CN108913664B - 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法 - Google Patents

一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法 Download PDF

Info

Publication number
CN108913664B
CN108913664B CN201810800068.6A CN201810800068A CN108913664B CN 108913664 B CN108913664 B CN 108913664B CN 201810800068 A CN201810800068 A CN 201810800068A CN 108913664 B CN108913664 B CN 108913664B
Authority
CN
China
Prior art keywords
cfp1
ovarian cancer
gene
cells
cancer cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810800068.6A
Other languages
English (en)
Other versions
CN108913664A (zh
Inventor
潘巍巍
徐营
范衡宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN201810800068.6A priority Critical patent/CN108913664B/zh
Publication of CN108913664A publication Critical patent/CN108913664A/zh
Application granted granted Critical
Publication of CN108913664B publication Critical patent/CN108913664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Abstract

本发明采用CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CpG结合蛋白CXXC锌指蛋白1可以抑制细胞增殖。通过CRISPR/Cas9基因编辑方法敲除卵巢癌细胞A2780细胞中的CFP1蛋白,建立CFP1缺失的卵巢癌细胞系。通过细胞增殖实验证明CFP1缺失可以抑制卵巢癌细胞的增殖;通过克隆形成实验证明CFP1蛋白缺失抑制卵巢癌细胞非锚定性细胞生长;通过流式细胞仪检测发现CFP1基因敲除还影响细胞周期变化;通过免疫印迹检测发现在卵巢癌细胞中CFP1缺失可以显著降低H3K4me3的表达,这表明在卵巢癌细胞中CFP1参与调节组蛋白甲基化。

Description

一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因 的方法
技术领域
本发明属于生物技术和医学领域,具体CRISPR/Cas9基因编辑方法敲除卵巢癌细胞CFP1蛋白抑制细胞增殖和软琼脂克隆形成能力,及影响细胞周期。
背景技术
卵巢癌是危害妇女健康最常见的恶性肿瘤之一,其致死率在所有妇科肿瘤中居于首位,卵巢癌发病隐蔽,极易发生侵袭和转移,大部分患者就诊时已处于晚期阶段,因此,卵巢癌患者的5年生存率仅30% 左右。近年来卵巢癌的发病率也逐年增加,各个年龄层的女性都有可能发生卵巢癌,但以45岁到50岁的妇女最为常见。
CpG结合蛋白CXXC锌指蛋白1(CXXC finger protein 1,CFP1)由Cxxc1基因编码,是SET1组蛋白甲基化复合体中的重要亚基,能够识别并结合在基因组中处于非甲基化状态的CpG岛上[16-18]。另一方面,SET复合体介导组蛋白H3的第4位赖氨酸发生3甲基化(H3K4me3),这种甲基化使染色质结构更加松散,基因更容易转录。因此,CFP1蛋白与SETD1A/B以及SET1复合体其他组成成份相互作用,并将SETD1带到CpG岛上。使这些DNA区域发生更多的H3K4me3,这样在其他转录因子的存在下,基因能够更快速的启动转录,发挥功能,调节干细胞的维持和分化。
发明内容
本发明目的是建立了CRISPR/Cas9基因编辑方法敲除卵巢癌细胞A2780细胞中CFP1蛋白,并明确了CFP1蛋白缺失可以抑制卵巢癌细胞增殖和克隆形成能力,提供了CFP1蛋白影响卵巢癌细胞增殖的理论依据。
本发明的第一个方面,提供了:
CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法,包括如下步骤:
采用核苷酸序列如SEQ ID NO.1~4所示的gRNA,连接到质粒载体上后,转染至卵巢癌细胞。
在一个实施方式中,所述的质粒载体是PX459。
在一个实施方式中,gRNA在PX459是通过Bbs1酶切连接。
在一个实施方式中,转染过程采用Lip3000脂质体。
在一个实施方式中,卵巢癌细胞是A2780细胞。
本发明的第二个方面,提供了:
由上述方法所得到的CFP1基因被敲除的卵巢癌细胞模型。
本发明的第三个方面,提供了:
用于CRISPR/Cas9基因编辑敲除卵巢癌细胞中CFP1基因的gRNA,其核苷酸序列如SEQ ID NO.1~4所示。
本发明的第四个方面,提供了:
上述的针对CFP1基因的gRNA在用于制备抑制卵巢癌细胞的制剂中的用途。
有益效果
通过CRISPR/Cas9基因编辑方法建立了CFP1基因敲除的卵巢癌A2780细胞系,同时证明了CFP1蛋白在卵巢癌细胞增殖中的作用,为筛选卵巢癌基因治疗靶点提供理论上有意义的参考。
附图说明
图1为CRISPR/Cas9基因编辑敲除Cfp1基因的位点。
图2是免疫印迹检测CFP1蛋白敲除效率比较。
图3 是PCR扩增野生型细胞和基因敲除细胞Cfp1基因,琼脂糖凝胶电泳检测。
图4为细胞增殖实验检测结果表明CFP1蛋白缺失抑制卵巢癌细胞增殖。
图5是克隆形成实验照片。
图6是克隆形成实验细胞数量对比。
图7是CFP1缺失影响卵巢癌细胞周期的比较。
图8是免疫组化方法检测176例不同类型的人卵巢肿瘤组织中CFP1蛋白的表达情况。
图9是免疫荧光检测结果。
图10是免疫印迹检测卵巢癌细胞中Cfp1基因敲除后组蛋白甲基化H3K4me3表达。
具体实施方式
下面结合实施及附图对本发明作进一步详细的描述:
CFP1蛋白在卵巢癌细胞增殖中的作用机制,通过CRISPR/Cas9基因编辑方法建立了Cfp1基因敲除的卵巢癌细胞,应用细胞增殖、克隆形成实验、免疫荧光、免疫组化和免疫印迹实验证明CFP1蛋白缺失可以抑制卵巢癌细胞增殖,影响细胞周期,减少组蛋白的甲基化。
A2780 cells(人卵巢细胞株)从ATCC(Manassas, VA, USA)购买。
Cfp1基因敲除细胞系的建立: 利用CRISPR/cas9设计网站(http://crispr.mit.edu)提供的在线软件在Cfp1基因上分别设计guide RNA序列(如SEQ ID NO.1~4所示),图1显示CRISPR/Cas9基因编辑敲除Cfp1基因的位点,同时在Cfp1基因第二和第三个内含子上设计了Cfp1基因敲除的序列。退火后Bbs1酶切连接到载体PX459中,构建含有不同guide RNA序列的质粒,使用Lip3000脂质体分别转染到卵巢癌A2780细胞,嘌呤霉素筛选3-5天,通过流式细胞分选获得单细胞克隆,免疫印迹方法鉴定Cfp1不同guide RNA的敲除效率,选取敲除效率最好的2-3个细胞克隆用于后续试验。图2是免疫印迹检测CFP1蛋白敲除效率比较,可以看出。图3 是PCR扩增野生型细胞和基因敲除细胞Cfp1基因,琼脂糖凝胶电泳检测,显示Cfp1基因敲除的卵巢癌细胞中没有500bp条带扩增。
Cfp1 gRNA-1-正义链: CACCGAGCGGGACAGCAGTGAGCCC(SEQ ID NO.1)
Cfp1gRNA-1-反义链: AAACGGGCTCACTGCTGTCCCGCTC(SEQ ID NO.2)
Cfp1 gRNA-2-正义链:CACC G GAGGACAGCAAGTCCGAGAA(SEQ ID NO.3)
Cfp1 gRNA-2-反义链:AAAC TTCTCGGACTTGCTGTCCTCC(SEQ ID NO.4)
MTT细胞增殖实验:取对数期的野生型及Cfp1基因敲除的人卵巢癌细胞系A2780,胰酶消化后,以5×10 3 密度接种于96孔板中(平行三复孔),200μl/孔细胞悬液,至于37℃、5%CO2的培养箱中,每个样品准备二份用于时间梯度检测。分别于24小时,48小时时间点各取一组样品,加入20μl浓度为5mg/ml的噻唑蓝溶液,置于37℃、5%CO2的培养箱中培养4小时。培养4小时后,吸走培养基,加入150μl DMSO,微微震荡晃匀。置于酶标仪,490nm波长检测吸光值。图4为细胞增殖实验检测结果表明CFP1缺失抑制卵巢癌细胞增殖。
克隆形成实验检测细胞增殖抑制情况: 取对数期的野生型及Cfp1基因敲除的人卵巢癌细胞系A2780,胰酶消化后,以1×10 3 密度接种于6cm培养皿中(平行三个培养皿),每三天更换新鲜培养基,连续培养2周。弃培养基,1xPBS漂洗细胞,考马斯亮蓝染色,然后吸走考马斯亮蓝染液,1×PBS漂洗3-5次,1min/次。将6cm培养皿倒置,拍照,计数。图5是克隆形成实验细胞照片;图6是克隆形成实验细胞数量对比。克隆形成实验结果表明CFP1缺失抑制卵巢癌细胞克隆形成能力。图7是CFP1缺失影响卵巢癌细胞周期的比较。
免疫组化:石蜡包埋人卵巢肿瘤组织芯片购买于桂林泛谱生物技术有限公司。实验中使用的人卵巢肿瘤组织经嘉兴学院校伦理委员会批准。5μm切片,参照ABC试剂盒(Vector Laboratories, Burlingame, CA, USA),染色包括以下几个方面:切片经H2O2(0.3%)孵育10 min后,在10%山羊血清中孵育30 min,然后用CFP1抗体,1:200稀释,室温孵育1小时,用PBS洗涤后,用二次抗体孵育30 min。DAB(DAB substrate kit, VectorLaboratories)显色。图8是免疫组化方法检测176例不同类型的人卵巢肿瘤组织中CFP1蛋白的表达情况,发现在正常人卵巢组织中CFP1蛋白低表达,而在多数肿瘤组织中CFP1蛋白均高表达。
细胞免疫荧光:于24孔板中放入灭菌玻片,PBS漂洗3次,接种处于生长对数期的野生型及Cfp1基因敲除的人卵巢癌细胞系A2780细胞,贴壁过夜。将细胞固定在4%的多聚甲醛中室温摇床固定30min,弃固定液,1×PBS洗3次,5min/次;加入5%BSA,室温摇床封闭1h,在室温下用一抗孵育细胞1小时(CFP1, Hsp60 ,Nile Red, GM130, Calnexin),DAPI染核。图9是免疫荧光检测结果。显示Cfp1敲除后卵巢癌细胞线粒体,高尔基体,内质网等细胞器不受影响,CFP1敲除不影响卵巢癌细胞亚细胞结构。
免疫印迹:从野生型及Cfp1基因敲除的人卵巢癌细胞系A2780中提取蛋白质,95℃变性10分钟,经SDS-PAGE分离后转移到PVDF膜上,在室温下与5%脱脂牛奶中室温摇床上封闭1小时,将一抗用封闭液稀释后4℃过夜孵育。TBST清洗膜,以辣根过氧化物酶结合的山羊抗兔抗体作为第二抗体(Cell Signaling Technology)为二抗,室温孵育1h,TBST清洗膜。结合抗体通过ECL试剂盒(Amersham, GE Healthcare)显示。检测抗体包括CFP1(Abcam)、H3K4me3、H3k9me3(Abcam )、ERK、和α-tublin(Cell Signaling Technology)。如图10所示,免疫印迹检测卵巢癌细胞中Cfp1基因敲除后组蛋白甲基化H3K4me3表达增加。
序列表
<110> 嘉兴学院
<120> 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
caccgagcgg gacagcagtg agccc 25
<210> 2
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
aaacgggctc actgctgtcc cgctc 25
<210> 3
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
caccggagga cagcaagtcc gagaa 25
<210> 4
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
aaacttctcg gacttgctgt cctcc 25

Claims (2)

1.CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法,其特征在于,包括如下步骤:采用核苷酸序列如SEQ ID NO.1~4所示的gRNA,连接到质粒载体上后,转染至卵巢癌细胞;
所述的质粒载体是PX459;
gRNA在PX459是通过BbsⅠ酶切连接;
转染过程采用Lip3000脂质体;
卵巢癌细胞是A2780细胞。
2.权利要求1所述的方法所得到的CFP1基因被敲除的卵巢癌细胞模型。
CN201810800068.6A 2018-07-20 2018-07-20 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法 Active CN108913664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810800068.6A CN108913664B (zh) 2018-07-20 2018-07-20 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810800068.6A CN108913664B (zh) 2018-07-20 2018-07-20 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法

Publications (2)

Publication Number Publication Date
CN108913664A CN108913664A (zh) 2018-11-30
CN108913664B true CN108913664B (zh) 2020-09-04

Family

ID=64416496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810800068.6A Active CN108913664B (zh) 2018-07-20 2018-07-20 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法

Country Status (1)

Country Link
CN (1) CN108913664B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
US20190225955A1 (en) 2015-10-23 2019-07-25 President And Fellows Of Harvard College Evolved cas9 proteins for gene editing
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR20240007715A (ko) 2016-10-14 2024-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CA3130488A1 (en) 2019-03-19 2020-09-24 David R. Liu Methods and compositions for editing nucleotide sequences
GB2614813A (en) 2020-05-08 2023-07-19 Harvard College Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN111789966B (zh) * 2020-06-29 2021-05-28 华南农业大学 组蛋白甲基化H3K4me3在小鼠卵巢发育中的应用
CN114480633A (zh) * 2021-04-06 2022-05-13 嘉兴学院 Dcaf13基因在作为抑制乳腺癌细胞增殖靶标中的用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746845A (zh) * 2016-12-28 2018-03-02 北京微旋基因技术有限公司 特异性靶向LAG‑3基因的sgRNA和特异性敲除LAG‑3基因的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746845A (zh) * 2016-12-28 2018-03-02 北京微旋基因技术有限公司 特异性靶向LAG‑3基因的sgRNA和特异性敲除LAG‑3基因的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CRISPR/Cas9,a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal fo chemosensitivity in human epithelial ovarian cancer cell line.;Leyia Norouzi-Barough et al.;《Iran J Basic Med Sci》;20180228;第21卷(第2期);第181-187页 *
CXXC指蛋白5在上皮性卵巢癌中的表达及其临床意义;汪景灏等;《中国癌症杂志》;20150430;第25卷(第4期);摘要 *
In vivo ovarian cancer gene therapy using CRISPR-Cas9;He ZY et al.;《Hum Gene Ther》;20180228;第29卷(第2期);标题 *
过表达和敲除SLUG基因卵巢癌SKOV3细胞稳定株的建立;雷静等;《山东医药》;20171231;第57卷(第42期);第1-4页 *

Also Published As

Publication number Publication date
CN108913664A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108913664B (zh) 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法
Zhang et al. Systematic CRISPR-Cas9-mediated modifications of Plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development
Ohnuki et al. Generation and characterization of human induced pluripotent stem cells
CN105255834A (zh) 抗原特异性t细胞受体和t细胞表位
Yang et al. The cyclin-dependent kinase 2 (CDK2) mediates hematopoiesis through G1-to–S transition in Chinese mitten crab Eriocheir sinensis
CN111904958A (zh) Umi-77作为线粒体自噬诱导剂在制备治疗炎症及神经退行性疾病药物中的应用
CN114230660B (zh) 抗大口黑鲈虹彩病毒lmbv的单克隆抗体及其应用
Slinskey et al. Simian virus 40 large T antigen J domain and Rb-binding motif are sufficient to block apoptosis induced by growth factor withdrawal in a neural stem cell line
CN104031884B (zh) 蛋白质精氨酸甲基转移酶7在癌细胞转移中的应用
Liu et al. Generation of Plasmodium yoelii malaria parasite for conditional degradation of proteins
Yu et al. The proliferating cell nuclear antigen (PCNA) is a potential proliferative marker in oyster Crassostrea gigas
WO2014109696A1 (en) Method for immortalization of b cells and uses thereof
CN114672460B (zh) 一种靶向cd44的异质型cic细胞模型的制备方法及应用
Ishigaki et al. Transplantation of iPS-derived tumor cells with a homozygous MHC haplotype induces GRP94 antibody production in MHC-matched macaques
CN104726493A (zh) 一种过表达c2orf68基因质粒构建方法及其应用
Wang et al. Dissemination of western equine encephalomyelitis virus in the potential vector, Culex pipiens pallens
CN111393504B (zh) 一种肝癌抗原组合及其应用、细胞毒性t淋巴细胞
CN113925877A (zh) 基因增强型免疫细胞在肺癌中的应用
CN112274534A (zh) Atpif1基因敲低的树突状细胞在肿瘤防治中的应用
CN102533824A (zh) 筛选和分离外源基因表达细胞的载体系统
Zhang et al. MDM2 is involved in the regulation of p53 expression in the immune response of oyster Crassostrea hongkongensis
Chen et al. Identification and screening of host proteins interacting with ORFV-ORF047 protein
CN104004765A (zh) 一种具有免疫效果的基因
Louboutin et al. Characterization of a novel picornavirus isolated from moribund gilthead seabream (Sparus aurata) larvae
Liu et al. A pattern recognition receptor CgTLR3 involves in regulating the proliferation of haemocytes in oyster Crassostrea gigas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant