CN106868008A - CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA - Google Patents
CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA Download PDFInfo
- Publication number
- CN106868008A CN106868008A CN201611252179.5A CN201611252179A CN106868008A CN 106868008 A CN106868008 A CN 106868008A CN 201611252179 A CN201611252179 A CN 201611252179A CN 106868008 A CN106868008 A CN 106868008A
- Authority
- CN
- China
- Prior art keywords
- lin28a
- genes
- grna
- people
- crispr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/82—Translation products from oncogenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明属于分子生物学与生物医学技术领域。具体的说,本发明涉及基于CRISPR/Cas9系统的gRNA序列在敲除人Lin28A基因的应用以及肿瘤治疗中的应用。本发明根据CRISPR/Cas9的设计原则,设计了6个向导RNA(gRNA),其序列表见SEQ ID NO.1‑6所示,并且将其构建在PX458载体上,经活性检测筛选获得2个高效靶向gRNA。在人肝癌细胞株(HepG2)和人黑色素瘤细胞株(A375)中利用这2个gRNA指导的CRISPR/Cas9系统,可以有效的敲除人Lin28A基因,这一系统易于操作,人Lin28A基因敲除效率高,适用于多种肿瘤细胞模型。本发明涉及的gRNA有望在治疗肿瘤的新型药物中得到应用。
Description
技术领域
本发明属于分子生物学与生物医学技术领域,具体涉及CRISPR/Cas9特异性敲除人基因组Lin28A基因的方法以及用于靶向人Lin28A基因的gRNA。
背景技术
基因敲除,即针对某个特定的基因,通过破坏或改变其基因序列令其功能丧失的一种技术手段。常用的基因敲除方法包括 :锌指核酸酶(ZFNs)(Miller etal.,2007;Porteus and Baltimore,2003;Wood et al.,2011)、类转录因子活化因子核酸酶(TALEN)(Miller et al.,2011;Wood et al.,2011;Zhang et al.,2011),以及最近发现的原核生物第二类适应性免疫系统 CRISPER/Cas9 系统 (Cong et al.,2013;Mali etal.,2013)等。
CRISPER/Cas9 系统原本被细菌免疫系统用来抵御外源病毒或质粒。在第二类CRISPER 系统中,Cas9 核酸内切酶在 sgRNA 的引导下切割双链 DNA,造成基因组双链断裂,利用细胞基因组修复的不稳定性产生修复错误(碱基的缺失或插入),从而可能造成基因功能的丧失,实现基因敲除的目的。
Lin28A是一种高度保守的RBP,是miRNA调节蛋白。有研究显示Lin28属于一种致癌基因,在多种肿瘤组织或细胞系中高表达,促进肿瘤细胞的增殖和肿瘤的进展,而且多出现在低分化以及愈后差的肿瘤中。尽管Lin28A促进肿瘤发生的确切机制还不明确,但已经有大量的证据表明Lin28/let-7双向负反馈通路可以与一些因子(如RAS,MYC,NF-κB)结合,形成一个复杂的网络参与致癌作用。Lin28A还是肿瘤细胞中多种与生长相关的上游基因(例如HER2和HMGA1)的主调节器,这一发现可能为更有效地诊断和治疗肿瘤开辟新的方向。Lin28A作为一种参与诱导多能干细胞的多能因子可能成为肿瘤的潜在治疗靶点。因此,本发明开发出一种高效、靶向敲除人Lin28A基因的gRNA,对于CRISPR/Cas9系统充分发挥作用和肿瘤治疗的靶标的研究具有极其重要的作用。
发明内容
本发明目的在于通过设计、构建、筛选,最终提供一些基于CRISPR/Cas9系统,同时靶向人Lin28A基因的高效gRNA及其靶位点序列,并用其抑制人Lin28A基因的表达,从而抑制肿瘤细胞的增值。
为实现上述目的,本发明以CRISPR/Cas9系统原理及其gRNA的设计原理为基础,设计出6个gRNA,并以PX458为表达载体,构建了gRNA/Cas9表达系统。通过筛选和系列分析测试,最终筛选出2个高效的gRNA,并在HepG2和A375肿瘤细胞中制备出Lin28A基因缺陷型肿瘤细胞模型。
本发明技术方案如下:
靶向人Lin28A基因的高效gRNA、靶点序列的设计及gRNA/Cas9表达系统构建;
在肿瘤细胞模型中分析检测gRNA对于肿瘤细胞Lin28A基因靶点的靶向性,筛选到2个高效的gRNA,其对应的DNA序列如序列表SEQ ID NO.1和SEQ ID NO.5任意一条序列所示,然后再制备出HepG2和A375肿瘤细胞Lin28A基因缺陷型肿瘤细胞模型。
附图说明
附图1 为T7 Endonuclease I酶切结果图;
附图2 为A375测序结果图;
附图3 为HepG2测序结果图;
附图4 为Western blot检测缺陷株和正常株Lin28A蛋白表达结果图。
具体实施方式
实施例1 靶向人Lin28A基因的gRNA合成及载体构建
1、靶向人Lin28A基因的gRNA 的选择和设计
在Genebank中找到人Lin28A基因的序列,在人Lin28A基因的外显子区域设计潜在靶位点;
通过在线设计工具(http://crispr.mit.edu/)及gRNA的设计原则,评估人Lin28A基因序列上得分较高的靶位点设计gRNA。
2、靶向人Lin28A基因的gRNA 寡核苷酸序列的合成和真核表达载体的构建
将pSpCas9(BB)-2A-GFP (PX458)质粒(Addgene plasmid ID:48138,以下简称PX458),用BbSI酶切,37℃水浴1h后,1%的琼脂糖电泳,回收酶切产物(TAKARA胶回收试剂盒)。
酶切体系如下:
将两寡核苷酸退火,形成带有粘性末端的短双链DNA。
反应体系如下:
将上述反应体系在200 μLPCR管中混合均匀,然后将PCR管在37℃水浴锅中处理30min,再放入500 ml沸水中,自然冷却至室温。
连接体系:
将带有粘性末端的双链短DNA产物连入酶切后的PX458线性片段,将连接产物转化大肠杆菌DH5α感受态细胞(Takara Code : D9057A),并涂布于氨苄青霉素浓度为100 μg/mL的LB固体平板上培养过夜,挑取生长良好的单菌落,于15 mL 氨苄青霉素浓度为100 μg/mL的LB液体培养基中,置于250 rpm、37℃振荡培养过夜,提取质粒,命名为PX458-Lin28A-T1。同样的方法,对应靶点编号构建出CRISPR/Cas9载体,分别命名为PX458-Lin28A-T2、PX458-Lin28A-T3、PX458-Lin28A-T4、PX458-Lin28A-T5和PX458-Lin28A-T6。
3、无内毒素质粒DNA 的制备
A、分别取PX458-Lin28A-T1、PX458-Lin28A-T2、PX458-Lin28A-T3、PX458-Lin28A-T4、PX458-Lin28A-T5和PX458-Lin28A-T6质粒各1 μL加入100 μL DH5α感受态细胞中吹匀,冰中静置20 min,再放入42℃水浴90 s,迅速置于冰浴中3 min,加入500 μL LB液体培养基,放置摇床180 rpm 37℃ 1 h,取菌液100 μL均匀涂布于氨苄青霉素浓度为100 μg/mL 的LB固体培养基37℃培养过夜;
B、取单菌落3 mL于氨苄青霉素浓度为100 μg/mL的LB液体培养基中,250 rpm、37℃振荡培养8 h;从中取300 μL菌液接种于300 mL 氨苄青霉素浓度为100 μg/mL的LB液体培养基中,并于250 rpm、37℃振荡培养12~16 h;
C、收集菌液,然后在4℃、4000 rpm条件下离心15 min,弃上清,收集菌体,然后按照QIAGEN EndoFree Plasmid Maxi Kit试剂盒说明书操作步骤提取质粒,得无内毒素的PX458-Lin28A-T1、PX458-Lin28A-T2、PX458-Lin28A-T3、PX458-Lin28A-T4、PX458-Lin28A-T5和PX458-Lin28A-T6载体。
实施例2 制备人黑色素瘤细胞和人肝癌细胞敲除Lin28A基因细胞株
复苏人黑色素瘤细胞(A375细胞株,中科院上海细胞库),将细胞放入加有10%的FBS+DMEM培养瓶中,于37℃、5% CO2的培养箱中培养,转染前1天,传代培养细胞。
将培养A375细胞T75瓶中的培养基吸净,加入2 mL 4℃冰箱取出的0.25%胰酶,使其均匀覆盖瓶底,置于37℃培养箱中3~5 min,取出,摇晃可发现细胞于底部脱离,将其全部晃下,加入3 mL 37℃水浴中预热的10%DMEM,用10 mL移液管进行吹打,吹打6~8次,不留死角,瓶口处较难吹打可将移液管对准瓶口,小力将培养基打出即可覆盖到接近瓶口的细胞。之后,将所有细胞吸出,置于15 mL离心管中,取50 μL混匀后的细胞于1.5 mL eppendorf管中,加入450 μL 10%DMEM,即为10倍稀释、混匀,取10 μL细胞于计数板中计数。传代当天记为第1天,若第2天进行转染,铺900~1000万/T75;若第3天转染,铺350~400万/T75。每瓶T75加10 mL 10%DMEM培养基。转染当天观察细胞密度,80~90%满即可进行转染。
采用脂质体转染法将PX458-Lin28A-T1转染A375细胞。转染体系及试剂使用Lipofectamine™ 2000(invitrogen公司),转染详细步骤参照转染说明书。
转染24 h后,利用胰酶消化转染后贴壁的细胞,离心收集,经流式分选收集转染阳性细胞,吸掉废液加入1 ml PBS重悬细胞,取500 μL放入瓶中继续培养,剩余细胞放入1.5mL离心管,提取DNA(按照DNA提取试剂盒说明书进行)。
以提取的DNA为模板(未转染细胞DNA为对照组),扩增靶点序列,采用T7Endonuclease I酶切鉴定,验证靶点序列突变情况,来确定PX458-Lin28A-T1质粒在细胞内的活性。
PCR反应体系如下:
PCR扩增程序:95℃预变性3 min;95℃变性30 s,58℃退火30 s,72℃延伸40 s,30个循环后72℃延伸5 min,最后4℃保温。
采用同样方法步骤,检测载体PX458-Lin28A-T2、PX458-Lin28A-T3、PX458-Lin28A-T4、PX458-Lin28A-T5和PX458-Lin28A-T6 在细胞内活性。
PCR产物用T7 Endonuclease I 37℃水浴酶切1h,酶切体系如下:
酶切产物经琼脂糖凝胶电泳检测分析,结果(图1)显示:PX458-Lin28A-T1和PX458-Lin28A-T5具有胞内活性。
细胞克隆培养
将剩余贴壁的细胞用胰酶消化,离心吸掉废液,加入1ml PBS重悬细胞,采用极度稀释的方法,将细胞放入10 cm培养皿中培养,培养810天时可观察到细胞克隆比较明显,每个集簇细胞数量约在500~1000个。
将细胞消化,移至96孔板中培养,传代至6孔板时,消化细胞,离心重悬,取一部分提取DNA鉴定,剩余细胞继续培养。
PCR反应体系参考实施例2,将PCR产物克隆送样测序,具体步骤如下:
PCR产物的克隆
参照PMD18-T载体使用说明书,反应体系为10μL:1μ LPMD18-TV ector、4μL纯化PCR产物、5 μL Solution I。在16℃下连接2 h。
连接产物的转化:
a、取感受态细胞DH5α,放置冰中融化5 min,加入10 μL连接产物吹匀,放置冰中20min;
b、然后42℃热击90 s,迅速转入冰浴中维持3 min;
c、加入500 μL的LB液体培养基,置于摇床中,37℃, 180 rpm,1 h;
d、取菌液100 μL均匀涂布于LB固体培养基(含1/1000氨苄青霉素),37℃培养过夜;
e、挑取3个单菌落,分别放入3 mL LB液体培养基(含1/1000氨苄青霉素),37℃ 200rpm,12 h,送至上海生工测序鉴定,测序结果见(图2),筛选得到人黑色素瘤细胞敲除Lin28A基因细胞株,命名为A375-KO-Lin28A。
采用人黑色素瘤细胞敲除人Lin28A基因同样的方法,制备人肝癌细胞敲除Lin28A基因细胞株,经测序鉴定,结果见(图3),筛选得到人肝癌细胞敲除Lin28A基因细胞株,命名为HepG2-KO-Lin28A。
实施例3 Western blot检测A375-Lin28A基因缺陷细胞株和HepG2-Lin28A基因缺陷细胞株的蛋白表达
总蛋白提取---细胞裂解
(1) A375-KO-Lin28A 和HepG2-KO-Lin28A 细胞培养于10 cm培养皿中,同时培养A375和HepG2细胞作为对照组。
(2)弃培养上清,每106个细胞加0.1 mL RIPA buffer。
(3)冰上放置数分钟,用枪头轻轻吹打,使细胞充分裂解。再轻轻倾斜培养皿使裂解产物流向瓶皿的一边或一角,然后将其转移到1.5 mL离心管,剧烈振荡30 s。
(4)12000 rpm,4ºC离心15 min,吸取上清,即可进行后续Western blot检测。
蛋白浓度测定(BCA测蛋白浓度)
工作液的配制
测定前,按照 BCA Reagent A:BCA Reagent B = 100:1的比例混合后配制成工作液。例如配制30 mL工作液:30 mL BCA Reagent A + 0.3 mL BCA Reagent B,充分振荡混配制后的工作液可4℃保存3 d。
所需工作液量的计算方法如下:
所需工作液总体积(mL)= [(BSA标准溶液8份或7份+检测样品数)×平行样本数(n)+1]×1个样品所需的工作液体积
例1) 标准操作流程【1 mL反应体系】检测样品数为12个、平行样(n=2)时:
[(8+12)×2+1 ]× 1 mL=41 mL
例2) 标准操作流程【200 μL反应体系】检测样品数为20个、平行样(n=2)时:
[(8+20)× 2+1 ]× 0.2 mL=11.4 mL
例3) 低浓度蛋白质样品测定的操作流程【1mL反应体系】检测样品数为12个、平行样(n=2)时:[(7+12)× 2+1 ]× 0.5 mL= 19.5 mL
低浓度蛋白样品的标准操作流程(定量范围:0~200 μg/mL)【0.2 mL 反应体系,使用微孔板测定】
BSA 标准品溶液的配制
(1)0.2 mg/mL BSA标准品溶液:取120 μL BSA Standard Solution (2mg/mL),加入1080 μL稀释液后充分混合;
(2)按照下表稀释BSA 标准品溶液。BSA 标准品溶液和检测样品的稀释可使用去离子水、0.9% NaCl或 PBS;
BSA 标准曲线的制备
(1)分别取100 μL稀释后的BSA标准品溶液加入到微孔板中,每个浓度取2个平行样;
(2)加入100 μL工作液后,立即混匀;
(3)37℃水浴槽中反应60 min后,冷却至室温;
(4)使用分光光度计测定562 nm处的吸光度值,测定时,使用1 mL比色皿,用ddH2O校零,尽可能在20 min内检测完毕所有样品;
(5)各浓度BSA标准品溶液的吸光度值减去Blank值的平均值,绘制 BSA 标准品溶液的标准曲线。
检测样品的测定
检测样品测定时,同 BSA 标准品溶液同时进行测定。
(1)分别取100 μL检测样品(稀释15倍)加入到微孔板中,每个样品取2个平行样进行测定;
(如果必要,也可选择与BSA标准品溶液相同的稀释方法稀释检测样品后测定)
(2)加入100 μL工作液后,立即混匀;
(3)37℃水浴中反应60 min后,冷却至室温;
(4)酶标仪波长设定在562 nm 处进行测定。用水校零,尽可能在20 min内检测完毕所有样品;
(5)各样品溶液的吸光度值减去Blank值的平均值,根据标准曲线计算出检测样品的蛋白浓度,A375、HepG2、A375-KO-Lin28A和HepG2-KO-LIN28上样量均为50 μg,样品浓度分别计算得118.01μg/mL、123.26μg/mL、99.76μg/mL、117.63μg/mL。
SDS-PAGE电泳
(1)将长短玻璃板对齐后按照方向放入制胶夹中卡紧,然后垂直卡在制胶架子上准备灌胶;
(2)配制10%分离胶,加入TEMED后立即摇匀即可灌胶。将胶加至适量高度(绿线附近)后,轻柔加上双蒸水压胶;
(3)当水和胶之间有一条折射线时,说明胶已凝了。再等3 min使胶充分凝固就可倒去胶上层水并用滤纸将水吸干;
(4)配制5%的浓缩胶,加入TEMED后立即摇匀即可灌胶。将剩余空间灌满浓缩胶然后将梳子插入浓缩胶中;
(5)待浓缩胶凝固后,将含胶的玻璃板加入电泳夹卡紧,放入电泳槽(电极红对红,黑对黑);
(6)取出上样样品与5×SDS上样缓冲液按4:1比例混合,混匀后沸水中煮5 min使蛋白变性;
(7)加足够的电泳液后按等量蛋白上样;
(8)电泳,80V跑过浓缩胶后转换电压至120 V,待溴酚兰跑至胶板底部刚好没有跑出即可;
(9)将夹子打开使黑的一面保持水平,在上面依次垫海绵垫、滤纸、胶、PVDF膜(经甲醇活化)、滤纸、海绵垫,同时将电泳液换成转移液;
(10)将电流调整到恒流200 mA,转移约1~3 h。根据蛋白分子量的大小,越大的蛋白转膜时所用的时间也越长,但是也不能太久,否则会转透到滤纸上;
(11)取出膜,并做好正反面标记,在TBST中清洗1 min,然后用5%脱脂牛奶封闭液室温封闭2 h;
(12)用封闭液将对应的一抗稀释成一定的浓度(1:500),内参一抗的稀释终浓度为1:1000,然后温育1.5 h或4℃孵育过夜;
(13)用TBST洗3次,每次5 min;
(14)用封闭液将二抗稀释成一定的浓度(1:1000),然后温育1.5 h;
(15)用TBST清洗4次,每次5 min;
(16)曝光,将ECL曝光液按A液:B液 1:1混匀后均匀覆盖在整片膜上,反应2 min放入曝光仪曝光检测(图3),结果显示,A375-KO-LIN28A 和HepG2-KO-LIN28A 细胞Lin28A基因均成功敲除。
SEQUENCE LISTING
<110> 重庆高圣生物医药有限责任公司
<120> CRISPR/Cas9 靶向敲除人Lin28A基因及其特异性gRNA
<130> 2016
<160> 6
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
ggcggcagaa gaggcgcccg 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<400> 2
ggtcgcgctc gaccccccag 20
<210> 3
<211> 20
<212> DNA
<213> 人工序列
<400> 3
ggcgcccgag gaggcgccgg 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<400> 4
ggcgcccgag gaggcgccgg 20
<210> 5
<211> 20
<212> DNA
<213> 人工序列
<400> 5
ggcgccggag gacgcggccc 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<400> 6
gccggaggac gcggcccggg 20
Claims (6)
1.在CRISPR/Cas9特异性敲除人Lin28A基因中用于靶向人Lin28A基因的 gRNA,所述gRNA 在人Lin28A基因上的靶序列符合5’- N (20)-NGG3’ 或 者5’-CCN- N (20)-3’的序列排列规则,在人Lin28A基因上的靶序列是唯一的,其特征在于:所述gRNA在人Lin28A基因的靶向位点位于人Lin28A基因的外显子上。
2.根据权利要求1所述的在CRISPR/Cas9 特异性敲除人Lin28A基因中用于靶向人Lin28A基因的 gRNA,其特征在于:对应的核酸序列如序列表 SEQ ID NO. 1和 SEQ ID NO.5任意一条序列所示。
3.根据权利要求1-2所述的在CRISPR/Cas9特异性敲除人Lin28A基因中用于靶向人Lin28A基因的gRNA,其特征在于:该gRNA在治疗肿瘤的新型药物中的应用。
4.CRISPR/Cas9特异性敲除人Lin28A基因的方法,具体包括如下步骤:
(1)如权利要求 1-3 任意一项所述的gRNA,在其对应 DNA 序列的 5’末端加上CACC得到正向寡核苷酸序列,在其互补链的5’末端加上AAAC得到反向寡核苷酸序列,分别合成正向和反向寡核苷酸序列,然后将合成的序列变性、退火,得到具有 BbsI 粘性末端的双链DNA片段;
(2)将上述合成的双链DNA片段和用BbsI酶切过的PX458 载体进行连接,将连接产物转化到大肠杆菌DH5a中,涂布于带有氨苄青霉素抗性的LB平板上,筛选阳性菌落,提取阳性菌落质粒进行分析及测序,确认gRNA 表达载体构建正确;
(3)将步骤(2)构建的gRNA载体转染 HepG2、A375 细胞,并用PX458空载体转染 HepG2、A375 细胞作为对照组。
5.将步骤(3)转染的细胞经流式分选,筛选出转染阳性的细胞,采用有限稀释的方法,培养细胞克隆,将靶位点测序鉴定,获得Lin28A基因两等位基因敲除的细胞株。
6.如权利要求4中步骤(4)所示,本发明构建筛选的CRISPR/Cas9系统获得HepG2和A375Lin28基因敲除细胞株,命名为A375-KO-Lin28A和HepG2-KO-Lin28A。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611252179.5A CN106868008A (zh) | 2016-12-30 | 2016-12-30 | CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611252179.5A CN106868008A (zh) | 2016-12-30 | 2016-12-30 | CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106868008A true CN106868008A (zh) | 2017-06-20 |
Family
ID=59164146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611252179.5A Pending CN106868008A (zh) | 2016-12-30 | 2016-12-30 | CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106868008A (zh) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107267515A (zh) * | 2017-07-28 | 2017-10-20 | 重庆医科大学附属儿童医院 | CRISPR/Cas9靶向敲除人CNE10基因及其特异性gRNA |
CN107384922A (zh) * | 2017-07-28 | 2017-11-24 | 重庆医科大学附属儿童医院 | CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA |
CN107418974A (zh) * | 2017-07-28 | 2017-12-01 | 新乡医学院 | 一种利用单克隆细胞分选快速获得CRISPR/Cas9基因敲除稳定细胞株的方法 |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
CN108384784A (zh) * | 2018-03-23 | 2018-08-10 | 广西医科大学 | 一种利用CRISPR/Cas9技术敲除Endoglin基因的方法 |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
WO2019237387A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | 用于敲除人ACT35基因的gRNA序列及其应用 |
WO2019237384A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | 用于敲除人CDw137基因的gRNA序列及其应用 |
WO2020000459A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | CRISPR/Cas9靶向敲除人Tp55基因的方法及其特异性gRNA |
WO2020000440A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | CRISPR/Cas9靶向敲除人ASP2基因的方法及其特异性gRNA |
WO2020000436A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人INDO基因的gRNA导向序列及其应用 |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103820454A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
CN104498493A (zh) * | 2014-12-30 | 2015-04-08 | 武汉大学 | CRISPR/Cas9特异性敲除乙型肝炎病毒的方法以及用于特异性靶向HBV DNA的gRNA |
CN105567689A (zh) * | 2016-01-25 | 2016-05-11 | 重庆威斯腾生物医药科技有限责任公司 | CRISPR/Cas9靶向敲除人TCAB1基因及其特异性gRNA |
-
2016
- 2016-12-30 CN CN201611252179.5A patent/CN106868008A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103820454A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
CN104498493A (zh) * | 2014-12-30 | 2015-04-08 | 武汉大学 | CRISPR/Cas9特异性敲除乙型肝炎病毒的方法以及用于特异性靶向HBV DNA的gRNA |
CN105567689A (zh) * | 2016-01-25 | 2016-05-11 | 重庆威斯腾生物医药科技有限责任公司 | CRISPR/Cas9靶向敲除人TCAB1基因及其特异性gRNA |
Non-Patent Citations (2)
Title |
---|
MIN XU等: "MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells", 《ONCOTARGET》 * |
陈超 等: "lin28基因功能的研究进展", 《第二军医大学学报》 * |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN107384922A (zh) * | 2017-07-28 | 2017-11-24 | 重庆医科大学附属儿童医院 | CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA |
CN107418974A (zh) * | 2017-07-28 | 2017-12-01 | 新乡医学院 | 一种利用单克隆细胞分选快速获得CRISPR/Cas9基因敲除稳定细胞株的方法 |
CN107267515A (zh) * | 2017-07-28 | 2017-10-20 | 重庆医科大学附属儿童医院 | CRISPR/Cas9靶向敲除人CNE10基因及其特异性gRNA |
CN107267515B (zh) * | 2017-07-28 | 2020-08-25 | 重庆医科大学附属儿童医院 | CRISPR/Cas9靶向敲除人CNE10基因及其特异性gRNA |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
CN108384784A (zh) * | 2018-03-23 | 2018-08-10 | 广西医科大学 | 一种利用CRISPR/Cas9技术敲除Endoglin基因的方法 |
WO2019237387A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | 用于敲除人ACT35基因的gRNA序列及其应用 |
WO2019237384A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | 用于敲除人CDw137基因的gRNA序列及其应用 |
WO2020000459A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | CRISPR/Cas9靶向敲除人Tp55基因的方法及其特异性gRNA |
WO2020000440A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | CRISPR/Cas9靶向敲除人ASP2基因的方法及其特异性gRNA |
WO2020000436A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人INDO基因的gRNA导向序列及其应用 |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106868008A (zh) | CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA | |
CN108504657B (zh) | 利用crispr-cas9技术敲除hek293t细胞kdm2a基因的方法 | |
CN106701763B (zh) | CRISPR/Cas9靶向敲除人乙肝病毒P基因及其特异性gRNA | |
CN106047803A (zh) | CRISPR/Cas9靶向敲除兔BMP2基因的细胞模型及其应用 | |
CN108486108A (zh) | 一种敲除人hmgb1基因的细胞株及其应用 | |
CN106434752A (zh) | 敲除Wnt3a基因的过程及其验证方法 | |
CN109536463A (zh) | 鸭瘟病毒gE和gI双基因无痕缺失株DPV CHv-ΔgE+ΔgI及其构建方法 | |
CN109735541B (zh) | 一种敲除acadsb基因的奶牛乳腺上皮细胞系及其构建方法 | |
CN103724410B (zh) | 一类调控ccr5和cxcr4基因的融合蛋白及方法 | |
CN110438128A (zh) | 利用CRISPR/Cas9系统敲除猪CCAR1基因的方法 | |
CN107034234B (zh) | 一种用于敲除cho细胞中fut8和dhfr两种基因的试剂盒 | |
CN109576295A (zh) | 一种鸭瘟病毒去MiniF元件gC基因缺失株DPV CHv-ΔgC及其构建方法 | |
CN110423752A (zh) | 沉默Ku70基因的siRNA、重组载体、细胞模型及在抗肿瘤药物中的应用 | |
CN111363028B (zh) | 重组人源ⅰ型胶原蛋白、表达菌株及其构建方法 | |
CN104531760B (zh) | Dp71蛋白的短发夹RNA干扰质粒及其应用方法 | |
CN108130314B (zh) | 一种单克隆细胞培养方法 | |
CN116606791A (zh) | 一种展示促内吞性靶向膜肽的载药小细胞及其制备方法和应用 | |
CN115820693A (zh) | 一种稳定表达冠状病毒3cl蛋白酶的慢病毒体系、细胞模型及构建方法和应用 | |
CN109112129B (zh) | 用于靶向敲除人OC-2基因的特异性sgRNA及应用 | |
CN104651316B (zh) | 一种重组猪圆环病毒病毒样颗粒及其制备方法 | |
CN110499316B (zh) | 一种敲除cd44基因的奶牛乳腺上皮细胞系及其构建方法 | |
CN112941020A (zh) | 一种鸡环状rna在促进成肌细胞的增殖的应用 | |
CN111394370A (zh) | 一种猪RagA基因及其应用 | |
CN105063057A (zh) | 锌指核酸酶介导的猪mstn基因突变序列及其应用 | |
CN109593730A (zh) | 鸭瘟病毒Lorf5基因无痕缺失株DPV CHv-ΔLorf5及其构建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170620 |
|
RJ01 | Rejection of invention patent application after publication |