JP6190995B2 - 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法 - Google Patents

簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法 Download PDF

Info

Publication number
JP6190995B2
JP6190995B2 JP2016560107A JP2016560107A JP6190995B2 JP 6190995 B2 JP6190995 B2 JP 6190995B2 JP 2016560107 A JP2016560107 A JP 2016560107A JP 2016560107 A JP2016560107 A JP 2016560107A JP 6190995 B2 JP6190995 B2 JP 6190995B2
Authority
JP
Japan
Prior art keywords
fragment
base sequence
crrna
cas9 protein
bases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016560107A
Other languages
English (en)
Other versions
JPWO2016080097A1 (ja
Inventor
田中 光一
光一 田中
知海 相田
知海 相田
悠作 和田
悠作 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Medical and Dental University NUC
Fasmac Co Ltd
Original Assignee
Tokyo Medical and Dental University NUC
Fasmac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Medical and Dental University NUC, Fasmac Co Ltd filed Critical Tokyo Medical and Dental University NUC
Publication of JPWO2016080097A1 publication Critical patent/JPWO2016080097A1/ja
Application granted granted Critical
Publication of JP6190995B2 publication Critical patent/JP6190995B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Humanized animals, e.g. knockin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/20Animal model comprising regulated expression system
    • A01K2217/203Animal model comprising inducible/conditional expression system, e.g. hormones, tet
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/20Animal model comprising regulated expression system
    • A01K2217/206Animal model comprising tissue-specific expression system, e.g. tissue specific expression of transgene, of Cre recombinase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors

Description

本発明は、CRISPR−Cas9システムを利用した簡便で、かつ高効率の遺伝子改変非ヒト哺乳動物の作製方法、特に、高効率にて遺伝子ノックインを可能とする作製方法に関する。
遺伝子ターゲティング(ノックアウト又はノックイン)哺乳動物は、in vivoにおける遺伝子機能を解析する上で重要なツールとなっているが、その製造は胚性幹細胞(ES細胞)を利用する複雑かつ手間のかかる工程を要するものとなっている。
近年、CRISPR−Cas9(Clustered Regularly Interspaced Short Palindromic Repeat−associated protein 9)システムが開発され、遺伝子改変のための有用なツールとして注目されている。
CRISPR−Cas9システムは細菌の獲得免疫機構を基盤とし、二本鎖DNA切断酵素であるCas9タンパク質と、標的DNA領域と相補的な塩基配列を有するRNA(crRNA)と、crRNAと一部相補的な塩基配列を有するRNA(trans−activationg RNA;tracrRNA)からなる複合体が、標的DNA領域を特異的に認識・結合し、切断する。
このシステムを利用して、Cas9タンパク質をコードするRNA、ならびにcrRNA及びtracrRNAもしくはcrRNAとtracrRNAとを連結したキメラRNAを受精卵に導入し、受精卵のゲノムをin vivoにて直接的に操作し(in vivoゲノム改変)、ES細胞を介することなく、遺伝子ターゲティング哺乳動物を製造することができる(特許文献1、非特許文献1)。今日までに、この手法によりノックアウトマウスの製造(特許文献2、非特許文献2−4)や、一塩基置換を伴うノックインマウスの製造(非特許文献3,5,6)が多数行われている。
一方、CRISPR−Cas9システムを用いて比較的大きなサイズの遺伝子を挿入したノックイン哺乳動物の製造についてはほとんど報告がなく、またそのような大きなサイズの遺伝子のノックイン効率は非常に低いこと(例えば、およそ10%)が知られている(非特許文献7)。すなわち、CRISPR−Cas9システムを用いて、比較的大きなサイズの遺伝子が挿入されたノックイン哺乳動物を製造することは容易ではない。
WO2014/131833 WO2013/188522
Aida,T.ら、Dev.Growth Differ.56,34−45,194(2014). Shen,B.ら、Cell Res.23 720−3(2013). Wang,H.ら、Cell 153,910−8(2013). Li,D.ら、Nat.Biotechnol.31,681−3(2013). Long,C.ら、Science 345,1184−8(2014). Wu,Y.ら、Cell Stem Cell 13,659−62(2013). Yang,H.ら、Cell 154,1370−9(2013).
本発明は、CRISPR−Cas9システムを利用した簡便で、かつ高効率の遺伝子改変非ヒト哺乳動物の作製方法、特に、遺伝子サイズが比較的大きなものであっても、高効率にて遺伝子ノックインを可能とする作製方法を提供することを目的とする。
本発明者らは上記課題を解決すべく鋭意検討した結果、Cas9タンパク質をRNAの形態ではなくタンパク質の形態で、crRNAの断片及びtracrRNAの断片と共に受精卵に導入することによって、標的DNAの遺伝子改変が可能であること、特に当該手法によれば比較的大きなサイズの遺伝子であっても高効率にノックインすることができ、簡便、かつ高効率に遺伝子改変非ヒト哺乳動物を作製できること見出し、本発明を完成させるに至った。
すなわち、本発明は以下の構成からなる。
[1] 遺伝子改変された非ヒト哺乳動物の作製方法であって、Cas9タンパク質、標的DNA領域と相補的な塩基配列を含むcrRNA断片及びtracr RNA断片を非ヒト哺乳動物の卵母細胞に導入し、該標的DNAを遺伝子改変することを含む、上記方法。
[2] 非ヒト哺乳動物が、げっ歯類より選択される、[1]の方法。
[3] 卵母細胞が受精卵である、[1]又は[2]の方法。
[4] crRNA断片が、標的DNAと相補的な塩基配列、及び配列番号2で表される塩基配列もしくはその変異配列を含む、[1]〜[3]のいずれかの方法。
[5] tracr RNA断片が、配列番号4で表される塩基配列もしくはその変異配列を含む、[1]〜[4]のいずれかの方法。
[6] Cas9タンパク質、crRNA断片及びtracr RNA断片が複合体を形成している、[1]〜[5]のいずれかの方法。
[7] 遺伝子改変が標的DNA領域への遺伝子又は塩基配列の挿入であり、Cas9タンパク質、crRNA断片及びtracr RNA断片と共に、該遺伝子又は塩基配列を含むドナーDNAを非ヒト哺乳動物の卵母細胞に導入することを含む、[1]〜[6]のいずれかの方法。
[8] Cas9タンパク質1ng/μLに対し、crRNA断片及びtracr RNA断片をそれぞれ0.002pmol/μLを超える濃度で用いる、[1]〜[7]のいずれかの方法。
[9] 標的DNAと相補的な塩基配列、及び配列番号2で表される塩基配列もしくはその変異配列を含み、42塩基以下の塩基配列からなるcrRNA断片;ならびに/あるいは
配列番号4で表される塩基配列もしくはその変異配列を含み、69塩基以下の塩基配列からなるtracr RNA断片、
を含む標的DNAを遺伝子改変するためのキット。
[10] Cas9タンパク質、及び/又は、標的DNA領域へ挿入するための遺伝子もしくは塩基配列を含むドナーDNAをさらに含む、[9]のキット。
[11] 標的DNA領域へ遺伝子又は塩基配列が挿入されたマウスの作製方法であって、Cas9タンパク質、標的DNA領域と相補的な塩基配列を含むcrRNA断片及びtracr RNA断片、ならびに該遺伝子又は塩基配列を含むドナーDNAをマウスの卵母細胞に導入し、該標的DNA領域へ該遺伝子又は塩基配列を挿入することを含み、
ここで、該crRNA断片は30〜42塩基長であり、該tracr RNA断片は24〜69塩基長であり、該Cas9タンパク質を30ng/μL以上の濃度で、かつcrRNA断片及びtracr RNA断片をそれぞれ0.6pmol/μL以上の濃度で用いる、上記方法。
本明細書は本願の優先権の基礎となる日本国特許出願番号2014-232963号の開示内容を包含する。
本発明によれば、CRISPR−Cas9システムを利用した簡便で、かつ高効率の遺伝子改変非ヒト哺乳動物の作製方法、特に、遺伝子サイズが比較的大きなものであっても、高効率にて遺伝子ノックインを可能とする作製方法を提供することができる。
図1は本発明方法による遺伝子改変マウスの作製方法の概略を示す。遺伝子改変マウスがノックインマウスである場合には、ターゲティングベクターを併用する。 図2はターゲティングベクター「pActb−TetO−FLEX−EGFP−polyA」の模式図及びそれによる相同組換えの概略を示す。 図3−1はCas9タンパク質と、各濃度のcrRNA断片及びtracrRNA断片の組み合わせによる標的DNAのin vitroにおける切断効率を示すグラフ図である。 図3−2は、各塩基長のcrRNA断片(0bp(なし)、20bp、30bp、36bp、39bp、又は42bp)と、Cas9タンパク質及びtracrRNA断片の組み合わせによる標的DNAのin vitroにおける切断効率を示すグラフ図である。 図4はノックインマウスのスクリーニング結果を示す写真図である。11匹の産仔のうち5匹(レーン1,2,5,8,11)がノックインマウスであることを示す。 図5はノックインマウス由来の繊維芽細胞におけるEGFPの発現を示す写真図である。矢頭:ノックインマウスに由来する繊維芽細胞において、DsRedにて示される領域とEGFPにて示される領域とが重なることを示す。
1.Cas9タンパク質
本発明においてCas9タンパク質は、CRISPR/Casシステムにおいて使用できるものであればよく、下記tracr RNA断片及びcrRNA断片と結合して活性化し、標的二本鎖DNAを切断できるものであればよく特に限定はされない。このようなCas9タンパク質は公知であり、WO2014/131833に例示されるものを利用することができる。好ましくは、Streptococcus pyogenes由来のCas9タンパク質を利用する。Cas9タンパク質のアミノ酸配列及び塩基配列は公開されたデータベース、例えば、GenBank(http://www.ncbi.nlm.nih.gov)に登録されており(例えば、アクセッション番号:Q99ZW2.1等)、本発明においてはこれらを利用することができる。
好ましくは本発明においてCas9タンパク質は、配列番号1で表されるアミノ酸配列を含むか、当該アミノ酸配列からなるものを利用することができる。また、本発明においてCas9タンパク質には、元のタンパク質の活性、すなわち下記tracr RNA断片及びcrRNA断片と結合して活性化し、標的二本鎖DNAを切断する活性を保持する限り、配列番号1で表されるアミノ酸配列において、1〜複数個のアミノ酸が欠失、置換、付加若しくは挿入されたアミノ酸配列を含むか、当該アミノ酸配列からなるポリペプチドも含む。ここで「複数個」とは1〜50個、好ましくは1〜30個、さらに好ましくは1〜10個である。さらに、本発明においてCas9タンパク質には、元のタンパク質の活性を保持する限り、配列番号1で表されるアミノ酸配列と80%以上、より好ましくは90%以上、さらに好ましくは95%以上、最も好ましくは99%以上の配列同一性を有するアミノ酸配列を含むか、当該アミノ酸配列からなるポリペプチドも含む。アミノ酸配列の比較は公知の手法によって行うことができ、例えば、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等を例えば、デフォルトの設定で用いて実施できる。
本発明においてCas9タンパク質は、タンパク質の形態で利用される。Cas9タンパク質は、遺伝子組換え技術により得られた形質転換細胞又は微生物に産生させることを含む生物学的手法により製造されたものであってもよいし、慣用のペプチド合成法を用いて化学的に製造されたものであってもよい。あるいは、Cas9タンパク質は市販品を使用してもよい。
2.crRNA断片
本発明においてcrRNA断片は少なくとも、標的DNA領域と相補的な塩基配列とtracr RNA断片と相互作用可能な塩基配列を、5’側よりこの順で含んでなる。
標的DNA領域とは、非ヒト動物のゲノムDNA上、目的とする遺伝子改変を生じる部位を含む17〜30塩基、好ましくは17〜20塩基からなる領域を意味する。当該領域は3’側にて「NGG(Nは任意の塩基)」(PAM(proto−spacer adjacent motif)配列)と隣接する領域より選択されることが好ましい。
標的DNA領域を選択する方法として種々の方法が知られており、例えば、CRISPR Design Tool(http://crispr.mit.edu/)(マサチューセッツ工科大学)、E−CRISP(http://www.e−crisp.org/E−CRISP/)、Zifit Targeter(http://zifit.partners.org/ZiFiT/)(Zing Fingerコンソーシアム)、Cas9 design(http://cas9.cbi.pku.edu.cn/)(北京大学)、CRISPRdirect(http://crispr.dbcls.jp/)(東京大学)、CRISPR−P(http://cbi.hzau.edu.cn/crispr/)(華中農業大学)、Guide RNA Target Design Tool.(https://wwws.blueheronbio.com/external/tools/gRNASrc.jsp)(Blue Heron Biotech)などを利用して決定することができる。
tracr RNA断片と相互作用可能な塩基配列とは、tracr RNA断片の一部の塩基配列と結合(ハイブリダイズ)可能な塩基配列を意味し、本発明においては少なくとも配列番号2で表される塩基配列を含む。好ましくはtracr RNA断片と相互作用可能な塩基配列は、配列番号3で表される塩基配列において5’末のグリシン「G」を1番目として以降の塩基については2番目、3番目、4番目...22番目と順次番号付けを行った場合、1番目から10番目、11番目、12番目、13番目、14番目、15番目、16番目、17番目、18番目、19番目、20番目、21番目、又は22番目で表される塩基配列を含むか、当該塩基配列よりなる。
また、本発明においてtracr RNA断片と相互作用可能な塩基配列には、上記塩基配列に相補的な塩基配列とストリンジェントな条件下で結合する(ハイブリダイズする)塩基配列を有し、かつtracr RNA断片と相互作用可能なオリゴヌクレオチドも含まれる。「ストリンジェントな条件」とは、例えば、0.7〜1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1〜2倍濃度のSSC(Saline Sodium Citrate;150mM塩化ナトリウム、15mMクエン酸ナトリウム)溶液を用いて、65℃で洗浄することを意味する(以下においても、同じ意味で使用する)。このようなオリゴヌクレオチドには、上記塩基配列において数塩基の付加、置換、欠失又は挿入を有する塩基配列からなるオリゴヌクレオチドや(ここで「数塩基」とは、3塩基以内、又は2塩基以内の塩基数を意味する)、上記塩基配列と、BLAST等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、80%以上、より好ましくは90%以上、最も好ましくは95%以上の同一性を有する塩基配列からなるオリゴヌクレオチド等が含まれ得る。このようなオリゴヌクレオチドのことを本明細書においては、上記塩基配列の「変異配列」と記載する場合がある。
crRNA断片は上記標的DNA領域と相補的な塩基配列と上記tracr RNA断片と相互作用可能な塩基配列を含み全体として、好ましくは42塩基以下、39塩基以下、又は36塩基以下、あるいは30塩基以上、36塩基以上、又は39塩基以上、例えば、30〜42塩基、より詳細には30塩基、31塩基、32塩基、33塩基、34塩基、35塩基、36塩基、37塩基、38塩基、39塩基、40塩基、41塩基又は42塩基とすることができる。
crRNA断片は、オリゴヌクレオチドの合成法として当技術分野で公知の方法、例えば、ホスホトリエチル法、ホスホジエステル法等により、また通常用いられるRNA自動合成装置を利用して、化学的に合成することができる。
本発明のcrRNA断片は、標的DNA領域が異なる、すなわち標的DNA領域と相補的な塩基配列が異なる、複数種のcrRNA断片を含めることができる。
3.tracr RNA断片
本発明においてtracr RNA断片は、5’側にcrRNA断片の一部の塩基配列と結合(ハイブリダイズ)可能な塩基配列を有し、これら塩基配列の相互作用によりcrRNA断片/tracr RNA断片ハイブリッドを形成する。これが標的DNA領域へのCas9タンパク質のガイドとして作用する。
本発明においてtracr RNA断片は、crRNA断片と共にCas9タンパク質をガイドできるものであれば特に限定されないが、好ましくは、Streptococcus pyogenes由来のtracr RNAを利用する。
tracr RNA断片について、CRISPR/Casシステムに必要とされる塩基配列はある程度明らかにされており(Jinek et al.Science 337:816,2012)、本発明においてはこれらの知見を利用することができる。本発明のtracrRNA断片は、少なくとも配列番号4で表される塩基配列を含む。好ましくはtracr RNA断片は、配列番号5で表される塩基配列において5’末のアデニン「A」を1番目として以降の塩基については2番目、3番目、4番目...69番目と順次番号付けを行った場合、11番目から34番目の塩基からなる塩基配列と共に、1番目から10番目及び/又は35番目から69番目の領域より、11番目及び/又は34番目の塩基に隣接して選択される1又は連続する複数の塩基からなる塩基配列を含むか、当該塩基配列よりなる。
したがって、tracr RNA断片は全体として、好ましくは69塩基以下、59塩基以下、又は34塩基以下、あるいは24塩基以上、例えば、24塩基、24〜34塩基、24〜59塩基又は24〜69塩基とすることができる。
また、本発明においてtracr RNA断片には、上記塩基配列に相補的な塩基配列とストリンジェントな条件下で結合する(ハイブリダイズする)塩基配列を有し、かつcrRNA断片と共にCas9タンパク質をガイドできるオリゴヌクレオチドも含まれる。このようなオリゴヌクレオチドには、上記塩基配列において数塩基の付加、置換、欠失又は挿入を有する塩基配列からなるオリゴヌクレオチドや(ここで「数塩基」とは、3塩基以内、又は2塩基以内の塩基数を意味する)、上記塩基配列と、BLAST等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、80%以上、より好ましくは90%以上、最も好ましくは95%以上の同一性を有する塩基配列からなるオリゴヌクレオチド等が含まれ得る。このようなオリゴヌクレオチドのことを本明細書においては、上記塩基配列の「変異配列」と記載する場合がある。
tracr RNA断片は、オリゴヌクレオチドの合成法として当技術分野で公知の方法、例えば、ホスホトリエチル法、ホスホジエステル法等により、また通常用いられるRNA自動合成装置を利用して、化学的に合成することができる。
4.ドナーDNA
本発明においてドナーDNAは、Cas9タンパク質に切断された部位にて生じる相同組換え修復(Homologous Recombination:HR)を利用して、標的DNA領域に所望の遺伝子又は塩基配列を挿入(ノックイン)するために用いられるDNAである。
ドナーDNAは、標的DNA領域内の塩基配列と高い同一性を有する2つの塩基配列(所謂、相同性アーム)とそれらの間に配置された挿入する遺伝子又は塩基配列を含む。
相同性アームは相同組換えを行うのに十分な程度の大きさがあればよく特に限定されないが、例えば0.5〜10kbの範囲よりそれぞれ独立して選択することができる。
また、相同性アームは相同組換えを行うのに十分な程度に標的DNA領域内の塩基配列と同一性を有していればよく特に限定されないが、BLAST等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、95%以上、好ましくは97%以上、より好ましくは99%以上、さらに好ましくは99.9%以上の同一性をそれぞれ有する。
挿入する遺伝子又は塩基配列は、本発明方法にて用いる卵母細胞に対して内因性、外因性、同種、異種のいずれであってもよい。
また、挿入する遺伝子又は塩基配列の大きさは特に限定されることなく、様々なサイズのものを利用することができ、CRISPR/Casシステムを用いて従来挿入されていた遺伝子と比べて、比較的大きなサイズ、例えば、100bp以上、300bp以上、500bp以上、700bp以上、900bp以上、1kb以上、1.5kb以上、2kb以上、3kb以上、4kb以上、あるいは5kb以上のものも利用することができる。
挿入する遺伝子又は塩基配列にはプロモーター及び/又はその他の制御配列を作動可能に連結することができる。「作動可能に連結する」とは、挿入された遺伝子又は塩基配列が細胞内においてプロモーター及び/又はその他の制御配列の制御下において発現されることを意味する。プロモーター及び/又はその他の制御配列は特に限定されないが、構成的プロモーター、組織特異的プロモーター、時期特異的プロモーター、誘導性プロモーター、CMVプロモーターなど、その他の調節エレメントなど(例えば、ターミネーター配列)を適宜選択することができる。
本発明のドナーDNAは、標的DNA領域が異なる複数種のcrRNA断片が存在する場合には、当該複数種の標的DNA領域にそれぞれ対応した相同性アームを有する、複数種のドナーDNAを含めることができる。また、複数種のドナーDNAに含まれる挿入する遺伝子又は塩基配列はそれぞれ別個の遺伝子又は塩基配列とすることができる。
なお、本明細書中、ドナーDNAをターゲティングベクターと記載する場合があるが、これらの用語は相互互換的に使用される。
5.遺伝子改変された非ヒト動物の作製方法
本発明の遺伝子改変された非ヒト哺乳動物の作製方法は、Cas9タンパク質、crRNA断片及びtracr RNA断片を非ヒト哺乳動物の卵母細胞に導入し、標的DNAを遺伝子改変することを含む。
「非ヒト哺乳動物」とは、非ヒト霊長類(サル等)、ウシ、ウマ、ブタ、ヒツジ、ヤギ、イヌ、ネコ、ラット、マウス等、ヒトを除く哺乳動物を意味する。好ましくは、げっ歯類であり、マウス、ラット、モルモット、ハムスター、ウサギ等より選択することができる。特に好ましくは、マウスである。
「卵母細胞」は、受精前及び受精後の卵母細胞を利用することができるが、好ましくは受精後の卵母細胞、すなわち受精卵である。特に好ましくは、受精卵は前核期胚のものである。卵母細胞は、凍結保存されたものを解凍して用いることができる。
Cas9タンパク質、crRNA断片及びtracr RNA断片の卵母細胞への導入は、核酸及びタンパク質を卵母細胞へ導入する際に一般的に用いられている、顕微注入法に基づいて行うことができる(Nagy A,Gertsenstein M,Vintersten K,Behringer R.,2003.Manipulating the Mouse Embryo.Cold Spring Harbour,New York:Cold Spring Harbour Laboratory Press)。
顕微注入は卵母細胞の前核、受精卵の場合には雌性前核及び/又は雄性前核、好ましくは雄性前核に対して行う。
注入溶液には、Cas9タンパク質、crRNA断片及びtracr RNA断片をそれぞれ以下(i)〜(iii)の一又は複数にて規定される量より選択される量にて含めることができる:
(i) Cas9タンパク質は、5〜5000ng/μL、好ましくは5〜500ng/μL、より好ましくは10〜50ng/μL、さらに好ましくは20〜40ng/μL、よりさらに好ましくは30ng/μLとする;
(ii) crRNA断片及びtracr RNA断片はそれぞれ、Cas9タンパク質1ng/μLに対し、0.002pmol/μLを超える濃度、好ましくは0.005pmol/μL以上、より好ましくは0.01pmol/μL以上、さらに好ましくは0.02pmol/μL以上であり、上限は2pmol/μL以下、好ましくは0.2pmol/μL以下となる濃度とする(crRNA断片の量とtracr RNA断片の量とは、同一であってもよいし、異なっていてもよい);
(iii) crRNA断片及びtracr RNA断片はそれぞれ、0.06pmol/μLを超える濃度、好ましくは0.15pmol/μL以上、より好ましくは0.3pmol/μL以上、さらに好ましくは0.6pmol/μL以上であり、上限は60pmol/μL以下、好ましくは6pmol/μL以下、となる濃度とする(crRNA断片の量とtracr RNA断片の量とは、同一であってもよいし、異なっていてもよい)。
一態様において注入溶液中には、Cas9タンパク質を20〜40ng/μL、好ましくは30ng/μL、crRNA断片を0.15pmol/μL以上、好ましくは0.3pmol/μL以上、より好ましくは0.6pmol/μL以上、ならびに、tracr RNA断片を0.15pmol/μL以上、好ましくは0.3pmol/μL以上、より好ましくは0.6pmol/μL以上の濃度でそれぞれ含めることができる。
顕微注入に際して、Cas9タンパク質、crRNA断片及びtracr RNA断片は複合体を形成していることが好ましい。複合体の形成は、Cas9タンパク質、crRNA断片及びtracr RNA断片を注入溶液中にて、35〜40℃、好ましくは37℃にて、少なくとも15分間程度、インキュベートすることにより行うことができる。これにより相補的な塩基配列の相互作用によりcrRNA断片/tracr RNA断片ハイブリッドが形成され、これにCas9タンパク質が結合した複合体を得ることができる。
注入溶液の注入量は、卵母細胞への顕微注入において一般的に用いられている量であればよく、前核へ顕微注入する場合には、前核の膨化が飽和状態となる量とすることができる。
注入されたCas9タンパク質は、crRNA断片/tracr RNA断片ハイブリッドにより、非ヒト動物のゲノムDNA上の標的DNA領域にガイドされ当該領域内の二本鎖DNAの切断を引き起こし、非相同末端結合(Non Homologous End Joining:NHEJ)又は相同組換え修復(HR)を介して遺伝子改変を生じる。
非相同末端結合によれば、切断部位にて高頻度で偶発的に塩基の挿入欠失が高率に起こり、フレームシフト変異により標的DNA領域における遺伝子が破壊(遺伝子ノックアウト)され得る。
相同組換え修復によれば、ドナーDNAの存在下、これを鋳型として相同組換え修復が起こり、ドナーDNAに含まれた所望の遺伝子又は塩基配列が標的DNA領域に挿入(遺伝子ノックイン)され得る。ドナーDNAは、Cas9タンパク質、crRNA断片及びtracr RNA断片と共に卵母細胞に注入することができ、1〜30ng/μL、好ましくは5〜15ng/μL、より好ましくは10ng/μLの濃度にて他の成分と共に注入溶液中に含めることができる。
また、上記複数種のcrRNA断片や複数種のドナーDNAを組み合わせて用いることによって、複数種の遺伝子改変を生じることができる。
なお、本発明方法による顕微注入の一態様を図1に示す。
顕微注入された卵母細胞は次いで、偽妊娠状態にした雌非ヒト哺乳動物の子宮に移植し、その後産仔を得る。移植は1細胞期胚、2細胞期胚、4細胞期胚、8細胞期胚、16細胞期胚、又は桑実期胚の受精卵にて行うことができる。顕微注入された卵母細胞は必要に応じて、移植されるまで適当な条件下にて培養することができる。卵母細胞の移植及び培養は従来公知の手法に基づいて行うことができる(Nagy Aら、上掲)。
遺伝子改変の有無の確認、及び遺伝子型の決定は、従来公知の手法に基づいて行うことができ、例えばPCR法、配列決定法、サザンブロッティング法等を利用することができる。これらの分析に供されるゲノムDNAは、移植前の胚の一部より抽出されたものであってもよいし、産仔より抽出されたものであってもよい。
本発明方法によれば、Cas9タンパク質、crRNA断片及びtracr RNA断片を非ヒト哺乳動物の卵母細胞に導入することによって、高効率にて標的DNAを遺伝子改変することができ、特にドナーDNAと併用することによって様々なサイズの遺伝子を(従来導入されていた遺伝子と比べて比較的大きなサイズの遺伝子であっても)高効率(例えば、10%以上、20%以上、30%以上、40%以上、45%以上、又はそれ以上の割合)でノックインすることが可能であり、遺伝子改変された非ヒト哺乳動物を効率的に製造することができる。また、本発明方法によれば、遺伝子改変をホモ接合型及びヘテロ接合型にて有する非ヒト哺乳動物の製造が可能であり、ES細胞を介した従来法と比べて早期に(例えば、マウスであればおよそ一か月程度で)所望の遺伝型を有する遺伝子改変された非ヒト哺乳動物を得ることができる。
6.標的DNAを遺伝子改変するためのキット
本発明のキットは、crRNA断片及び/又はtracr RNA断片を含み、上記のとおり、標的DNAを遺伝子改変するため、ならびに/あるいは、標的DNAが遺伝子改変された非ヒト哺乳動物を作製するために用いることができる。
本発明のキットにはさらに、上記Cas9タンパク質及び/又はドナーDNAを含めることができる。
キットに含まれる各要素は、それぞれ別個の容器に収容されていてもよいし、あるいは同一の容器に収容されていてもよい。各要素は、一回の使用量ごとに容器に収容されていてもよいし、あるいは複数回分の量が一つの容器に収容されていてもよい(使用者は一回の使用に必要な量を取り出して用いることができる)。各要素は乾燥形態で容器に収容されていてもよいし、適当な溶媒中に溶解した形態で容器に収容されていてもよい。
以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
[実験材料及び方法]
(ターゲティングベクター)
ターゲティングベクターは、pAAV−TetO−FLEX−HA−mKate2−TeNT−polyAプラスミド(名古屋大学環境医学研究所神経系分野2 山中章弘博士より贈与)より以下のとおり作製した。まず、XhoI(NEB)及びHindIII(NEB)で消化してHA−mKate2−TeNTを除去し、そこにPCR増幅されたEGFPをコードする遺伝子を逆向きに置換・挿入した。次いで、NarI(NEB)及びBstEII(NEB)で消化してAAV2−ITRを除去し、そこにC57BL/6JマウスのゲノムDNAに由来するPCR増幅したβ−アクチン(以下、「Actb」と記載する)遺伝子の断片(2.0kb)を左ホモロジーアームとして、In−Fusion HD Cloning Kit(Takara)を用いて置換・挿入した。最後に、NotI(NEB)及びMluI(NEB)で消化し、そこにC57BL/6JマウスのゲノムDNAに由来するPCR増幅したActb遺伝子の断片(2.0kb)を右ホモロジーアームとしてIn−Fusion反応により置換・挿入した。
このようにして得られたターゲティングベクターを以下、「pActb−TetO−FLEX−EGFP−polyA」と記載する。また、pActb−TetO−FLEX−EGFP−polyAの模式図を図2に示す。
(Cas9タンパク質)
組換えCas9タンパク質は、NEB及びPNA Bio.より購入した。
(crRNA断片及びtracrRNA断片)
tracrRNA断片及びcrRNA断片は下記表1に示す塩基配列を有するものを化学合成し、ポリアクリルアミドゲル電気泳動により精製した(株式会社ファスマック)。crRNA断片はActb標的配列を含む。
Figure 0006190995
(in vitro切断アッセイ)
1.濃度の検討
Cas9タンパク質(30ng/μL)とcrRNA断片及びtracrRNA断片(それぞれ、0pmol/μL,0.061pmol/μL,0.153pmol/μL,0.305pmol/μL、又は0.61pmol/μL)をActb標的配列を含むPCR産物と共に、Cas9 Nuclease Reactionバッファー(NEB)中にて37℃で60分間インキュベートし、次いでRNase A(5mg)で処理して(37℃にて30分間)、RNAを除去した。反応を30%グリセロール、1.2%SDS及び250mM EDTAを含む6×DNAローディングバッファーで停止し、反応物を2%アガロースゲルにて電気泳動した。対照には、crRNA断片、及びtracrRNA断片を加えなかった。
2.crRNA断片長の検討
上記1.の実験においてcrRNA断片を、下記表2に示す塩基配列を有するものに代え、それぞれ0.61pmol/μLにて用いた以外は同一の条件にてin vitro切断アッセイを行った。対照には、いずれのcrRNA断片も加えなかった。
なお、以下において特記しないかぎり、「crRNA断片」とは配列番号6で表される塩基配列からなるものを示す。
Figure 0006190995
(ノックインマウスの作製)
0.1TEバッファー中に、Cas9タンパク質(30ng/μL)、crRNA断片(0.061もしくは0.61pmol/μL)、tracrRNA断片(0.061もしくは0.61pmol/μL)、及びpActb−TetO−FLEX−EGFP−polyA(10ng/μL)を添加・混合し、37℃にて少なくとも15分間インキュベートし、複合体を形成した。
一細胞期の胚はBDF1マウスを交配して得られたものであり(日本クレア株式会社)、使用まで凍結保存されたものを使用した。
上記複合体を、解凍した胚の雄性前核に顕微注入し、37℃にて24時間インキュベートした後、二細胞期の胚を偽妊娠させたICR雌マウス(日本クレア株式会社)に移植し、産仔を得た。得られた産仔よりノックインマウスをスクリーニングした。
(PCRスクリーニング)
産仔の尾部を一部採取し、プロテイナーゼKで処理した後、フェノール抽出法によりゲノムDNAを調製した。次いで、得られたゲノムDNAを鋳型として、ExTaq(Takara)及び下記表3に示す3種のプライマー対を用いてPCRを行い、1%アガロースゲルにて電気泳動してノックインマウスをスクリーニングした。得られたPCR産物についてはさらに、TOPO TA Cloning Kit(Life Technologies)を用いてクローニングし、配列決定を行った。
Figure 0006190995
・サザンブロッティング
サザンプローブ(0.8kb)は、BDF1ゲノムDNAよりPCR増幅し、TOPO TA Cloning Kitを用いてクローニングした後、32Pランダムプライマー(Perkin Elmer)を用いて標識して調製した。ノックインマウスより得たゲノムDNAは、EcoRIで消化して0.8%アガロースゲルを用いた電気泳動により分離し、ナイロンメンブレン(Amersham)へ転写した後、サザンプローブとハイブリダイズさせ検出し、遺伝子型を確認した。プローブの位置は図2に示す。
(繊維芽細胞の初代培養)
2週齢のマウスの耳より小片を切り取り、37℃にて30分間、4mg/mlコラゲナーゼL(新田ゼラチン株式会社)及び4mg/mlディスパーゼで処理した後、10%FBS/DMEM中、37℃、10%CO2条件下にて数日間培養した。pCAG−Cre、pCMV−tTA(Takara)及びpCMV−DsRed(Takara)をLipofectamine(登録商標)LTX & Plus reagent(Life Technologies)を用いて細胞にコトランスフェクトし、EGFPの発現を蛍光顕微鏡にて確認した。
[結果]
(in vitro切断アッセイ)
1.濃度の検討結果
結果を図3−1に示す。
crRNA断片及びtracrRNA断片の濃度依存的にActb標的配列を含むPCR産物の切断効率が増加することが確認できた。そして、0.61pmol/μLのcrRNA断片及びtracrRNA断片を用いた場合に、およそ95%の高い効率でActb標的配列を含むPCR産物を切断できることが確認できた。
2.crRNA断片長の検討結果
結果を図3−2に示す。
crRNA断片が30bpの長さを有する場合、すなわち20bpからなる標的DNA領域と相補的な塩基配列と、10bpからなるtracr RNA断片と相互作用可能な塩基配列を含む場合(配列番号9)に、およそ95%の高い効率でActb標的配列を含むPCR産物を切断できることが確認できた。この結果は、高い切断効率を達成するためにcrRNA断片は少なくとも20bpからなる標的DNA領域と相補的な塩基配列と、少なくとも10bpからなるtracr RNA断片と相互作用可能な塩基配列を有していればよいことを示す。
(ノックインマウスの作製)
CRISPR/CASシステムにて一般的に用いられるRNA量「0.061pmol/μL」にてcrRNA断片及びtracrRNA断片を、Cas9タンパク質及びpActb−TetO−FLEX−EGFP−polyAと共に受精卵の前核に注入した結果、9匹の産仔を得ることができた。得られた産仔についてPCRスクリーニングしたところ、Actb遺伝子座にTetO−FLEX−EGFP−polyAカセットを保有するマウスは確認できなかった(下記表4)。
一方、crRNA断片及びtracrRNA断片の注入量をそれぞれ「0.61pmol/μL」に増大し、Cas9タンパク質及びpActb−TetO−FLEX−EGFP−polyAと共に受精卵の前核に注入した結果、11匹の産仔を得ることができた。得られた産仔についてPCRスクリーニングしたところ、5匹(産仔の45.5%)という非常に高い割合で、Actb遺伝子座にTetO−FLEX−EGFP−polyAカセットを保有することが確認できた(図4及び下記表4)。また、得られたノックインマウスには、ノックインアレルをホモ接合に有するものも認められた。すなわち、crRNA断片及びtracrRNA断片の注入量を増大させることによって、ノックインの効率を顕著に高められることが確認できた。
従来、CRISPR−Cas9システムを用いて比較的大きなサイズの遺伝子を挿入したノックイン哺乳動物の製造効率が非常に低い(例えば、およそ10%以下)ことを考慮すると(Yang,H.ら、上掲)、本方法によりもたらされるノックインの効率は顕著に高いものであるといえる。
Figure 0006190995
(ノックイン遺伝子の機能確認)
得られたノックインマウス及び野生型マウスの耳介より採取した繊維芽細胞をそれぞれ培養し、これにpCAG−Cre、pCMV−tTA及びpCMV−DsRedをコトランスフェクトしたところ、ノックインマウスに由来する繊維芽細胞においてEGFPの蛍光が観察された(図5:矢頭)。特に、ノックインアレルをホモ接合に有するマウスにおいて強いシグナルが確認された。
この結果は、Cre及びtTAの存在下、Actb遺伝子座に挿入されたTetO−FLEX−EGFP−polyAカセットより機能的なEGFPが産生されたことを示す。
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (6)

  1. 標的DNA領域へ遺伝子又は塩基配列が挿入されたマウスの作製方法であって、Cas9タンパク質、標的DNA領域と相補的な塩基配列を含むcrRNA断片及びtracr RNA断片、ならびに該遺伝子又は塩基配列を含むドナーDNAをマウスの卵母細胞に導入し、該標的DNA領域へ該遺伝子又は塩基配列を挿入することを含み、
    ここで、該crRNA断片は30〜42塩基長であり、該tracr RNA断片は24〜69塩基長であり、該Cas9タンパク質を30〜500ng/μLの濃度で、かつcrRNA断片及びtracr RNA断片をそれぞれ0.6pmol/μL以上の濃度で用いる、上記方法。
  2. 卵母細胞が受精卵である、請求項1に記載の方法。
  3. crRNA断片が、標的DNAと相補的な塩基配列、及び配列番号2で表される塩基配列もしくはそれと90%以上の同一性を有する塩基配列を含む、請求項1又は2に記載の方法。
  4. tracr RNA断片が、配列番号4で表される塩基配列もしくはそれと90%以上の同一性を有する塩基配列を含む、請求項1〜3のいずれか1項に記載の方法。
  5. Cas9タンパク質、crRNA断片及びtracr RNA断片が複合体を形成している、請求項1〜4のいずれか1項に記載の方法。
  6. Cas9タンパク質1ng/μLに対し、crRNA断片及びtracr RNA断片をそれぞれ0.002pmol/μLを超える濃度で用いる、請求項1〜5のいずれか1項に記載の方法。
JP2016560107A 2014-11-17 2015-10-06 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法 Active JP6190995B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014232963 2014-11-17
JP2014232963 2014-11-17
PCT/JP2015/078259 WO2016080097A1 (ja) 2014-11-17 2015-10-06 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017112266A Division JP6888213B2 (ja) 2014-11-17 2017-06-07 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法

Publications (2)

Publication Number Publication Date
JPWO2016080097A1 JPWO2016080097A1 (ja) 2017-04-27
JP6190995B2 true JP6190995B2 (ja) 2017-09-06

Family

ID=56013655

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016560107A Active JP6190995B2 (ja) 2014-11-17 2015-10-06 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法
JP2017112266A Active JP6888213B2 (ja) 2014-11-17 2017-06-07 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017112266A Active JP6888213B2 (ja) 2014-11-17 2017-06-07 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法

Country Status (3)

Country Link
US (1) US11470826B2 (ja)
JP (2) JP6190995B2 (ja)
WO (1) WO2016080097A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261500B2 (ja) 2011-07-22 2018-01-17 プレジデント アンド フェローズ オブ ハーバード カレッジ ヌクレアーゼ切断特異性の評価および改善
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
US9840702B2 (en) 2014-12-18 2017-12-12 Integrated Dna Technologies, Inc. CRISPR-based compositions and methods of use
US20190225955A1 (en) 2015-10-23 2019-07-25 President And Fellows Of Harvard College Evolved cas9 proteins for gene editing
WO2017104404A1 (ja) * 2015-12-18 2017-06-22 国立研究開発法人科学技術振興機構 遺伝子改変非ヒト生物、卵細胞、受精卵、及び標的遺伝子の改変方法
CA3013179A1 (en) * 2016-01-30 2017-08-03 Bonac Corporation Artificial single guide rna and use thereof
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
JP6958917B2 (ja) * 2016-08-10 2021-11-02 国立大学法人 東京医科歯科大学 遺伝子ノックイン細胞の作製方法
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CA3039409A1 (en) 2016-10-07 2018-04-12 Integrated Dna Technologies, Inc. S. pyogenes cas9 mutant genes and polypeptides encoded by same
US11242542B2 (en) 2016-10-07 2022-02-08 Integrated Dna Technologies, Inc. S. pyogenes Cas9 mutant genes and polypeptides encoded by same
KR20240007715A (ko) 2016-10-14 2024-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
EP4321617A3 (en) 2016-11-22 2024-04-24 Integrated DNA Technologies Inc. Crispr/cpf1 systems and methods
WO2018111947A1 (en) 2016-12-12 2018-06-21 Integrated Dna Technologies, Inc. Genome editing enhancement
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US20210147798A1 (en) * 2017-05-08 2021-05-20 Toolgen Incorporated Artificially Manipulated Immune Cell
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US20200157531A1 (en) * 2018-11-16 2020-05-21 Wisconsin Alumni Research Foundation Method to enhance screening for homologous recombination in genome edited cells using recombination-activated fluorescent donor delivery vector
CA3130488A1 (en) 2019-03-19 2020-09-24 David R. Liu Methods and compositions for editing nucleotide sequences
GB2614813A (en) 2020-05-08 2023-07-19 Harvard College Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9208832B2 (en) * 2012-01-06 2015-12-08 Texas Insturments Incorporated Functional screening of static random access memories using an array bias voltage
PE20190844A1 (es) * 2012-05-25 2019-06-17 Emmanuelle Charpentier Modulacion de transcripcion con arn de direccion a adn generico
EP2858486A4 (en) 2012-06-12 2016-04-13 Hoffmann La Roche METHODS AND COMPOSITIONS FOR GENERATING ALLLETS WITH CONDITIONAL INACTIVATION
US8697359B1 (en) * 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
JP2016507244A (ja) 2013-02-27 2016-03-10 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) Cas9ヌクレアーゼによる卵母細胞における遺伝子編集

Also Published As

Publication number Publication date
JPWO2016080097A1 (ja) 2017-04-27
US11470826B2 (en) 2022-10-18
JP6888213B2 (ja) 2021-06-16
JP2017148077A (ja) 2017-08-31
US20170354130A1 (en) 2017-12-14
WO2016080097A1 (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6190995B2 (ja) 簡便で高効率の遺伝子改変非ヒト哺乳動物の作製方法
US20220256822A1 (en) Genetic modification non-human organism, egg cells, fertilized eggs, and method for modifying target genes
JP6878482B2 (ja) 大型家畜の接合体における標的化ゲノム編集
JP6958917B2 (ja) 遺伝子ノックイン細胞の作製方法
JP7257062B2 (ja) ゲノム編集方法
JP2017513510A (ja) ブタにおける多重遺伝子編集
WO2016080399A1 (ja) 哺乳動物の標的ゲノム領域にdnaをノックインする方法及び細胞
EP3039145A1 (en) Efficient non-meiotic allele introgression
US20190223417A1 (en) Genetically modified animals having increased heat tolerance
CN110643636B (zh) 一种团头鲂MSTNa&b基因敲除方法与应用
Pritchard et al. Direct generation of conditional alleles using CRISPR/Cas9 in mouse zygotes
Ma et al. Building Cre knockin rat lines using CRISPR/Cas9
JP4364474B2 (ja) 哺乳動物において機能的なトランスポゾン
EP3950942A1 (en) Method for producing knock-in cell
CN114727592A (zh) 高频率靶向动物转基因
CN114410630B (zh) 一种tbc1d8b基因敲除小鼠动物模型的构建方法及其应用
US20230287459A1 (en) Single generation targeted gene integration
JP7084021B2 (ja) ターゲティングベクター
JP7007734B2 (ja) 条件付きノックアウト動物の製造方法
CN117660527A (zh) 一种ABCA7-Floxp小鼠模型的构建方法和应用

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A801

Effective date: 20161021

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161021

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170607

R150 Certificate of patent or registration of utility model

Ref document number: 6190995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250