc 60
<210> 5
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
agcaccgact cggtgccact 20
<210> 6
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
aggtcttaga atccagtcag tg 22
<210> 7
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cactctgtcc ttacaccacc 20
<210> 8
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gtgtggtgct tcatttctat cc 22
<210> 9
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
atggtcttac ttagcagtgt g 21
<210> 10
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ctgaacatct cgcccttctc 20
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
tagccgatct gcagacacac 20
<210> 12
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
ggaaccgcag gaatacgct 19
<210> 13
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
ctgaagtgtc ttttcgttga tgct 24

Claims (10)

1.一种CAV-1基因敲除方法,其特征在于,设计识别CAV-1基因靶位点的sgRNA序列,所述的sgRNA序列与核酸酶结合并引导核酸酶结合到CAV-1基因靶位点处,核酸酶对靶位点处的序列进行随机剪切,通过细胞自身的非同源末端连接修复机制修复CAV-1基因双链,造成移码突变,完成CAV-1基因被敲除。
2.根据权利要求1所述的CAV-1基因敲除方法,其特征在于,所述的sgRNA序列具有序列表中SEQ ID NO:1或SEQ ID NO:2所示的核苷酸序列;所述的核酸酶为Cas9蛋白。
3.根据权利要求2所述的CAV-1基因敲除方法,其特征在于,所述的SEQ ID NO:1记载的核苷酸序列含有HaeⅡ酶切位点;所述的SEQ ID NO:2记载的核苷酸序列含有StyⅠ酶切位点。
4.一种CAV-1基因缺失斑马鱼突变体的制备方法,其特征在于,所述的制备方法包括以下步骤:
1)设计并合成识别CAV-1基因靶位点的sgRNA序列,所述的sgRNA序列具有序列表中SEQID NO:1或SEQ ID NO:2所示的核苷酸序列;
2)将所述的sgRNA序列和Cas9mRNA共同显微注射到斑马鱼胚胎中,然后对得到的斑马鱼胚胎进行培养,得到所述的CAV-1基因缺失斑马鱼突变体。
5.根据权利要求4所述的CAV-1基因缺失斑马鱼突变体的制备方法,其特征在于,所述步骤1)具体包括:查询斑马鱼CAV-1基因序列及功能结构域,结合CRISPR/Cas9敲除原理,设计并合成包含sgRNA序列的引物序列,然后通过PCR扩增得到大量双链sgRNA序列,接着通过体外转录双链sgRNA序列得到单链sgRNA序列。
6.根据权利要求5所述的CAV-1基因缺失斑马鱼突变体的制备方法,其特征在于,所述的引物序列具有序列表中SEQ ID NO:3或者SEQ ID NO:4所示的核苷酸序列,以及具有序列表中SEQ ID NO:5所示的核苷酸序列。
7.根据权利要求4所述的CAV-1基因缺失斑马鱼突变体的制备方法,其特征在于,步骤2)中,所述的Cas9mRNA来自于pGH-T7-zCas9质粒,XbaⅠ酶切pGH-T7-zCas9质粒得到Cas9DNA双链,然后通过体外转录Cas9DNA双链得到Cas9mRNA单链。
8.根据权利要求4所述的CAV-1基因缺失斑马鱼突变体的制备方法,其特征在于,步骤2)中,所述的斑马鱼胚胎为单细胞期胚胎,显微注射剂量为2nL;其中,sgRNA的注射浓度为300ng/μL,Cas9mRNA的注射浓度为120ng/μL。
9.一种CAV-1基因缺失斑马鱼突变体的检测方法,其特征在于,包括以下步骤:以待检测的斑马鱼基因组DNA为模板,PCR扩增含有权利要求2中所述的sgRNA序列的DNA片段,然后HaeⅡ或者StyⅠ酶切该DNA片段,实现CAV-1基因缺失斑马鱼突变体的检测。
10.根据权利要求9所述的CAV-1基因缺失斑马鱼突变体的检测方法,其特征在于:所述PCR扩增的引物序列具有序列表中SEQ ID NO:6和SEQ ID NO:7所示的核苷酸序列,或者具有序列表中SEQ ID NO:8和SEQ ID NO:9所示的核苷酸序列。
CN201711273893.7A 2017-12-06 2017-12-06 一种cav-1基因缺失斑马鱼及其制备方法 Pending CN108148873A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711273893.7A CN108148873A (zh) 2017-12-06 2017-12-06 一种cav-1基因缺失斑马鱼及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711273893.7A CN108148873A (zh) 2017-12-06 2017-12-06 一种cav-1基因缺失斑马鱼及其制备方法

Publications (1)

Publication Number Publication Date
CN108148873A true CN108148873A (zh) 2018-06-12

Family

ID=62466652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711273893.7A Pending CN108148873A (zh) 2017-12-06 2017-12-06 一种cav-1基因缺失斑马鱼及其制备方法

Country Status (1)

Country Link
CN (1) CN108148873A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112105724A (zh) * 2018-08-09 2020-12-18 深圳华大生命科学研究院 无内源hla基因背景的抗原递呈细胞系的构建方法、抗原递呈细胞系及其用途
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11999947B2 (en) 2023-02-24 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149058A1 (en) * 2012-03-30 2013-10-03 Board Of Regents, The University Of Texas System Monoclonal antibodies specific to human cav-1 and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149058A1 (en) * 2012-03-30 2013-10-03 Board Of Regents, The University Of Texas System Monoclonal antibodies specific to human cav-1 and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林海燕: "柚皮素治疗斑马鱼急性酒精性脂肪肝机制的研究及小窝蛋白基因缺陷斑马鱼突变体的构建", 《万方学位论文数据库》 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN112105724A (zh) * 2018-08-09 2020-12-18 深圳华大生命科学研究院 无内源hla基因背景的抗原递呈细胞系的构建方法、抗原递呈细胞系及其用途
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12006520B2 (en) 2019-06-14 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11999947B2 (en) 2023-02-24 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof

Similar Documents

Publication Publication Date Title
CN108148873A (zh) 一种cav-1基因缺失斑马鱼及其制备方法
CN105647969B (zh) 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
Bassett et al. CRISPR/Cas9 mediated genome engineering in Drosophila
CN100575485C (zh) 使用锌指核酸酶的定向染色体诱变
CN107406846A (zh) 通过电穿孔将Cas9 mRNA导入到哺乳动物的受精卵的方法
CN107988268A (zh) 一种基因敲除选育tcf25基因缺失型斑马鱼的方法
CN107287245A (zh) 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法
CN109628454B (zh) 斑马鱼糖原贮积症gys1和gys2基因突变体的构建方法
Zhou et al. Programmable base editing of the sheep genome revealed no genome-wide off-target mutations
Maraia The subset of mouse B1 (Alu-equivalent) sequences expressed as small processed cytoplasmic transcripts
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
US11388892B2 (en) Method for preparing CKO/KI animal model by using CAS9 technology
CN107119076A (zh) 一种免疫缺陷小鼠模型、其制备方法及应用
CN108048486A (zh) 一种基因敲除选育fhl1b基因缺失型斑马鱼的方法
US20220136041A1 (en) Off-Target Single Nucleotide Variants Caused by Single-Base Editing and High-Specificity Off-Target-Free Single-Base Gene Editing Tool
CN106119284A (zh) 一种用于构建免疫缺陷动物模型的产品及其应用
CN108103108A (zh) Cebpa基因缺失斑马鱼突变体的制备及其应用
CN105505879B (zh) 一种培养转基因动物胚胎细胞或转基因动物的方法及培养基
CN112226465B (zh) 一段分离的核苷酸序列在无矿化肌间骨斑马鱼构建中的应用
CN110066805A (zh) 基因敲除选育adgrf3b基因缺失型斑马鱼的方法
CN113234756A (zh) 一种基于CRISPR/Cas9技术的LAMA3基因敲除动物模型的构建方法
CN111778278A (zh) 一种Slfn4缺失的动脉粥样硬化模型小鼠的构建方法及其应用
CN114480497B (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
KR101842014B1 (ko) Cpf1 유전자가위를 이용한 유전자 결손 동물모델 및 이의 제조방법
CN108949763A (zh) 能有效抑制猪瘟病毒感染的精确突变LamR基因及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180612