CN105861547A - 身份证号码永久嵌入基因组的方法 - Google Patents

身份证号码永久嵌入基因组的方法 Download PDF

Info

Publication number
CN105861547A
CN105861547A CN201610133919.7A CN201610133919A CN105861547A CN 105861547 A CN105861547 A CN 105861547A CN 201610133919 A CN201610133919 A CN 201610133919A CN 105861547 A CN105861547 A CN 105861547A
Authority
CN
China
Prior art keywords
card
genome
sequence
identity
identity number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610133919.7A
Other languages
English (en)
Inventor
黄捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610133919.7A priority Critical patent/CN105861547A/zh
Publication of CN105861547A publication Critical patent/CN105861547A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了身份证号码永久嵌入基因组的方法,其一是把含有身份证号码的外源性基因片段,通过CRISPR技术,永久的插入到基因组中,其二是将含有身份证号码的特定DNA分离出来读取。这样使得永久保存的DNA一直有办法鉴定身份,即使是外面的包装标签遗失或弄错了。其可以同样用于微生物(包括细菌和病毒)的微生物保存。比如说SARS病毒,如果能留下一个失去活性的SARS病毒基因标本,就可以供后人研究。

Description

身份证号码永久嵌入基因组的方法
技术领域
本发明属于基因提取、运输和保存领域,具体涉及身份证号码永久嵌入基因组的方法。
背景技术
目前的基因提取、运输和保存主要是依靠试管上的标识,由于环节多,试管外面写的标识容易弄错或磨损。对于国家基因库的建立,确保基因的身份永远不被弄错是至关重要的。所以,我们要在基因上面永久性的贴上用DNA编辑的身份证号码。这样,即使试管没有任何标签,只要样本在,身份证号码就在。
将数据信息转化为DNA信息永久保存,目前有两种方法。一种是不将基因序列直接插入基因组中,而是将化学物质与基因组样本混合,利用化学物质的结构来代表数据信息,而此种方法的缺点在于解析数据信息时,不仅要对化学物质检测,还要对基因组样本检测,这样就比较麻烦。
另外一种是不用CRISPR-Cas9方法,而是直接利用限制酶剪切的方法切开基因组再将代表身份证号码的序列连接到基因组上,此种方法的缺点是限制酶的碱基只有4-6个,这样不能保证靶向的精准性。
发明内容
将数据信息转化为DNA信息永久保存,目前主要还是一个设想。比如说,瑞士苏黎世大学的Robert Grass教授在2015年发表文章指出,从理论上来说,1克DNA可以存下整个互联网的信息。但目前还没有人尝试一个相对简单而又非常实用的事情,如将中国的身份证号码转换成DNA保存。同时,这两年发展起来的基因编辑技术(CRISPR),可以让研究人员非常容易的在基因组中插入新的片段。CRISPR(Clustered Regularly InterspersedShort Palindromic Repeats,规律间隔成簇短回文重复序列)是细菌用来抵御病毒侵袭/躲避哺乳动物免疫反应的基因系统。科学家们利用RNA引导Cas9核酸酶可在多种细胞(包括iPS)的特定的基因组位点上进行切割。
本发明旨在发明便于检测及靶向精准性高的一种身份证号码永久嵌入基因组的方法。
为了解决上述问题,本发明提供了身份证号码永久嵌入基因组的方法,包括:将身份证上用到的数字0-9和字母X分别转换成各自不同的含有两个碱基的碱基对,将身份证号码按照数字和/或字母按照次序转化为含有上述碱基对的DNA序列的设计身份证序列;在上述DNA序列的两条单链上的两端分别加上限制酶的酶切位点及在每条单链其中一端的限制酶的酶切位点的外端加上与DNA插入位点互补的碱基序列;通过CRISPR-Cas9方法将目的基因组中的目的位点切开及通过人工合成生成合成身份证序列;将人工合成的身份证序列、T4DNA连接酶和第二缓冲液与切开后的基因组混合并在适当温度下反应适当时间,使身份证序列连接到目的位点上。
根据上述身份证号码永久嵌入基因组的方法,还包括:当需要进行身份证号码核对的时候,用所述限制酶进行切割将身份证序列与基因组分离开,然后纯化并测序以确定对应的身份证号码。
根据上述身份证号码永久嵌入基因组的方法,其中,CRISPR-Cas9方法包括:根据目的序列人工合成sgRNA,在sgRNA引导下及在第一缓冲液中利用Cas9对目的基因组进行切割。
根据上述身份证号码永久嵌入基因组的方法,其中,Cas9是一种具有切割双链DNA能力的核酸酶。
根据上述身份证号码永久嵌入基因组的方法,其中,选择的目的序列必须含有一个PAM序列。
根据上述身份证号码永久嵌入基因组的方法,其中,PAM序列为5’-NGG-3’,其中N选自A、T、C或G。
根据上述身份证号码永久嵌入基因组的方法的聚光发电方法,其中,5’-NGG-3’的5’端应该带有20bp左右的基因组互补序列以保证sgRNA的靶向的精准性。
根据上述身份证号码永久嵌入基因组的方法,其中,限制酶为限制性核酸内切酶,能够识别特定的核苷酸序列,并在每条链中特定部位的两个核苷酸之间的磷酸二酯键进行切割。
根据上述身份证号码永久嵌入基因组的方法,其中,限制酶包括BamHI和EcoRI。
根据上述身份证号码永久嵌入基因组的方法的聚光发电方法,其中,在适当温度下反应适当时间为在4℃下反应过夜或在16℃下反应4小时左右。
有益效果
本发明公开的身份证号码永久嵌入基因组的方法,其一是把含有身份证号码的外源性基因片段,通过CRISPR技术,永久的插入到基因组中,其二是将含有身份证号码的特定DNA分离出来读取。这样使得永久保存的DNA一直有办法鉴定身份,即使是外面的包装标签遗失或弄错了。其可以同样用于微生物(包括细菌和病毒)的微生物保存。比如说SARS病毒,如果能留下一个失去活性的SARS病毒基因标本,就可以供后人研究。
附图说明
图1是加上限制酶的酶切位点和与DNA插入位点互补的碱基序列后的两条身份证序列的示意图;
图2是用CRISPR-Cas9系统切割目标DNA序列示意图;
图3是利用T4DNA连接酶将合成身份证序列插入到基因组上的示意图;
图4是用限制酶将身份证序列分离出来的示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
首先人工合成代表身份证号码的DNA序列,即将身份证上用到的数字0-9和字母X转换成含有两个碱基的DNA序列,其由选自A、T、C和G四种碱基任意组合,其中两个碱基也可以选择相同的其中一个碱基。这样,18位数的身份证就需要36个碱基来表示。下面我们列举了其中一种表示方法:如表1所示:
表1
0->AA 1->AC 2->AG 3->AT 4->CA 5->CC
6->CG 7->CT 8->GA 9->GC X->GG
图1是加上限制酶的酶切位点和与DNA插入位点互补的碱基序列后的两条身份证序列的示意图,如图1所示,然后,我们在上述DNA序列的两条单链(图1中所示的身份证序列和身份证序列的互补序列)上的两端分别加上限制酶的酶切位点及在每条单链其中一端的限制酶的酶切位点的外端加上与DNA插入位点互补的碱基序列(图1中所示的互补序列)。其中,两条单链上加上与DNA插入位点互补的碱基序列的一端彼此相反。
假如我们要表示的身份证号是110425199601013838,用BamHI和EcoRI作为作为限制酶切割,那么加上限制酶的酶切位点和与DNA插入位点互补的碱基序列后的两条身份证序列应该是:
3’->5’(N代表基因组的互补序列)
GGATCCACACAACAAGCCACGCGCCCAAACAAACATGAATGACTTAAGNNNNN
5’->3’(N代表基因组的互补序列)
NNNNNCCTAGGTGTGTTGTTCGGTGCGCGGCTTTGTTTGTACTTACTGAATTC
设计出身份证序列后,通过人工合成生成相应的身份证序列。
然后,我们通过CRISPR-Cas9(Clustered Regularly Interspaced ShortPalindromic Repeats-Cas9)技术将基因组中的目的位点切开。
CRISPR-Cas9是细菌和古细菌在长期演化过程中形成的一种适应性免疫防御,可用来对抗入侵的病毒及外源DNA,防御机制简单地说就是在特定RNA的引导下,核酸酶Cas9切割病毒或者外源DNA从而使之降解或失活。而通过人工设计RNA,可以形成具有引导作用的sgRNA(单链引导RNA),足以引导Cas9对DNA的定点切割。
Cas9是一种可以切割双链DNA的核酸酶,但需要有sgRNA(single guide RNA,单链引导RNA)引导才能对目的基因进行切割,因此先根据目的序列人工合成sgRNA,选择的目的序列必须含有一个PAM序列,双链复合体结构从此处开始形成。所谓的PAM序列即为5’-NGG-3’(N代表A、T、C、G任意一种),理论上每8个碱基就能找到一个,因此对基因组任意一处都可以进行编辑,这也是其它基因编辑技术无法比拟的优点。为了保证靶向的精准性,sgRNA的5’端应该带有20bp左右的基因组互补序列。
假如我们要对基因组某一处进行编辑且已经知道到了该处的碱基序列,那么可以设计如下一个sgRNA:
3’->5’(N代表基因组的互补序列)
UUUUCGUGGGCUGAGCCACGGUGAAAAAGUUCAACUAUUGGCCUGAUCGGAAUAAAAUUUCGAUAAACAUCGAGAUUUUGNNNNNNNNNNNNNNNNNNNN
将Cas9、sgRNA、第一缓冲液与基因组混合,在适当温度反应适当时间。第一缓冲液选择能够保证Cas9和sgRNA的酶活性的缓冲液,Cas9从生物公司购买,各组分含量与反应条件参照说明书即可,图2是用CRISPR-Cas9系统切割目标DNA序列示意图,过程如图2所示。
最后加入人工合成的身份证序列、T4DNA连接酶和第二缓冲液并在适当温度下反应适当时间,让身份证序列连接到目的位点上。第二缓冲液选择能够保证T4DNA连接酶的酶活性的缓冲液,T4DNA连接酶从生物公司购买,各组分含量与反应条件参照说明书即可,图3是利用T4DNA连接酶将合成身份证序列插入到基因组上的示意图,具体过程如图3所示。
当需要进行身份证号码核对的时候,用前述设计的限制酶进行切割将身份证序列与基因组分离开,然后纯化并测序就可以知道对应的身份证号码了,纯化步骤可以采用小片段DNA的琼脂糖凝胶回收,使用DNA切胶回收试剂盒即可,具体操作根据试剂盒的不同而不同。图4是用限制酶将身份证序列分离出来的示意图,具体过程如图4所示。
如要分离前述实施例中设计的身份证序列的话,那么需要使用BamHI和EcoRI两种限制酶进行切割,便会得到如下结果:
3’->5’(N代表基因组的互补序列)
NNNNNG GATCCACACAACAAGCCACGCGCCGAAACAAACATGAATGACTTAA GNNNNN
NNNNNCCTAG GTGTGTTGTTCGGTGCGCGGCTTTGTTTGTACTTACTG AATTCNNNNN
5’->3’(N代表基因组的互补序列)
将片段纯化即得到:
3’ GATCCACACAACAAGCCACGCGCCGAAACAAACATGAATGACTTAA 5’
5’ GTGTGTTGTTCGGTGCFCGGCTTTGTTTGTACTTACTG 3’
再对此片段进行测序即可得到对应的身份证号码:110425199601013838。
以上所述,仅是本发明较佳的实施方式,并非对本发明的技术方案做任何形式上的限制。凡是依据本发明的技术实质对以上实施例做任何简单修改,形式变化和修饰,均落入本发明的保护范围。

Claims (10)

1.身份证号码永久嵌入基因组的方法,其特征在于:所述方法包括:
将身份证上用到的数字0-9和字母X分别转换成各自不同的含有两个碱基的碱基对,将身份证号码按照数字和/或字母按照次序转化为含有上述碱基对的DNA序列的设计身份证序列;
在上述DNA序列的两条单链上的两端分别加上限制酶的酶切位点及在每条单链其中一端的限制酶的酶切位点的外端加上与DNA插入位点互补的碱基序列及通过人工合成生成合成身份证序列;
通过CRISPR-Cas9方法将目的基因组中的目的位点切开;
将人工合成的身份证序列、T4 DNA连接酶和第二缓冲液与切开后的基因组混合并在适当温度下反应适当时间,使身份证序列连接到目的位点上。
2.根据权利要求1所述的身份证号码永久嵌入基因组的方法,其特征在于:所述方法包括:当需要进行身份证号码核对的时候,用所述限制酶进行切割将身份证序列与基因组分离开,然后纯化并测序以确定对应的身份证号码。
3.根据权利要求1所述的身份证号码永久嵌入基因组的方法,其特征在于:所述CRISPR-Cas9方法包括:根据目的序列人工合成sgRNA,在sgRNA引导下及在第一缓冲液中利用Cas9对目的基因组进行切割。
4.根据权利要求3所述的身份证号码永久嵌入基因组的方法,其特征在于:所述Cas9是一种具有切割双链DNA能力的核酸酶。
5.根据权利要求3所述的身份证号码永久嵌入基因组的方法,其特征在于:选择的所述目的序列必须含有一个PAM序列。
6.根据权利要求5所述的身份证号码永久嵌入基因组的方法,其特征在于:所述PAM序列为5’-NGG-3’,其中N选自A、T、C或G。
7.根据权利要求5所述的身份证号码永久嵌入基因组的方法,其特征在于:所述5’-NGG-3’的5’端应该带有20bp左右的基因组互补序列以保证sgRNA的靶向的精准性。
8.根据权利要求1所述的身份证号码永久嵌入基因组的方法,其特征在于:所述限制酶为限制性核酸内切酶,能够识别特定的核苷酸序列,并在每条链中特定部位的两个核苷酸之间的磷酸二酯键进行切割。
9.根据权利要求8所述的身份证号码永久嵌入基因组的方法,其特征在于:所述限制酶包括BamHI和EcoRI。
10.根据权利要求1所述的身份证号码永久嵌入基因组的方法,其特征在于:在所述适当温度下反应所述适当时间为在4℃下反应过夜或在16℃下反应4小时左右。
CN201610133919.7A 2016-03-10 2016-03-10 身份证号码永久嵌入基因组的方法 Pending CN105861547A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610133919.7A CN105861547A (zh) 2016-03-10 2016-03-10 身份证号码永久嵌入基因组的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610133919.7A CN105861547A (zh) 2016-03-10 2016-03-10 身份证号码永久嵌入基因组的方法

Publications (1)

Publication Number Publication Date
CN105861547A true CN105861547A (zh) 2016-08-17

Family

ID=56625319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610133919.7A Pending CN105861547A (zh) 2016-03-10 2016-03-10 身份证号码永久嵌入基因组的方法

Country Status (1)

Country Link
CN (1) CN105861547A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112711740A (zh) * 2020-12-29 2021-04-27 湖北伯远合成生物科技有限公司 一种dna防伪标签系统
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611368A (zh) * 2015-01-15 2015-05-13 中国科学院广州生物医药与健康研究院 重组后不产生移码突变的载体、在爪蛙基因组中进行基因定点敲入的方法及应用
CN104850760A (zh) * 2015-03-27 2015-08-19 苏州泓迅生物科技有限公司 带有编码信息的人工合成dna存储介质及信息的存储读取方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611368A (zh) * 2015-01-15 2015-05-13 中国科学院广州生物医药与健康研究院 重组后不产生移码突变的载体、在爪蛙基因组中进行基因定点敲入的方法及应用
CN104850760A (zh) * 2015-03-27 2015-08-19 苏州泓迅生物科技有限公司 带有编码信息的人工合成dna存储介质及信息的存储读取方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
解莉楠等: "CRISPR/Cas9系统在植物基因组定点编辑中的研究进展", 《中国农业科学》 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112711740A (zh) * 2020-12-29 2021-04-27 湖北伯远合成生物科技有限公司 一种dna防伪标签系统
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN105861547A (zh) 身份证号码永久嵌入基因组的方法
Tedersoo et al. Perspectives and benefits of high-throughput long-read sequencing in microbial ecology
Wolf et al. The evolution of chloroplast genes and genomes in ferns
Zimmerly et al. Evolution of group II introns
Childs et al. Multiscale model of CRISPR-induced coevolutionary dynamics: diversification at the interface of Lamarck and Darwin
Gupta Distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: Response to Margos' et al." The genus Borrelia reloaded"(PLoS ONE 13 (12): e0208432)
Kuno et al. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures
Demanèche et al. Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil
Nickel et al. Two CRISPR-Cas systems in Methanosarcina mazei strain Gö1 display common processing features despite belonging to different types I and III
Hebert et al. Genome sequence of the bacteriocin-producing Lactobacillus curvatus strain CRL705
CN101563452A (zh) 苹果花叶病毒的检测方法、检测用引物组及检测用试剂盒
KR20230065357A (ko) 시료의 식별 방법
Li et al. Establishment of a Cuscuta campestris‐mediated enrichment system for genomic and transcriptomic analyses of ‘Candidatus Liberibacter asiaticus’
CN101553566B (zh) 啤酒花潜隐病毒的检测方法、检测用引物组及检测用试剂盒
Pomraning et al. Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29
Peterson et al. Phylogenetic assessment of filoviruses: how many lineages of M arburg virus?
Garcia‐Heredia et al. Benchmarking of s ingle‐virus genomics: a new tool for uncovering the virosphere
Norais et al. Diversity of CRISPR systems in the euryarchaeal Pyrococcales
Nannan et al. Complete genome sequence of Bacillus velezensis CN026 exhibiting antagonistic activity against gram-negative foodborne pathogens
Düx et al. The history of measles: from a 1912 genome to an antique origin
Hoikkala et al. Cooperation between CRISPR-Cas types enables adaptation in an RNA-targeting system
Kremer et al. Draft genome sequences of Leptospira santarosai strains U160, U164, and U233, isolated from asymptomatic cattle
Sánchez-Luque et al. Pr77 and L1TcRz: a dual system within the 5′-end of L1Tc retrotransposon, internal promoter and HDV-like ribozyme
Lu et al. Genome sequence of growth-improving Paenibacillus mucilaginosus strain KNP414
Kejnovsky et al. Horizontal transfer-imperative mission of acellular life forms, Acytota

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160817

RJ01 Rejection of invention patent application after publication