KR101584933B1 - 항생제 내성 억제용 재조합 벡터 및 이의 용도 - Google Patents

항생제 내성 억제용 재조합 벡터 및 이의 용도 Download PDF

Info

Publication number
KR101584933B1
KR101584933B1 KR1020150019977A KR20150019977A KR101584933B1 KR 101584933 B1 KR101584933 B1 KR 101584933B1 KR 1020150019977 A KR1020150019977 A KR 1020150019977A KR 20150019977 A KR20150019977 A KR 20150019977A KR 101584933 B1 KR101584933 B1 KR 101584933B1
Authority
KR
South Korea
Prior art keywords
gene
bla
recombinant vector
resistance
plasmid
Prior art date
Application number
KR1020150019977A
Other languages
English (en)
Inventor
권대혁
조다형
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020150019977A priority Critical patent/KR101584933B1/ko
Application granted granted Critical
Publication of KR101584933B1 publication Critical patent/KR101584933B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine

Abstract

본 발명은 항생제 내성 억제용 재조합 벡터, 형질전환 세균, 및 상기 재조합 벡터로 형질전환시키는 단계를 포함하는, 항생제 내성 억제방법에 관한 것이다. 본 발명의 재조합 벡터는 박테리아 내 방어기전인 CRISPR/Cas 방어 시스템을 이용하여 Extened-spectrum β-lactamase (ESBL)를 표적으로 하는, CRISPR-derived RNA (crRNA) 및 CRISPR/Cas 9 관련 단백질 복합체를 발현하도록 설계되었으며, 상기 재조합 벡터을 처리하여, 하나 이상의 항생제에 대한 내성을 동시에 억제할 수 있음을 확인하였는바, 항생제 내성균의 사멸을 위한 보다 근본적인 방법이 될 수 있을 것으로 기대된다.

Description

항생제 내성 억제용 재조합 벡터 및 이의 용도 {Recombinant vector for inhibiting antibiotic resistance and uses thereof}
본 발명은 항생제 내성 억제용 재조합 벡터, 및 상기 재조합 벡터를 처리하여 항생제 내성을 억제하는 방법에 관한 것이다.
항생제란 미생물 또는 박테리아를 죽이거나 성장을 억제시키는 물질을 총칭하는 것으로서, 대체로 소량으로 다른 미생물의 발육을 억제하거나 사멸시키는 미생물이 생산하는 대사산물을 의미한다. 이러한 항생제는 1929년 페니실린의 발견을 시발점으로 하여, 4천여 가지 이상이 발견되었다. 또한, 현재 50여 종이 실제 임상에서 사용되고 있으며, 박테리아 감염증을 포함한 다양한 질병에서 처방되고 있다. 현재까지 개발된 항생제 가운데 세계에서 가장 강력한 항생제는 반코마이신(vancomycin)으로, 페니실린의 대체약인 메티실린(methicillin)에 내성이 생긴 황색포도상구균이 퍼지자 1950년대에 개발하여 황색 포도상구균의 중증 감염증을 치료하는데 사용하고 있다.
그러나, 이 역시 항생제의 남용으로 인한 항생제 내성균이 발생하였으며, 항생제에 대한 내성 문제는 점차 심각해지고 있다. 현재 반코마이신을 대체할 새로운 항생제는 아직까지 개발되어 있지 못한 상황이며, 항생제 사용을 규제하여 내성을 줄이기 위한 시도로 국제기구까지 만들어져 활동을 하고 있는 상황이다.
항생제 내성균이란 유전적 또는 비유전적인 원인으로 인하여, 항생제에 대하여 내성이 발생한 균주를 의미하는 것으로서, 1960년대에 페니실린에 대한 내성균이 출현한 것을 필두로 여러 항생제가 개발, 사용됨에 따라, 그에 대한 내성균도 새로이 발생하는 문제점이 대두하게 되었다. 즉, 모든 미생물과 마찬가지로 병원균은 자기방어수단으로 항생제에 대한 내성을 돌연변이나 항생제 내성 유전자를 습득함으로써 얻게되는데, 이러한 내성균의 발현 빈도는 항생제의 오용과 남용이 많아짐에 따라 더욱 증가하고 있다. 따라서, 항생제 내성 억제를 위한 생명공학 분야의 연구가 이루어 지고 있으나(한국 특허공개번호 10-2014-0130329), 아직 미비한 실정이다.
한편, 최근 연구에 따르면, 박테리아의 침습성 DNA에 대한 방어기작으로서, CRISPR/Cas 방어 시스템을 밝혀냈다. 숙주 염색체상의 CRISPR(Clustered regularly interspaced short palindromic repeat)의 유전자좌 내에 플라스미드 및 바이러스 DNA를 삽입시킴으로써 적응면역을 제공한다. 구체적으로, '스페이서(spacer)'로 일컫는 바이러스 또는 플라스미드 유래된 서열은 숙주 유래된 서열의 반복에 의해 서로로부터 분리되어 있으며, 상기 반복 요소는 이러한 면역계의 유전 기억으로서, 각각의 CRISPR 유전자좌는 외래 DNA에 노출됨에 따라 획득되는 독특한 '스페이서' 서열의 다양한 레퍼토리(repertoire)를 포함한다.
이에, 본 발명자들은 상기와 같은 박테리아 내 방어 시스템에 기반하여, 항생제 내성과 관련된 유전자를 외래 DNA로 인식하게 함으로써, 항생제에 대한 내성을 억제하고자 하였다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 재조합 벡터인 pReSAfRESBL 플라스미드가 도입된 대장균(Escherichia coli, E. coli)에서의 항생제 내성 억제효과를 확인하고, 이에 기초하여 본 발명을 완성하게 되었다.
이에, 본 발명의 목적은 1) CRISPR associated protein 9 (CAS 9) 단백질을 코딩하는 유전자; 2) trans-activating CRISPR-derived RNA (tracrRNA)를 코딩하는 유전자; 및 3) Extened-spectrum β-lactamase (ESBL)를 표적으로 하는, CRISPR-derived RNA (crRNA)를 코딩하는 유전자 라이브러리를 포함하는, 항생제 내성 억제용 재조합 벡터을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 재조합 벡터를 처리하는 단계를 포함하는, 항생제 내성 억제방법을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 1) CRISPR associated protein 9 (CAS 9) 단백질을 코딩하는 유전자; 2) trans-activating CRISPR-derived RNA (tracrRNA)를 코딩하는 유전자; 및 3) Extened-spectrum β-lactamase (ESBL)를 표적으로 하는, CRISPR-derived RNA (crRNA)를 코딩하는 유전자 라이브러리를 포함하는, 항생제 내성 억제용 재조합 벡터을 제공한다.
본 발명의 일 구현예로서, 상기 유전자 라이브러리는 서열번호 17 및 서열번호 18의 염기서열로 이루어질 수 있다.
본 발명의 다른 구현예로서, 상기 재조합 벡터는 Ampicillin, Ceftazidime, penicillin, cephalosporin, Oxazolidinone, Tetracycline, Diarylquinoline, Pleuromutilin, Fluoroquinolone, Macrolide, Carbapenem, Lipopeptide, Quinolone 및 Cephalosporin으로 구성된 군으로부터 선택되는 하나 이상의 항생제에 대한 내성을 억제할 수 있다.
본 발명의 또 다른 구현예로서, 상기 재조합 벡터는 ampicillin, 및 ceftazidime에 대한 내성을 동시에 억제할 수 있다.
본 발명은 상기 재조합 벡터를 처리하는 단계를 포함하는, 항생제 내성 억제방법을 제공한다.
본 발명은 상기 재조합 벡터을 포함하는 조성물의 세균 감염증에 대한 치료용도를 제공한다.
본 발명에 따른 재조합 벡터는 박테리아 내 방어기전인 CRISPR/Cas 방어 시스템을 이용한 것으로서, Extened-spectrum β-lactamase (ESBL)를 표적으로 하는, CRISPR-derived RNA (crRNA) 및 CRISPR/Cas 9 관련 단백질 복합체를 발현하도록 설계되었다. 또한, 상기 재조합 벡터를 처리함으로써, 하나 이상의 항생제에 대한 내성을 동시에 억제할 수 있음을 확인하였는바, 항생제 내성균의 사멸에 유용하게 사용될 수 있을 것으로 기대된다.
도 1은 RESAFR (Re-sensitization of Antibiotic resistance) system을 통한 항생제 유전자의 넉아웃 과정에 대한 개략적인 모식도이다.
도 2는 (a) RESAFRbla system에서, sgRNAbla 유전자 카세트 및 Cas 9 유전자 카세트의 구성 및 (b) sgRNAbla와 표적 유전자인 bla간 결합을 나타낸 결과이다.
도 3은 bla 유전자를 포함하고 있는 pUC19 플라스미드를 이용하여, pRESAFRbla 플라스미드 도입에 의한 Ampicillin 내성 변화를 확인한 결과이다.
도 4는 bla 유전자를 포함하고 있는 pUC19 플라스미드를 이용하여, Cas9 단백질 또는 sgRNAbla 발현여부에 의한 Ampicillin 내성 변화를 colony forming units (CFU) 측정을 통해 수치화한 결과이다.
도 5는 bla 유전자를 포함하고 있는 pUC19 플라스미드를 이용하여, pRESAFRbla 플라스미드 도입에 의한 Ampicillin 내성 변화를 시간의 경과에 따라 측정한 결과이다.
도 6은 bla 유전자를 포함하고 있는 pUC19 및 pET21b 플라스미드를 이용하여, pRESAFRbla 플라스미드 도입에 의한 Ampicillin 내성 변화를 colony forming units (CFU) 측정을 통해 수치화한 결과이다.
도 7은 bla 유전자를 포함하고 있는 pBR322 플라스미드를 이용하여, pRESAFRbla 플라스미드 도입에 의한 ampicillin 및 tetracycline 내성 변화를 확인한 결과이다.
도 8은 pRESAFRbla 플라스미드를 도입에 의한 pBR322 플라스미드의 pMB1 origin의 복제 여부를 polymerase chain reaction (PCR)을 통하여 확인한 결과이다.
도 9는 RESAFR system을 통한 Extended-spectrum b-lactamase (ESBLs) 유전자의 넉아웃 과정에 대한 개략적인 모식도이다.
도 10은 ESBLs 그룹 중 TEMSHV 내성 그룹간 염기서열을 비교한 결과이다.
도 11은 pRESAFRESBL 플라스미드의 도입에 의한 Ampicillin 내성 변화를 colony forming units (CFU) 측정을 통해 수치화한 결과이다.
도 12는 pRESAFRESBL 플라스미드의 도입에 의한 Ampicillin 및 ceftazidime 내성 변화를 paper disc diffusion test를 통하여 확인한 결과이다.
도 13은 pRESAFRESBL 플라스미드의 도입에 의한 CTX-M 유전자 증폭 여부를 polymerase chain reaction (PCR)을 통하여 확인한 결과이다.
도 14는 pRESAFRESBL 플라스미드의 도입에 의한 Linezolid, Tigecycline, Bedaquiline, Retapamulin, Balofloxacin, Gemifloxacin, Telithromycin, Ertapenem, Daptomycin, Gatifloxacin, Cefepime 항생제 내성이 감소하는 것을 확인한 결과이다
본 발명자들은, ESBL을 표적으로 하는, crRNA 및 CRISPR/Cas 9 관련 단백질 복합체를 발현하는 재조합 벡터를 제조하였으며, 상기 재조합 벡터의 도입을 통하여 Ampicillin 및 Cefatazidime에 대한 내성을 동시에 억제할 수 있음을 확인하고, 이에 기초하여 본 발명을 완성하였다.
이하 본 발명을 상세히 설명한다.
본 발명은 1) CRISPR associated protein 9 (CAS 9) 단백질을 코딩하는 유전자; 2) trans-activating CRISPR-derived RNA (tracrRNA)를 코딩하는 유전자; 및 3) Extened-spectrum β-lactamase (ESBL)를 표적으로 하는, CRISPR-derived RNA (crRNA)를 코딩하는 유전자 라이브러리를 포함하는, 항생제 내성 억제용 재조합 벡터를 제공한다.
본 발명에 있어서, 박테리아 및 고세균의 방어기전인 CRISPR/Cas system은 특정 RNA가 표적 유전자를 인식한 후, Cas 9 단백질이 그 유전자를 절단함으로써 유전자의 기능을 넉아웃(knock-out)시키는 기술이다. 하기, CRISPR/Cas system의 모식도에서 확인할 수 있는 바와 같이, 외부 침습성 DNA의 염기서열의 일부가 CRISPR 부분의 spacer에 삽입되며, CRISPR 부분으로부터 전사되어 만들어진 transcript인 pre-crRNA가 RNase III에 의해 crRNA(CRISPR RNA)로 성숙된다. 이 후 Cas9, tracrRNA, crRNA가 복합체를 이루어, crRNA와 상보적인 염기서열을 인식하고, CAS 9에 의하여 DNA를 잘라냄으로써, 유전자의 기능을 넉아웃시키게 된다.
Figure 112015013901284-pat00001
이에, 본 발명은 상기 기술에 기반하여, 항생제 내성 관련 유전자인 "Extened-spectrum β- lactamase (ESBL)"을 넉아웃시킬 수 있는 재조합 벡터를 제공한다.
본 발명에서 표적으로 하는 유전자인 "Extened-spectrum β-lactamase (ESBL)"는 cefotaxime, ceftazidime 및 aztreonam 등의 extended-spectrum β-lactam 항생제의 불활성화와 관련된 유전자로서, 특히, E.coliklebsiella spp 등에서 자주 발현되어 문제가 되고 있다. 따라서, 본 발명의 재조합 벡터는 상기 유전자에 상보적으로 결합할 수 있는 CRISPR-derived RNA (crRNA)를 코딩하는 유전자 라이브러리를 포함하고 있으며, 바람직하게 서열번호 17 및 서열번호 18의 염기서열로 이루어질 수 있으나, 이로써 제한되는 것은 아니다.
또한, 상기 유전자를 넉아웃시킴으로써, 항생제에 대한 내성을 억제시킬 수 있으며, 바람직하게 내성에 영향을 미치는 항생제는 Ampicillin, Ceftazidime, Penicillin, Oxazolidinone, Tetracycline, Diarylquinoline, Pleuromutilin, Fluoroquinolone, Macrolide, Carbapenem, Lipopeptide, Quinolone 및 Cephalosporin으로 부터 선택되는 어느 하나 이상의 항생제일 수 있으나, 이로써 제한되는 것은 아니다. 아울러, 본 발명의 재조합 벡터가 도입됨에 따라, 표적 유전자뿐만 아니라, 표적으로 하는 유전자를 포함하는 플라스미드 역시 분해되므로, 동시에 한개 이상의 항생제에 대한 내성을 억제시킬 수 있다.
본 발명은 박테리아의 방어기전인 CRISPR/Cas system을 이용한 기술로서, 본 발명의 일 실시예에서는 bla 유전자를 표적으로 하는, pRESAFRbla 플라스미드를 제조 및 도입함으로써, bla 유전자를 절단하여 Ampicillin 내성 억제시킬 뿐만 아니라, bla 유전자를 포함하는 플라스미드까지 분해할 수 있음을 확인하였다(실시예 1 내지 3). 또한, 상기의 결과를 기초로 하여, Extended-spectrum b-lactamase (ESBLs) 유전자를 표적으로 하는 pRESAFRESBL 플라스미드를 제조하였고, 상기 플라스미드가 도입된 대장균에서의 ampicillin 및 ceftazidime 내성 억제효과 및 다양한 항생제에 대한 내성 억제효과를 확인하였는바, 상기 재조합 벡터를 도입함으로써, 항생제 내성을 억제할 수 있음을 확인하였다(실시예 4 내지 6).
이에, 본 발명은 상기 재조합 벡터를 처리하는 단계를 포함하는, 항생제 내성 억제방법을 제공한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
1. 균주, 유전자 클로닝 , 플라스미드 및 벡터
모델 균주로 Escherichia coli BW25113을 사용하였고, 유전자 클로닝에 E. coli DH5a를 사용하였다. Extended-spectrum b-lactamases (ESBLs)을 포함하는 Klebsiella pneumonia 균주는 삼성의료원 (SMC, Korea)에서 제공받아 사용하였다. 또한, 하기 표 1 및 2에 본 실험에서 사용한 균주 및 플라스미드의 유전 정보, 표 3에는 프라이머의 서열정보를 열거하였다.
Figure 112015013901284-pat00002
Figure 112015013901284-pat00003
Figure 112015013901284-pat00004
2. 형질전환 (Transformation: Heat shock method)
LB 배지에 E. coli를 접종한 후, 37 oC, 250rpm에서 16시간 동안 pre-culture하였다. Pre-culture한 E. coli를 1:100 농도로 LB 배지에 접종하고, optical density (OD600)가 0.3~0.5가 되도록 37 oC, 250rpm 조건으로 배양하였다. 이 후, 4 oC에서 4000 rpm으로 5분 동안 원심분리하여 셀만 모은 뒤, 동량의 0.1 M CaCl2 용액으로 풀어주었다. 원심분리를 한 번 더 반복한 후, 1:10 용량의 0.1 M CaCl2용액으로 풀어주었고 얼음에 넣고 30분 간 두었다. 마지막으로 원심분리한 후 1:50 용량의 0.1 M CaCl2와 15 % glycerol 용액으로 풀어준 후 100 μL씩 분주하여 -80 oC에서 보관하였다. -80 oC에서 보관한 competent cell에 DNA를 첨가 후, 얼음에서 30분간 배양하였다. 이를 42 oC에서 45초간 열처리를 한 후 LB 배지를 900 μL 첨가하여 37 oC에서 1시간 동안 배양하였고 고체 배지에 도말하였다.
실시예 1. bla 유전자를 표적으로 하는 RESAFR bla system 설계
본 발명자는 CRISPR/Cas system을 이용하여 박테리아의 항생제 내성 유전자를 제거함으로써 항생제 내성균이 항생제에 대한 내성이 억제되는 시스템을 고안하였으며, 이를 RESAFR (Re-sensitization of Antibiotic resistance) system이라 명명하였다.
RESAFR system의 실현 가능성을 증명하기 위하여 선택 마커(selection marker)로 많이 이용되는, β-lactamase 발현 유전자인 bla 유전자를 표적으로 하는 실험을 고안하였다. 우선, bla 유전자 내에서 표적이 될 수 있는 염기서열을 확인하고 sgRNAbla를 설계하였으며, 상기 sgRNAbla 유전자 카세트와 Cas9 카세트가 모두 클로닝된 pRESAFRbla 플라스미드를 제조하였다.
보다 구체적으로, Cas9 유전자 카세트는 Cas9 프라이머(Cas9-FW-XmaI, Cas9-BW-PstI)를 이용하여 pMJ806 플라스미드로부터 증폭하였으며, pBAD33의 XmaI과 PstI 부위 사이에 클로닝 하였다. 또한, sgRNAbla 유전자 카세트는 sgRNAbla 프라이머(sgRNAbla-FW-BglI, sgRNAbla-BW-Tth111I, sgRNAbla-Long-FW, TEM/SHV Long BW)로 합성하여 증폭한 후, pBAD33의 BglI과 Tth111I 부위에 클로닝하였다. 실험에 이용되는 pRESAFRbla 플라스미드에서, 도 2에 나타낸 바와 같이, Cas9 단백질은 L-arabinose로 발현을 조절할 수 있도록 하였으며 sgRNAbla는 constitutive promoter (BBa_J23102: TTGACAGCTAGCTCAGTCCTAGGTACTGTGCTAGC)에 의해 발현이 조절이 되도록 하여 항상 일정하게 발현이 되도록 구성하였다.
실시예 2. bla 유전자에 대한 RESAFR bla system의 효과 확인
RESAFRbla system의 효과를 증명하고자 아래의 설명과 같은 플라스미드를 이용하였다. pBAD33은 Cas9 단백질과 sgRNA 발현을 위해 사용한 플라스미드로 단백질과 RNA를 발현하지 않는 대조군으로 실험에 사용되었다. pBAD-CAS9 플라스미드는 pBAD33 플라스미드를 Cas9 단백질을 발현하도록 조작한 것으로 Cas9 단백질이 발현되었을 때 E. coli에 미치는 영향을 확인하기 위한 대조군으로 이용하였다. psgRNAbla 플라스미드는 sgRNAbla 만을 발현하는 플라스미드이며 이 역시 대조군으로 이용되었다. Cas9 단백질과 sgRNAbla를 동시에 발현 할 수 있는 플라스미드로 pRESAFRbla 플라스미드를 제작하여 실험에 이용하였다. pBAD33, pBAD-CAS9, psgRNAbla, pRESAFRbla 플라스미드를 pUC19, pET21b 같이 bla 유전자를 포함한 표적 플라스미드가 도입된 E. coli에 도입하였고 Ampicillin (Amp) 내성균 수의 비율을 비교하였다.
보다 구체적으로, 0.2 % glucose LB 배지에 bla 유전자를 포함하고 있는 플라스미드 (pUC19, pET21b)와 상기 pBAD-CAS9, psgRNAbla, 또는 pRESAFRbla 플라스미드를 갖는 E. coli에 접종하여 37 ℃, 250rpm에서 16시간 동안 pre-culture하였다. 이 때 100 μg/mL ampicillin (Amp)과 34 μg/mL chloramphenicol (Cm)을 함께 첨가하였다. Pre-culture한 E. coli를 1:100 농도로 3 mL의 LB 배지에 34 μg/mL Cm과 0.1 mM L-arabinose를 함께 넣고 37 oC, 250 rpm조건에서 배양하면서 colony forming units (CFU) 측정을 통해 Amp 내성 변화를 측정하였다. 1x phosphate buffered saline (PBS)를 이용하여 serial dilution한 후 LB 고체 배지와 100 μg/mL Amp이 포함된 LB 고체 배지에 도말하였고, 이를 37 ℃ 배양기에서 배양하였다.
그 결과, 도 3 및 4에 나타낸 바와 같이, Cas9 단백질 또는 sgRNAbla만을 발현하는 플라스미드를 도입한 E. coli에서는 Amp 내성에 변화가 없었던 반면, Cas9 단백질과 sgRNAbla를 동시에 발현하는 pRESAFRbla 플라스미드를 도입하였을 때, 전체 균수에 대한 Amp 내성균 수의 비율이 ~1/1000 정도 감소함을 확인하였다. 또한, 도 5 및 6에 나타낸 바와 같이, Cas9 단백질과 sgRNA가 함께 발현된 후, 3시간이 경과된 때부터 RESAFRbla system에 의한 Amp 내성균 감소 효과가 나타나는 것을 확인하였으며, pUC19 플라스미드뿐만 아니라 pET21b 플라스미드를 포함하고 있는 E. coli에서도 Amp 내성균 감소 효과가 있음을 확인하였다. 상기 결과는 E. coli에 pRESAFRbla플라스미드를 도입함으로써, Amp 내성을 억제할 수 있을 뿐만 아니라, 플라스미드의 종류에 관계없이 bla 유전자를 포함하고 있다면 RESAFRbla system이 효과가 있음을 의미한다.
실시예 3. bla 유전자를 포함하는 표적 플라스미드에 대한 영향 확인
RESAFRbla system이 bla 유전자를 표적으로 인식하여 Cas9 단백질이 bla 유전자를 절단하는 과정에서 bla 유전자를 포함하는 표적 플라스미드에는 어떤 영향을 미치는지 확인하고자 하였다. 본 실험에서의 pBR322 플라스미드는 bla 유전자와 tetracycline 내성 유전자를 포함하고 있으므로, bla 유전자를 포함하는 표적 플라스미드까지 분해되는 경우, tetracycline (Tet) 내성까지도 억제될 것으로 예상하였다. 이에, 실시예 2와 동일한 방법으로, pBR322를 포함한 E. coli에 pRESAFRbla 플라스미드를 도입한 후, Amp 및 Tet 내성의 변화여부를 확인하여 RESAFRbla system의 표적 플라스미드에 대한 영향을 확인하였다.
또한, pRESAFRbla 플라스미드를 도입한 후, 콜로니를 선별하여 표적 플라스미드 위에 있는 유전자를 증폭하였다. pRESAFRbla 플라스미드는 p15A origin 부분을 증폭하는 프라이머, pBR322 플라스미드는 pMB1 origin 부분을 증폭하는 프라이머를 이용하였다. rTaq polymerase를 이용하여 PCR한 후 전기영동을 통해 PCR 결과를 확인하였으며, 하기 표 4에 본 실험에서 사용한 프라이머 정보와 PCR 조건이 열거하였다.
Figure 112015013901284-pat00005
그 결과, 도 7 내지 8에 나타낸 바와 같이, pRESAFRbla 플라스미드 도입한 E. coli는 Amp 내성과 Tet 내성이 같은 비율로 감소함을 확인하였다. 또한, 플라스미드의 replication origin 부분을 polymerase chain reaction (PCR) 기법을 이용하여 확인하였을 때, RESAFRbla system에 의하여 Amp 내성이 사라진 경우에 pBR322의 pMB1 origin이 PCR되지 않음을 확인하였다. 상기 결과는 RESAFRbla system이 bla 유전자를 절단하는 과정에서 표적 플라스미드까지 분해하여 두 항생제에 대한 내성이 사라지게 됨을 의미한다.
실시예 4. Extended-spectrum b-lactamases (ESBLs) 유전자를 표적으로 하는 RESAFR ESBL system 설계
상기 실험 결과에 근거하여, ESBLs 생산 내성균 치료를 위해 RESAFR system을 도입하고자 하였다. ESBLs의 종류는 TEM b-lactamase, SHV b-lactamase, CTX-M b-lactamase, OXA b-lactamase 등이 있으며, 이에, 도 9에 나타낸 바와 같이, ESBL-targeted crRNA library를 이용하여 여러 종류의 ESBLs를 동시에 표적할 수 있는 RESAFRESBL system를 고안하였다.
다만, 박테리아의 CRISPR에 의한 crRNA는 특정 염기서열에 특이적으로 결합하기 때문에 표적으로 하는 염기서열 부분에 돌연변이가 많이 나타나면 RESAFR system의 효과가 나타나지 않을 우려가 있다. 따라서, 본 발명자들은 ESBL-targeted crRNA library 설계에 있어서, 내성 유전자 염기서열 정보를 수집하였고, 돌연변이 없이 보존된 염기 서열을 확보하고자 하였다. 그 결과, 도 10에 나타낸 바와 같이, ESBLs의 그룹 중 TEMSHV 내성 그룹이 그룹 내에서 염기서열 간 유사성이 높음을 확인하였으며, 163개의 TEM 돌연변이 유전자 서열과 139개의 SHV 돌연변이 서열을 조사하여 두 유전자 각각의 보존 서열을 확인하였다. 보존 서열 중에서도 crRNA의 표적이 될 수 있는 서열을 조사하여 crRNA 라이브러리를 고안 하였으며(TEM : ATACGGGAGGGCTTACCATC (서열번호 17), SHV : GTCTGAGCGCCCGTTCGCAA (서열번호 18)), ESBLs 표적 라이브러리를 프라이머로 합성하여 증폭한 후 pCas9의 BsaI 부위에 TEMSHV를 표적할 수 있는 crRNA 라이브러리를 클로닝하였다. 이에, 본 발명자는 상기 ESBLs 표적 라이브러리, 서열번호 19의 CAS 9 단백질 유전자, 및 서열번호 20의 tracrRNA로 이루어지는 재조합 벡터, 즉 RESAFRESBL system을 설계하였다.
실시예 5. ESBLs 유전자에 대한 RESAFR ESBL system의 효과 확인
ESBLs 내성 E. coli RESAFRESBL system을 도입한 후, Amp에 대한 내성 변화를 확인함으로써 RESAFRESBL system의 효과를 증명하고자 하였다.
우선, 병원에서 환자로부터 채취한, Klebsiella pneumoniae를 포함하고 있는 플라스미드를 conjugation을 통해 E. coli로 이동시켜 ESBLs 내성 E. coli로 형질 전환시켰으며, 상기 플라스미드에는 TEM-1 내성 유전자와 CTX-M15 내성 유전자가 포함되어 있으므로, 각각 Amp, 및 ceftazidime (CEF)에 대하여 내성을 가지고 있는 E. coli를 제조하였다. 보다 구체적으로, K. pneumonia K01-Bact-08-03094 균주를 conjugation의 donor로 이용하였고, E. coli BW25113 균주를 recipient로 이용하였다. LB 배지에 donor와 recipient를 접종하여 37 oC, 250rpm에서 16시간 동안 pre-culture하였으며, 각각의 균주를 1:100 농도로 LB 배지에 접종한 후 optical density (OD600)가 0.9~1이 되도록 37 oC, 250 rpm 조건으로 배양하였다. Donor와 recipient를 1:10, 1:100 농도로 혼합한 후, LB 배지 3 mL에 접종하였다. 이를 교반하지 않고 37 oC 배양기에서 3시간 동안 배양한 후 Amp+MacConkey 고체 배지에 도말 하였다. 37 oC 배양기에서 밤새 배양한 후 E. coli 균주를 선별하였다.
이 후, ESBLs를 발현하는 E. coli를 상기의 형질전환 방법으로 competent cell을 만든 후, 100ng의 pRESAFRESBL 플라스미드 DNA를 넣고 형질 전환시켜 주었다. 1시간 동안의 배양이 끝난 후, PBS로 washing한 후 serial dilution을 하였다. Chloramphenicol (Cm)+LB 고체 배지와 Cm+Amp+LB 고체 배지에 각각 도말 한 후 37 oC 배양기에서 밤새 배양한 후 CFU를 측정하였다. Cm+LB 고체 배지에서 나온 콜로니를 무작위로 LB 배지에 접종하여 37oC, 250rpm에서 16시간 동안 배양하였다. 이를 3 ml의 0.75 % agar와 섞은 후 LB 고체 배지 위에 도말 하였다. 이 위에 항생제를 농도 별 (Amp: 10 μg, Cm: 34 μg, CEF: 1 μg)으로 처리한 paper disc를 올린 후 37 oC 배양기에서 밤새 배양하여 paper disc 주위로 형성된 환의 크기를 비교하였다.
또한, pRESAFRESBL는 CTX-M 유전자를 증폭하는 프라이머를 이용하여 실시예 3과 동일한 방법으로, RESAFRESBL system의 표적 플라스미드에 대한 영향을 확인하였다. 하기 표 5에 본 실험에서 사용한 프라이머 정보와 PCR 조건이 열거하였다.
Figure 112015013901284-pat00006
그 결과, 도 11에 나타낸 바와 같이, Cas9만 발현되는 경우, E. coli의 Amp 내성에 변화가 없었지만, crRNA library와 Cas9이 동시에 발현되는 경우에는 전체 E. coli의 수 대비 Amp 내성을 갖는 E. coli의 수의 비율이 감소하는 것을 확인하였다.
또한, 도 12 및 13에 나타낸 바와 같이, RESAFRESBL system이 TEM 유전자를 절단하는 과정에서 CTX-M 내성 유전자 기능이 함께 사라지는 것을 paper disc diffusion test를 통해 확인하였다. CTX-M에 의해서 생기는 CEF에 대한 내성이 사라지면서 paper disc 주위에 환이 형성되는 것을 확인하였고, CTX-M 유전자 PCR을 통하여 RESAFRESBL system에 의해 항생제에 대한 내성이 감소한 E. coli에서는 CTX-M 유전자가 증폭되지 않는 것을 확인하였다. 상기 결과는 RESAFRESBLsystem이 TEM 내성 유전자를 절단하여 Amp 내성을 감소시킬 뿐 아니라, TEM 내성 유전자를 절단하는 과정에서 플라스미드가 분해되어 CEF 내성을 억제시켰음을 의미한다.
실시예 6. RESAFR ESBL system을 이용한 다제내성균 사멸
앞선 결과를 통해 ESBLs 내성 E. coli RESAFRESBL system을 도입하였을 때 플라스미드가 분해되어 플라스미드 내에 있던 항생제 내성이 사라지는 것을 확인하였다. 본 발명자들은 이러한 사실을 바탕으로 ESBL 내성유전자를 포함한 다제내성균 (Multi-drug resistant bacteria)를 치료할 수 있을 것이라 기대하였고 다양한 내성균을 대상으로 실험을 진행하였다.
그 결과, 도 14에 나타낸 바와 같이, RESAFRESBL system을 이용하여 ESBL 유전자를 타겟함으로써 Penicillin과 Cephalosporin 계열의 항생제뿐만 아니라 Oxazolidinone (Linezolid), Tetracycline (Tigecycline), Diarylquinoline (Bedaquiline), Pleuromutilin (Retapamulin), Fluoroquinolone (Balofloxacin, Gemifloxacin), Macrolide (Telithromycin), Carbapenem (Ertapenem), Lipopeptide (Daptomycin), Quinolone (Gatifloxacin), Cephalosporin (Cefepime) 계열의 항생제 내성을 감소시키는 것을 확인하였다. 상기 결과는 ESBL 유전자를 포함하는 다제내성균 치료에 RESAFRESBL system이 응용 가능함을 의미한다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
<110> Research and Business Foundation SUNGKYUNKWAN UNIVERSITY <120> Recombinant vector for inhibiting antibiotic resistance and uses thereof <130> R-2014-0697-KR-1_PB14-12395 <160> 20 <170> KopatentIn 2.0 <210> 1 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Cas9-FW-XmaI primer <400> 1 aattcccggg aaagaggaga aatactagat ggataagaaa tactca 46 <210> 2 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Cas9-BW-PstI primer <400> 2 aattctgcag tcagtcacct cctagctg 28 <210> 3 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> sgRNAbla-FW-BglI primer <400> 3 aattgccctt ccggcttgac agctagctca gtc 33 <210> 4 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> sgRNAbla-BW-Tth111I primer <400> 4 aattgacccg gtcaaaaaaa gcaccgactc ggtg 34 <210> 5 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> sgRNAbla-Long-FWI primer <400> 5 ttgacagcta gctcagtcct aggtactgtg ctagcgccat aaccatgagt gataacactg 60 gttttagagc tagaaatagc 80 <210> 6 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> sgRNAbla-Long-BW primer <400> 6 aaaaaaagca ccgactcggt gccacttttt caagttgata acggactagc cttattttaa 60 cttgctattt ctagctctaa aacc 84 <210> 7 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TEM/SHV FW-BsaI primer <400> 7 aattggtctc gaaacatac 19 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TEM/SHV BW-BsaI primer <400> 8 aattggtctc aaaaacttgc 20 <210> 9 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> TEM/SHV Long FW primer <400> 9 aattggtctc gaaacatacg ggagggctta ccatcgtttt agagctatgc tgttttgaat 60 ggt 63 <210> 10 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> TEM/SHV Long BW primer <400> 10 aattggtctc aaaaacttgc gaacgggcgc tcagacgttt tgggaccatt caaaacagca 60 tag 63 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p15A FW primer <400> 11 gcgctagcgg agtgtatact 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> p15A BW primer <400> 12 cgcatgactt caagactaac 20 <210> 13 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> pMB1 FW primer <400> 13 cccccctgac gagcatcaca aa 22 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pMB1 BW primer <400> 14 tggcttcagc agagcgcaga 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CTX-M FW primer <400> 15 scsatgtgca gyaccagtaa 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CTX-M BW primer <400> 16 ccgcratatc rttggtggtg 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TEM <400> 17 atacgggagg gcttaccatc 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SHV <400> 18 gtctgagcgc ccgttcgcaa 20 <210> 19 <211> 4107 <212> DNA <213> Artificial Sequence <220> <223> Cas9 <400> 19 atggataaga aatactcaat aggcttagat atcggcacaa atagcgtcgg atgggcggtg 60 atcactgatg aatataaggt tccgtctaaa aagttcaagg ttctgggaaa tacagaccgc 120 cacagtatca aaaaaaatct tataggggct cttttatttg acagtggaga gacagcggaa 180 gcgactcgtc tcaaacggac agctcgtaga aggtatacac gtcggaagaa tcgtatttgt 240 tatctacagg agattttttc aaatgagatg gcgaaagtag atgatagttt ctttcatcga 300 cttgaagagt cttttttggt ggaagaagac aagaagcatg aacgtcatcc tatttttgga 360 aatatagtag atgaagttgc ttatcatgag aaatatccaa ctatctatca tctgcgaaaa 420 aaattggtag attctactga taaagcggat ttgcgcttaa tctatttggc cttagcgcat 480 atgattaagt ttcgtggtca ttttttgatt gagggagatt taaatcctga taatagtgat 540 gtggacaaac tatttatcca gttggtacaa acctacaatc aattatttga agaaaaccct 600 attaacgcaa gtggagtaga tgctaaagcg attctttctg cacgattgag taaatcaaga 660 cgattagaaa atctcattgc tcagctcccc ggtgagaaga aaaatggctt atttgggaat 720 ctcattgctt tgtcattggg tttgacccct aattttaaat caaattttga tttggcagaa 780 gatgctaaat tacagctttc aaaagatact tacgatgatg atttagataa tttattggcg 840 caaattggag atcaatatgc tgatttgttt ttggcagcta agaatttatc agatgctatt 900 ttactttcag atatcctaag agtaaatact gaaataacta aggctcccct atcagcttca 960 atgattaaac gctacgatga acatcatcaa gacttgactc ttttaaaagc tttagttcga 1020 caacaacttc cagaaaagta taaagaaatc ttttttgatc aatcaaaaaa cggatatgca 1080 ggttatattg atgggggagc tagccaagaa gaattttata aatttatcaa accaatttta 1140 gaaaaaatgg atggtactga ggaattattg gtgaaactaa atcgtgaaga tttgctgcgc 1200 aagcaacgga cctttgacaa cggctctatt ccccatcaaa ttcacttggg tgagctgcat 1260 gctattttga gaagacaaga agacttttat ccatttttaa aagacaatcg tgagaagatt 1320 gaaaaaatct tgacttttcg aattccttat tatgttggtc cattggcgcg tggcaatagt 1380 cgttttgcat ggatgactcg gaagtctgaa gaaacaatta ccccatggaa ttttgaagaa 1440 gttgtcgata aaggtgcttc agctcaatca tttattgaac gcatgacaaa ctttgataaa 1500 aatcttccaa atgaaaaagt actaccaaaa catagtttgc tttatgagta ttttacggtt 1560 tataacgaat tgacaaaggt caaatatgtt actgaaggaa tgcgaaaacc agcatttctt 1620 tcaggtgaac agaagaaagc cattgttgat ttactcttca aaacaaatcg aaaagtaacc 1680 gttaagcaat taaaagaaga ttatttcaaa aaaatagaat gttttgatag tgttgaaatt 1740 tcaggagttg aagatagatt taatgcttca ttaggtacct accatgattt gctaaaaatt 1800 attaaagata aagatttttt ggataatgaa gaaaatgaag atatcttaga ggatattgtt 1860 ttaacattga ccttatttga agatagggag atgattgagg aaagacttaa aacatatgct 1920 cacctctttg atgataaggt gatgaaacag cttaaacgtc gccgttatac tggttgggga 1980 cgtttgtctc gaaaattgat taatggtatt agggataagc aatctggcaa aacaatatta 2040 gattttttga aatcagatgg ttttgccaat cgcaatttta tgcagctgat ccatgatgat 2100 agtttgacat ttaaagaaga cattcaaaaa gcacaagtgt ctggacaagg cgatagttta 2160 catgaacata ttgcaaattt agctggtagc cctgctatta aaaaaggtat tttacagact 2220 gtaaaagttg ttgatgaatt ggtcaaagta atggggcggc ataagccaga aaatatcgtt 2280 attgaaatgg cacgtgaaaa tcagacaact caaaagggcc agaaaaattc gcgagagcgt 2340 atgaaacgaa tcgaagaagg tatcaaagaa ttaggaagtc agattcttaa agagcatcct 2400 gttgaaaata ctcaattgca aaatgaaaag ctctatctct attatctcca aaatggaaga 2460 gacatgtatg tggaccaaga attagatatt aatcgtttaa gtgattatga tgtcgatcac 2520 attgttccac aaagtttcct taaagacgat tcaatagaca ataaggtctt aacgcgttct 2580 gataaaaatc gtggtaaatc ggataacgtt ccaagtgaag aagtagtcaa aaagatgaaa 2640 aactattgga gacaacttct aaacgccaag ttaatcactc aacgtaagtt tgataattta 2700 acgaaagctg aacgtggagg tttgagtgaa cttgataaag ctggttttat caaacgccaa 2760 ttggttgaaa ctcgccaaat cactaagcat gtggcacaaa ttttggatag tcgcatgaat 2820 actaaatacg atgaaaatga taaacttatt cgagaggtta aagtgattac cttaaaatct 2880 aaattagttt ctgacttccg aaaagatttc caattctata aagtacgtga gattaacaat 2940 taccatcatg cccatgatgc gtatctaaat gccgtcgttg gaactgcttt gattaagaaa 3000 tatccaaaac ttgaatcgga gtttgtctat ggtgattata aagtttatga tgttcgtaaa 3060 atgattgcta agtctgagca agaaataggc aaagcaaccg caaaatattt cttttactct 3120 aatatcatga acttcttcaa aacagaaatt acacttgcaa atggagagat tcgcaaacgc 3180 cctctaatcg aaactaatgg ggaaactgga gaaattgtct gggataaagg gcgagatttt 3240 gccacagtgc gcaaagtatt gtccatgccc caagtcaata ttgtcaagaa aacagaagta 3300 cagacaggcg gattctccaa ggagtcaatt ttaccaaaaa gaaattcgga caagcttatt 3360 gctcgtaaaa aagactggga tccaaaaaaa tatggtggtt ttgatagtcc aacggtagct 3420 tattcagtcc tagtggttgc taaggtggaa aaagggaaat cgaagaagtt aaaatccgtt 3480 aaagagttac tagggatcac aattatggaa agaagttcct ttgaaaaaaa tccgattgac 3540 tttttagaag ctaaaggata taaggaagtt aaaaaagact taatcattaa actacctaaa 3600 tatagtcttt ttgagttaga aaacggtcgt aaacggatgc tggctagtgc cggagaatta 3660 caaaaaggaa atgagctggc tctgccaagc aaatatgtga attttttata tttagctagt 3720 cattatgaaa agttgaaggg tagtccagaa gataacgaac aaaaacaatt gtttgtggag 3780 cagcataagc attatttaga tgagattatt gagcaaatca gtgaattttc taagcgtgtt 3840 attttagcag atgccaattt agataaagtt cttagtgcat ataacaaaca tagagacaaa 3900 ccaatacgtg aacaagcaga aaatattatt catttattta cgttgacgaa tcttggagct 3960 cccgctgctt ttaaatattt tgatacaaca attgatcgta aacgatatac gtctacaaaa 4020 gaagttttag atgccactct tatccatcaa tccatcactg gtctttatga aacacgcatt 4080 gatttgagtc agctaggagg tgactga 4107 <210> 20 <211> 87 <212> DNA <213> Artificial Sequence <220> <223> tracrRNA <400> 20 gttggaacca ttcaaaacag catagcaagt taaaataagg ctagtccgtt atcaacttga 60 aaaagtggca ccgagtcggt gcttttt 87

Claims (5)

  1. 하기를 포함하는, 항생제 내성 억제용 재조합 벡터로서, 하기 유전자 라이브러리는 서열번호 17 및 서열번호 18의 염기서열로 이루어지는 것을 특징으로 하는, 벡터:
    1) CRISPR associated protein 9 (CAS 9) 단백질을 암호화하는 유전자 ;
    2) trans-activating CRISPR-derived RNA (tracrRNA)를 코딩하는 유전자 ; 및
    3) Extended-spectrum β-lactamase (ESBL)와 특이적으로 결합하는, CRISPR-derived RNA (crRNA)를 코딩하는 유전자 라이브러리.
  2. 삭제
  3. 제 1항에 있어서,
    상기 재조합 벡터는 암피실린 (Ampicillin), 세프타지딤 (Ceftazidime), 페니실린 (Penicillin), 세팔로스포린 (Cephalosporin), 옥사졸리디논 (Oxazolidinone), 테트라사이클린 (Tetracycline), 디아릴퀴놀린 (Diarylquinoline), 플류로무틸린 (Pleuromutilin), 플루오르퀴놀론 (Fluoroquinolone), 마크로라이드 (Macrolide), 카바페넴 (Carbapenem), 및 퀴놀론 (Quinolone)으로 구성된 군으로부터 선택되는 하나 이상의 항생제에 대한 내성을 억제하는 것을 특징으로 하는, 벡터.
  4. 제 1항에 있어서,
    상기 재조합 벡터는 암피실린 (Ampicillin), 및 세프타지딤 (Ceftazidime)에 대한 내성을 동시에 억제하는 것을 특징으로 하는, 벡터.
  5. 제 1항, 제 3항, 및 제 4항 중 어느 한 항의 재조합 벡터를 처리하는 단계를 포함하는, 인간을 제외한 포유동물의 항생제 내성 억제방법.
KR1020150019977A 2015-02-10 2015-02-10 항생제 내성 억제용 재조합 벡터 및 이의 용도 KR101584933B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150019977A KR101584933B1 (ko) 2015-02-10 2015-02-10 항생제 내성 억제용 재조합 벡터 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150019977A KR101584933B1 (ko) 2015-02-10 2015-02-10 항생제 내성 억제용 재조합 벡터 및 이의 용도

Publications (1)

Publication Number Publication Date
KR101584933B1 true KR101584933B1 (ko) 2016-01-13

Family

ID=55172874

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150019977A KR101584933B1 (ko) 2015-02-10 2015-02-10 항생제 내성 억제용 재조합 벡터 및 이의 용도

Country Status (1)

Country Link
KR (1) KR101584933B1 (ko)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
KR20180070252A (ko) * 2016-12-16 2018-06-26 연세대학교 산학협력단 항균제 내성 극복용 약학 조성물
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
WO2021169457A1 (zh) * 2020-02-29 2021-09-02 浙江大学 一种靶向四环素抗性基因tetA的sgRNA及其敲除载体、载体构建方法和应用
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GenBank Accession Number KP240601 (2015.01.18.)*
Robert J Citorik 등. nature biotechnology. Vol. 32, No. 11, 페이지 1141-1145(2014.09.21.)*

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
KR102018492B1 (ko) * 2016-12-16 2019-09-05 연세대학교 산학협력단 항균제 내성 극복용 약학 조성물
KR20180070252A (ko) * 2016-12-16 2018-06-26 연세대학교 산학협력단 항균제 내성 극복용 약학 조성물
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
WO2021169457A1 (zh) * 2020-02-29 2021-09-02 浙江大学 一种靶向四环素抗性基因tetA的sgRNA及其敲除载体、载体构建方法和应用
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
KR101584933B1 (ko) 항생제 내성 억제용 재조합 벡터 및 이의 용도
US20230287058A1 (en) Inhibitors of crispr-cas9
Kim et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases
Cheng et al. Toxin GhoT of the GhoT/GhoS toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress
Huang et al. Development of a RecE/T‐assisted CRISPR–Cas9 toolbox for Lactobacillus
Martínez‐García et al. Engineering multiple genomic deletions in Gram‐negative bacteria: analysis of the multi‐resistant antibiotic profile of Pseudomonas putida KT2440
Ramage et al. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution
Lucidi et al. New shuttle vectors for gene cloning and expression in multidrug-resistant Acinetobacter species
Fu et al. Overexpression of MazFsa in Staphylococcus aureus induces bacteriostasis by selectively targeting mRNAs for cleavage
Guan et al. Chromosomal targeting by the type III-A CRISPR-Cas system can reshape genomes in Staphylococcus aureus
Milunovic et al. Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti
Tamman et al. A moderate toxin, GraT, modulates growth rate and stress tolerance of Pseudomonas putida
Blesa et al. Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp
Aubert et al. A markerless deletion method for genetic manipulation of Burkholderia cenocepacia and other multidrug-resistant gram-negative bacteria
Dong et al. CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus
Daimon et al. Activation of toxin-antitoxin system toxins suppresses lethality caused by the loss of σE in Escherichia coli
Wang et al. Reversible gene expression control in Yersinia pestis by using an optimized CRISPR interference system
Wang et al. Critical role of RecN in recombinational DNA repair and survival of Helicobacter pylori
Qi et al. The higBA-type toxin-antitoxin system in IncC plasmids is a mobilizable ciprofloxacin-inducible system
US20230193409A1 (en) PHAGE-ENCODED AcrVIA1 FOR USE AS AN INHIBITOR OF THE RNA-TARGETING CRISPR-Cas13 SYSTEMS
Mertens et al. Constitutive SOS expression and damage‐inducible AddAB‐mediated recombinational repair systems for Coxiella burnetii as potential adaptations for survival within macrophages
Devi et al. CRISPR-Cas systems: role in cellular processes beyond adaptive immunity
US20230022575A1 (en) Bacterial conjugative system and therapeutic uses thereof
Regha et al. RecD plays an essential function during growth at low temperature in the Antarctic bacterium Pseudomonas syringae Lz4W
Takashima et al. A toxin–antitoxin system confers stability to the IncP-7 plasmid pCAR1

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 5