CN107523583A - 一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法 - Google Patents

一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法 Download PDF

Info

Publication number
CN107523583A
CN107523583A CN201710846388.0A CN201710846388A CN107523583A CN 107523583 A CN107523583 A CN 107523583A CN 201710846388 A CN201710846388 A CN 201710846388A CN 107523583 A CN107523583 A CN 107523583A
Authority
CN
China
Prior art keywords
gene
cas
plasmid
prokaryotic
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710846388.0A
Other languages
English (en)
Inventor
童望宇
孙焰
王安静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201710846388.0A priority Critical patent/CN107523583A/zh
Publication of CN107523583A publication Critical patent/CN107523583A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Abstract

本发明首次公开了一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法,包括蛋白表达质粒和基因编辑质粒的构建及大肠杆菌和枯草杆菌中的基因编辑操作过程。该方法对原核生物基因组可方便、快速、有效地进行基因编辑;可望有效地应用于与原核基因工程相关的任何领域。

Description

一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑 方法
本发明涉及生物技术中的基因工程领域,确切地说是一种源于I型CRISPR-Cas系统中基因cas5-3的应用于原核生物的基因编辑方法。
背景技术
在生物技术领域中,2013年的CRISPR-Cas9系统是继1996年锌指核酸内切酶/ZFN(zinc-finger nucleases)、2011年类转录激活因子效应物核酸酶/TALEN(transcriptionactivator-like effector nucleases)之后出现的第三代基因编辑技术。与前两代技术相比,因其成本低、操作简便、快捷高效而迅速风靡于世界生物技术领域,现已成为科研、医疗、食品等领域的有效工具。
CRISPR-CAS系统(Clustered Regularly Interspaced short PalindromicRepeats/CRISPR-associated genes)是一种针对外来质粒和噬菌体的免疫系统。目前CRISPR-CAS系统根据效应物的组成被分为两大类,其中只有含单一Cas蛋白的第2大类中的酶(如:Cas9/cjCas9和Cpf1)已证明可被开发成功能强大的基因编辑工具(http://www.ncbi.nlm.nih.gov;Zetsche B,Gootenberg JS,Abudayyeh OO,Slaymaker IM,Makarova KS,Essletzbichler P,Volz SE,Joung J,van der Oost J,Regev A,KooninEV,Zhang F(2015)Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.Cell 163(3):759-71 doi:10.1016/j.cell.2015.09.038),能方便灵活的对基因组的任何靶点或多个靶位点进行反复和同时编辑,包括DNA的插入(insertion)、删除(deletions)、无痕单核甘酸替换(scar-less single-nucleotide substitutions)(Jiang,W.,Bikard,D.,Cox,D.,Zhang,F.and Marraffini,L.A.(2013)RNA-guidedediting of bacterial genomes using CRISPR-Cas systems.NatureBiotechnology.31,233-239)及RNA水平调控(CRISPR interference/CRISPRi)等。
目前的基因编辑系统存在着分子量大与脱靶等问题。我们实验室在维吉尼亚链霉菌IBL14(Streptomyces virginiae IBL14)中发现一个subtype I-B-svi CRISPR-Cas系统,并幸运地证实该系统可对维吉尼亚链霉菌IBL14自身染色体进行基因编辑_ENREF_1(童望宇;雍德祥;李雪;邱彩花;一种维吉尼亚链霉菌IBL14中的CRISPR-Cas系统及应用其进行基因编辑的方法.申请号:CN2015110028173,2015;童望宇,李雪,雍德祥;一种维吉尼亚链霉菌IBL14产青霉素重组菌株的构建方法,申请号:CN201510999333.4),并进一步发现由该系统中6个基因cas7-5-3-4-1-2与3个基因cas7-5-3组成的基因编辑系统能对原核生物基因组进行基因编辑(童望宇,许鑫,张雁,孙焰,曹素丽;一种维吉尼亚链霉菌IBL14type I-B-sv14型CAS基因编辑系统,申请号:CN201611113137.3;童望宇,邱彩花,杨兴旺,王安静;一种基于维吉尼亚链霉菌IBL14基因cas7-5-3的基因编辑方法,申请号:CN201611089333.1)。但上述基因编辑工具除cjCas9(MW:114896.12Da),(Kim,E.,Koo,T.,Park,S.W.,Kim,D.,Kim,K.,Cho,H.Y.,Song,D.W.,Lee,K.J.,Jung,M.H.,Kim,S.,Kim,J.H.and Kim,J.S.(2017)In vivo genome editing with a small Cas9 orthologuederived from Campylobacter jejuni.Nat Commun.8,14500)外均存在分子量大(MW:大于143,000Da)缺陷。本发明将公开一个由subtype I-B-svi CRISPR-Cas系统cas5-3为基础构建的蛋白表达质粒(MW:107867Da)plasmid-cas5-3,结合基因编辑质粒和/或其它质粒在原核微生物大肠杆菌与枯草杆菌中的基因编辑方法。
发明内容
本发明要解决的技术问题是提供一种基于维吉尼亚链霉菌IBL14 subtype I-B-svi CRISPR-Cas系统的cas5-3而建立的原核微生物的基因编辑工具。为达此目的,采用如下技术方案:
一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法,其特征在于:包含一个I型CRISPR-Cas系统中基因cas5与基因cas3所组成的蛋白表达质粒和/或一个基因编辑质粒对原核生物进行基因编辑。
所述的一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法,包括以下步骤:
(1)根据维吉尼亚链霉菌IBL14中cas基因簇的序列信息设计引物,以维吉尼亚链霉菌IBL14基因组为模版,用TransStart FastPfu Fly DNA Polymerase聚合酶通过PCR反应扩增得到基因cas5与cas3,连接到质粒plasmid上,得蛋白表达质粒plasmid-cas5-3;
(2)根据靶向基因DNA序列信息设计引物,以提取到的原核生物基因组为模版,用TransTaq DNA Polymerase High Fidelity DNA聚合酶通过PCR反应分别扩增得到末端带有限制性内切酶识别和切割位点以及overlap PCR互补序列的靶向基因上下同源臂PCR片段,并用overlap PCR将上下同源臂结合起来构建基因编辑模版t-DNA,同时根据生物靶向基因序列信息设计并直接合成首尾分别含T7启动子和RNA转录终止子的靶向基因片段g-DNA,将基因编辑模版与靶向基因片段连接到质粒上得基因编辑质粒plasmid-t/g-geneabbreviation;
(3)制备原核微生物细胞感受态,并将按步骤(1)得到的蛋白表达质粒和按步骤(2)得到的各种基因编辑质粒分别转化到目标菌感受态中得到不同的基因编辑后的重组子,对重组子染色体进行PCR验证,以确证编辑后的目的重组子。
所述原核生物指大肠杆菌、枯草杆菌或其它原核微生物。
所述的基因编辑指是对原核细胞的染色体基因进行插入、敲除、无痕点突变及任意组合。
所述的转化包括单质粒转化、双质粒转化、电转化或化学转化。
本发明提供了一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法。首次实现了CRISPR-Cas I型系统中双基因cas5-3对其它原核生物基因组的基因编辑。原核生物中该双基因cas5-3因可位于同一转录单位内象单一基因一样进行转录并翻译成蛋白Cas5与Cas3,故该方法对原核生物基因组可方便、快速、有效地进行基因编辑;可望有效地应用于与原核基因工程相关的任何领域。
附图说明
图1基因编辑工具构建图。(A)蛋白表达质粒pCas-cas5-3的构建,pSC101ori/theorigin from pSC:来自低拷贝(copy)质粒载体pSC101的复制起始点,Rep101:基于基因RepA控制质粒pSC101复制拷贝数,araC/L-arabinose regulatory protein:阿拉伯糖调节蛋白,KanR/Kanamycin resistance:卡那霉素抗性,aBAD promoter/promoter of the L-arabinose operon of E.coli:大肠杆菌中受阿拉伯糖调控的araB启动子;(B)基因编辑质粒pKC1139-lacZ-t/g-DNA的构建,Ori pSG5/the origin from pSG5:pSG5质粒载体上的复制起始点,oriTRK2/the origin of conjugal transfer from RK2:RK2质粒载体上的结合转移复制起始点,lac promoter/lactose promoter:乳糖操纵子的启动子,T7promoter:T7启动子起始DNA转录,T7terminator:T7终止子终止DNA转录,AprR/apramycin resistance:安普霉素抗性。
图2菌株EC JM109(DE3)中LacZ基因的敲除结果。(A)蓝白斑筛选,蓝色表明为原始菌株,白色表明为重组菌株;(B)菌落PCR的DNA凝胶电泳,泳道M:5000bp DNA ladder,泳道1:野生型EC JM109(DE3)基因组的lacZ基因PCR,泳道2-4:质粒pCas-cas5-3、pKC1139-lacZ-t/g-DNA转化子的lacZ基因PCR(泳道2-4中DNA条带较泳道1中DNA条带小表明基因敲除成功)。
具体实施方式
为了更充分理解本发明的技术内容,下面结合具体实施例对本发明的技术方案作进一步介绍和说明,旨在更好的解释本发明的内容,以下实施例不限制本发明的保护范围。此外,在所列实施例中如无特别说明均采用如下材料:
1)菌株与质粒
维吉尼亚链霉菌Streptomyces virginiae IBL14/SV IBL14;大肠杆菌Escherichia coli DH5α/EC DH5α;Escherichia coli JM109/EC JM109(DE3);枯草芽孢杆菌Bacillus subtilis168/BS 168,质粒pCas,pKC1139。
2)培养基
LB液体培养基
酵母粉5g,蛋白胨10g,NaCl 10g,加入适量自来水溶解后,定容至1L,pH调至7.0~7.2,分装包扎后,121℃/20min灭菌。
LB固体培养基
酵母粉5g,蛋白胨10g,NaCl 10g,琼脂20g,加入适量自来水溶解后,定容至1L,pH调至7.0~7.2,分装包扎后,121℃/20min灭菌。
10×spizzen盐溶液(100ml):
K2HPO4 14g,KH2PO4 6g,(NH4)2SO4 2g,柠檬酸钠1g,MgSO4·7H2O 0.2g按顺序依次溶解在双蒸水中,加水至100ml。
GM I(100ml):
1×spizzen盐溶液95ml,50%葡萄糖1ml,5%水解酪蛋白500μl,10%酵母汁1ml,2mg/ml L-trp 2.5ml
GM II(100ml):
1×spizzen盐溶液97.5ml,50%葡萄糖1ml,5%水解酪蛋白80μl,10%酵母汁40μl,2mg/ml L-trp 500μl,0.5mol/L MgCl2 500μl,0.1M CaCl2 500μl
所用试剂均为市售品。
实施例1双质粒一步法敲除EC JM109lacZ基因
(1)pCas-cas5-3蛋白表达质粒的构建
根据SV IBL14基因cas5-3测序信息及质粒pCas序列信息,设计基因cas5-3特异性引物cas5-3-F和cas5-3-R以及pCas-F和pCas-R;用提取的SV IBL-14基因组DNA为模板,以引物cas5-3-F和cas5-3-R进行cas5-3基因PCR扩增,反应条件:98℃2min,98℃20s,61℃20s,72℃90s,30个循环,72℃5min。PCR产物经1%琼脂糖电泳检测,试剂盒回收,得到纯化的cas5-3全长基因片段;提取pCas质粒,以pCas质粒为模板和设计的pCas质粒特异性引物pCas-F和pCas-R,进行PCR扩增,反应条件:95℃2min,95℃20s,61℃20s,72℃5min,250unit的TransStart FastPfu Fly DNA Polymerase(50μl反应体系),30个循环,72℃5min。通过一步法将cas5-3全长基因序列与质粒pCas质粒骨架连接,得蛋白表达质粒pCas-cas5-3备用。
(2)基因编辑质粒pKC1139-lacZ-t/g-DNA的构建
(A)基因lacZ引物设计与lacZ全长基因的扩增
根据EC JM109基因组测序信息,设计基因lacZ特异性引物lacZ-F和lacZ-R。提取EC JM109基因组DNA,使用Pfu DNA Polymerase进行lacZ基因PCR扩增,反应条件:95℃5min,94℃30s,52℃30s,72℃1min,2.5U Pfu DNA Polymerase(50μl反应体系),30个循环,72℃10min。PCR产物经1.5%琼脂糖电泳检测,试剂盒回收,得到纯化的lacZ全长基因片段备用。
(B)上、下游同源臂的制备
根据lacZ基因全序列(序列来源NCBI)设计lacZ基因上游同源臂引物lacZ-UF和lacZ-UR、下游同源臂引物lacZ-DF和lacZ-DR(黑体加粗为overlap PCR互补序列),且上同源臂上游引物含BamHI限制性内切酶酶切位点,下同源臂下游引物含HindIIII限制性内切酶酶切位点。以纯化的lacZ基因DNA为模板,先分别扩增上、下游同源臂,反应条件为:95℃5min,94℃30s,58℃30s,72℃45s,2.5U Pfu DNA Polymerase(50μl反应体系),30个循环,72℃10min。PCR产物经1.5%琼脂糖电泳检测,试剂盒回收,得到纯化后的上、下游同源臂DNA片段备用。
(C)基因编辑模版载体pKC1139-lacZ-t-DNA的构建
取上同源臂纯化产物与下同源臂纯化产物0.5μl混合作为模板,25μl反应体系进行overlap PCR,反应条件为:94℃5min,94℃l min,58℃1min,72℃30s,一个循环后加引物lacZ-UF与lacZ-DR各1μl,继续PCR,反应条件为:95℃5min,94℃30s,58℃30s,72℃90s,进行30个循环,72℃10min。1.5%琼脂糖凝胶电泳检测扩增产物并纯化,得基因编辑模版;将获得的基因编辑模版通过BamHI限制性内切酶酶、HindIIII限制性内切酶切出粘性末端,然后通过全式金生物技术有限公司生产的T4连接酶将其连接到pKC1139质粒上,得基因编辑模版载体pKC1139-lacZ-t-DNA。
(D)基因编辑质粒pKC1139-lacZ-t/g-DNA的构建
含乳糖操纵子启动子及guide DNA-lacZ连接产物的靶向基因片段由滁州通用生物公司直接合成,首尾分别加上BamHI及EcoRI酶切位点,中间依次是启动子,重复序列(repeat),间隔序列(spacer),重复序列(repeat)及终止子;将合成的靶向基因片段通过BamHI和EcoRI限制性内切酶切出粘性末端,然后通过T4连接酶将其连接到得基因编辑模版载体pKC1139-lacZ-t-DNA上得基因编辑质粒pKC1139-lacZ-t/g-DNA。
合成的靶向基因片段g–lacZ序列为:
cgGGATCCtaatacgactcactatagggaatattgtcctcatcgccccttcgaggggtcgcaacccgcccggtgcagtatgaaggcggcggagccgacaccacggtcctcatcgccccttcgaggggtcgcaac GAATTCcg,其中大写字母为酶切位点,波浪线为保护碱基,黑体加粗为互补区,单下划线为启动子promoter,斜体为spacer,黑体加粗为repeat,双下划线为终止子terminator。
(3)重组子的制备与检验
(A)EC JM109(DE3)感受态制备
在无菌条件下用已灭过菌的牙签挑取大肠杆菌平板上的单克隆于30ml LB液体培养基中,37℃,220rpm过夜培养。取过夜培养的菌液100μl转接至新的LB液体培养基中,37℃,220rpm培养约2h,至菌液OD600值约为0.5左右。取30ml上述菌液至50ml离心管中,4℃下4000rpm离心10min,除尽上清液后,取已经在冰上预冷的SSCS溶液(Generay Biotech公司)1ml将菌体沉淀吹打均匀,即得大肠杆菌的感受态细胞,-80℃下保存备用(此过程全程在冰上进行)。
(B)质粒pCas-cas5-3和pKC1139-lacZ-t/g-DNA的共转化
将质粒pCas-cas5-3和pKC1139-lacZ-t/g-DNA充分混匀后转化到EC JM109感受态中,在涂有5μl异丙基-β-D-硫代吡喃半乳糖苷(IPTG 200mg/ml)、40μl5-溴-4-氯-3-吲哚-β-D-吡喃半乳糖苷(X-gal 20mg/ml)和20μl阿拉伯糖(10mM/L)的安普霉素和卡那霉素抗性的LB固体培养基中30℃过夜培养,得转化子。
(C)重组子染色体PCR和基因测序分析
挑取白色单克隆作为模板,再以lacZ基因验证引物lacZ-UF/lacZ-R进行PCR扩增反应,反应条件:95℃5min,94℃30s,58℃30s,72℃90s,2.5U生工生物工程(上海)股份有限公司生产的EasyTaq DNA Polymerase(25μl反应体系),30个循环,72℃10min。PCR产物经1%琼脂糖电泳检测,观察重组子染色体DNA扩增条带减小,并经通用生物系统(安徽)有限公司测序证明lacZ基因敲除成功,结果见图2。
各步骤涉及的引物及其序列见表1,表中大写字母为酶切位点,单下划线为启动子promoter,黑体加粗为互补区。
表1引物及其序列
实施例2双质粒二步共转化敲除EC JM109 lacZ基因
(1)蛋白表达质粒pCas-cas5-3的构建
同实施例1步骤(1)。
(2)基因编辑质粒pKC1139-lacZ-t/g-DNA的构建
同实施例1步骤(2)。
(3)重组子的获取与检验
(A)质粒pCas-cas5-3转化及EC JM109-pCas-cas5-3感受态制备
将质粒pCas-cas5-3转化到EC JM109感受态中,通过卡那霉素抗性筛选转化子,再以该转化子制备感受态,获得含有质粒pCas-cas5-3的EC JM109-pCas-cas5-3菌株感受态。感受态制备方法同实施例1中步骤(3A)。
(B)质粒pCas-cas5-3和pKC1139-lacZ-t/g-DNA的共转化
将质粒pCas-cas5-3和pKC1139-lacZ-t/g-DNA充分混匀后转化到EC JM109-pCas-cas5-3感受态中,在涂有5μl IPTG、40μl X-gal和20μl阿拉伯糖的安普霉素和卡那霉素的LB固体培养基中30℃过夜培养,得转化子。
(C)重组子染色体PCR和基因测序分析
挑取白色单克隆作为模板,再以lacZ基因验证引物lacZ-F/lacZ-R进行PCR扩增反应,反应条件:95℃5min,94℃30s,58℃30s,72℃2min 40s,2.5U EasyTaq DNA Polymerase(25μl反应体系),30个循环,72℃10min。PCR产物经1%琼脂糖电泳检测,观察重组子染色体DNA扩增条带大小变化,并经基因测序证明lacZ基因敲除成功。
实施例3单质粒敲除EC JM109lacZ基因
(1)蛋白表达质粒pCas-cas5-3的构建
同实施例1步骤(1)。
(2)基因编辑质粒pCas-cas5-3-lacZ-t/g-DNA的构建
除将lacZ-t-DNA片段和lacZ-g-DNA片段分别连接到pCas-cas5-3上外,其余步骤同实施例1(2)。
(3)重组子的制备与检验
同实施例1步骤(3)。
实施例4双质粒敲除BS 168基因lysC
(1)蛋白表达质粒pCas-cas5-3的构建
同实施例1步骤(1)。
(2)基因编辑质粒pKC1139-lysC-t/g-DNA的构建
除根据枯草芽孢杆菌Bacillus subtilis168基因lysC序列信息设计并合成lysC-t-DNA片段与lysC-g-DNA片段外,其余同同实施例1步骤(2)。
合成的lysC-g-DNA片段序列为:
cccAAGCTTtaatacgactcactatagggaatattgtcctcatcgccccttcgaggggtcgcaacttcatccgagagcagttgagttcgcgaaaaattaccaagtgtcctcatcgccccttcgaggggtcgcaacctagcataaccccttggggcctctaaacgggtcttgaggggttttttgAGATCTtcc,其中大写字母为酶切位点。
(3)重组子的获取与检验
(A)BS168感受态的制备
接种新鲜的BS 168单菌落于5ml GM I中,30℃,100~150转/分钟摇床培养过夜。次日接种1ml上述培养物于9ml GM I培养基中,在摇床中37℃,200转/分钟培养3~4h。取5ml第二步培养物转接于45ml GM II培养基中进行第二次传代,37℃,100~150转/分钟摇床培养90min。取全部培养物,4000转/分钟室温离心5min,用1/10体积上清液重悬菌体,即得BS168感受态细胞。
(B)质粒pCas-cas5-3和pKC1139-lysC-t/g-DNA的共转化
将质粒pCas-cas5-3和pKC1139-lysC-t/g-DNA加入1ml BS 168感受态细胞悬液中混匀,37℃恒温水浴中静置30~60min,然后在摇床中以37℃,200转/分钟振荡培养2~4h。将转化液涂布含有卡那霉素和安普霉素抗性的(终浓度为50μg/ml)LB固体培养基,在37℃恒温培养箱中倒置培养过夜。
(C)重组子染色体PCR和基因测序分析
挑取在卡那霉素和安普霉素抗性平板上长出的单菌落,提取其基因组或用热处理过的菌落作为模板,敲除基因的上下游引物为模板进行PCR扩增,将所得基因片段进行电泳,产物经1%琼脂糖电泳检测,观察重组子染色体DNA扩增条带大小的改变与预期一致,并经基因测序证明BS168-lysC基因敲除成功。
各步骤涉及的引物及其序列见表2,表中表中大写字母为酶切位点,波浪线为保护碱基,黑体加粗为互补区。
表2引物及其序列
实施例5单质粒敲除BS 168基因lysC
(1)蛋白表达质粒pCas-cas5-3的构建
同实施例1步骤(1)。
(2)基因编辑质粒pCas-cas5-3-lysC-t/g-DNA的构建
除lysC-t/g-DNA靶基因片段连接到pCas-cas5-3质粒外,其余步骤与实施例3中步骤(2)相同。
(3)重组子的获取与检验
同实施例3步骤(3)。
以上所述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。
序列表
<110> 安徽大学
<120> 一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3140
<212> DNA
<213> S. virginiae IBL14
<400> 1
gtgacgggta cggaggtcac ggccctgcag atcacggtga cggcgccggt tgtctccttc 60
cgtaatccgc tgtatgccgg ggtgcaggtg acgctgccgt gtccgccgcc ggccaccgtc 120
ggcggcctcc tcgccgcagc ggctgggggg tgggagcagg tcaatccgga gctgcgtttc 180
gcgatggcgt tccacgctgg cggcaaggcg gtcgatctcg agacgtacca cccgctggac 240
gcgtctggga agaaggcgtc gcctgccccg cgtaaccggg agttccttac ggcggccgag 300
ctcaccgtgt ggctggtcga cgaccctgaa gggtggcagc gccgcctgcg tcggccggtg 360
tggccgctgc ggctgggccg cagccaggac ctggtcggta tccgcaccgg cctggttccg 420
ttgcgcgcgg agcccggcga gcagcggtcc gccgtggtgc cggagacggc ggggaggatg 480
ggaaccctac tgcggctgcc gactgcggtc tctgggggcc gggaccgtac ccggtgggac 540
agctaccggt tcgacagctc gggccgcagt gaccatgtgg tcgtaggcgg ctggtcgact 600
gccgggggac aggcagtcat tctgctgccc tcggcccatc ccgataccgt cgcgcgttcc 660
tgatggttct gccgtcgggc cgtaccgata gggagcccat cgccactatg acggacgtcc 720
tgtccacgct gcgggccaag agcgctcaac gggggcgttc tgcggacctt ctcaccgcgc 780
atttgtccga gactcgtgct gcggcagctg ggctgcggca gcgtgtgggc cgtctggacg 840
cggtggagga cgtcttcggc ggcaggttct ggcccgtcgt ggaactcgct ggcctcaccc 900
acgacgccgg caagattccc gaaggcttcc agcggatgct ggcgggatac agccgtgcct 960
ggggtgagcg tcacgaagtc gcctcgttgg gcttcctgcc cgcgctcatc ggcgacccgg 1020
acgtgctgtt gtgggtggcg accgcggtcg ccacccacca tcgtccgctg accggccaga 1080
acggacgcga cctgcagact ctctacagcg gtgtcaccat caccgagctc gcgcaccgtt 1140
tcgggccttt tgacccacgc gctgtccccg ccttggaggc ctggcttcgt gcgagcgcca 1200
tccgggtcgg cctccccgcg gccgctgttc cagacgacgg cacgctcacc gacaccggag 1260
tggtcgctgg cgcccaccag ctgctggagg agattttgga ccgttgggca gaccgtgtga 1320
ggcctgaggt gggcttggcc gctgtactgc tgcagggggc ggtcaccctg gccgaccact 1380
tgtcctccgc ccatcaggct ctgcccaccg tccagccgtt gggggccggg ttccggtccc 1440
ggttggagaa ggagttcgct gaacgcggca ggaccctgcg tgcccaccag ctggaggccg 1500
ccaccgttac cggacatctt ctgctgcgcg ggccgaccgg cagtgggaag accgaggctg 1560
ccctgctgtg ggctgccagc caggtcgagg ccctgaaggc ggaaggccgg ggcgtgccgc 1620
gtgtgttttt cactctcccc tacctggcct ccatcaacgc catggcaaca cggctgggtg 1680
acactctcgg cgatggtgag gctgtcggcg ttgcccactc ccgcgccgcc tcctaccacc 1740
ttgcccaggc catcgccccg caggacggcg acgaggagga cgaacacgga gccccctgcc 1800
gtgttgacgc ggccgccaag gccttgtccc gggccgctgc caccaagctg ttccgcgaga 1860
gtgtccgcgt cgccaccccc taccagcttc tgcgggccgc cctggccggg ccggcccact 1920
ccggcatcct catcgacgcc gcgaactcgg tgttcatcct ggacgaactc cacgcctacg 1980
acgcccgcag gctcggctac atcctggcca gtgcccggct gtgggaacgc ctcggtggac 2040
ggatcacagt cctgtccgcg accctgccca gggccctggc cgacctgttc gagagcaccc 2100
tcaccgcccc catcaccttc ctcgacaccc ccgacctcgg gctgccggcg cgccacctcc 2160
tgcacacccg aggccaccat ctcaccgacc cggccacact ggaggagatc cgtctgcggc 2220
tgtcccggga cgagtcggtc ctggtgatcg ccaacaacgt gtcccaggcc atcgccctgt 2280
acgaacagct cgcacccgac gtgtgtgaac gcttcggtca ggacgccgcg ctactgctgc 2340
actcccggtt tcgacggatg gaccggtccc ggattgagca gaagatcgcc gaccggttcg 2400
ccactgtggc acctgatgcc cagaacagcc gtaagccggg cctggtcgtt gccacgcagg 2460
tggtcgaggt cagtctcgac gtcgacttcg atgtgctgtt cactggagcg gctccgctcg 2520
aggccctcct gcagcgcttc ggccggacca accgcgtcgg ggcccgcccg ccggccgacg 2580
tcatcgtcca ccatcccgcc tggaccacac gccgccgaca gcccggcgag tacgccgacg 2640
gcatctaccc acgggagccg gtcgagtccg cgtggcacat cctcacccgc aatcacgggc 2700
gagtcatcga cgaagcggac gccaccgcgt ggctggacga ggtctacgcc acggactggg 2760
gcaggcaatg gcaccgcgag gtgctggagc ggcgagaaag attcgaccgt gcgttcctgc 2820
agttccgcta ccccttcgaa gaccgcactg acctggccga taccttcgac gaactcttcg 2880
acggctccga agccatcctc gccgaagacc aggacgccta ctcagccgca ctggccgcac 2940
cagacggcga ccaccccgga gctggccggc tcctcgcaga ggaatacctc atccccgttc 3000
cccactgggc cagccccctc agccgctacg agaagcagct caaagtccgc gtcatcaacg 3060
gcgactacca ccccgaccac ggcctcatgg cggtccgggg gctgccccag cccgcctacc 3120
gcgccgggga ggtcttgtga 3140
<210> 2
<211> 1144
<212> DNA
<213> 人工序列()
<400> 2
atgagcgtgg tggttatgcc gatcgcgtca cactacgtct gaacgtcgaa aacccgaaac 60
tgtggagcgc cgaaatcccg aatctctatc gtgcggtggt tgaactgcac accgccgacg 120
gcacgctgat tgaagcagaa gcctgcgatg tcggtttccg cgaggtgcgg attgaaaatg 180
gtctgctgct gctgaacggc aagccgttgc tgattcgagg cgttaaccgt cacgagcatc 240
atcctctgca tggtcaggtc atggatgagc agacgatggt gcaggatatc ctgctgatga 300
agcagaacaa ctttaacgcc gtgcgctgtt cgcattatcc gaaccatccg ctgtggtaca 360
cgctgtgcga ccgctacggc ctgtatgtgg tggatgaagc caatattgaa acccacggca 420
tgggtttaca gggcggcttc gtctgggact gggtggatca gtcgctgatt aaatatgatg 480
aaaacggcaa cccgtggtcg gcttacggcg gtgattttgg cgatacgccg aacgatcgcc 540
agttctgtat gaacggtctg gtctttgccg accgcacgcc gcatccagcg ctgacggaag 600
caaaacacca gcagcagttt ttccagttcc gtttatccgg gcaaaccatc gaagtgacca 660
gcgaatacct gttccgtcat agcgataacg agctcctgca ctggatggtg gcgctggatg 720
gtaagccgct ggcaagcggt gaagtgcctc tggatgtcgc tccacaaggt aaacagttga 780
ttgaactgcc tgaactaccg cagccggaga gcgccgggca actctggctc acagtacgcg 840
tagtgcaacc gaacgcgacc gcatggtcag aagccgggca catcagcgcc tggcagcagt 900
ggcgtctggc ggaaaacctc agtgtgacgc tccccgccgc gtcccacgcc atcccgcatc 960
tgaccaccag cgaaatggat ttttgcatcg agctgggtaa taagcgttgg caatttaacc 1020
gccagtcagg ctttctttca cagatgtgga ttggcgataa aaaacaactg ctgacgccgc 1080
tgcgcgatca gttcacccgt gcaccgctgg ataacgacat tggcgtaagt gaagcgaccc 1140
gcat 1144
<210> 3
<211> 953
<212> DNA
<213> 人工序列()
<400> 3
atgggtctta ttgtacaaaa attcggaggc acttccgtcg gctcagtcga aaaaattcaa 60
aatgcggcaa accgcgcaat tgcagaaaaa cagaaaggcc atcaagtcgt tgtcgtcgtt 120
tcagcaatgg gaaaatccac tgacgaattg gtcagccttg caaaagctat ttctgaccag 180
ccgagcaaac gcgaaatgga tatgctgctg gcgacaggcg agcaggtcac gatttcactc 240
ctttcaatgg cattgcagga aaaaggctat gacgctgtgt cttatactgg ctggcaggcg 300
ggaatccgta cggaggccat tcacggaaac gccagaatta cagatatcga cacttcggtt 360
ttagcagacc agcttgaaaa aggaaaaatt gtcattgttg caggattcca aggcatgaca 420
gaggattgtg aaattacgac attgggccgg ggcggttcag atacaacagc agttgcttta 480
attgtcagag gcattgcatt tgaagatcaa atcacaagag taaccattta cgggctgact 540
agcggcctga caactttgtc tactattttt acaacacttg ccaaaagaaa cataaacgtg 600
gatatcatta tccaaacgca ggccgaggac aagactggaa tttccttctc tgtcaaaaca 660
gaagatgcag accaaaccgt tgcggtgctt gaagagtata aagacgcgct ggaatttgag 720
aaaatcgaga cagaaagcaa attggctaaa gtatctattg ttggatccgg catggtctca 780
aatcccggtg tagcggctga aatgtttgct gtactggcgc aaaaaaacat tttaatcaaa 840
atggtcagca catctgaaat caaagtgtca acagtcgtaa gcgaaaatga catggtgaaa 900
gcagtcgagt cgcttcacga tgcatttgag ctttcaaaac acccttcagc tgt 953

Claims (5)

1.一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法,其特征在于:包含一个I型CRISPR-Cas系统中基因cas5与基因cas3所组成的蛋白表达质粒和/或一个基因编辑质粒对原核生物进行基因编辑。
2.根据权利要求1所述的一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法,其特征在于,包括以下步骤:
(1)根据维吉尼亚链霉菌IBL14中cas基因簇的序列信息设计引物,以维吉尼亚链霉菌IBL14基因组为模版,用TransStart FastPfu Fly DNA Polymerase聚合酶通过PCR反应扩增得到基因cas5-3,连接到质粒plasmid上,得蛋白表达质粒plasmid-cas5-3;
(2)根据靶向基因DNA序列信息设计引物,以提取到的原核生物基因组为模版,用TransTaq DNA Polymerase High Fidelity DNA聚合酶通过PCR反应分别扩增得到末端带有限制性内切酶识别和切割位点以及overlap PCR互补序列的靶向基因上下同源臂PCR片段,并用overlap PCR将上下同源臂结合起来构建基因编辑模版t-DNA,同时根据生物靶向基因序列信息设计并直接合成首尾分别含T7启动子和RNA转录终止子的靶向基因片段g-DNA,将基因编辑模版与靶向基因片段连接到质粒上得基因编辑质粒plasmid-t/g-gene abbreviation
(3)制备原核微生物细胞感受态,并将按步骤(1)得到的蛋白表达质粒和按步骤(2)得到的各种基因编辑质粒分别转化到目标菌感受态中得到不同的基因编辑后的重组子,对重组子染色体进行PCR,以确证编辑后的目的重组子。
3.根据权利要求1或2所述的一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法,其特征在于:所述原核生物指大肠杆菌、枯草杆菌或其它原核微生物。
4.根据权利要求1或2所述的一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法,其特征在于:所述的基因编辑是指对原核细胞的染色体基因进行插入、敲除、无痕点突变及任意组合。
5.根据权利要求2所述的一种源于I型CRISPR-Cas系统中基因cas5-3的原核基因编辑方法,其特征在于:所述步骤(3)中的转化包括单质粒转化、双质粒转化、电转化或化学转化。
CN201710846388.0A 2017-09-19 2017-09-19 一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法 Pending CN107523583A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710846388.0A CN107523583A (zh) 2017-09-19 2017-09-19 一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710846388.0A CN107523583A (zh) 2017-09-19 2017-09-19 一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法

Publications (1)

Publication Number Publication Date
CN107523583A true CN107523583A (zh) 2017-12-29

Family

ID=60737043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710846388.0A Pending CN107523583A (zh) 2017-09-19 2017-09-19 一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法

Country Status (1)

Country Link
CN (1) CN107523583A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
CN110438142A (zh) * 2019-05-13 2019-11-12 安徽大学 一种基于I-B-Svi型CRISPR-Cas系统中SviCas5-6-7的转录调控方法
CN110438141A (zh) * 2019-05-13 2019-11-12 安徽大学 一种基于SviCas6-SviCas3的基因编辑方法
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543266A (zh) * 2015-12-25 2016-05-04 安徽大学 一种维吉尼亚链霉菌IBL14中的CRISPR-Cas系统及应用其进行基因编辑的方法
CN106834323A (zh) * 2016-12-01 2017-06-13 安徽大学 一种基于维吉尼亚链霉菌IBL14基因cas7‑5‑3的基因编辑方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543266A (zh) * 2015-12-25 2016-05-04 安徽大学 一种维吉尼亚链霉菌IBL14中的CRISPR-Cas系统及应用其进行基因编辑的方法
CN106834323A (zh) * 2016-12-01 2017-06-13 安徽大学 一种基于维吉尼亚链霉菌IBL14基因cas7‑5‑3的基因编辑方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邱彩花: "维吉尼亚链霉菌IBL14中I-B-svi型CRISPR-Cas系统及青霉素代谢相关酶基因自敲除", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110438141A (zh) * 2019-05-13 2019-11-12 安徽大学 一种基于SviCas6-SviCas3的基因编辑方法
CN110438142A (zh) * 2019-05-13 2019-11-12 安徽大学 一种基于I-B-Svi型CRISPR-Cas系统中SviCas5-6-7的转录调控方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN107523583A (zh) 一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法
Yan et al. Electroporation-based genetic manipulation in type I methanotrophs
JP5255030B2 (ja) 縮小されたゲノムを有する細菌
CN106834323A (zh) 一种基于维吉尼亚链霉菌IBL14基因cas7‑5‑3的基因编辑方法
CN107557373A (zh) 一种基于I‑B型CRISPR‑Cas系统基因cas3的基因编辑方法
CN107630042A (zh) 一种源于I型Cas系统4个cas基因的原核生物基因编辑方法
CN106755037A (zh) 一种维吉尼亚链霉菌IBL14 type I‑B‑sv14型CAS基因编辑系统
CN110607320B (zh) 一种植物基因组定向碱基编辑骨架载体及其应用
CN112795582B (zh) 一种适合在微生物中高效合成nad衍生物的酶基因
Dziewit et al. Insights into the transposable mobilome of Paracoccus spp.(Alphaproteobacteria)
EP0130047A1 (en) Recombinant DNA molecules
Chen et al. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors
CN105400801B (zh) 解除反馈抑制的thrA基因突变体及其应用
CN110591994B (zh) 一种基于氢氧化钠刺激的哈维弧菌同源重组基因敲除的方法
US4803165A (en) Nif promoter of fast-growing rhizobium japonicum
CN110819620B (zh) 一种对类球红细菌进行基因突变的方法
JP2011200133A (ja) 遺伝的に改変された微生物の製造方法
JP2722504B2 (ja) 新規微生物及びそれを用いるd−ビオチンの製法
CN110079540B (zh) 基于mariner转座子构建自杀型质粒及耐药突变菌株的方法
CN112175981A (zh) 一种基于无水乙醇或十二烷基磺酸钠刺激的哈维弧菌定点基因敲除的方法
CN112501171B (zh) 两条特异性靶向猪Pax7基因的sgRNA导向序列及应用
CN114480464B (zh) 一种副溶血弧菌CRISPRi的双质粒构建方法
CN110066821B (zh) 一种基于随机表达元件倍增方式构建随机蛋白表达文库的方法
Feng et al. Siderophore Synthesis Ability of the Nitrogen-Fixing Bacterium (NFB) GXGL-4A is Regulated at the Transcriptional Level by a Transcriptional Factor (tr X) and an Aminomethyltransferase-Encoding Gene (amt)
Konisky Methanogens for biotechnology: application of genetics and molecular biology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination