CN106172238B - miR-124基因敲除小鼠动物模型的构建方法和应用 - Google Patents

miR-124基因敲除小鼠动物模型的构建方法和应用 Download PDF

Info

Publication number
CN106172238B
CN106172238B CN201610669402.XA CN201610669402A CN106172238B CN 106172238 B CN106172238 B CN 106172238B CN 201610669402 A CN201610669402 A CN 201610669402A CN 106172238 B CN106172238 B CN 106172238B
Authority
CN
China
Prior art keywords
mir
sequence
mouse
seq
sgrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610669402.XA
Other languages
English (en)
Other versions
CN106172238A (zh
Inventor
朱曲波
李大力
童建斌
殷永佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201610669402.XA priority Critical patent/CN106172238B/zh
Publication of CN106172238A publication Critical patent/CN106172238A/zh
Application granted granted Critical
Publication of CN106172238B publication Critical patent/CN106172238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Abstract

本发明公开了一种miR‑124基因敲除小鼠动物模型,所述小鼠动物模型是被敲除了miR‑124‑1、miR‑124‑2、miR‑124‑3基因的小鼠。本发明使用Crispr‑cas9基因敲除技术,敲除了小鼠大脑中表达量最高的microRNA基因miR‑124。所获得的小鼠均表现出明显的自主活动降低、学习记忆力下降、可溶性β淀粉样蛋白增多等神经系统疾病状态。可以为神经系统疾病病理的研究,神经系统疾病药物的筛选提供简单、可靠、经济的动物模型。

Description

miR-124基因敲除小鼠动物模型的构建方法和应用
技术领域
本发明属于生物技术领域,具体涉及miR-124基因敲除小鼠动物模型及其构建方法和应用。
背景技术
现代人生活一方面节奏快、压力大,另一方生面生活质量普遍提高,人均寿命增加。因此各类精神疾病,尤其是老年性退行疾病的发病率迅速上升。目前神经系统类疾病的诊断麻烦,分期困难,缺乏有效治疗手段。究其原因,是因为这类疾病的病因复杂,发病机理不明,目前的研究缺乏合适的动物模型。因此建立有效的疾病动物模型是目前研究的迫切任务。本专利所构建的基因敲除小鼠均表现出明显的自主活动降低、学习记忆力下降、可溶性β淀粉样蛋白增多等神经系统疾病状态。可以为神经系统疾病病理的研究,神经系统疾病药物的筛选提供简单、可靠、经济的动物模型。
神经系统重大疾病(如脑血管病、阿尔茨海默病、帕金森病、亨廷顿病等)严重危害人类的生命健康,其发病率,死亡率,致残率高,每年给国家带来巨大的经济损失。目前神经系统类疾病的诊断麻烦,分期困难,缺乏有效治疗手段。究其原因,是因为这类疾病的病因复杂,发病机理不明,目前的研究缺乏合适的动物模型。
传统的神经系统重大疾病动物建模方式以自然衰老、物理损伤(电、热等手段损伤小鼠Meynert基底核)、化学诱导(乙酰胆碱M受体阻断剂、6-羟多巴胺、D-半乳糖、鱼藤酮模型等)或者手术处理。这些建模方式耗时长,价格不菲,需要专业的技术技巧,所建的模型一致性不高。
miR-124是一种在神经系统中特异性表达的miRNA。其在进化中十分保守,在46类种属中均能检测到miR-124的表达,其成熟序列在人类及小鼠中均为UAAGGCACGCGGUGAAUGCC(SEQ ID NO.4)。miR-124在人类及小鼠中均有3个拷贝的编码基因,分别叫做miR-124-1,miR-124-2,miR-124-3;它们的前体序列,所在染色体位置均不相同(见表1)。也就是说miR-124在人体内(还有鼠内)的染色体上只有3个地方有,其他地方没有。
表1.miR-124的前体序列及所在位置
miR-124是哺乳动物神经系统内表达最多的miRNA,占哺乳动物大脑皮质总miRNA的5%~48%,但在其它组织中表达量极低。其在分化和成熟的神经元中,特别是视网膜的感光细胞(视杆细胞、视锥细胞)中高度表达,但在神经干细胞、神经前体细胞和胶质细胞内表达很低。神经发生、分化,学习记忆,神经免疫,视觉感光等多种生理功能都有 miR-124的参与;多种神经系统疾病与miR-124的异常表达有关。
Laterza课题组及Weng课题组都发现血浆miR-124在短暂性(缺血60~90min)和永久性大脑中动脉栓塞(middle cerebral artery occlusion,MCAO)小鼠脑缺血模型中均有不同程度的增加;表明miR-124与缺血性脑血管病相关。Smith等发现阿尔茨海默病(Alzheimer’s disease,AD)患者脑内miR-124表达减少,其导致AD发生的可能机制为:miR-124靶向作用于PTBPl,从而调节淀粉样前体蛋白mRNA的选择性剪切,而异常的选择性剪切导致β淀粉样蛋白沉积。Johnson等发现亨廷顿病患者和亨廷顿病模型鼠R6/2脑内的miR-124表达下降,其导致亨廷顿病发生可能与miR-124靶向基因Atp6voe、Vamp3、 Plod3、Ctdspl和Itgbl的异常表达有关。Baudet发现miR-124可通过调控CoREST基因诱导视锥细胞的生长,从而影响明视觉(photopic vision)。
我们前期研究也发现miR-124在小鼠神经系统,特别是视网膜中高度表达(图2A);测序结果也表明小鼠大脑中表达量最高的miRNA分别为miR-124及miR-9。(图2B)。
发明内容
本发明旨在克服现有技术的不足,提供了一种miR-124基因敲除小鼠动物模型及其构建方法和应用。
所述miR-124基因敲除小鼠动物模型是被敲除了miR-124-1、miR-124-2、miR-124-3 基因的小鼠。
上述小鼠动物模型的构建方法包括如下步骤:
(1)构建针对miR-124-1、miR-124-2、miR-124-3基因的sgRNA;所述miR-124-1 的sgRNA序列如SEQ ID NO.1所示;所述miR-124-2的sgRNA序列如SEQ ID NO.2 所示;所述miR-124-3的sgRNA序列如SEQ ID NO.3所示;
(2)PMSG处理C57/BL6雌性小鼠,46小时后注射hCG,与雄性小鼠合笼交配,次日取受精卵进行显微注射,将步骤(1)所述的sgRNA与Cas9核酸酶mRNA 体外转录后,注射到受精卵中,取注射后存活的受精卵移植到假孕母鼠体内,产出小鼠,即为F0代小鼠;
(3)提取F0代小鼠尾部DNA,PCR扩增并将产物送测序,鉴定是否为嵌合体;
(4)待雄性Founder小鼠到7周龄,雌性小鼠到4周龄,可分别与野生型异性小鼠交配获得F1代杂合子小鼠,小鼠出生20天后PCR鉴定,若有阳性小鼠出生,则表示转基因已经整合到生殖细胞;
(5)将F1代杂合子小鼠杂交获得F2代纯合子小鼠,即为小鼠动物模型。
其中,SEQ ID NO.1:
GATCACTAATACGACTCACTATAGGCAAGGTCCGCTGTGAACAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT;
SEQ ID NO.2:
GATCACTAATACGACTCACTATAGGCAAGGTCCGCTGTGAACAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT;
SEQ ID NO.3:
GATCACTAATACGACTCACTATAGGCCCTCTGCGTGTTCACAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT。
本发明系统研究了miR-124-3基因敲除小鼠行为学,发现小鼠自发活动能力降低,但运动、平衡能力没有改变,也无焦虑或抑郁现象。进一步研究发现敲除小鼠的认知能力、空间学习和记忆能力以及长期学习记忆能力都受到损伤(图3,4)。
本发明使用Crispr-cas9基因敲除技术,敲除了小鼠大脑中表达量最高的microRNA基因miR-124。所获得的小鼠均表现出明显的自主活动降低、学习记忆力下降、可溶性β淀粉样蛋白增多等神经系统疾病状态。可以为神经系统疾病病理的研究,神经系统疾病药物的筛选提供简单、可靠、经济的动物模型。
所述基因敲除小鼠生下来不久(3-4个月内)即自然表现出神经系统不正常现象,造模时间短,不需要特殊的试剂、手术和物理方法,方法简单易行。小鼠可以自由交配,能产下可存活的纯合子后代,价格低廉。
附图说明
图1为CRISPR基因敲除小鼠模型建立示意图;
图2为miR-124的组织分布:(A)Northern Blot显示miR-124在大脑和视网膜中高度表达;miR-96为视网膜特异表达标记分子;Let-7为所有组织广泛表达的标记分子;TotalRNA作为定量标记;(B)小鼠大脑中高度表达的miRNA;
图3为miR-124-3基因敲除小鼠行为学研究:(A)旷场实验表明自发活动能力降低,但无焦虑现象;(B)强迫游泳实验表明无抑郁现象;(C)旋转实验表明平衡能力没有改变;(D)行走痕迹实验表明运动能力没有改变;
图4为miR-124-3基因敲除小鼠记忆力测试:(A)新物体识别实验表明敲除小鼠记忆力下降;(B)Morris水迷宫实验表明敲除小鼠空间记忆力下降;(C)恐惧记忆与消退实验表明敲除小鼠学习能力降低,长期记忆力下降。
具体实施方式
小鼠动物模型的构建方法:
(1)构建针对miR-124-1、miR-124-2、miR-124-3基因的sgRNA,分步测序,所需时间约45-60天;然后线性化及纯化DNA并在体外转录为sgRNA;纯化sgRNA 至适合转基因注射的纯度,所需时间为15天;所述miR-124-1的sgRNA序列如SEQ ID NO.1所示;所述miR-124-2的sgRNA序列如SEQ ID NO.2所示;所述 miR-124-3的sgRNA序列如SEQ ID NO.3所示;
(2)PMSG处理C57/BL6雌性小鼠,46小时后注射hCG,与雄性小鼠合笼交配,次日取受精卵进行显微注射,将步骤(1)所述的sgRNA与Cas9核酸酶mRNA 体外转录后,注射到受精卵中,所需时间为10天,取注射后存活的受精卵移植到假孕母鼠体内,所需时间为30天,胚胎移植的小鼠将会在手术后19天左右出生,即为F0代小鼠,待小鼠出生20天后剪尾提取DNA并进行PCR鉴定。DNA抽提及PCR检测时间为2-3天。因此这个周期所需时间约为45天;
(3)待雄性Founder小鼠到7周龄,雌性小鼠到4周龄,可分别与野生型异性小鼠交配获得F1代杂合子小鼠,小鼠出生20天后PCR鉴定,若有阳性小鼠出生,则表示转基因已经整合到生殖细胞,这个过程需要120天左右;
(4)将F1代杂合子小鼠杂交获得F2代纯合子小鼠,即为小鼠动物模型。
所获得的三个miR-124基因敲除小鼠的测序结果及检测引物如表2所示,测序结果中画删除线的文字为敲除掉的基因序列。
表2、所获得的三个miR-124基因敲除小鼠的测序结果及检测引物

Claims (3)

1.一种miR-124基因敲除小鼠动物模型的构建方法,其特征在于,所述方法包括如下步骤:
(1)构建针对miR-124-1、miR-124-2、miR-124-3基因的sgRNA;所述miR-124-1的sgRNA序列如SEQ ID NO.1所示;所述miR-124-2的sgRNA序列如SEQ ID NO.2所示;所述miR-124-3的sgRNA序列如SEQ ID NO.3所示;
SEQ ID NO.1所示序列中:GATCACTAATACGACTCACTATAGG为T7启动子区域;CAAGGTCCGCTGTGAACA为靶点特异性序列;GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT为引导RNA骨架序列;
SEQ ID NO.2所示序列中:GATCACTAATACGACTCACTATAGG为T7启动子区域;CAAGGTCCGCTGTGAACA为靶点特异性序列;GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT为引导RNA骨架序列;
SEQ ID NO.3所示序列中:GATCACTAATACGACTCACTATAGG为T7启动子区域;CCCTCTGCGTGTTCACAG为靶点特异性序列;GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT为引导RNA骨架序列;
(2)PMSG处理C57/BL6雌性小鼠,46小时后注射hCG,与雄性小鼠合笼交配,次日取受精卵进行显微注射,将步骤(1)所述的sgRNA与Cas9核酸酶mRNA体外转录后,注射到受精卵中,取注射后存活的受精卵移植到假孕母鼠体内,产出小鼠,即为F0代小鼠;
(3)提取F0代小鼠尾部DNA,PCR扩增并将产物送测序,鉴定是否为嵌合体;
(4)待雄性Founder小鼠到7周龄,雌性小鼠到4周龄,可分别与野生型异性小鼠交配获得F1代杂合子小鼠,小鼠出生20天后PCR鉴定,若有阳性小鼠出生,则表示转基因已经整合到生殖细胞;
(5)将F1代杂合子小鼠杂交获得F2代纯合子小鼠,即为小鼠动物模型。
2.构建权利要求1所述小鼠动物模型的试剂盒,其特征在于,所述试剂盒中含有针对miR-124-1、miR-124-2、miR-124-3基因的sgRNA;所述miR-124-1的sgRNA序列如SEQ IDNO.1所示;所述miR-124-2的sgRNA序列如SEQ ID NO.2所示;所述miR-124-3的sgRNA序列如SEQ ID NO.3所示。
3.针对miR-124-1、miR-124-2、miR-124-3基因的sgRNA在制备神经系统及眼科疾病表征的模式动物中的应用,所述miR-124-1的sgRNA序列如SEQ ID NO.1所示;所述miR-124-2的sgRNA序列如SEQ ID NO.2所示;所述miR-124-3的sgRNA序列如SEQ ID NO.3所示。
CN201610669402.XA 2016-08-12 2016-08-12 miR-124基因敲除小鼠动物模型的构建方法和应用 Active CN106172238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610669402.XA CN106172238B (zh) 2016-08-12 2016-08-12 miR-124基因敲除小鼠动物模型的构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610669402.XA CN106172238B (zh) 2016-08-12 2016-08-12 miR-124基因敲除小鼠动物模型的构建方法和应用

Publications (2)

Publication Number Publication Date
CN106172238A CN106172238A (zh) 2016-12-07
CN106172238B true CN106172238B (zh) 2019-01-22

Family

ID=57521479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610669402.XA Active CN106172238B (zh) 2016-08-12 2016-08-12 miR-124基因敲除小鼠动物模型的构建方法和应用

Country Status (1)

Country Link
CN (1) CN106172238B (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261500B2 (ja) 2011-07-22 2018-01-17 プレジデント アンド フェローズ オブ ハーバード カレッジ ヌクレアーゼ切断特異性の評価および改善
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
US20190225955A1 (en) 2015-10-23 2019-07-25 President And Fellows Of Harvard College Evolved cas9 proteins for gene editing
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR20240007715A (ko) 2016-10-14 2024-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
CN106987604B (zh) * 2017-03-29 2021-05-28 北京希诺谷生物科技有限公司 一种制备动脉粥样硬化疾病模型犬的方法
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
CN107475300B (zh) * 2017-09-18 2020-04-21 上海市同济医院 Ifit3-eKO1基因敲除小鼠动物模型的构建方法和应用
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN108359690A (zh) * 2018-01-24 2018-08-03 中国人民解放军第二军医大学 miR-351基因的应用
CN108060231A (zh) * 2018-02-24 2018-05-22 韩林志 用于宫颈癌基因FAM19A4、miR-124-2甲基化检测的引物对、试剂盒及方法
CN108998474A (zh) * 2018-08-06 2018-12-14 南华大学附属第医院 一种建立miR-32-5p基因敲除小鼠模型的方法及应用
CA3130488A1 (en) 2019-03-19 2020-09-24 David R. Liu Methods and compositions for editing nucleotide sequences
CN110547256B (zh) * 2019-09-05 2021-09-21 郑州大学第一附属医院 肾脏足细胞特异敲除lncRNA DLX6-os1转基因小鼠的培育方法
CN110931077B (zh) * 2019-11-13 2022-01-11 南方医科大学南方医院 一种利用蛋白质互作网络构建自闭症动物模型的方法
GB2614813A (en) 2020-05-08 2023-07-19 Harvard College Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112870182A (zh) * 2021-03-18 2021-06-01 中南大学 紫苏醇及其衍生物在制备减轻化疗副作用药物中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985628B (zh) * 2010-08-13 2012-07-25 哈尔滨医科大学 一种心脏特异microRNA敲减小鼠模型建立的方法
CN102199625B (zh) * 2011-04-02 2012-09-19 中国人民解放军军事医学科学院生物工程研究所 一种miRNA转基因小鼠模型的构建方法
CN105624195A (zh) * 2014-10-30 2016-06-01 北京大学 构建灵长类动物miRNA-122敲除模型的方法、灵长类动物肝癌模型及用途
CN104651398A (zh) * 2014-12-24 2015-05-27 杭州师范大学 利用CRISPR-Cas9特异敲出microRNA基因家族的方法
WO2016104716A1 (ja) * 2014-12-26 2016-06-30 国立研究開発法人理化学研究所 遺伝子のノックアウト方法
CN105112445B (zh) * 2015-06-02 2018-08-10 广州辉园苑医药科技有限公司 一种基于CRISPR-Cas9基因敲除技术的miR-205基因敲除试剂盒

Also Published As

Publication number Publication date
CN106172238A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106172238B (zh) miR-124基因敲除小鼠动物模型的构建方法和应用
CN105210981A (zh) 建立可应用于人类疾病研究的雪貂模型的方法及其应用
CN105177044B (zh) 通过敲除p53基因获得淋巴瘤小型猪疾病模型的方法
Bhattacharya et al. Modeling developmental brain diseases using human pluripotent stem cells-derived brain organoids–progress and perspective
Sobek et al. Cytoplasmic transfer improves human egg fertilization and embryo quality: an evaluation of sibling oocytes in women with low oocyte quality
Surani Germ cells: the eternal link between generations
WO2020228305A1 (zh) 一种突变型gabrg2转基因斑马鱼癫痫模型的构建方法及应用
Tan et al. Vof-16 knockout improves the recovery from hypoxic-ischemic brain damage of neonatal rats
CN111388684A (zh) 一种利用转基因斑马鱼评价药物抗阿尔茨海默症药效的方法
WO2015127875A1 (zh) 极体基因组重构卵子及其制备方法和用途
Mordhorst et al. Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system
CN104800860A (zh) miR-17-92基因簇促进神经细胞增殖和神经再生的新应用
CN114868707B (zh) 一种代谢性脑病和心律失常疾病的斑马鱼模型及其应用
KR102177174B1 (ko) Pde6b 유전자가 결손된 망막 변성 동물 모델 및 이의 제조 방법
Wang et al. Improvements in the primary culture of neonate rat myocardial cells by study of the mechanism of endoplasmic reticulum stress
CN106399362B (zh) 转基因小鼠骨骼肌营养不良模型的构建方法
Huang et al. In Vivo Electroporation and Time‐Lapse Imaging of the Rostral Migratory Stream in Developing Rodent Brain
CN115518161B (zh) Zip1作为癫痫治疗靶标的应用
CN108624621A (zh) 非人灵长类的体细胞克隆动物的制备方法
CN105349494B (zh) Arvc疾病特异性的人诱导多功能干细胞株及其用途
Etim Human Stem Cell Research: Bioethical Potentials and Problematics
CN114763557A (zh) Ddx5在抗病毒和调节免疫反应中的应用
Zhang et al. Does repair of spinal cord injury follow the evolutionary theory?☆
CN116440271A (zh) 一种miR-19a-3p抑制剂在制备神经保护类药物中的应用
CN117187245A (zh) 一种小鼠脱毛模型的构建方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant