CN107904261A - CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用 - Google Patents

CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用 Download PDF

Info

Publication number
CN107904261A
CN107904261A CN201711162126.9A CN201711162126A CN107904261A CN 107904261 A CN107904261 A CN 107904261A CN 201711162126 A CN201711162126 A CN 201711162126A CN 107904261 A CN107904261 A CN 107904261A
Authority
CN
China
Prior art keywords
crispr
chitosan
gene
nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711162126.9A
Other languages
English (en)
Inventor
邵敬伟
吴鹏宇
沈志春
张冰晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711162126.9A priority Critical patent/CN107904261A/zh
Publication of CN107904261A publication Critical patent/CN107904261A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Abstract

本发明属于生物技术领域,具体涉及一种基于壳聚糖CS和CRISPR/Cas9质粒构建的纳米基因药物的制备及细胞转染应用。通过将壳聚糖先溶于乙酸溶液中,再将壳聚糖乙酸溶液滴入水中,加入与壳聚糖的质量成比例的CRISPR,以壳聚糖包载CRISPR/Cas9制成新型基因药物纳米粒,以达到更好的基因转染效果或者靶向性导入外源性基因,进而实现将基因药物递送到细胞的作用。本发明基于CS和CRISPR通过最优投料比构建的新型纳米复合物CRISPR@CS,能够显著提高基因在细胞内的转染效率,输送更多的基因进入细胞发挥作用,有望在基因药物递送用于基因治疗领域获得广泛应用。

Description

CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用
技术领域
本发明属于生物技术领域,具体涉及一种基于壳聚糖(CS)和CRISPR/Cas9质粒构建的纳米基因药物的制备及细胞转染应用。
背景技术
甲壳素在自然界中存在量极高,来源丰富,是地球上仅次于纤维素的生物多糖,广泛存在于动物、植物、各类真菌等中,研究发现特别是甲壳纲动物(蟹、虾等)含量最高,可达58%~85%,其次为昆虫纲等,其含量可达20%~60%;另外在其他类生物,如软体动物、环节动物、原生动物、绿藻、真菌等,也含一定量的甲壳素。壳聚糖(Chitosan)是甲壳素中糖基上的N-乙酰氨基被去除后得到的一种衍生物,一般而言,壳聚糖呈直链,以β-(1,4)糖苷键连接各单元,N-乙酰氨基脱去55%以上可称之为壳聚糖,或者说,脱乙酰甲壳素能溶到1%乙酸或者1%盐酸中的量达到1%或者以上,该脱乙酰甲壳素就可以称之为壳聚糖。通常情况下,壳聚糖呈一种白色、无味的半透明固体,平均分子质量一般从几万至数百万不等。不溶于水和一般有机试剂,只有在醋酸溶液中,壳聚糖中的氨基葡萄糖单元上的游离氨基被质子化以后才能被溶解。但大量的科学研究表明,壳聚糖作为唯一一种天然存在的、亲水的、阳离子的、可生物降解的、无毒性的、生物相容性良好、免疫排斥反应低等一系列特殊化学和生物特性,适合作为药物的控缓释载体,被广泛用于制剂研究。由于壳聚糖具有带阳离子的氨基,因此,壳聚糖在输送带有阴离子的质粒方面有着巨大的应用前景。
CRISPR(Clustered regularly interspaced short palindromic repeats)是生命进化历史上,细菌和病毒进行斗争产生的免疫武器,简单说就是病毒能把自己的基因整合到细菌,利用细菌的细胞工具为自己的基因复制服务,细菌为了将病毒的外来入侵基因清除,进化出CRISPR系统,利用这个系统,细菌可以不动声色地把病毒基因从自己的染色体上切除,这是细菌特有的免疫系统。微生物学家10年前就掌握了细菌拥有多种切除外来病毒基因的免疫功能,其中比较典型的模式是依靠一个复合物,该复合物能在一段RNA指导下,定向寻找目标DNA序列,然后将该序列进行切除。许多细菌免疫复合物都相对复杂,而且对一种蛋白Cas9的操作技术,并先后对多种目标细胞DNA进行切除。这种技术被称为CRISPR/Cas9基因编辑系统,迅速成为生命科学最热门的技术。因为CRISPR来自微生物的免疫系统,这种工程编辑系统利用一种酶,能把一段作为引导工具的小RNA切入DNA,就能在此处切断或做其他改变。以往研究表明,通过这些介入,CRISPR能使基因组更有效地产生变化或突变,效率比TALEN(转录激活因子类感受器核酸酶)等其他基因编辑技术更高。
目前,研究表明,外源性的基因如果作为药物发挥作用时,必须先克服两大障碍:( 1 ) 胞外屏障,主要所指注射的递送载体在到达靶细胞过程中,包括细胞吞噬系统,胞外基质、降解酶等的影响因素;( 2 ) 胞内屏障,只要指的是细胞膜、内涵体(endosome)、溶酶体(lysosome)以及核膜对靶基因进入核内有效表达的影响。正是如此,目前的基因药物在递送研究主要在体外试验,优势在于可以避免许多体内存在的生物学屏障,可通过移除目标组织或体外转染靶向细胞,通过合理地选择和设计以提高宿主细胞被转染比例的过程,最终将所存活的被转染的靶细胞再移植到体内。正常情况下,在把外源基因导入体内靶细胞特别是进入细胞核,调控细胞内基因表达以实现疾病治疗时,CRISPR等核酸大分子存在体内稳定性差,细胞摄取率低,易被核酶降解,体内外转染效率低等缺点,因此需借助合适的载体实现基因输送。
目前研究的主要使用的是Lipofectamine 转染,转染操作过程复杂,Lipofectamine 具有一定的毒性,导致诱导细胞死亡,其转染效率也受到诸多局限,欲达到理想转染效率使用前需要进行多方面因素的优化,包括试剂与 DNA量的比例、细胞密度、转染后换液时间以及表达时间等,上述原因限制了其在生物体内的进一步应用。
为弥补现有技术不足,本发明以壳聚糖自组装纳米粒作为研究对象,相对应其他递送载体如某些脂质体,壳聚糖具有来源丰富,合成步骤简单,成本低廉,更适合大规模应用等优点。此外,壳聚糖的生物相容性良好,生物可降解,细胞毒性较低,在水溶液中其表现为双亲分子特征,糖链骨架所具有的高密度的氨基基团,在pH值低于6.0时,其可质子化,具有增强生物大分子药物(如基因等)的透膜能力以及良好的生物粘附性和降解性,有助于增加生物大分子在体内的吸收,在基因药物递送体系中有良好的应用前景。
发明内容
本发明的目的在于提供一种新型CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用,以解决现有技术中传统转染载体质控困难以及转染作用效果不明显和效率低等的问题。
为实现上述目的,本发明采用如下技术方案:
本发明的具体做法为,将壳聚糖先溶于乙酸溶液中,再将壳聚糖乙酸溶液滴入水中,加入与壳聚糖的质量成比例的CRISPR,以壳聚糖包载CRISPR/Cas9制成新型基因药物纳米粒,以达到更好的基因转染效果或者靶向性导入外源性基因,进而实现将基因药物递送到细胞的作用。
一种基于壳聚糖新型CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用;所述的纳米粒为壳聚糖包载CRISPR等功能性核酸分子所形成的。
本发明所述的CRISPR@CS制备方式为:
1.CRISPR@CS的制备
室温下,配置0.1%(V/V)的醋酸溶液待用,用电子天平称取一定质量壳聚糖(CS)加入到配好的醋酸溶液中,将醋酸缓慢滴加至壳聚糖完全溶解,磁力搅拌均匀后,得到2%(w/v)的壳聚糖/醋酸溶液;;以壳聚糖/醋酸溶液中壳聚糖具体质量为参照比,一定时间的超声分散后获得粒径较小且稳定的壳聚糖纳米粒,之后分别加入与壳聚糖成不同质量比(w/w):1:1、1:2、1:3、1:4、1:5的CRISPR的混合,制得相应质量比的壳聚糖与CRISPR混合液,在20 ℃温度条件下,150 rpm孵育10 min,制备多个不同质量比的CRISPR@CS纳米粒。
CRISPR@CS纳米粒的粒径和电位分析检测
使用马尔文粒径仪测量通过电荷比制备的纳米复合物的粒径分布及Zeta电势,表征纳米胶束的形成。
2.CRISPR@CS纳米粒的凝胶电泳阻滞试验
称量0.5 g的琼脂糖溶于50 mL的0.5X Tris硼酸(TBE)溶液制备1 %的琼脂糖凝胶,在120 V的条件下电泳25 min,得到电泳图。
3.CRISPR@CS纳米粒的紫外色谱图
取制备好的空白CS溶液、CRISPR溶液和CRISPR@CS溶液在紫外分光光度计中测量,扫描波长范围为200~400 nm,CRISPR的检测波长为260 nm,得到紫外色谱图。
4.CRISPR@CS纳米复合物的细胞转染实验
(1)选定被转染的细胞,将细胞接种铺板于孔板中,确定好放置,使其在转染时长至50-70%融合。
(2)转染液制备:
A. 用50 μL左右的 Opti-ME I低血清培养基(或者其他无血清培养基)稀释2.5ug左右的CRISPR质粒(Px458,含GFP绿色荧光标签),轻轻混匀;
B. 使用前轻轻摇匀Lipofectamine 2000,然后取约4 μL Lipofectamine 2000在50 μL左右的 Opti-ME I培养基中稀释,室温孵育;
C. 将前两步所稀释的DNA和Lipofectamine 2000混合后轻轻混匀,室温放置固定时间(溶液可出现浑浊)。
(3)在每孔细胞中加入混匀后的转染液,轻轻摇匀。合适温度培养一定时长后可更换培养基,一定时间后在荧光显微镜下检测绿色荧光即质粒基因表达。
本发明的优点在于:
1.本发明所制备的CRISPR@CS纳米粒通过壳聚糖/醋酸溶液和CRISPR在一定的质量比下制得,操作简单易行。
2.本发明所制备的CRISPR@CS纳米粒可以包载CRISPR等核酸大分子,具备将外源基因转染进入细胞的功能。
3.本发明所制备的CRISPR@CS纳米粒在基因转染领域的应用提供了一个新的方法,也为基因治疗研究指明了一条新方向。
4. 本发明CS包载的是CRISPR,DNA,遗传性核酸或基因药物等,防止这些基因治疗药物在进入细胞前就被降解;本发明基于CS和CRISPR通过最优投料比构建的新型纳米复合物CRISPR@CS,能够显著提高基因在细胞内的转染效率,输送更多的基因进入细胞发挥作用,有望在基因药物递送用于基因治疗领域获得广泛应用。
附图说明
图1. 一种基于壳聚糖新型基因药物CRISPR@CS纳米复合物中壳聚糖与CRISPR质粒的质量比为1:1时成纳米的粒径大小;
图2.单独 CS成纳米的粒径大小;
图3. 一种基于壳聚糖新型基因药物CRISPR@CS纳米复合物中壳聚糖与CRISPR质量比为1:1时成纳米的电势大小;
图4. 单独CS成纳米的电势大小;
图5. 一种基于壳聚糖新型基因药物CRISPR@CS纳米复合物中壳聚糖与CRISPR质量比为1:1时成纳米的紫外色谱图;
图6. 一种基于壳聚糖新型基因药物纯CRISPR、纯壳聚糖和CRISPR@CS纳米复合物琼脂糖凝胶电泳图;
图7. 一种基于壳聚糖新型基因药物CRISPR@CS纳米复合物中壳聚糖与CRISPR质量比为1:1时成纳米的细胞转染图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
1.CRISPR@CS的制备
室温下, 配置0.1 %(v/v)的醋酸溶液待用,用电子天平称取2g壳聚糖(CS)加入到醋酸溶液中,将醋酸缓慢滴加至壳聚糖完全溶解于溶液,磁力搅拌均匀后,得到2 %(w/v)的壳聚糖/醋酸溶液,在加入一定量的CRISPR,在20 ℃下150 rpm孵育10 min,分别制得壳聚糖与CRISPR的质量比(w/w)为1:1、1:2、1:3、1:4、1:5,配制成5个不同质量比的CRISPR@CS纳米复合物。
2.CRISPR@CS纳米复合物的粒径和电位分析检测
使用马尔文粒径仪测量通过电荷比制备的纳米复合物的粒径分布及Zeta电位。
表1 不同配比的CRISPR@CS纳米复合物的粒径分布
通过不同质量配比制备的CRISPR@CS,质量比是影响CRISPR@CS 纳米复合物粒径的重要因素,PDI值则能反应纳米粒径的分布,CRISPR@CS的最佳质量比为1:1。当质量比为1:1时,CRISPR@CS 纳米复合物平均粒径为197.6 nm,PDI为0.433,电势为20.91 mV,包封率为33 %,载药量为16.5 %,总而言之,CRISPR@CS在投料比为1:1时,纳米粒粒径更小,分布更均匀稳定。
3.CRISPR@CS的紫外光谱图
紫外吸收峰能够反映一个物质的性质,DNA因为碱基的存在在260 nm处有最大吸收波长,本发明中所用的CRISPR是一类双链DNA,在260 nm处有最大紫外吸收,CS在这一波长附近并无紫外吸收,而CRISPR@CS则能检测到CRISPR的紫外吸收,表明CS的存在并不会影响CRISPR的紫外吸收。
4.CRISPR@CS的凝胶电泳阻滞试验
DNA分子为两性电解质,并因其双螺旋骨架两侧带有富含负离子的磷酸根残基。在通常的情况下,核酸分子带负电荷,从而在电场中将向阳极移动。不同的DNA分子固其所带电荷数、相对分子量的大小和构象不同,在同一电场中的泳动速度就不一样,从而达到分离的目的。当加入阳离子聚合物壳聚糖时,随着聚合物加入量的增加,DNA分子与通过静电相互作用而发生坍塌缩合,出现电中和甚至电荷反转而使DNA分子向电场阳极泳动阻滞的现象,因而可以用琼脂糖凝胶电泳来确定阳离子聚合物(如壳聚糖及其诸多衍生物)与带负电荷的CRISPR相互作用后,DNA分子(如CRISPR等)被包覆的状况,而DNA分子被阳离子聚合物完全包覆将有利于复合物在基因转染过程中,所有DNA分子被保护而避免遭到核酸酶的降解,以提高基因转染效率。
以含量为1%的琼脂糖配制成琼脂糖凝胶,以分子质量为10000的Marker和纯壳聚糖为参照,利用壳聚糖包覆全部的DNA而使其滞留在凝胶点样孔内。可以得知CRISPR@CS中CS对CRISPR具有良好且稳定的包裹性,结果见图5。
5.CRISPR@CS纳米复合物的细胞转染分析
(1)选定被转染的细胞,将细胞接种铺板于6孔板中,放置12-16h,使其在转染时长至50-70%融合;
(2)转染液制备,每孔细胞用量如下:
A. 用50 μL Opti-ME I低血清培养基(或者其他无血清培养基)稀释2.5ugCRISPR质粒(Px458,含GFP绿色荧光标签),轻轻混匀;
B. 使用前轻轻摇匀Lipofectamine 2000,然后取4 μL Lipofectamine 2000在50 μLOpti-ME I培养基中稀释,室温孵育5分钟;
C. 将前两步所稀释的CRISPR、Opti-ME I和Lipofectamine 2000混合(使总体积为100μL),轻轻混匀,室温放置20分钟(溶液可出现浑浊)。注:质粒溶液加入Lipo溶液;
(3)在每孔细胞中加入100 μL转染液,轻轻摇匀。 37 ℃培养4-6小时后可更换培养基,24小时后在荧光显微镜下检测绿色荧光即质粒基因表达。
用同样的方法制备,CRISPR@CS和CRISPR@Lipo ,进行荧光光谱分析。可以看出,相比于利用脂质体,有可溶性的阳离子壳聚糖具有启开细胞膜的能力,促进细胞跨膜运输。而利用可溶性的阳离子壳聚糖包覆的CRISPR的转染效率最高,转染效果最好。

Claims (3)

1.一种CRISPR/Cas9纳米基因系统的制备方法,其特征在于:所述纳米基因系统是一种基于壳聚糖CS和CRISPR结合的新型纳米复合物CRISPR@CS,其是通过CS包载CRISPR或DNA构建的。
2.根据权利要求1所述的CRISPR/Cas9纳米基因系统的制备方法,其特征在于:
室温下,配置体积分数0.1%的醋酸溶液待用,用电子天平称取壳聚糖CS加入到配好的醋酸溶液中,将醋酸缓慢滴加至壳聚糖完全溶解,磁力搅拌均匀后,得到壳聚糖/醋酸溶液;以壳聚糖/醋酸溶液中壳聚糖具体质量为参照比,经超声分散之后分别加入与壳聚糖成质量比的CRISPR质粒进行包裹,制得的壳聚糖与CRISPR混合液,在20 ℃下150 rpm孵育10min,制备的CRISPR@CS纳米粒。
3.根据权利要求2所述的CRISPR/Cas9纳米基因系统的制备方法,其特征在于:壳聚糖与CRISPR混合液的质量比为1:1或1:2或1:3或1:4或1:5。
CN201711162126.9A 2017-11-21 2017-11-21 CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用 Pending CN107904261A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711162126.9A CN107904261A (zh) 2017-11-21 2017-11-21 CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711162126.9A CN107904261A (zh) 2017-11-21 2017-11-21 CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用

Publications (1)

Publication Number Publication Date
CN107904261A true CN107904261A (zh) 2018-04-13

Family

ID=61846708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711162126.9A Pending CN107904261A (zh) 2017-11-21 2017-11-21 CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用

Country Status (1)

Country Link
CN (1) CN107904261A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
CN110628767A (zh) * 2019-07-26 2019-12-31 华中农业大学 一种生物矿化的CRISPR/Cas9 RNPs纳米颗粒、制备方法及其用于基因编辑
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
TWI725424B (zh) * 2019-05-08 2021-04-21 國立高雄大學 Cas9胜肽拓印甲殼素複合奈米粒子及其製造方法
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205134A (zh) * 2011-05-20 2011-10-05 上海大学 壳聚糖-dna纳米颗粒复合物及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205134A (zh) * 2011-05-20 2011-10-05 上海大学 壳聚糖-dna纳米颗粒复合物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LING LI等: "Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors", 《HUMAN GENE THERAPY》 *
刘博亚等: "用于基因编辑的高分子/无机杂化纳米基因共传递系统", 《中国化学会2017全国高分子学术论文报告会》 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
TWI725424B (zh) * 2019-05-08 2021-04-21 國立高雄大學 Cas9胜肽拓印甲殼素複合奈米粒子及其製造方法
CN110628767B (zh) * 2019-07-26 2023-07-07 华中农业大学 一种生物矿化的CRISPR/Cas9 RNPs纳米颗粒、制备方法及其用于基因编辑
CN110628767A (zh) * 2019-07-26 2019-12-31 华中农业大学 一种生物矿化的CRISPR/Cas9 RNPs纳米颗粒、制备方法及其用于基因编辑
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN107904261A (zh) CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用
Liu et al. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy
Bono et al. Non-viral in vitro gene delivery: it is now time to set the bar!
US20160090603A1 (en) Delivery platforms for the domestication of algae and plants
Godbey et al. Improved packing of poly (ethylenimine)/DNA complexes increases transfection efficiency
US9249417B2 (en) Reagent kit having acidified polvethvlendimine for introducting nucleic acids into cells
US8492142B2 (en) Freeze-dried product for introducing nucleic acid, oligonucleic acid or derivative thereof
CN107980004A (zh) 用于医治疾病的外泌体的用途
Jang et al. Recent advances in mitochondria-targeted gene delivery
CN110448696B (zh) 基于盐藻外泌体靶向药物递送载体的制备方法与应用
Routkevitch et al. Efficiency of Cytosolic Delivery with Poly (β-amino ester) Nanoparticles is Dependent on the Effective p K a of the Polymer
CN101338322A (zh) 高分子聚合物构建的新型基因载体及制备方法
CN103110954A (zh) 胆固醇修饰的生物可降解聚阳离子载体及制备方法和用途
de Brito e Cunha et al. Biotechnological evolution of siRNA molecules: from bench tool to the refined drug
Tyagi et al. Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells
García-Fernández et al. Nanodevices for the efficient codelivery of CRISPR-Cas9 editing machinery and an entrapped cargo: a proposal for dual anti-inflammatory therapy
CN114904003B (zh) 可电离的阳离子脂质类似物材料在作为核酸药物递送载体或转染试剂中的应用
Aye et al. Therapeutic applications of programmable DNA nanostructures
Sousa et al. In Vitro CRISPR/Cas9 transfection and gene-editing mediated by multivalent cationic liposome–DNA complexes
KR101170473B1 (ko) 신규한 리피드?금나노입자 복합체 및 상기 복합체를 이용한 유전자 등의 생리활성물질의 전달 방법
CN103721269B (zh) 脂质体保护的纳米金基因载体及其制备方法
US8796027B2 (en) Nucleic acid complex and method of introducing nucleic acid into cell using the same
CN104974343A (zh) 改性聚乙烯亚胺及其在制备基因转染载体试剂中的应用
CN108096189A (zh) 一种脂质体纳米颗粒及其药物组合物和应用
AU2008325504A1 (en) Nucleic acid complex and nucleic acid delivery composition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180413