CN108841845A - 一种带有筛选标记的CRISPR/Cas9载体及其构建方法 - Google Patents

一种带有筛选标记的CRISPR/Cas9载体及其构建方法 Download PDF

Info

Publication number
CN108841845A
CN108841845A CN201810644442.8A CN201810644442A CN108841845A CN 108841845 A CN108841845 A CN 108841845A CN 201810644442 A CN201810644442 A CN 201810644442A CN 108841845 A CN108841845 A CN 108841845A
Authority
CN
China
Prior art keywords
mcherry
phce
plasmid
microlitre
microlitres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810644442.8A
Other languages
English (en)
Inventor
欧阳乐军
李莉梅
陈自银
孙同川
陈梓洛
黄佳玲
布良灏
陈凯钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN201810644442.8A priority Critical patent/CN108841845A/zh
Publication of CN108841845A publication Critical patent/CN108841845A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种带有筛选标记的CRISPR/Cas9载体及其构建方法,其步骤为:以分别带有荧光标记基因Mcherry的与35S启动子的质粒为模板,分别扩增Mcherry与35S片段,再通过融合PCR将35S与Mcherry扩增成一个35S+Mcherry的大片段,经电泳、切胶回收目的条带35S+Mcherry;组装重组质粒PHCE‑35S+Mcherry,转化大肠杆菌感受态细胞后提取重组质粒,经PCR鉴定为阳性重组质粒后送样测序鉴定。本发明载体构建只需通过三步PCR,简单易行,无需对酶切载体与PCR产物纯化回收,组装效率高。

Description

一种带有筛选标记的CRISPR/Cas9载体及其构建方法
技术领域
本发明属于基因工程技术领域,具体地说,涉及一种带有筛选标记的CRISPR/Cas9载体及其构建方法。
背景技术
CRISPR/Cas9基因组定向编辑技术是近几年发展起来的对基因组进行定向精确修饰的一种技术。通过将外源的DNA导入受体细胞染色体的特定位点上,从而特异地改造基因组,研究基因的功能。该技术可以对基因组中的靶位点进行缺失、敲入、核苷酸修正等操作。2013年,科学家第一次将CRISPR/Cas9应用到人类和小鼠细胞系中对基因进行敲除,随后人们在模式植物和其他农作物中也成功获得了应用,经过改造的CRISPR/Cas9系统也迅速地被应用到拟南芥、烟草、高粱、水稻、小麦、玉米等不同植物基因组的定向编辑研究中,并且获得较高的诱导突变率和可稳定遗传的基因组编辑植株。相对于转基因技术,CRISPR/Cas9系统具有操作简单、快捷、不需要巨大的资金投入、在遗传编辑之后不留下转基因的痕迹,无须引用外源基因,因而生物安全性高,不具有转基因争议。
Mcherry是一种来自于蘑菇珊瑚(mushroom coral)的红色荧光蛋白,常用于标记和示踪某些分子和细胞组分。本研究通过35S启动红色荧光标记基因Mcherry的表达,可实现在植物转化后对阳性转化植物的形态学标记筛选,从而提高基因编辑效率。
发明内容
有鉴于此,本发明提供了一种带有筛选标记的CRISPR/Cas9载体及其构建方法。
为了解决上述技术问题,本发明公开了一种带有筛选标记的CRISPR/Cas9载体的构建方法,包括以下步骤:
(1)设计35S-F、35S-R、Mcherry-F、Mcherry-R和测序引物:
(2)以分别带有荧光标记基因Mcherry的与35S启动子的质粒为模板,对Mcherry与35S片段进行PCR扩增;
(3)PHCE-Cas9质粒线性化;
(4)35S+Mcherry和PHCE-Cas9质粒重组;
(5)重组载体PHCE-35S+Mcherry转化;
(6)PHCE-35S+Mcherry质粒提取并送样测序,制备得到带有筛选标记的CRISPR/Cas9载体。
可选地,所述的35S-F、35S-R、Mcherry-F、Mcherry-R和测序引物的核苷酸序列分别如SEQ ID NO.1-SEQ ID NO.5所示。
可选地,所述的PCR扩增回收35S启动子和Mcherry基因具体为:
(2.1)第一轮PCR扩增和回收:以带有Mcherry质粒为模板,Mcherry-F和Mcherry-R为引物PCR扩增Mcherry基因;以带有35S质粒为模板,35S-F和35S-R为引物PCR扩增35S启动子基因;扩增结束后将PCR产物以120V电压跑电泳,待loading buffer中的指示剂分开距离适当后停止电泳,在紫外凝胶成像系统中观察条带大小并拍照记录,确定是目的条带后,割胶,回收目的基因;分别标记为“35S”和“Mcherry”。
(2.2)第二轮PCR扩增和回收:以第一轮PCR回收的目的基因“35S”和“Mcherry”为模板,35S-F和Mcherry-R为引物进行重叠PCR;PCR完成后配胶跑电泳,在凝胶成像系统中观察条带大小,符合目的片段大小后割胶回收,命名为“35S+Mcherry”。
可选地,所述的第一轮PCR扩增的Mcherry基因的扩增体系为:PHCE-Mcherry质粒1微升,Mcherry-F 1微升,Mcherry-R 1微升,Prime STAR max 25微升,ddH2O 22微升,35S启动子基因的扩增体系为:PHCE-35S质粒1微升,35S-F 1微升,35S-R 1微升,Prime STAR max25微升,ddH2O 22微升,所述的第二轮PCR扩增的扩增体系为:35S 1微升,Mcherry 1微升,35S–F 1微升,Mcherry-R 1微升,Prime STAR max 25微升,ddH2O 22微升,第一轮PCR扩增和第二轮PCR扩增的扩增程序为:94℃4min,40×(94℃30S,55℃30S,72℃45S),72℃2min。
可选地,所述的PHCE-Cas9质粒线性化具体为:
(3.1)使用MfeⅠ酶切PHCE-Cas9质粒,使其线性化;
(3.2)将用MfeⅠ酶切开的PHCE-Cas9质粒同未酶切的PHCE-Cas9的质粒一起跑电泳,对比电泳条带大小,检测酶切是否完全。
可选地,所述的MfeⅠ酶的酶切体系为:PHCE-Cas9质粒3微升,缓冲液2微升,MfeⅠ酶0.4微升,ddH2O 14.6微升。
可选地,所述的35S+Mcherry和PHCE-Cas9质粒重组具体为:将重叠PCR产物割胶回收后的目的片段“35S+Mcherry”与酶切完全的线性化PHCE-Cas9质粒进行重组,构建重组的“PHCE-35S+Mcherry”质粒;重组体系为:酶切后的PHCE-Cas9质粒0.3微升,35S+Mcherry1.2微升,重组酶3微升;重组反应条件为:50℃,60min。
可选地,所述的重组载体PHCE-35S+Mcherry转化具体为:将重组的质粒转化DH5a感受态细胞,然后涂布于有抗性的平板上,待平板上长出菌粒后挑取4个单菌落摇菌,用Taq酶做菌液PCR检测,再挑取PCR检测有条带的菌种扩大培养。
可选地,所述的菌液PCR扩增体系为:模板0.5微升,35S-F 1微升,Mcherry-R 1微升,dNTP 1微升,buffer 2微升,Taq酶0.5微升,ddH2O 14微升。
与现有技术相比,本发明可以获得包括以下技术效果:
1)PHCE-35S+Mcherry重组质粒是在已有的商品化的质粒上进行改进,在载体的特异酶切位点引物筛选标记基因,并在组成型启动子35S的启动下表达,带有重组质粒的阳性转化子植物带有可视化的筛选标记基因Mcherry,在荧光显微镜下产生红色荧光,可进行可视的阳性转化子的筛选。
2)本发明采用同源重组技术,通过PCR扩增目的条带、回收,载体的酶切线性化,组装等过程将外源目标片段与CRISPR载体同源重组,载体构建只需通过三步PCR,简单易行,无需对酶切载体与PCR产物纯化回收,组装效率高。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明MfeⅠ酶的酶切位点;
图2是本发明带有筛选标记的CRISPR/Cas9载体的构建结构示意图。
具体实施方式
以下将配合实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
实施例1一种带有筛选标记的CRISPR/Cas9载体,其结构示意图如图2所示,利用PHCE-Cas9为基础载体,在载体的MfeⅠ酶的酶切位点装入35S+Mcherry片段,实现在启动子的调控下表达MCHERRY蛋白作为筛选标记,可实现转化后代的高效可视化筛选。
实施例2一种带有筛选标记的CRISPR/Cas9载体的构建方法,包括如下步骤:
(1)设计引物:
表1本发明所用引物信息
(2)PCR扩增回收35S启动子和Mcherry基因:
第一轮PCR扩增和回收:以带有Mcherry质粒为模板,Mcherry-F和Mcherry-R为引物PCR扩增Mcherry基因,扩增体系(50微升)见表2;以带有35S质粒为模板,35S-F和35S-R为引物PCR扩增35S启动子基因,扩增体系(50微升)如表3。扩增结束后将PCR产物以120V电压跑电泳,待loading buffer中的指示剂分开距离适当后停止电泳,在紫外凝胶成像系统中观察条带大小并拍照记录,35S启动子和Mcherry基因大小分别为452bp与293bp,结合与对照Marker DNA分子大小确定是目的条带后,割胶,回收目的基因。分别标记为“35S”和“Mcherry”。
表2 Mcherry基因PCR扩增体系
表3 35S启动子PCR扩增体系
PCR扩增程序(50微升)如表4。其中变性到退火循环40次。
表4第一轮PCR扩增程序
第二轮PCR扩增和回收:以第一轮PCR回收的目的基因“35S”和“Mcherry”为模板,35S-F和Mcherry-R为引物进行重叠PCR,PCR扩增体系(50微升)如表5。PCR完成后配胶跑电泳,在凝胶成像系统中观察条带大小结合Marker DNA大小判断是否与745bp大小相符,割胶回收,命名为“35S+Mcherry”。
表5“35S+Mcherry”PCR扩增体系
(3)PHCE-Cas9质粒线性化
第一步:使用MfeⅠ酶切PHCE-Cas9质粒,使其线性化。酶切体系(20微升)如表6。注:该酶反应时间过久容易出现星号活性;该酶在CutSmart缓冲液中活性最高能达到100%。
表6 MfeⅠ酶的酶切体系
其中反应条件:37℃,60min。
MfeⅠ酶的酶切位点如图1。
第二歩:将用MfeⅠ酶切开的PHCE-Cas9质粒同未酶切的PHCE-Cas9的质粒一起跑电泳,对比电泳条带大小,酶切完全的线性化条带要比未酶切的条带大,从而检测酶切是否完全。
(4)35S+Mcherry和PHCE-Cas9质粒重组
将重叠PCR产物割胶回收后的目的片段“35S+Mcherry”与酶切完全的线性化PHCE-Cas9质粒进行重组,构建重组的“PHCE-35S+Mcherry”质粒。重组体系如表7。
表7 35S+Mcherry与PHCE-Cas9质粒重组体系
其中反应条件:50℃,60min。
(5)重组载体PHCE-35S+Mcherry转化
将重组的质粒转化DH5a感受态细胞,然后涂布于有抗性的平板上,待平板上长出菌粒后挑取4个单菌落摇菌,用Taq酶做菌液PCR检测,相应体系如表8。再挑取PCR检测有条带的菌种扩大培养。
表8菌液PCR扩增体系
扩增程序(20微升)如表9。其中,变性到延伸循环40次。
表9菌液PCR扩增程序
(6)PHCE-35S+Mcherry质粒提取并送样测序
选取上一步菌液PCR中条带较亮的菌种扩大培养,提取质粒后跑质粒检测提取质粒的浓度并进行PCR验证,PCR扩增体系与条件与菌液PCR相同,经与阳性对照相比,能扩增出目的条带的结果确认无误后送样测序。
上述说明示出并描述了发明的若干优选实施例,但如前所述,应当理解发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离发明的精神和范围,则都应在发明所附权利要求的保护范围内。
序列表
<110> 广东石油化工学院
<120> 一种带有筛选标记的CRISPR/Cas9载体及其构建方法
<130> 2018
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 40
<212> DNA
<213> 人工序列( Artificial sequence)
<400> 1
taatgcattt tatgacttgc aacatggtgg agcacgacac 40
<210> 2
<211> 30
<212> DNA
<213> 人工序列( Artificial sequence)
<400> 2
ccaagagctc cgtgtcctct ccaaatgaaa 30
<210> 3
<211> 30
<212> DNA
<213> 人工序列( Artificial sequence)
<400> 3
agaggacacg gagctcttgg actcccatgt 30
<210> 4
<211> 40
<212> DNA
<213> 人工序列( Artificial sequence)
<400> 4
gaattcgttg tcaatcaatt aatacgataa tttatttgaa 40
<210> 5
<211> 25
<212> DNA
<213> 人工序列( Artificial sequence)
<400> 5
tgtcccagga ttagaatgat taggc 25

Claims (9)

1.一种带有筛选标记的CRISPR/Cas9载体的构建方法,其特征在于,包括以下步骤:
(1)设计35S-F、35S-R、Mcherry-F、Mcherry-R和测序引物:
(2)以分别带有荧光标记基因Mcherry的与35S启动子的质粒为模板,对Mcherry与35S片段进行PCR扩增;
(3)PHCE-Cas9质粒线性化;
(4)35S+Mcherry和PHCE-Cas9质粒重组;
(5)重组载体PHCE-35S+Mcherry转化;
(6)PHCE-35S+Mcherry质粒提取并送样测序,制备得到带有筛选标记的CRISPR/Cas9载体。
2.根据权利要求1所述的构建方法,其特征在于,所述的35S-F、35S-R、Mcherry-F、Mcherry-R和测序引物的核苷酸序列分别如SEQ ID NO.1- SEQ ID NO.5所示。
3.根据权利要求1所述的构建方法,其特征在于,所述的PCR扩增回收35S启动子和Mcherry基因具体为:
(2.1)第一轮PCR扩增和回收:以带有Mcherry质粒为模板,Mcherry-F和Mcherry-R为引物PCR扩增Mcherry基因;以带有35S质粒为模板,35S-F和35S-R为引物PCR扩增35S启动子基因;扩增结束后将PCR产物以120V电压跑电泳,待loading buffer中的指示剂分开距离适当后停止电泳,在紫外凝胶成像系统中观察条带大小并拍照记录,确定是目的条带后,割胶,回收目的基因;分别标记为“35S”和“Mcherry”;
(2.2)第二轮PCR扩增和回收:以第一轮PCR回收的目的基因“35S”和“Mcherry”为模板,35S-F和Mcherry-R为引物进行重叠PCR;PCR完成后配胶跑电泳,在凝胶成像系统中观察条带大小,符合目的片段大小后割胶回收,命名为“35S+Mcherry”。
4.根据权利要求3所述的构建方法,其特征在于,所述的第一轮PCR扩增的Mcherry基因的扩增体系为:PHCE-Mcherry质粒 1微升,Mcherry-F 1微升,Mcherry-R 1微升,PrimeSTAR max 25微升,ddH2O 22微升,35S启动子基因的扩增体系为:PHCE-35S质粒 1微升,35S-F 1微升,35S-R 1微升,Prime STAR max 25微升,ddH2O 22微升,所述的第二轮PCR扩增的扩增体系为:35S 1微升,Mcherry 1微升,35S–F 1微升,Mcherry-R 1微升,Prime STARmax 25微升,ddH2O 22微升,第一轮PCR扩增和第二轮PCR扩增的扩增程序为:94℃ 4min,40×(94℃ 30S,55℃ 30S, 72℃ 45S),72℃ 2min。
5.根据权利要求1所述的构建方法,其特征在于,所述的PHCE-Cas9质粒线性化具体为:
(3.1)使用MfeⅠ酶切PHCE-Cas9质粒,使其线性化;
(3.2)将用MfeⅠ酶切开的PHCE-Cas9质粒同未酶切的PHCE-Cas9的质粒一起跑电泳,对比电泳条带大小,检测酶切是否完全。
6.根据权利要求5所述的构建方法,其特征在于,所述的MfeⅠ酶的酶切体系为:PHCE-Cas9质粒 3微升,缓冲液 2微升,MfeⅠ酶 0.4微升,ddH2O 14.6微升。
7.根据权利要求1所述的构建方法,其特征在于,所述的35S+Mcherry和PHCE-Cas9质粒重组具体为:将重叠PCR产物割胶回收后的目的片段“35S+Mcherry”与酶切完全的线性化PHCE-Cas9质粒进行重组,构建重组的“PHCE-35S+Mcherry”质粒;重组体系为:酶切后的PHCE- Cas9质粒0.3微升,35S+Mcherry 1.2微升,重组酶 3微升;重组反应条件为:50℃,60min。
8.根据权利要求1所述的构建方法,其特征在于,所述的重组载体PHCE-35S+Mcherry转化具体为:将重组的质粒转化DH5a感受态细胞,然后涂布于有抗性的平板上,待平板上长出菌粒后挑取4个单菌落摇菌,用Taq酶做菌液PCR检测,再挑取PCR检测有条带的菌种扩大培养。
9.根据权利要求8所述的构建方法,其特征在于,所述的菌液PCR扩增体系为:模板 0.5微升,35S-F 1微升,Mcherry-R 1微升,dNTP 1微升,buffer 2微升,Taq酶 0.5微升,ddH2O14微升。
CN201810644442.8A 2018-06-21 2018-06-21 一种带有筛选标记的CRISPR/Cas9载体及其构建方法 Pending CN108841845A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810644442.8A CN108841845A (zh) 2018-06-21 2018-06-21 一种带有筛选标记的CRISPR/Cas9载体及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810644442.8A CN108841845A (zh) 2018-06-21 2018-06-21 一种带有筛选标记的CRISPR/Cas9载体及其构建方法

Publications (1)

Publication Number Publication Date
CN108841845A true CN108841845A (zh) 2018-11-20

Family

ID=64202979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810644442.8A Pending CN108841845A (zh) 2018-06-21 2018-06-21 一种带有筛选标记的CRISPR/Cas9载体及其构建方法

Country Status (1)

Country Link
CN (1) CN108841845A (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255928A (zh) * 2015-10-20 2016-01-20 北京大学 体内快速分析rna功能元件的系统及其应用
WO2016183448A1 (en) * 2015-05-14 2016-11-17 University Of Southern California Optimized gene editing utilizing a recombinant endonuclease system
CN107937427A (zh) * 2017-10-20 2018-04-20 广东石油化工学院 一种基于CRISPR/Cas9体系的同源修复载体构建方法
CN108034671A (zh) * 2017-12-08 2018-05-15 中国农业科学院植物保护研究所 一种质粒载体及利用其建立植物群体的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183448A1 (en) * 2015-05-14 2016-11-17 University Of Southern California Optimized gene editing utilizing a recombinant endonuclease system
CN105255928A (zh) * 2015-10-20 2016-01-20 北京大学 体内快速分析rna功能元件的系统及其应用
CN107937427A (zh) * 2017-10-20 2018-04-20 广东石油化工学院 一种基于CRISPR/Cas9体系的同源修复载体构建方法
CN108034671A (zh) * 2017-12-08 2018-05-15 中国农业科学院植物保护研究所 一种质粒载体及利用其建立植物群体的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARYOUNG POO,ET AL.: "Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-α", 《BIOTECHNOLOGY LETTERS》 *
XIUHUA GAO,ET AL.: "An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing", 《PLANT PHYSIOLOGY》 *
刘亮伟等: "《基因工程原理与实验指导》", 30 September 2010, 中国轻工业出版社 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN108841845A (zh) 一种带有筛选标记的CRISPR/Cas9载体及其构建方法
CN107937427A (zh) 一种基于CRISPR/Cas9体系的同源修复载体构建方法
CN104651392B (zh) 一种利用CRISPR/Cas9系统定点突变P/TMS12-1获得温敏不育系的方法
CN107858346A (zh) 一种敲除酿酒酵母染色体的方法
CN105624187A (zh) 酿酒酵母基因组定点突变的方法
CN110747187B (zh) 识别TTTV、TTV双PAM位点的Cas12a蛋白、植物基因组定向编辑载体及方法
CN110093349A (zh) 利用CRISPR/Cas9系统特异性剪切水稻xal3基因启动子的sgRNA及应用
EP2989206A1 (en) Improved gene targeting and nucleic acid carrier molecule, in particular for use in plants
CN109136248A (zh) 多靶点编辑载体及其构建方法和应用
JP2012095653A (ja) 外来性遺伝子発現を調節するプロモーター
CN110607320A (zh) 一种植物基因组定向碱基编辑骨架载体及其应用
CN108315346A (zh) 一种含水稻基因OsNAR2.1及其启动子的重组表达载体及其应用
CN109706148A (zh) 一种用于敲除BCL11A基因或者BCL11A基因增强子的gRNA、gRNA组合物以及电转方法
CN107245493A (zh) 一种表达受茶碱调控的适体核酶修饰型sgRNA的载体及应用
CN106399356A (zh) 一种病毒侵染性克隆的构建方法及其应用
CN108611354A (zh) 一种FT mRNA分子在同属植物砧穗间传递的分子鉴定方法
CN108034742B (zh) 一种海带配子体性别鉴定方法
CN109338010A (zh) 一种萝卜细胞质雄性不育基因分子标记引物及其应用
CN104630255B (zh) 一种用于莱茵衣藻多基因共表达的载体及其构建方法
CN101413006B (zh) 一种干旱诱导的水稻花特异性启动子及其应用
CN108795978A (zh) 一种通过基因编辑创制雄性不育作物新种质的方法及其应用
CN109593694B (zh) 基于Ngpiwi蛋白介导的牛源大肠杆菌基因敲除菌株及其构建方法
CN108486140A (zh) 一种基于无缝克隆技术的克隆载体制备方法以及试剂盒
CN114540356A (zh) 一种红冬孢酵母启动子及其应用
CN109609425B (zh) 一种利用枯草芽孢杆菌整合位点的酶的活性恢复筛选整合重组子的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181120