CN107236741A - 一种敲除野生型T细胞TCR alpha链的gRNA及方法 - Google Patents

一种敲除野生型T细胞TCR alpha链的gRNA及方法 Download PDF

Info

Publication number
CN107236741A
CN107236741A CN201710591281.6A CN201710591281A CN107236741A CN 107236741 A CN107236741 A CN 107236741A CN 201710591281 A CN201710591281 A CN 201710591281A CN 107236741 A CN107236741 A CN 107236741A
Authority
CN
China
Prior art keywords
grna
tcr alpha
type
alpha chains
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710591281.6A
Other languages
English (en)
Inventor
翁锦生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fifth Affiliated Hospital of Guangzhou Medical University
Original Assignee
Fifth Affiliated Hospital of Guangzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fifth Affiliated Hospital of Guangzhou Medical University filed Critical Fifth Affiliated Hospital of Guangzhou Medical University
Priority to CN201710591281.6A priority Critical patent/CN107236741A/zh
Publication of CN107236741A publication Critical patent/CN107236741A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Abstract

本发明公开一种敲除野生型T细胞TCR alpha链的gRNA及方法。所述gRNA的序列如SEQ ID NO:1所示,利用CRISPR/Cas9技术,所述gRNA和CRISPR/Cas9共感染T细胞,敲除野生型T细胞TCR alpha链,构建野生型TCR alpha链缺失的T细胞,可用于CAR‑T或者TCR‑T细胞免疫治疗。该gRNA敲除效率高,制备方法相对简易,可以快速、高效地为临床提供野生型TCR alpha链缺失的T细胞。

Description

一种敲除野生型T细胞TCR alpha链的gRNA及方法
技术领域
本发明涉及基因敲除技术领域,尤其是涉及一种敲除野生型T细胞TCR alpha链的gRNA及方法。
背景技术
肿瘤是目前人类健康的最大杀手,现有的治疗手段包括手术,化疗,放疗都无法彻底清除肿瘤,免疫T细胞治疗为肿瘤患者的康复带来了巨大希望。目前免疫T细胞治疗的方法主要有CAR-T和TCR-T细胞技术,这些T细胞治疗的原理是将肿瘤特异性的chimericantigen receptor(CAR)或者T cell receptor(TCR)基因转染到正常T细胞上面,使之获得肿瘤特异性识别的能力,从而杀死肿瘤细胞。然而,由于正常T细胞含有自身的T细胞受体(野生型alpha和beta链),这些野生型的alpha和beta链可以影响CAR-T或者TCR-T的表达,导致CAR-T或者TCR-T的活性降低;或者在受者体内攻击肿瘤外的靶器官和组织,导致供体对受体的移植免疫反应病(GVHD,graft verus host disease)病;或者野生型的TCR alpha和beta链和肿瘤特异性的TCR alpha和beta链产生错配,导致T细胞获得新抗原识别能力,损害受体组织。因此,基因敲除野生型TCR alpha和beta链是保证CAR-T或者TCR-T细胞免疫治疗安全性的重要措施。通过敲除野生型TCR alpha和beta链,我们可以提高CAR-T或者TCR-T的功效,减少GVHD的发生,消除TCR alpha和beta链的错配现象,大大提高免疫T细胞治疗肿瘤的效果。
目前基因修饰技术有RNAi干扰技术,ZFN(锌指核酸酶技术),TALEN(转录激活样酶技术),已有人用这些技术进行TCR野生型的alpha和beta链的敲除工作。敲除后的T细胞不表达野生型的alpha和beta链,不引起GVHD病,发生TCR错配的可能性大大降低。然而,以上技术在实际应用中也存在许多不足,其中,RNAi技术仅仅在RNA水平上面降低野生型alpha和beta链的表达,而且是不完全的敲除,残余的RNA可以继续表达TCR的蛋白分子;ZFN技术需要制备多个载体,在体外转录成RNA后转入T细胞才可以敲除基因,RNA不稳定,制备繁琐;Talent技术同样需要制备多个载体后才可用,而且转染的效率比较低,影响TCR野生型alpha和beta链的敲除效率。
成簇的规律间隔短回文重复序列及其相关的Cas9蛋白系统(CRISPR/Cas9)是一种在细菌和古细菌中广泛存在,并用于抵御外源病毒感染的天然防御机制。外源的DNA入侵细菌和古细菌后,会被细胞中与外源DNA特定区域互补的RNA引导序列(gRNA)识别,并引导Cas9核酸酶到达识别部位,对目标序列进行酶切,从而降解外源DNA。根据这个特性,CRISPR/Cas9技术广泛用于基因编辑,其基本步骤是将基因特异性的gRNA和CRISPR/Cas9基因联合,共同转入细胞中。在gRNA的引导下,CRISPR/Cas9特异性地敲除某个基因。CRISPR/Cas9基因敲除效率高,制备相对简易。已经成为基因修饰的主流技术。
针对野生型TCR alpha链,我们通过联合使用gRNA和CRISPR/Cas9的技术,敲除T细胞中的野生型TCR alpha链,构建安全可应用的TCR alpha链缺失的T细胞,用于CAR-T或者TCR-T的免疫T细胞治疗。
发明内容
本发明的第一个目的在于克服现有技术的不足之处而提供一种敲除野生型T细胞TCR alpha链的gRNA。
本发明的第二个目的在于提供一种敲除野生型T细胞TCR alpha链的方法。
为实现上述目的,本发明采取的技术方案如下:
一种敲除野生型T细胞TCR alpha链的gRNA,所述gRNA的序列如SEQ ID NO:1所示。
一种所述gRNA的编码DNA,所述gRNA的编码DNA序列如SEQ ID NO:2所示。
所述核酸序列如下:
SEQ ID NO:1:CACCGGAGAAUCAAAAUCGGUGAAU;
SEQ ID NO:2:CACCGGAGAATCAAAATCGGTGAAT。
本发明提供一种所述gRNA在敲除野生型T细胞TCR alpha链中的应用。
一种敲除野生型T细胞TCR alpha链的方法,所述方法利用CRISPR/Cas9技术,通过所述gRNA和CRISPR/Cas9共感染T细胞,敲除野生型T细胞TCR alpha链,构建野生型TCRalpha链缺失的T细胞。
作为本发明所述敲除野生型T细胞TCR alpha链的方法的优选实施方式,所述gRNA的启动子为U6启动子。
作为本发明所述敲除野生型T细胞TCR alpha链的方法的优选实施方式,包括以下步骤:
1)gRNA靶位点的设计,合成编码gRNA的DNA序列;
2)将步骤1)中合成的DNA片段和酶切过的CRISPR/cas9载体(lentiCRISPR v2)载体进行连接,构建gRNA/CPRISPR/cas9表达载体;
3)将步骤2)构建的构建gRNA/CPRISPR/cas9表达载体和第三代慢病毒的包装载体共感染293T细胞,生成表达gRNA/CPRISPR/cas9的慢病毒,使用慢病毒转染正常人T细胞,完成敲除野生型TCR alpha链,获得野生型TCR alpha链缺失的正常人T细胞。
作为本发明所述敲除野生型T细胞TCR alpha链的方法的优选实施方式,所述正常人T细胞为正常人周围血T细胞。
作为本发明所述敲除野生型T细胞TCR alpha链的方法的优选实施方式,其特征在于,所述酶为BbsI酶。
作为本发明所述敲除野生型T细胞TCR alpha链的方法的优选实施方式,所述步骤1)中,合成针对gRNA的DNA序列的方法为:在与gRNA对应的DNA序列的5’末端加上CACC得到正向核苷酸序列,在其互补链的5’末端加上AAAC得到反向核苷酸序列,分别合成正向和反向核苷酸序列,然后将合成的序列变性、退火,得到双链DNA片段。
与现有技术相比,本发明的有益效果为:本发明针对野生型TCR alpha链的gRNA,通过联合使用CRISPR/Cas9的技术,我们成功敲除T细胞中的野生型TCR alpha链,被敲除野生型TCR alpha链的T细胞不表达野生型的TCR alpha链,是安全可应用的T细胞。本发明通过特异性的gRNA和CRISPR/Cas9的联合使用,基因敲除效率高,制备方法相对简易,可以快速,高效地为临床提供野生型TCR alpha链缺失的T细胞用于CAR-T或者TCR-T的免疫T细胞治疗。
附图说明
图1是利用CRISPR/Cas9技术敲除野生型T细胞TCR alpha链的设计图。
图2是检测T细胞表面的TCR alpha链的表达流式抗体染色结果。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明进一步说明。本领域技术人员应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例
一种敲除野生型T细胞TCR alpha链的方法,包括以下步骤:
1)gRNA靶位点的设计,合成编码gRNA的DNA序列;
通过国际免疫学信息系统(THE INTERNATIONAL IMMUNOGENETICS INFORMATIONSYSTE),获得人类TCR的alpha链恒定编码区(TRAC)基因的序列信息如SEQ ID NO:4所示。
>X02883|TRAC*01|Homosapiens|F|EX1+EX2+EX3|273..545+2408..2452+3324..3427|423nt|1|+1||||423+0=423|||
把人类TRAC的序列信息放在网上CRISPR/Cas9设计工具crispr gRNA designtool(https://www.atum.bio/eCommerce/cas9/input)进行电脑预测得到数个针对TRAC的gRNA的DNA编码序列。其中,设计的gRNA的核酸序列如SEQ ID NO:1所示,gRNA在其对应DNA序列的5’末端加上CACC得到正向核苷酸序列,在其互补链的5’末端加上AAAC得到反向核苷酸序列,DNA序列如SEQ ID NO:2所示。
根据电脑预测序列,我们在IDT DNA公司合成两条DNA引物,在体外进行双链互补,具体实验条件如下:1ul引物1(100uM,序列如SEQ ID NO:2所示);1ul引物2(100uM,序列如SEQ ID NO:3所示);1ul 10×T4Ligation Buffer(NEB);6.5ul ddH2O;0.5ul T4PNK(NEB)。将反应体系置于PCR仪中,反应条件为:37℃,30min;95℃,5min;然后以5℃/min的降温速率将反应体系温度降至25℃。
2)构建gRNA/CPRISPR/cas9表达载体
将CRISPR/Cas9的慢病毒表达载体lentiCRISPR v2(Plasmid#52961,Addgene)经BbsI(NEB cat#R0539S)酶切30min后,进行DNA电泳回收。
将已经互补连接的DNA引物和回收切好的lentiCRISPR v2质粒按照1:1的比例在室温进行DNA连接反应,DNA连接反应采用快速连接试剂盒(NEB,CAT#M2200S)。将连接好的DNA引物和lentiCRISPR v2质粒转化入感受态细菌。次日,挑选连接阳性克隆进行测序鉴定,确定gRNA/CPRISPR/cas9表达载体构建成功。
3)转染T细胞
将已经鉴定的gRNA/CPRISPR/cas9表达载体在体外大量扩增后,和第三代慢病毒的包装载体试剂盒(AbmGood,cat#LV053-G074)共感染293T细胞,其中,转染效率为99%。培养36,60小时后,收集细胞培养上清,检测病毒浓度,过滤,浓集,置于-80℃保存,生成包含gRNA/CRISPR/Cas9基因的慢病毒。
利用CRISPR/Cas9技术敲除野生型T细胞TCR alpha链的设计图如图1所示。由图1可知,特异性识别TCR alpha链的gRNA的DNA编码序列合成后,通过分子生物学的方法装载在表达CRISPR/Cas9的载体上,在U6启动子的作用下,gRNA可以在细胞中特异性表达,指引CRISPR/Cas9特异性敲除野生型TCR alpha链。
4)敲除野生型TCR alpha链的验证
对数生长期的正常人T细胞在体外和步骤3)中包含gRNA/CRISPR/Cas9基因的慢病毒于30℃离心,共培养12小时后,换细胞培养液。48-72小时后,用流式抗体(Anti-TCRalpha,Novus Biologicals公司cat#NBP2-22494)进行染色,检测正常人T细胞中野生型TCR alpha链的表达。
检测正常人T细胞表面的TCR alpha链的表达流式抗体染色结果如图2所示。由图2可知,经过TCR alpha链gRNA联合CRISPR/Cas9基因敲除的正常人T细胞表面的TCR alpha链的表达严重降低,甚至无表达,这表明敲除野生型TCR alpha链的正常人T细胞是安全可应用的。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
SEQUENCE LISTING
<110> 广州医科大学附属第五医院
<120> 一种敲除野生型T细胞TCR alpha链的gRNA及方法
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 25
<212> RNA
<213> 人工序列
<400> 1
caccggagaa ucaaaaucgg ugaau 25
<210> 2
<211> 25
<212> DNA
<213> 人工序列
<400> 2
caccggagaa tcaaaatcgg tgaat 25
<210> 3
<211> 25
<212> DNA
<213> 人工序列
<400> 3
cctcttagtt ttagccactt acaaa 25
<210> 4
<211> 420
<212> DNA
<213> 人种(Human species)
<220>
<221> misc_feature
<222> (1)..(1)
<223> n is a, c, g, or t
<400> 4
natatccaga accctgaccc tgccgtgtac cagctgagag actctaaatc cagtgacaag 60
tctgtctgcc tattcaccga ttttgattct caaacaaatg tgtcacaaag taaggattct 120
gatgtgtata tcacagacaa aactgtgcta gacatgaggt ctatggactt caagagcaac 180
agtgctgtgg cctggagcaa caaatctgac tttgcatgtg caaacgcctt caacaacagc 240
attattccag aagacacctt cttccccagc ccagaaagtt cctgtgatgt caagctggtc 300
gagaaaagct ttgaaacaga tacgaaccta aactttcaaa acctgtcagt gattgggttc 360
cgaatcctcc tcctgaaagt ggccgggttt aatctgctca tgacgctgcg gctgtggtcc 420

Claims (9)

1.一种敲除野生型T细胞TCR alpha链的gRNA,其特征在于,所述gRNA的序列如SEQ IDNO:1所示。
2.一种如权利要求1所述gRNA的编码DNA,其特征在于,所述gRNA的编码DNA序列如SEQID NO:2所示。
3.如权利要求1所述gRNA在敲除野生型T细胞TCR alpha链中的应用。
4.一种敲除野生型T细胞TCR alpha链的方法,其特征在于:所述方法利用CRISPR/Cas9技术,通过如权利要求1所述gRNA和CRISPR/Cas9共感染T细胞,敲除野生型T细胞TCR alpha链,构建野生型TCR alpha链缺失的T细胞。
5.根据权利要求4所述的敲除野生型T细胞TCR alpha链的方法,其特征在于,所述gRNA的启动子为U6启动子。
6.根据权利要求4所述的敲除野生型T细胞TCR alpha链的方法,其特征在于,包括以下步骤:
1)gRNA靶位点的设计,合成编码gRNA的DNA序列;
2)将步骤1)中合成的DNA片段和酶切过的CPRISPR/cas9表达载体进行连接,构建gRNA/CPRISPR/cas9表达载体;
3)将步骤2)构建的gRNA/CPRISPR/cas9表达载体和第三代慢病毒的包装载体共感染293T细胞,生成包含gRNA/CPRISPR/cas9基因的慢病毒,用慢病毒转染正常人T细胞,完成敲除野生型TCR alpha链,获得野生型TCR alpha链缺失的正常人T细胞。
7.根据权利要求6所述的敲除野生型T细胞TCR alpha链的方法,其特征在于,所述正常人T细胞为正常人周围血T细胞。
8.根据权利要求6所述的敲除野生型T细胞TCR alpha链的方法,其特征在于,所述酶为BbsI酶。
9.根据权利要求6所述的敲除野生型T细胞TCR alpha链的方法,其特征在于,所述步骤1)中,合成针对TCR alpha链gRNA的DNA编码序列的方法为:在与gRNA对应的DNA序列的5’末端加上CACC得到正向核苷酸序列,在其互补链的5’末端加上AAAC得到反向核苷酸序列,分别合成正向和反向核苷酸序列,然后将合成的序列变性、退火,得到双链DNA片段。
CN201710591281.6A 2017-07-19 2017-07-19 一种敲除野生型T细胞TCR alpha链的gRNA及方法 Pending CN107236741A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710591281.6A CN107236741A (zh) 2017-07-19 2017-07-19 一种敲除野生型T细胞TCR alpha链的gRNA及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710591281.6A CN107236741A (zh) 2017-07-19 2017-07-19 一种敲除野生型T细胞TCR alpha链的gRNA及方法

Publications (1)

Publication Number Publication Date
CN107236741A true CN107236741A (zh) 2017-10-10

Family

ID=59990692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710591281.6A Pending CN107236741A (zh) 2017-07-19 2017-07-19 一种敲除野生型T细胞TCR alpha链的gRNA及方法

Country Status (1)

Country Link
CN (1) CN107236741A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
WO2019237397A1 (zh) * 2018-06-16 2019-12-19 深圳市博奥康生物科技有限公司 一种敲除人pin1基因的方法
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112752767A (zh) * 2018-04-27 2021-05-04 克里斯珀医疗股份公司 细胞毒性t细胞耗竭的方法和组合物
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104560864A (zh) * 2014-12-22 2015-04-29 中国科学院微生物研究所 利用CRISPR-Cas9系统构建的敲除IFN-β基因的293T细胞系
CN104894068A (zh) * 2015-05-04 2015-09-09 南京凯地生物科技有限公司 一种利用CRISPR/Cas9制备CAR-T细胞的方法
CN105647871A (zh) * 2016-01-27 2016-06-08 苏州佰通生物科技有限公司 一种可异体移植的嵌合抗原受体t细胞及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104560864A (zh) * 2014-12-22 2015-04-29 中国科学院微生物研究所 利用CRISPR-Cas9系统构建的敲除IFN-β基因的293T细胞系
CN104894068A (zh) * 2015-05-04 2015-09-09 南京凯地生物科技有限公司 一种利用CRISPR/Cas9制备CAR-T细胞的方法
CN105647871A (zh) * 2016-01-27 2016-06-08 苏州佰通生物科技有限公司 一种可异体移植的嵌合抗原受体t细胞及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EYQUEM J等: "Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection", 《NATURE》 *
张薇等: "慢病毒载体及应用研究进展", 《包头医学院学报》 *
徐畅等: "基于CRISPR-Cas9定向编辑TRAC基因的研究", 《广东药科大学学报》 *
邵红伟等: "CRISPR-Cas9系统定向编辑TCR基因的sgRNA筛选", 《集美大学学报》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN112752767A (zh) * 2018-04-27 2021-05-04 克里斯珀医疗股份公司 细胞毒性t细胞耗竭的方法和组合物
WO2019237397A1 (zh) * 2018-06-16 2019-12-19 深圳市博奥康生物科技有限公司 一种敲除人pin1基因的方法
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN107236741A (zh) 一种敲除野生型T细胞TCR alpha链的gRNA及方法
CN107354156A (zh) 一种敲除野生型T细胞TCR beta链的gRNA及方法
CN110036112A (zh) 引发受主要组织相容性复合体e分子限制的t细胞的巨细胞病毒载体
CN113278619B (zh) 双sgRNA、基因敲除载体、基因敲除STING基因的猪成纤维细胞系及其构建方法
KR20240024328A (ko) 동종이형 종양 세포 백신
CN109750035B (zh) 靶向并引导Cas9蛋白高效切割TCR及B2M基因座的sgRNA
CN110684120B (zh) 一种靶向gpc3的嵌合抗原受体及其应用
CN110981970A (zh) 一种靶向nkg2d配体和cd19的双靶点嵌合抗原受体及其表达载体和应用
WO2019204503A1 (en) Compositions and methods for multiplexed tumor vaccination with endogenous gene activation
CN109517820A (zh) 一种靶向HPK1的gRNA以及HPK1基因编辑方法
CN114438055B (zh) 新型的crispr酶和系统以及应用
KR20220047623A (ko) 세포 유형 운명 특정화의 조절인자를 확인하기 위한 조성물 및 방법
WO2019206233A1 (zh) 一种RNA编辑的CRISPR/Cas效应蛋白及系统
KR20220103928A (ko) 시험관 내 활성화 및 연쇄 살해 t 세포 집단의 확장 및 종양 세포 사멸 세포로 암 환자의 수동 면역화를 위한 조성물 및 방법
CN114134211A (zh) Usp30基因作为靶点在抑制塞内卡谷病毒复制中的应用
CN103555762A (zh) Afp和gm-csf双基因共表达重组载体及其制备方法和应用
CN105999223B (zh) PDL1-IgGFc融合蛋白抑制重症疟疾发病的应用
CN111154791A (zh) 重组cd6基因、及利用其修饰的t细胞、制备方法和应用
CN107557392B (zh) 一种抗egfr安全型嵌合抗原受体修饰的免疫细胞的制备方法及其应用
CN114134183B (zh) 一种siglec15基因人源化动物模型的构建方法及应用
CN102899293A (zh) 促血管生成素1基因修饰的间充质干细胞、及其构建方法与应用
CN108998419A (zh) 一种低免疫原性、可诱导凋亡的ips细胞制备方法
CN110669144B (zh) 一种靶向b细胞成熟抗原的嵌合抗原受体及其应用
CN107630005A (zh) 表达plac1特异性tcr的t细胞及其应用
CN110642953B (zh) 一种靶向bcma的t细胞受体融合蛋白和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171010

RJ01 Rejection of invention patent application after publication