CN107384922A - CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA - Google Patents

CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA Download PDF

Info

Publication number
CN107384922A
CN107384922A CN201710628534.2A CN201710628534A CN107384922A CN 107384922 A CN107384922 A CN 107384922A CN 201710628534 A CN201710628534 A CN 201710628534A CN 107384922 A CN107384922 A CN 107384922A
Authority
CN
China
Prior art keywords
cne9
shox
grna
cell
u2os
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710628534.2A
Other languages
English (en)
Inventor
朱岷
辛世杰
徐雪姣
许珂
毛会英
李莉
宋萃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Childrens Hospital of Chongqing Medical University
Original Assignee
Childrens Hospital of Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Childrens Hospital of Chongqing Medical University filed Critical Childrens Hospital of Chongqing Medical University
Priority to CN201710628534.2A priority Critical patent/CN107384922A/zh
Publication of CN107384922A publication Critical patent/CN107384922A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Abstract

本发明属于分子生物学与生物医学技术领域,具体地说本发明涉及基于CRISPR/Cas9系统的gRNA序列及其组合在敲除人矮小同源合基因(SHOX)保守非编码序列CNE9的应用以及在CNE9调控SHOX基因相关疾病发生过程中的研究。本发明根据CRISPR/Cas9的设计原则,在CNE9基因组的上下游各设计出2个最有效靶点,其序列表如SEQ ID NO.1‑4所示,然后将其分别构建在px458载体上,并在CNE9基因组的上下游各筛选得到1个向导RNA(gRNA)。在人骨肉瘤细胞(U2OS)中利用这2个gRNA介导的CRISPR/Cas9系统,可以有效的敲除SHOX保守非编码序列CNE9,该系统操作简便、敲除效率高,适用于研究基因多种功能的细胞模型。本发明涉及的gRNA有望在CNE9调控SHOX基因相关疾病(软骨细胞发育异常、孤独症、Rett综合征及胰腺发育不全)治疗中得到推广应用。

Description

CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA
技术领域
本发明属于分子生物学与生物医学技术领域,具体涉及CRISPR/Cas9特异性敲除人SHOX保守非编码序列CNE9的方法以及用于靶向CNE9的gRNA组合。
背景技术
保守非编码元件(Conserved noncoding DNA elements,CNEs)矮小同源盒基因(SHOX基因)随着后基因组学(功能基因组学)的到来,脊椎动物基因组的非编码DNA序列的功能鉴定与特征研究已成为后基因时代的挑战与研究热点。随着实验技术的进步和发展,这些过去被当作是垃圾的CNEs,现在却被认为具有重要的生物学功能。虽然CNEs不编码蛋白质、rRNA、tRNA或ncRNA及与转录和翻译相关的化学物质等,但有研究发现,CNEs在高级结构(染色质构型、蛋白的修饰等)、RNA的翻译及加工过程和DNA转录水平等对基因的表达进行远距离调控,并且还被证实与人类疾病和哺乳动物的各色各样的外表形态有关。随着对CNEs研究的逐步深入,发现大量疾病的发生是由于CNEs的改变,如孤独症、Rett综合征及胰腺发育不全均被证实致病基因内部或侧翼区的CNEs对其相关基因有调控作用。同样在Leri–Weill 软骨发育异常、Langer 肢中部发育不良和特发性矮小中均报道SHOX基因(矮身材含同源异型盒基因——short stature homeobox containing gene,SHOX)内部和(或)上、下游PAR1包括SHOX增强元件有突变或者缺失,说明CNEs对该基因有调控作用。
本发明人前期通过对HEK293细胞进行CNEs的干预,结果显示未转染组(未对细胞进行任何干预)与对照组(加入不带CNEs的空质粒)之间无统计学差异。也就是说,质粒本身对SHOX基因表达量是无任何影响的,排除了质粒对细胞的影响进而影响SHOX基因的表达。而CNE2、CNE3、CNE5、CNE9、CNE10、CNE11与未转染组之间有统计学差异,即以上各CNEs干扰细胞后,对SHOX基因的表达有影响(即表现为增强或抑制作用),
因此,本发明人开发出一种高效、靶向阻断对SHOX基因表达有影响的保守非编码序列CNE9基因的gRNA,将对于CRISPR/Cas9系统充分发挥作用和基因功能的研究具有极其重要的作用。
发明内容
本发明的目的在于通过设计、构建、筛选,最终提供一些基于CRISPR/Cas9系统,同时靶向人SHOX保守非编码序列CNE9的高效gRNA及其靶位点序列,用于抑制CNE9对SHOX基因表达的调控作用,从而控制或治疗相关疾病的发生和发展。
为实现上述目的,本发明以CRISPR/Cas9系统原理及其gRNA的设计原理为基础,软件设计预测,设计出一系列的gRNA,并以px458为表达载体,构建了gRNA/cas9表达系统。通过筛选和系列分析测试,最终筛选出2个有效的gRNA,并利用人骨肉瘤细胞(U2OS)制备出人骨肉瘤细胞保守非编码序列CNE9缺陷型细胞模型,该模型在研究CNE9远程调控的SHOX基因表达相关疾病领域具有极大的应用前景。
本发明的技术方案如下:
1、靶向人SHOX保守非编码序列CNE9的高效gRNA及其靶点序列的设计及gRNA/Cas9表达系统的构建。
2、在人骨肉瘤细胞(U2OS)模型中分析检测gRNA内源活性,筛选到2条有效的gRNA,能够成功靶向敲除保守非编码序列CNE9,其对应的 DNA 序列如SEQ ID NO. 2和 SEQ IDNO. 4任意一条序列所示。
附图说明
附图1为靶序列测序原始结果,由上到下依次为px458-CNE9-T1,px458-CNE9-T2,px458-CNE9-T3和px458-CNE9-T4;
附图2为T7E1酶切PCR产物琼脂糖凝胶电泳分析结果;
附图3为细胞克隆结果图;
附图 4为Western-blot检测SHOX蛋白表达结果图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。实施例中未注明具体条件的实验方法,通常按照常规条件,例如分子克隆实验指南(第三版,J. 萨姆布鲁克等著)中所述的条件,或按照制造厂商所建议的条件。
实施例1靶向人SHOX保守非编码序列CNE9基因的gRNA合成及载体构建
1.靶向人SHOX保守非编码序列CNE9基因的gRNA的选择和设计
在Genebank中找到人CNE9基因的序列,在人CNE9基因外显子的上下游区域设计潜在靶位点。通过在线设计工具(http://crispr.mit.edu/)及gRNA的设计原则,评估人CNE9基因序列上得分较高的靶位点设计gRNA,靶位点序列如SEQ ID NO.1- 4所示。
2.靶向人SHOX保守非编码序列CNE9基因的gRNA寡核苷酸序列的合成和真核表达载体的构建
将pSpCas9(BB)-2A-GFP(PX458)质粒(AddgeneplasmidID:48138),用BbSI酶切,37℃水浴1小时后,1%的琼脂糖电泳,回收酶切产物(TAKARA胶回收试剂盒)。
酶切体系如下:
将靶位点序列对应的两寡核苷酸退火,形成带有粘性末端的短双链DNA,反应体系如下:
将上述反应体系在200μLPCR管中混合均匀,然后将PCR管在37℃水浴锅中处理30 min,再放入500mL沸水中,自然冷却至室温。
连接体系如下:
将带有粘性末端的双链短DNA产物连入酶切后的pSpCas9(BB)线性片段,将连接产物转化大肠杆菌DH5α感受态细胞(TakaraCode:D9057A),并涂布于Ampicillin浓度为100μg/mL的LB固体平板上培养过夜,挑取生长良好的单克隆,于15mLAmpicillin浓度为100μg/mL的LB液体培养基中,37℃振荡培养过夜,提取质粒挑取菌落,摇菌测序验证,结果见附图1所示。
3.无内毒素质粒DNA的制备
A、取构建好的质粒1μL加入100μLDH5α感受态细胞中吹匀,冰中静置20min,再放入42℃水浴90s,迅速置于冰浴中3min,加入500μLLB液体培养基,放置摇床180rpm 37℃ 1小时,取菌液100μL均匀涂布于Ampicillin浓度为100μg/mL的LB固体培养基37℃培养过夜。
B、取单菌落于3mLAmpicillin浓度为100μg/mL的LB液体培养基中,250rpm、37℃振荡培养8小时;从中取300μL菌液接种于300mLAmpicillin浓度为100μg/mL的LB液体培养基中,并于250rpm、37℃振荡培养12~16小时;
C、收集菌液,然后在4℃、4000rpm条件下离心15min,弃上清,收集菌体,然后按照QIAGEN EndoFree Plasmid MaxiKit试剂盒说明书操作步骤提取质粒,得无内毒素的质粒。
实施例2转染人骨肉瘤细胞(U2OS)
转染前3天,复苏人骨肉瘤细胞(U2OS),将细胞放入加有完全培养基培养瓶中,于37℃、5%CO2的培养箱中培养,转染前一天,传代培养复苏细胞。
将培养U2OS细胞T75瓶中的培养基吸净,加入2mL 4℃冰箱取出的0.25%胰酶,使其均匀覆盖瓶底,置于37℃培养箱中3~5min,取出,摇晃可发现细胞于底部脱离,将其全部晃下,加入3mL37℃水浴中预热的U2OS完全培养基,用10mL移液管进行吹打,吹打6~8次,不留死角,瓶口处较难吹打可将移液管对准培口,小力将培养基打出即可覆盖到接近瓶口的细胞。之后,将所有细胞吸出,置于15mL离心管中,取50μL混匀后的细胞于1.5m Leppendorf管中,加入450mLU2OS完全培养基,即为10倍稀释,混匀,取10μL细胞于计数板中计数。传代当天记为第一天,若第二天进行转染,铺900~1000万/T75;若第三天转染,铺350-400万/T75。每瓶T75加U20S完全培养基。转染当天观察细胞密度,80%~90%满即可进行转染。
采用脂质体转染法将构建好的转染U2OS细胞转染体系及试剂使Lipofectamine™2000(invitrogen公司),转染详细步骤参照转染说明书。
转染48小时后,利用胰酶消化转染后贴壁的细胞,离心收集细胞,吸掉废液加入1mL PBS重悬细胞,取500μL放入原瓶中继续培养,剩余细胞放入1.5mL离心管,提取DNA(按照DNA提取试剂盒说明书进行)。
以提取的DNA为模板(未转染细胞DNA为对照组),扩增靶点序列,扩增上下游引物序列见SEQ ID NO.7-8所示,PCR反应体系如下:
PCR扩增程序:95℃预变性3min;95℃变性30s,58℃退火30 s,72℃延伸40s,30个循环后72℃延伸5 min,最后4℃保温。
PCR产物用T7 EndonucleaseI37℃水浴酶切1h,酶切体系如下:
T7 Endonuclease I酶切结果如附图2所示,结果显示靶点序列发生突变,具有高活性,根据电泳结果,进行Indel(insertion-deletion)分析,px458-CNE9-T1为(2.4%)、px458-CNE9-T2为(9.2%)、px458-CNE9-T3为(1.8%)、px458-CNE9-T4为(5.7%)。
根据靶点活性鉴定筛选结果,CNE9基因上游选用活性较高的靶点px458-CNE9-T2、下游选用活性较高的靶点px458-CNE9-T4。因此,我们选用px458-CNE9-T2和px458-CNE9-T4同时转染U2OS细胞。
根据设计靶点活性鉴定筛选结果, CNE9基因上游选用活性较高的靶点CNE9target-2、下游选择CNE9target-4,同时转染U2OS细胞。
细胞克隆培养
分别将转染CNE9target-2 、CNE9target-4细胞稀释培养,培养单细胞克隆,用于筛选敲除CNE9阳性细胞,细胞单克隆逐渐增至过程如附图3所示。
实施例3 PCR产物克隆测序检测靶位点突变
细胞克隆扩大培养,取部分细胞,提取细胞克隆基因组,PCR扩增OLIGO靶位点序列,测序筛选(详细步骤参见TaKaRaMiniBEST Universal Genomic DNA Extraction KitVer.5.0)
PCR扩增靶位点序列。
PCR产物用TAKARA试剂盒进行纯化后连接至 PMD18-T载体上,连接体系为:
16℃下连接2小时。取感受态细胞DH5α,放置冰中融化5min,加入10μL连接产物吹匀,放置冰中20min。42℃热击90s,迅速转入冰浴中静置3min,加入500μL的LB液体培养基,置于摇床中,37℃ 180rpm 1h。取菌液100μL均匀涂布于LB固体培养基(含1/1000AMP),37℃培养过夜。
挑5个取单菌落,分别放入3mL LB液体培养基(含3μL AMP),37℃ 200rpm 12h,以1μL菌液为模板进行PCR鉴定,均为阳性。将菌液送样进行测序,显示已成功敲除CNE9基因。测序结果显示突变后CNE9的一个等位基因与CNE9基因野生型对照相比,发生了基因缺失和突变1088个碱基,其对应的序列如SEQ ID NO.5所示;突变后CNE9的另一个等位基因与CNE9基因野生型对照相比,发生了基因缺失和突变1095个碱基,其对应的序列如SEQ ID NO.6所示。
实施例4 Western-blot检测SHOX蛋白表达情况
1.总蛋白提取
培养细胞裂解
(1)U2OS贴壁细胞,去除培养液,用PBS洗一遍,悬浮细胞,离心收集,PBS洗一遍。
(2)通常每106个细胞可加0.1 ml RIPA buffer,裂解液和细胞充分接触
(3)冰上放置数分钟,用枪头轻轻吹打,使细胞充分裂解,再轻轻倾斜培养皿使裂解产物流向瓶皿的一边或一角,然后将之转移到1.5 ml离心管,剧烈振荡30秒。
(4)12,000×g,4 ºC离心5分钟,取上清,即可进行后续的电泳、Western或免疫沉淀操作。
组织块裂解
(1)组织剪切成细小的碎片。每100毫克组织加入1 ml RIPA裂解液。用玻璃匀浆器匀浆上下手动匀浆20次。
(2)将匀浆物转移到1.5 ml离心管。
(3)12,000×g,4 ºC离心5分钟,取上清,即可进行后续的电泳、Western或免疫沉淀操作。
2.蛋白浓度测定(BCA测蛋白浓度)
工作液的配制
(1)测定前,按照 BCA Reagent A : BCA Reagent B = 100 : 1 的比例混合后配制成工作液,例如配制 30 ml的工作液时,在 30 ml 的 BCA Reagent A 中添加 0.3 ml 的BCA Reagent B 后,充分振荡混配制后的工作液可在 4℃保存三天使用。
(2)所需工作液量的计算方法如下:
所需工作液总体积(ml)= [(BSA 标准溶液 8 份或 7 份 +检测样品数)×平行样本数(n)+ 1 ]×1个样品所需的工作液体积
例)标准操作流程【1ml反应体系】检测样品数为12个、平行样(n=2)时:
[(8+12)×2+1]×1ml=41ml
例)标准操作流程【200μl反应体系】、检测样品数为20个、平行样(n=2)时:
[(8+20)×2+1]×0.2ml=11.4ml
例)低浓度蛋白质样品测定的操作流程【1ml反应体系】、检测样品数为12个、平行样(n=2)时:[(7+12)×2+1]×0.5ml=19.5ml
3.低浓度蛋白样品的标准操作流程(定量范围:0~200 μg/mL)
【0.2ml 反应体系.使用微孔板测定】
1)BSA 标准品溶液的配制。
(1)0.2 mg/ml BSA 标准品溶液的制备:取 120 μl BSA Standard Solution (2mg/ml),加入 1,080 μl稀释液后充分混合。
(2)按照下表稀释 BSA 标准品溶液,BSA 标准品溶液和检测样品的稀释可使用去离子水、0.9% NaCl或 PBS。
2) BSA 标准曲线的制备
(1)分别取 100 μl 稀释后的 BSA 标准品溶液加入到 微孔板中,每个浓度取 2 个平行样。
(2)加入100ul 工作液后,立即混匀。
(3)37℃水浴槽中反应 60 分钟后,冷却至室温。
(4)使用分光光度计测定 562 nm 处的吸光度值。测定时,使用 1 ml 比色皿,用水校零。尽可能在 20 分钟内检测完毕所有样品。
(5)各浓度 BSA 标准品溶液的吸光度值减去 Blank 值的平均值,绘制 BSA 标准品溶液的标准曲线。
3)检测样品的测定
检测样品测定时,建议同 BSA 标准品溶液同时进行测定。
(1)分别取 100 μl 检测样品加入到微孔板中,每个样品取 2 个平行样进行测定。
(如果必要,也可选择与 BSA标准品溶液相同的稀释方法稀释检测样品后测定)
(2)加入 100 μl 工作液后,立即混匀。
(3)37℃水浴中反应 60 分钟后,冷却至室温。
(4) 酶标仪波长设定在 562 nm 处进行测定。用水校零。尽可能在 20 分钟内检测完毕所有样品。
(5)各样品溶液的吸光度值减去 Blank 值的平均值,根据标准曲线计算出检测样品的蛋白浓度。
4.SDS-PAGE电泳
(1)玻璃板对齐后放入夹中卡紧。然后垂直卡在架子上准备灌胶。
(2)配制10%分离胶,加入TEMED后立即摇匀即可灌胶。
(3)当水和胶之间有一条折射线时,说明胶已凝了。再等3min使胶充分凝固就可倒去胶上层水并用吸水纸将水吸干。
(4)配制4%的浓缩胶,加入TEMED后立即摇匀即可灌胶。将剩余空间灌满浓缩胶然后将梳子插入浓缩胶中。
(5)用水冲洗一下浓缩胶,将其放入电泳槽中。(小玻璃板面向内,大玻璃板面向外。若只跑一块胶,那槽另一边要垫一块塑料板且有字的一面面向外。)
(6)取出上样样品与5×SDS上样缓冲液按4:1比例混合,混匀后沸水中煮5min使蛋白变性。
(7)加足够的电泳液后按等量蛋白上样。
(8)电泳,80V跑过浓缩胶后转换电压至120V,待溴酚兰跑到胶板底部刚好没有跑出即可。
(9)将夹子打开使黑的一面保持水平,在上面依次垫海绵垫、滤纸、胶、PVDF膜(经甲醇活化)、滤纸、海绵垫;同时将电泳液换成转移液。
(10)将电流调整到恒流200mA,转移约1小时。
(11)取出膜,并做好正反面标记,在TBST中清洗1分钟,然后用封闭液封闭。
(12)用封闭液将对应的一抗稀释成一定的浓度(1:500),内参一抗的稀释终浓度为1:3000,然后温育1.5小时或4℃孵育过夜。
(13)用TBST清洗3次,每次5分钟。
(14)用封闭液将二抗稀释成一定的浓度(1:3000),然后温育1.5小时。
(15)用TBST清洗4次,每次5分钟。
5.化学发光,显影,定影
(1)将A和B两种试剂在试管内等体积混合,然后加在PVDF膜的正面,温育大概2分钟。
(2)进入暗室,PVDF膜上盖一层保鲜膜,擦去多余的发光剂。将胶片压在保鲜膜上,依照发光的强度选择不同的曝光时间。
(3)将胶片放入显影液中,出现条带后,立即放入定影液中,流水冲洗胶片后晾干。
(4)对胶片进行扫描,然后用UVP凝胶图象处理系统Labworks4.6软件分析目的条带的灰度值。
(5)通过Western blot对转染后U2OS中SHOX蛋白质表达进行检测,CNE9基因敲除组与没有基因敲除的对照组相比,SHOX蛋白表达明显减少,仅为正常人骨肉瘤细胞SHOX蛋白表达量的74.2%。如附图4所示。
SEQUENCE LISTING
<110> 重庆医科大学附属儿童医院
<120> CRISPR/Cas9 靶向敲除人CNE9基因及其特异性gRNA
<130> 2017
<160> 8
<170> PatentIn version 3.5
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
actgcaacct ccgcctccga 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<400> 2
gccaccacca gctactgggg 20
<210> 3
<211> 20
<212> DNA
<213> 人工序列
<400> 3
gagggtcccc ctgggactgt 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<400> 4
ggggctgcac agagccgact 20
<210> 5
<211> 662
<212> DNA
<213> 人工序列
<400> 5
aattatatat aatgtataca tatatttaaa ttatatataa tgtatacata tatttatata 60
taatgtatac atatatttaa attatatata atatacatat ttggatagtt ttatttattt 120
atttattgga gtcttgctct gtcccccagg ctggagtgca gtgacatgat ctctgctcac 180
tgaaacctcc gccttccagg ctcaagcgat cctcctgcct aagcctcccg agtagctggg 240
attacaggcg cgtaggctga ctgggctaaa tccggattga tgaggaaggg ccttttttca 300
aaaagttggt cagtcggcta ccgttttctg agtactttga ggctgccagg aggacgggga 360
tgcacagagc cgactgggac cctccaagac ggaccctgag aaacctcact gggtcctctc 420
tctctttttt tttttttttt tttttgagac ggcttttcac tcttgtttcc caggctggag 480
tgcagtggtg caatcttggc tttgcaacct ctgcctcccg ggttcaagcg attctcctgc 540
ctcagcctcc cgagtagctg ggatgacagg cgcgcgccac cacgcctggc taagtttttg 600
tatttttatt agagacagag cttcaccatg ttggccaggc tggtctcgaa ctcctgacct 660
ca 662
<210> 6
<211> 623
<212> DNA
<213> 人工序列
<400> 6
aattatatat aatgtataca tatatttaaa ttatatataa tgtatacata tatttatata 60
taatgtatac atatatttaa attatatata atatacatat ttggatagtt ttatttattt 120
atttattgga gtcttgctct gtcccccagg ctggagtgca gtgacatggt ctctgctcac 180
tgcaacctcc gccttccagg ctcaagcgat cctcctgcct aagcctcccg agtagctggg 240
attacaggcg cgtaggctga gctggtgatc ggaggacggc taccgttttc tgagtacgtg 300
aggctgccag gaggacgggg ctgcacagag ccgactggga ccctcgaact cgtaccctga 360
ggaacctcac tgggtcctct ctctcttttt tttttttttt ttttttgaga cggcttttca 420
ctcttgtttc ccaggctgga gtgcagtggt gcaatcttgg ctttgcaacc tctgcctccc 480
gggttcaagc gattctcctg cctcagcctc ccgagtagct gggatgacag gcgcgcgcca 540
ccacgcctgg ctaagttttt gtatttttat tagagacaga gcttcaccat gttggccagg 600
ctggtctcga actcctgacc tca 623
<210> 7
<211> 21
<212> DNA
<213> 人工序列
<400> 7
ctgcacgttg ctggatgagg a 21
<210> 8
<211> 20
<212> DNA
<213> 人工序列
<400> 8
cctgggtcct tgttaggctg 20

Claims (7)

1.在CRISPR-Cas9 特异性敲除人骨肉瘤细胞(U2OS)SHOX保守非编码序列CNE9中用于靶向CNE9的gRNA组合,其对应的 DNA 序列如SEQ ID NO. 2和 SEQ ID NO. 4序列所示。
2.根据权利要求1所述的在 CRISPR-Cas9 特异性敲除人SHOX保守非编码序列CNE9中用于靶向CNE9基因的gRNA,其特征在于:利用人骨肉瘤细胞(U2OS)制备出人骨肉瘤细胞保守非编码序列CNE9缺陷型细胞模型,命名为U2OS- CNE9。
3.本发明涉及的细胞模型U2OS- CNE9,其特征在于:突变后的CNE9基因对应的 DNA 序列如序列表SEQ ID NO. 5-6所示。
4.根据权利要求3所述,细胞模型U2OS-CNE9突变后的CNE9基因特征在于,缺失了CNE9基因序列,而对上下游基因序列并未产生突变。
5.本发明涉及的细胞模型U2OS- CNE9,其特征在于SHOX蛋白的表达量仅为正常人骨肉瘤细胞SHOX蛋白表达量的74.2%。
6.本发明涉及的细胞模型U2OS- CNE9,其特征在于:对 CNEs 改变导致的疾病有进一步的认识,并可为以后的软骨细胞发育异常、孤独症、Rett综合征及胰腺发育不全等疾病治疗提供有效的细胞研究模型。
7.根据权利要求1-2所述的在 CRISPR-Cas9 特异性敲除人SHOX保守非编码序列CNE9中用于靶向CNE9的gRNA,其特征在于:该gRNA在CNE9调控SHOX基因相关疾病(软骨细胞发育异常、孤独症、Rett综合征及胰腺发育不全)治疗中具有广泛的应用前景。
CN201710628534.2A 2017-07-28 2017-07-28 CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA Pending CN107384922A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710628534.2A CN107384922A (zh) 2017-07-28 2017-07-28 CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710628534.2A CN107384922A (zh) 2017-07-28 2017-07-28 CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA

Publications (1)

Publication Number Publication Date
CN107384922A true CN107384922A (zh) 2017-11-24

Family

ID=60341864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710628534.2A Pending CN107384922A (zh) 2017-07-28 2017-07-28 CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA

Country Status (1)

Country Link
CN (1) CN107384922A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868008A (zh) * 2016-12-30 2017-06-20 重庆高圣生物医药有限责任公司 CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868008A (zh) * 2016-12-30 2017-06-20 重庆高圣生物医药有限责任公司 CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HANNAH VERDIN 等: "Profiling of conserved non-coding elements upstream of SHOX and functional characterisation of the SHOX cis-regulatory landscape", 《SCIENTIFIC REPORTS》 *
李莉: "筛选SHOX基因保守非编码序列的增强元件", 《万方中国学位论文全文数据库》 *
辛世杰: "SHOX上下游CNEs对SHOX调控机制的研究", 《爱学术网站,网址:HTTPS://WWW.IXUESHU.COM/DOCUMENT/79DA8B70F0A1BDBA09301CEA338AF922318947A18E7F9386.HTML》 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN107384922A (zh) CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA
CN107267515B (zh) CRISPR/Cas9靶向敲除人CNE10基因及其特异性gRNA
CN108707604B (zh) 表皮干细胞中采用CRISPR-Cas系统进行CNE10基因敲除
Sciortino et al. Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection
Meno et al. Two closely‐related left‐right asymmetrically expressed genes, lefty‐1 and lefty‐2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos
Delecluse et al. Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells
Papworth et al. Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors
Petrucelli et al. Characterization of a novel Golgi apparatus-localized latency determinant encoded by human cytomegalovirus
Alford et al. RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus
CN106868008A (zh) CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA
Syddall et al. The identification of trans-acting factors that regulate the expression of GDF5 via the osteoarthritis susceptibility SNP rs143383
Chou Phenotypic diversity of cytomegalovirus DNA polymerase gene variants observed after antiviral therapy
Simpfendorfer et al. Autoimmune disease–associated haplotypes of BLK exhibit lowered thresholds for B cell activation and expansion of Ig class‐switched B cells
Simser et al. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin‐based motility
Girardi et al. Cross-species comparative analysis of Dicer proteins during Sindbis virus infection
JP6120944B2 (ja) 新規のインターフェロン−λ4(IFNL4)タンパク質、関連の核酸分子、並びにそれらの使用
Santhakumar et al. Chicken IFN kappa: a novel cytokine with antiviral activities
CN110205375A (zh) 一种动脉粥样硬化诊断用分子标志物及其应用
Shi et al. The ciliary protein ift 57 in the macronucleus of paramecium
Favaroni et al. Pmp repertoires influence the different infectious potential of avian and mammalian Chlamydia psittaci strains
Stenfeldt et al. Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses
Barbosa-Solomieu et al. Diagnosis of Ostreid herpesvirus 1 in fixed paraffin-embedded archival samples using PCR and in situ hybridisation
Zhang et al. Association analysis between HFM1 variations and idiopathic azoospermia or severe oligozoospermia in Chinese Men
Tore et al. Host cell tropism, genome characterization, and evolutionary features of OaPV4, a novel Deltapapillomavirus identified in sheep fibropapilloma
Diss et al. Improvements to B cell clonality analysis using PCR amplification of immunoglobulin light chain genes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171124