CN107058328A - 一种提高植物直链淀粉含量的方法及应用 - Google Patents
一种提高植物直链淀粉含量的方法及应用 Download PDFInfo
- Publication number
- CN107058328A CN107058328A CN201710482844.8A CN201710482844A CN107058328A CN 107058328 A CN107058328 A CN 107058328A CN 201710482844 A CN201710482844 A CN 201710482844A CN 107058328 A CN107058328 A CN 107058328A
- Authority
- CN
- China
- Prior art keywords
- plant
- sbei
- sbeii
- gly
- asp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8213—Targeted insertion of genes into the plant genome by homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Nutrition Science (AREA)
- Cell Biology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及生物技术和植物转基因技术领域,具体涉及一种提高植物直链淀粉含量和降低支链淀粉含量的方法及应用,它采用如下的方法步骤:步骤一:利用CRISPR/Cas9多元系统编辑薯类植物SBEI或者SBEII基因;步骤二:步骤一中所述的CRISPR/Cas9多元系统包括:系统中含有一个及一个以上的sgRNA序列的CRISPR/Cas9系统;它利用多元sgRNA介导的CRISPR/Cas9技术定向编辑木薯基因组中SBEI或者SBEII基因序列,可以显著改变薯类植物的淀粉组成和性状,具有能提高薯类植物淀粉中直链淀粉含量;降低薯类植物淀粉中支链淀粉;以及调节薯类植物储藏根重量、直径或数目;并且通过杂交或者自交可获得不含外源基因片段的新品系,在植物品质的遗传改良上具有良好的应用前景。
Description
【技术领域】
本发明涉及生物技术和植物转基因技术领域,具体涉及一种提高植物直链淀粉含量和降低支链淀粉含量的方法及应用。
【背景技术】
薯类植物主要指具有可供食用块根或地下茎的一类陆生作物。有块根、块茎类,如番薯(红薯、甘薯)、木薯、马铃薯、薯蓣(山药)、脚板薯等,多行无性繁殖,只留薯块作种,并可以用藤本进行繁殖。这类植物一般耐寒力较弱,多在无霜季节栽培,低温会抑制薯类作物的生长,造成块根或块茎的减产,因此种植薯类作物尽量避免长时间的低温期;此外,疏松、肥沃、深厚的土壤和多量钾肥有利于提高薯类作物产量及品质。
淀粉作为重要的粮食和工业原材料在国民生产中具有重要的意义。淀粉的组成包含直链淀粉和支链淀粉两大部分。直链淀粉是D-葡萄糖基以α-(1,4)糖苷键连接的多糖链,分子中有200个左右葡萄糖基,分子量1~2×105,聚合度990,空间构象卷曲成螺旋形,每一回转为6个葡萄糖基。支链淀粉分子中除有α-(1,4)糖苷键的糖链外,还有α-(1,6)糖苷键连接的分支,分子中含300~400个葡萄糖基,分子量>2×107,聚合度7200,各分支也都是卷曲成螺旋形。不同直链淀粉含量的淀粉在工业运用和食品加工中具有极大地差异。
因此,研究薯类植物淀粉的组成和性质,找到调节储藏根性状的关键性因素,是本领域研究的重点。
【发明内容】
本发明的目的在于针对现有技术的缺陷和不足,提供一种提高植物直链淀粉含量和降低支链淀粉含量的方法及应用。
本发明所述的提高植物直链淀粉含量和降低支链淀粉含量的方法及应用,它采用如下的方法步骤:
步骤一:利用CRISPR/Cas9多元系统编辑薯类植物SBEI或者SBEII基因;
步骤二:步骤一中所述的CRISPR/Cas9多元系统包括:系统中含有一个、两个及两个以上的sgRNA序列的CRISPR/Cas9系统;
步骤三:步骤二中的所述的CRISPR/Cas9多元系统的sgRNA核苷酸序列选自下组:
(a)如SEQ ID NO:1或者SEQ ID NO:3核苷酸序列中的核酸序列;
(b)将SEQ ID NO:1或者SEQ ID NO:3核苷酸序序列经过一个或多个核苷酸的取代、缺失或添加而形成的,且具有(a)核苷酸功能的由(a)衍生的核酸序列;
(c)或者与(a)限定的核酸序列有70%以上同源性且具有(a)核酸功能的由(a)衍生的多核酸序列;
步骤四:步骤一中所述的对SBEI或者SBEII基因的编辑包括如下方面:
(a)对SBEI或者SBEII基因所在基因组区域的编辑或对包含SBEI或者SBEII基因所在基因组区域的编辑
(b)对(a)中所述编辑包括:单个或多个核酸位点的取代、缺失或添加;
步骤五:终止植物中SBEI或者SBEII多肽的表达或终止有生物功能的SBEI或者SBEII多肽的形成,从而提高薯类植物储藏根中直链淀粉含量,降低支链淀粉的含量;以及调节薯类植物储藏根重量、直径或数目;
步骤六:从终止SBEI或者SBEII多肽的表达或终止有生物功能的SBEI或者SBEII多肽的形成后的植物中选择出相较调节前植物而言性状获得变化的植物,包括:直接产生的较调节前而言性状获得变化的植物;杂交或者自交产生的有外源基因的相较调节前植物而言性状获得变化的植物;杂交或者自交产生的无外源基因的相较调节前植物而言性状获得变化的植物;
进一步地,所述薯类植物包括:木薯,甘薯、马铃薯、山药、芋头、葛根、魔芋、洋姜或雪莲果。
进一步地,编辑所述SBEI或者SBEII核苷酸序列的sgRNA靶向SBEI或者SBEII基因组核苷酸序列;较佳地,靶向SBEI基因组的第1939-1958位和2948-2967位;或者SBEII基因组序列的1-20位和1193-1212位。
采用上述结构后,本发明有益效果为:本发明所述的提高植物直链淀粉含量和降低支链淀粉含量的方法及应用,它利用多元sgRNA介导的CRISPR/Cas9技术定向编辑木薯基因组中SBEI或者SBEII基因序列,可以显著改变薯类植物的淀粉组成和性状,具有能提高薯类植物淀粉中直链淀粉含量;降低薯类植物淀粉中支链淀粉;以及调节薯类植物储藏根重量、直径或数目;并且通过杂交或者自交可获得不含外源基因片段的新品系,在植物品质的遗传改良上具有良好的应用前景。
【附图说明】
此处所说明的附图是用来提供对本发明的进一步理解,构成本申请的一部分,但并不构成对本发明的不当限定,在附图中:
图1是sgRNA在SBEI或者SBEII基因组序列中位置示意图。
图2是CRISPR/Cas9系统多元载体示意图。
图3是转基因植株Southern blot鉴定。
图4是CRISPR/Cas9转基因植株PCR检测结果。
图5是双元CRISR/Cas9基因编辑效果检测。
图6是用多元sgRNA介导的CRISR-Cas9技术改造木薯后直链淀粉含量。
【具体实施方式】
下面将结合附图以及具体实施例来详细说明本发明,其中的示意性实施例以及说明仅用来解释本发明,但并不作为对本发明的限定。
本发明中,对各附图进行具体陈述,如下:
图1是sgRNA在SBEI或者SBEII基因组序列中位置示意图。灰色方框区为外显子区,黑色线区是内含子区。
图2是CRISPR/Cas9系统多元载体示意图。其中sgRNA-cas9是中间过渡载体;pCAMBIA 1301S为终表达载体。sgRNA1、sgRNA2利用拟南芥U6启动子启动;Cas9基因由拟南芥uBQ启动子启动,带有flag标签。终载体中带有潮霉素抗性基因:hyg II,以CaMV35S启动子启动。
图3是转基因植株Southern blot鉴定。Mark:λ-HindIII Marker,基因组DNA通过HindIII酶切,琼脂糖胶分离、转膜后用潮霉素探针杂交,红色字体为单拷贝植株。DNA提取材料为温室盆栽苗叶片。SBEI-Cas9是SBEI转基因植株结果;SBEII-Cas9是SBEII转基因植株结果
图4是CRISPR/Cas9转基因植株PCR检测结果。M:DL2000plus marker;WT:野生型对照组;L系列:转基因系列株系。DNA提取材料为温室盆栽苗叶片,PCR扩增后琼脂糖胶凝胶电泳分离,为待选株系。
图5是双元CRISR/Cas9基因编辑效果检测。DNA提取材料为温室盆栽苗叶片,PCR扩增后琼脂糖胶凝胶电泳分离,测序;
A:MeGBSSISBEI-sg-1表示PCR产物中大片段测序结果中MeGBSSISBEI-cas9双元体系中sgRNA1位点的基因编辑结果;MeGBSSISBEI-sg-2表示MeGBSSISBEI-cas9双元体系中sgRNA2位点的基因编辑结果。MeSBEI-sg-out或者SBEII-sg-out表示PCR中小片段的测序结果,即敲除目的基因后测序结果。“--”表示核酸被删除;灰色为原始序列。MeSBEII与MeSBEI相同;
图6、用多元sgRNA介导的CRISR-Cas9技术改造木薯后直链淀粉含量。取种植室外大田生长六个月的野生型和转基因植株,提取淀粉,测定直链淀粉和支链淀粉含量。WT:野生型木薯淀粉;MeSI系列:多元sgRNA介导的CRISR-Cas9系统编辑MeSBEI后的转基因植株。MeSII系列:多元sgRNA介导的CRISR-Cas9系统编辑MeSBEII后的转基因植株。
如图1-图6所示,本具体实施方式所述的提高植物直链淀粉含量和降低支链淀粉含量的方法及应用,它采用如下的方法步骤:
步骤一:利用CRISPR/Cas9多元系统编辑薯类植物SBEI或者SBEII基因;
步骤二:步骤一中所述的CRISPR/Cas9多元系统包括:系统中含有一个、两个及两个以上的sgRNA序列的CRISPR/Cas9系统;
步骤三:步骤二中的所述的CRISPR/Cas9多元系统的sgRNA核苷酸序列选自下组:
(a)如SEQ ID NO:1或者SEQ ID NO:3核苷酸序列中的核酸序列;
(b)将SEQ ID NO:1或者SEQ ID NO:3核苷酸序序列经过一个或多个核苷酸的取代、缺失或添加而形成的,且具有(a)核苷酸功能的由(a)衍生的核酸序列;
(c)或者与(a)限定的核酸序列有70%以上同源性且具有(a)核酸功能的由(a)衍生的多核酸序列;
步骤四:步骤一中所述的对SBEI或者SBEII基因的编辑包括如下方面:
(a)对SBEI或者SBEII基因所在基因组区域的编辑或对包含SBEI或者SBEII基因所在基因组区域的编辑
(b)对(a)中所述编辑包括:单个或多个核酸位点的取代、缺失或添加;
步骤五:终止植物中SBEI或者SBEII多肽的表达或终止有生物功能的SBEI或者SBEII多肽的形成,从而提高薯类植物储藏根中直链淀粉含量,降低支链淀粉的含量;以及调节薯类植物储藏根重量、直径或数目;
步骤六:从终止SBEI或者SBEII多肽的表达或终止有生物功能的SBEI或者SBEII多肽的形成后的植物中选择出相较调节前植物而言性状获得变化的植物,包括:直接产生的较调节前而言性状获得变化的植物;杂交或者自交产生的有外源基因的相较调节前植物而言性状获得变化的植物;杂交或者自交产生的无外源基因的相较调节前植物而言性状获得变化的植物;
作为本发明的一种优选,所述薯类植物包括:木薯,甘薯、马铃薯、山药、芋头、葛根、魔芋、洋姜或雪莲果。
作为本发明的一种优选,编辑所述SBEI或者SBEII核苷酸序列的sgRNA靶向SBEI或者SBEII基因组核苷酸序列;较佳地,靶向SBEI基因组的第1939-1958位和2948-2967位;或者SBEII基因组序具列的1-20位和1193-1212位。
本设计中,经过深入的研究,发现通过CRISPR/Cas9多元系统编辑薯类植物基因组中SBEI或者SBEII基因,调节SBEI或者SBEII多肽在薯类植物中的表达,可以显著调节薯类植物的储藏根的发育性状可以显著调节薯类植物的直链淀粉含量,在植物淀粉品质的遗传改良上具有良好的应用前景。
本发明各术语陈述如下:
本设计中的“薯类植物”也称为“薯类作物”,主要指具有可供食用块根或地下茎的一类的陆生作物。包括但不限于:大戟科的块根植物如木薯、旋花科的块根植物如甘薯,茄科的块茎植物如马铃薯,薯蓣科的块根植物如山药,天南星科的块茎植物如芋头、魔芋,豆科块根植物如葛根,菊科块茎植物如洋姜,雪莲果等。
本发明包括CRISPR/Cas9多元载体系统。如本文所用,术语“多元”是指带有一个、两个或多于两个基本上保持本发明中SBEI或者SBEII核苷酸序列中的sgRNA序列相同的生物学功能或活性的核苷酸序列。多元可以是(i)一个、两个或两个以上的sgRNA均来自于SEQID NO:1或者SEQ ID NO:3所在区域,或(ii)一个、两个或两个以上的sgRNA至少有一个来自于SEQ ID NO:1或者SEQ ID NO:3所在区域,或(iii)一个、两个或两个以上的sgRNA均来自SEQ ID NO:1或者SEQ ID NO:3所在区域以外,但敲除或编辑区域包含SEQ ID NO:1SEQ IDNO:3。
任何一种SBEI或者SBEII基因组来源的sgRNA的生物活性核苷酸片段都可以应用到本发明中。在这里,sgRNA的生物活性片段的含义是指作为一种核苷酸序列,其仍然能保持正常的sgRNA的全部或部分功能。通常情况下,所述的生物活性片段至少保持50%的正常的sgRNA的活性。在更优选的条件下,所述活性片段能够保持全长SBEI或者SBEII多肽的60%、70%、80%、90%、95%、99%、或100%的活性。
本发明的sgRNA序列可以是(i)SBEI或者SBEII基因组中内含子区域中的核苷酸序列或者有一个或多个核苷酸被取代的但仍具有本发明中sgRNA功能的核苷酸序列或(ii)SBEI或者SBEII基因组中外显子区域中的核苷酸序列或者有一个或多个核苷酸被取代的但仍具有本发明中sgRNA功能的核苷酸序列或(iii)突变或者敲除区域包含本发明中SBEI或者SBEII基因组整个或者部分区域的核苷酸序列或者有一个或多个核苷酸被取代的但仍具有本发明中sgRNA功能的核苷酸序列。根据本文的定义这些多元、sgRNA属于本领域熟练技术人员公知的范围。
在本发明中,术语“SBEI或者SBEII基因组”指具有生物活性的SEQ ID NO:1或者SEQ ID NO:3序列的多核苷酸。该术语还包括具有与SBEI或者SBEII核苷酸相同功能的SEQID NO:1或者SEQ ID NO:3序列的变异形式。这些变异形式包括(但并不限于):若干个(通常为1-150个,较佳地1-90个,更佳地1-60个,最佳地1-30个,还更佳如1-24个、1-15个)核苷酸的缺失、插入和/或取代。例如,在本领域中,不同品种来源的木薯SBEI或者SBEII基因组序列存在多态性,通常不会改变核苷酸序列的功能。又比如,在C末端和/或N末端添加一个或数个标签序列通常也不会改变核算序列的功能。
SBEI或者SBEII核苷酸序列的变异形式包括:同源序列、保守性变异体、等位变异体、天然突变体、诱导突变体、在高或低的严紧度条件下能与SBEI或者SBEII核酸序列杂交的DNA序列。
任何与所述的SBEI或者SBEII基因序列同源性高(比如与SEQ ID NO:1或者SEQ IDNO:3所示的序列的同源性为70%或更高;优选的,同源性为80%或更高;更优选的,同源性为90%或更高,如同源性95%,98%或99%)的、且具有SBEI或者SBEII基因序列相同功能的核酸序列也包括在本发明内。
应理解,虽然本发明的SBEI或者SBEII基因序列优选获自木薯,但是获自其它植物的与木薯SBEI或者SBEII基因序列高度同源(如具有70%以上,如80%、90%、95%、甚至98%序列相同性)的其它多核苷酸也在本发明考虑的范围之内。比对序列相同性的方法和工具也是本领域周知的,例如BLAST。
本发明还涉及编码本发明SBEI或者SBEII多肽或其保守性变异多肽的多核苷酸序列。所述的多核苷酸可以是DNA形式或RNA形式。DNA形式包括cDNA、基因组DNA或人工合成的DNA。DNA可以是单链的或是双链的。DNA可以是编码链或非编码链。编码成熟多肽的编码区序列可以与SEQ ID NO:1或者SEQ ID NO:3所示的编码区序列相同或者是简并的变异体。如本文所用,“简并的变异体”在本发明中是指编码具有SEQ ID NO:2或者SEQ ID NO:4的蛋白质,但与SEQ ID NO:1或者SEQ ID NO:3所示的编码区序列有差别的核酸序列。
编码SEQ ID NO:2或者SEQ ID NO:4的成熟多肽的多核苷酸包括:只编码成熟多肽的编码序列;成熟多肽的编码序列和各种附加编码序列;成熟多肽的编码序列(和任选的附加编码序列)以及非编码序列。
术语“编码多肽的多核苷酸”可以是包括编码所述多肽的多核苷酸,也可以是还包括附加编码和/或非编码序列的多核苷酸。
本发明还涉及与上述的序列杂交且两个序列之间具有至少50%,较佳地至少70%,更佳地至少80%相同性的多核苷酸。
本发明的SBEI或者SBEII基因序列全长序列或其片段通常可以用PCR扩增法、重组法或人工合成的方法获得。对于PCR扩增法,可根据本发明所公开的有关核苷酸序列,尤其是开放阅读框序列来设计引物,并用市售的cDNA库或按本领域技术人员已知的常规方法所制备的cDNA库作为模板,扩增而得有关序列。
本发明也涉及包含所述的多核苷酸的载体,以及用所述的载体或SBEI或者SBEII基因序列经基因工程产生的宿主细胞。
本发明还提供了一种调节薯类植物的淀粉组成和性质的方法,其方法包括调节所述薯类植物中SBEI或者SBEII多肽的表达。
更优选地,所述的方法包括:编辑所述薯类植物中SBEI或者SBEII基因组核苷酸序列,调节SBEI或者SBEII多肽的表达(包括使终止SBEI或者SBEII多肽的表达或终止有生物学功能的SBEI或者SBEII多肽的形成),从而调节薯类植物淀粉的直链淀粉和支链淀粉的含量,包括:提高薯类植物淀粉中直链淀粉含量;降低薯类植物淀粉中支链淀粉的含量;调节薯类植物储藏根重量、直径或数目。
可以采用本发明中涉及的基因编辑系统来终止SBEI或者SBEII多肽的表达或终止有生物学功能的SBEI或者SBEII多肽的形成。
作为本发明的一种实施方式,提供了一种通过CRISPR/Cas9多元系统编辑薯类植物基因组中SBEI或者SBEII基因,调节SBEI或者SBEII多肽在薯类植物中的表达,从而提高薯类植物直链淀粉含量同时降低支链淀粉含量的方法。所述的方法包括:
(1)将携带SBEI或者SBEII基因组sgRNA的多元CRISPR/Cas9载体分子转入植物组织、器官或种子,获得转化入所述编辑功能的植物组织、器官或种子;和
(2)将步骤(1)获得的转入了所述携带SBEI或者SBEII基因组sgRNA的多元CRISPR/Cas9载体分子的植物组织、器官或种子再生成植物。
作为一种优选的实例,所述的方法包括步骤:
(i)提供携带可编辑SBEI或者SBEII基因组的载体的农杆菌,所述的载体选自下组:
(a)含有启动的sgRNA和Cas9多肽的编码基因或基因片段的载体;
(b)含有可在植物体内编辑SBEI或者SBEII基因组和甘薯序列的载体;
(ii)将植物的组织或器官与步骤(i)中的农杆菌接触,从而使所述载体转入植物组织或器官。
较佳地,所述方法还包括:
(iii)选择出转入了所述载体的植物织或器官;和
(iv)将步骤(iii)中的植物组织或器官再生成植物。
基于SBEI或者SBEII基因的核苷酸序列,可以设计出在导入植物体后可特性性识别SBEI或者SBEII靶点的多核苷酸。设计时要考虑到特异性以及编辑的效率。本发明对sgRNA序列的制备方法没有特别的限制,包括但不限于:化学合成法,体外转录法等。应理解,本领域技术人员在得知了CRISPR/Cas9多元系统的组成、sgRNA序列与植物性状的相关性以后,可以以各种途径制备出所述的表达系统,从而用于调节植物性状。所述的多元系统可通过转基因技术被输送到植物体内,或还可采用本领域已知的多种技术被输送到植物体内。
作为本发明的特别优选的方式,提供了一种效果优异的sgRNA分子,所述的分子可特异性的编辑SBEI或者SBEII基因组序列;并且经验证,其具有良好的调节SBEI或者SBEII多肽生物学功能的效果。所述的sgRNA分子是含有SEQ ID NO:1中第1939-1958位和2948-2967位或者SEQ ID NO:3中第1-20位和1193-1212位。
所示的核苷酸序列的分子,构成双元系统。所述双元系统含有两个sgRNA序列,可以在基因组中定向敲除大片段序列。所述的双元系统在导入到植物体内后,可在基因组中两个特异的靶点同时编辑基因组,编辑后在造成两个靶点突变的同时还可以将两个靶点间的核苷酸序列片段敲除。通常,所述的双元系统位于表达载体上。
本发明还包括利用前述任一种方法获得的植物,所述的植物包括但不限于从终止SBEI或者SBEII多肽的表达或终止有生物功能的SBEI或者SBEII多肽的形成后的植物中选择出相较调节前植物而言性状获得变化的植物,例如:直接产生的较调节前而言性状获得变化的植物;杂交或者自交产生的有外源基因的相较调节前植物而言性状获得变化的植物;杂交或者自交产生的无外源基因的相较调节前植物而言性状获得变化的植物。
可采用任何适当的常规手段,包括试剂、温度、压力条件等来实施所述的方法。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如J.萨姆布鲁克等编著,分子克隆实验指南,第三版,科学出版社,2002中所述的条件,或按照制造厂商所建议的条件。
具体实施例一,木薯MeSBEI和MeSBEII基因sgRNA的选择和合成:为获得木薯MeSBEI和MeSBEII基因sgRNA序列,本发明人利用NCBI数据库(https://www.ncbi.nlm.nih.gov/)找到了木薯的MeSBEI和MeSBEII基因组核苷酸序列。MeSBEI全长2559bp;MeSBEII全长2514bp。将此两个基因序列通过Blastp及Blastn在RIKEN cassavacDNA数据库(http://www.brc.riken.jp/inf/en/index.shtml)中搜索找到其基因组序列,MeSBEI全长7232bp;包含14个外显子,编码852个氨基酸。从基因组序列中筛选出特异的sgRNA序列MeSBEI-sgRNA1:5’-GGATGGTTCCAACCATAGGA-3’;MeSBEI-sgRNA2:5’-CCATCATCATGGGATCAACA-3’,合成sgRNA序列:
sgRNA1:
LP:5’-GATTGGGATGGTTCCAACCATAGGA-3’;
RP:5’-AAACTCCTATGGTTGGAACCATCCC-3’;
sgRNA2:
LP:5’-GATTGCCATCATCATGGGATCAACA-3’
RP:5’AAACTGTTGATCCCATGATGATGGC-3’
MeSBEII全长13138bp,包含22个外显子,编码837个氨基酸。从基因组序列中筛选出特异的sgRNA序列MeSBEII-sgRNA1:5’-ATGGGACACTACACCATATC-3’;MeSBEII-sgRNA2:5’-AAAGAGTCCTTCCTGATGGT-3’,合成sgRNA序列:
sgRNA1:
LP:5’-GATTGATGGGACACTACACCATATC-3’;
RP:5’-AAACGATATGGTGTAGTGTCCCATC-3’;
sgRNA2:
LP:5’-GATTGAAAGAGTCCTTCCTGATGGT-3’
RP:5’-AAACACCATCAGGAAGGACTCTTTC-3’
具体实施例二,木薯MeSBEI和MeSBEII基因CRISPR/Cas9双元载体的构建及转基因木薯的获得:本设计中,首先通过BbsI酶切方法分别将两个sgRNA片段导入到两个sgRNA-cas9中间载体中,然后在利用KpnI和XbaI双酶切将任意一sgRNA导入sgRNA-cas9中间载体形成双元中间过渡载体:sgRNA1-cas9-sgRNA2。再将构建好的双元中间过渡载体转入表达载体pCAMBIA 1301S中。然后将sgRNA1-cas9-sgRNA2-P1301s转入农杆菌LBA4404,再通过农杆菌侵染木薯脆性悬浮愈伤,侵染后的愈伤组织通过再生、筛选等过程得到阳性植株,分别将sgRNA1-cas9-sgRNA2-P1301s转基因木薯记作MeGBSSISBEI和MeSBEII-cas9,分别缩写为MeGIMeSI和MeSII。如图1、图2所示。
具体实施例三,MeSBEI-Cas9和MeSBEII-Cas9转基因木薯的分子鉴定:通过农杆菌介导的木薯悬浮愈伤转化,获得转基因植株。通过Southern blot筛选最后获得单拷贝转基因植株,MeSBEI-Cas9和MeSBEII-Cas9各选择4个株系。
具体实施例四,MeSBEI或者MeSBEII-Cas9转基因木薯的基因编辑检测:为了验证CRISPR/Cas9的基因编辑效果,本发明人分别提取了转基因木薯的基因组,设计扩增引物。MeSBEI-FP:5’-AATTTGGATTTAATAGAGAAGCA-3’;MeSBEI-RP:5’-CTGTGATTGCTGAAGATGTTTC-3’通过PCR扩增单拷贝植株中MeSBEI的目的编辑片段。结果显示,在MeSBEI-Cas9系列转基因株系中,L1/L2/L3/L4中有小片段出现(图3),测序结果显示小片段为理论敲除后的序列,切在sgRNA1和sgRNA2的靶点出存在插入突变(图4);对大片段测序结果显示,在sgRNA1和sgRNA2编辑位点也存在突变现象其中包括插入突变、删除突变、替换(图4)。说明我们的双元系统具有很高的基因敲除效率和编辑效率。
对于MeSBEII基因设计引物:MeSBEII-FP:5’-CTTTCTTTGCTAGAAAATCTTT-3’;MeSBEII-RP:5’-ATATTTAAGTTTAGAGTTTGAG-3’通过PCR扩增单拷贝植株中MeSBEII的目的编辑片段。结果显示,在MeSBEII-Cas9系列转基因株系中,L4/L7/L4/L15中有小片段出现(图3),测序结果显示小片段为理论敲除后的序列,切在sgRNA1和sgRNA2的靶点出存在插入突变(图4);对大片段测序结果显示,在sgRNA1和sgRNA2编辑位点也存在突变现象其中包括插入突变、删除突变、替换(图4)。说明我们的双元系统具有很高的基因敲除效率和编辑效率。
具体实施例四,MeSBEI-Cas9和MeSBEII-Cas9转基因木薯对淀粉组成成分的影响:在大田中,观察野生型木薯以及MeSBEI-Cas9和MeSBEII-Cas9转基因木薯的生长、发育以及产量性状。于四月中旬从三亚种苗库中收获MeSBEI-Cas9和MeSBEII-Cas9转基因木薯的种茎,在上海五厍中试试验田中起垄,垄高50cm,垄间距为100cm,将种茎扦插于垄上,随后铺上地膜,在前三个月平均每周浇一次水,保持土壤潮湿,三个月以后,20天左右浇一次水,保持土壤不旱即可,并于第五个月施加一次复合肥,直至收获。提取野生型及转基因木薯成熟储藏根中的淀粉,测定其直链淀粉含量。结果显示野生型木薯直链淀粉含量为26%,在MeSBEI-Cas9-Cas9直链淀粉含量显著提高,介于39%-75%之间;MeSBEII-Cas9-Cas9中直链淀粉含量介于37%-64%之间。
以上所述仅是本发明的较佳实施方式,故凡依本发明专利申请范围所述的构造、特征及原理所做的等效变化或修饰,均包括于本发明专利申请范围内。
SEQUENCE LISTING
<110> 江苏三黍生物科技有限公司
<120> 一种提高植物直链淀粉含量的方法及应用
<130> 20170607
<160> 20
<170> PatentIn version 3.5
<210> 1
<211> 7035
<212> DNA
<213> Manihot esculenta
<400> 1
atgttaggtt ctttgggtct gtttccggcg cctgattttg ggtctttatc accttcttta 60
gccaagaact ccaaaagggt aactttattt tttcacattt taaaataaat ttgatttttt 120
tgaggttttt ctttctgtta ttccaagtgg gtaattttat tttttcacat tgtaatggcc 180
tgctggtttt cttattcttg ttctggtcgg tttgctgcac atcctattct ctagaggttg 240
tttctcaatt tgcatttgct cagttagttt gcttttatgc agtgatgtgt attttgattg 300
attgattgct tgcttgatta caaggaagga ttcttctggt ttcaaaatga agtttatttc 360
tttgcctact gctctatatt aactaaaatc gtaactctga tgataaatca gagcatgatt 420
agctcaaaga aacaaataat taatgtgtac gtgcatgatt gttcatagca ttattagttg 480
agaggactca tcaatttgac cagcctattt gaacgaatct ctgtttcatt tgtaaagttc 540
agtgtgtccc agtgtatata tagataaaaa gtgcatggca actgatgaaa caccattctt 600
gtgattatat tcaggatgtt ttcaagtctc cggagtatga tgtacttgca agttgttatt 660
ttctggatgt ttcttgcatc aaatactgct tgatttcttg tctggtatct ttgacaggct 720
gtggaaagaa actgtcaaat tgtcaaacaa aaacagattg aactgactgg atgtcgaaaa 780
ttgcctggtt gttctagatt cctttttcta ccaagaatct caatagataa gagggtatgt 840
ttaacaattt ttgcatggac tattcagtca aggatttctc ctaccatata tagttccagt 900
tattgttcaa atatatgtgg agtcgaagca tgaatgtcaa ttggcttgtt tgacttttgt 960
tggcgatgat gttagagaaa caaatatata tggttaaaat agttcagaaa caagtatcta 1020
agtcgcagat caaacatgaa cctaattctt atatcaatgc ttctttcctt tataaatatc 1080
acaaagcact ggtgaaaatt ttaacttgtc atacaggagc attcagttgg cttatcttct 1140
taatctgcaa aatttttatg aaaactttaa tcttcaacta tcttatttac aaataaactt 1200
ttacatgatg catgatcatt gctaggtgaa gcaaggtctt gcaatctcag cagctgtggc 1260
agatgagaag aaaacgataa caagctttga ggaagacatg gaaattactg gtcttttgag 1320
cattgatcct gggttagaat catttaaaga tcatttcaga tatagaatgc aaagatttac 1380
aaatcagaaa caactcattg aaaaatatga aggtggtctt gaggaatttt caaaaggtgc 1440
tttcagtagt ataccagttt aatcttccct ttttatttcc ttttcaataa atattcataa 1500
ctagctactt aaacagtact tgagacagtt ttttaatgtt tgaatttccc ttgctttaac 1560
atgtaatttt gtttagaagt catgtaactg tgtccagtta cttaaaatct tggtgttctg 1620
attgacctct taattggatc ttgagtgtcc cttgtgttcc cagtatagca gccttttttt 1680
tccttttttt cttttagtgg tagttatatt tttgcacgtt aaaaccctct gcttctatca 1740
ttttgtaggt tacctgaaat ttggatttaa tagagaagca ggtggaattg tctatcgtga 1800
gtgggcccct gcagctcagt atgttgtttg ctttcagaat caaaatacaa ctttgcaaac 1860
tttgttatca ttgtccaaat aaaagatacg ttctttgtaa tgtagggaag cacaagttat 1920
tggggacttt aatggttggg atggttccaa ccataggatg gaaaagaatg aatttggtgt 1980
ttggagtatc aacatacctg attctggcgg aaatccagcc attcatcaca attcaagggt 2040
caaattcaga ttcaagcatg gtgatggagt ttgggttgat cgaattccag cttggattag 2100
atatgccact gtggacccca caaaatttgg agcaccatat gatggtgtct actgggatcc 2160
tccacctcca gaaaggtgac agcacattta catattgtga aatctggact ataaccataa 2220
tcaagttaat gaaggaccaa ttccataaag atcccacata tgaagatggt tttttatgct 2280
tgtattgtcg ctcattttca tcccaaaagt atgatctgtt tattttccta gacaaggaag 2340
acttggtcat atggaaaaag gtcttttgct gatccactct ttcattgata tgcaggtacc 2400
aattcaagta tccccggcct ccaaaagccc aggcccctcg catatatgag gctcatgtgg 2460
gaatgagtag ctcagaacct cgcattaata catacagaga gtttgctgat gatgttctgc 2520
ctcgtatacg ggcaaacaac tataatacgg ttcagttaat ggctgttatg gagcattcat 2580
attatgggtc gtttgggtac catgttacaa acttttttgc tgtaagcagt agatctggaa 2640
ctcctgagga tcttaaatat ttaattgata aagctcatag cttgggttta agtgttctga 2700
tggatgttgt tcacagtcac gcaagtaaca atatcactga tggacttaat ggctttgatg 2760
ttggccaaag cactcaagat tcctactttc acactggaga tcgaggctac cataagctat 2820
gggatagcag actctttaac tatgctaatt gggaagttat tcgcttcctt ctgtccaact 2880
taagatggtg gcttgaggag tacaaatttg atggattccg atttgacgga gtaacatcaa 2940
tgttgtacca tcatcatggg atcaacatgg catttacagg ggattataat gagtatttca 3000
gtgaggcaac tgatattgat gccgttgttt atctgatgct ggccaattct ctgattcaca 3060
acatcttgcc tgatgctact gtgattgctg aagatgtttc tggcatgcct gggcttggcc 3120
gttctgtctc tgagggggga ataggttttg actatcgcct agcaatggcc atccctgaca 3180
aatggatcga ttacttgaaa aacaagagtg atgaagagtg gtcaatgaag gaaatctcat 3240
ggagcttaac taataggaga tacactgaga aatgtgttgc ttatgctgag agtcatgacc 3300
aagtaagaga actggaattt cttgtttgtt cattttcaca attacttttg ttggtggttg 3360
tgttcattgc tccatggtag tgttgcatat aacttgataa gataatgaaa agacaagaag 3420
gaagttactt ggtaaggtaa agaaagataa agacaagatg atgtagaacc aataggacaa 3480
aaggggaaca agggatgaga aactcttaag gtagataaat aaattctcaa tagagagaga 3540
gagagagaga gatagagaaa ttcttcctaa tttcacaatt aatcaacata attcctaaat 3600
tgaatcttcc ttcactgcat cacttgaagc aggaataatt tatacaaaga atagctgctt 3660
tcatcctgga aagagaactt gctcatgttt aacttccttt tttcatttct ttcttatgaa 3720
tatggtatct tttgtttcca caggccattg taggtgacaa gatagttgcc tttttattaa 3780
tggataaaga gaacttgatc atgtttaact tcttttttca tttctttctt gtgaatatgg 3840
tatcttttgt ttccacaggc cattgtaggt gacaagacgg ttgccttttt attaatggat 3900
aaagaaatgt attatggaat gtcttgtttg acagatgctt cacctatggt tgatcgaggg 3960
gtagcgcttc ataaggtttg atttacacaa tctcatgagc actttcctca cttcactgtg 4020
gttttcaacc acaaccattg tttctgaatc ctattttatt gtaattttat attgattccc 4080
atccatcagg ttttgcaaac agctgtcccc tttgttctga ttgatgtaat tctattctgc 4140
agatggttca tcttttaact atggctttag gaggtgaggg ctaccttaat tttatgggaa 4200
atgaggtaac cacactagcc caactctagt ctaacaagct ctcattgcta ctaaactgcc 4260
acatctatat atttctcatg atatcttaga cttcatttgt ttcacagtaa atatttttca 4320
ttttttctaa ttgttatggc actcagaaaa attggtaagg aaaaataaat cacttttaag 4380
gaaaatgttt tcctctttca aaaggaagtc attttctaga ctttaagaat cttattaaca 4440
ccagttttct atacatggac gttattactt ctcttagttt tttaacatta taatcaaata 4500
atagaaaatg agttgtcttc ttggaaaaca atttccagaa agacattttc cacatacaag 4560
ttattttccg ccaaaataaa tggagcctta atctgcttgc ttgtcaaaag tttaaattca 4620
tgaaatggaa tatgttttgg tttatccttg gttgatccgt atgtttctca agcatcgctc 4680
tgaaataaat tgaggaaatg aaatggtcaa aacatgaggc caaccagtaa cttctaatct 4740
gatctgatac tcttatttta tggagcctgt tgattctaag catgagacaa tgagagcaac 4800
aagttgactt ggagaaacac ttctttctct gagggaaaat aaggaatagg atatgcatgc 4860
atgttttgtt gattagtctc tgaattagtt gtgatgaata tttcttatag tttggccatc 4920
ctgagtggat tgacttccca agagaaggca atgggtggag ttatgacaag tgcagacgcc 4980
aatggaacct agttgacact gaacacttga gatacagggt ttgtgaactc atttgcattt 5040
tgagctgctg cttcatattg tctgcttatc tagtaaattg tctttaatca accattttgc 5100
tttgtacaaa atagagcatc ctaacaaaca tttttttcat ttcattttct tttccttctt 5160
cagttcatga atgcatttga caaggctatg aacttgcttg atgaaaagta ttcatttcta 5220
gcatcaacaa agcagattgt gagcagcaca aatgaagagg ataaggtaca gatgccccga 5280
gtaaatcctt gctggatatg gtcaggaagt gttgtaataa tccactaaca aggatgtcac 5340
ttttcaagtt gacattttag tcatctttca gtcctatagc acttattagt cacttcacat 5400
tacaggttat cgtctttgag cgtggggacc tggtttttgt attcaatttt catccagaga 5460
atacatatga tgggtatgtg ttttttgttt ttcccccatg aagtaagaca tctaagttgt 5520
tttagtgtat atggactgta gaccaattat aatgttaaat ttaggccagg cctaactcac 5580
cctaaaagct agctcaaggg cagaagtgcc tatggtctat ataaggggca ctttacccct 5640
tttcacaacc aatgtgggat tcaacataca ccctcacgcc cagaactttt actggtatgt 5700
gacatattta tgagaagtcc aacatcggat gagaggctct gataggctct gatactatat 5760
taaatttgga tcagacctaa ctcaccccaa aagctaggtt aagggggaag agtgtctatg 5820
gccaaataag gggcacatta ccccttttca caaccgacgt agaattcaac acatagtaag 5880
gtgaatgtta gcaggccaca cattgctgag atcaaacagt taggatagga cttgcattct 5940
gacgattaat tatttatgta ggcttccagt aaccctttgt gtttcaatct gaatcattca 6000
ggtacaaggt tggttgcgac ttgcccggaa agtatcgagt tgcattggat agtgatgctt 6060
gggagtttgg tggacgtgga agagtaagaa atcctctgca aaatttttcc gtacttccat 6120
gaaaaatagt agaggataga agaaaactga tggtgaactt gttatactta acaatgtgat 6180
gtaaaactca tgcacctagg tacaaaagaa gttatgccaa tgcttatatt tcttagacat 6240
agaatgttga tggaatggag ccctgagttc aggagtttga cctagttctt aatgaaagct 6300
gtagtgagag agaaaagatg ccagctgagg catggaaaga atttattttt gaacatatcc 6360
ccttcatcaa ttgttcagtt ctaatgtgaa attttattaa ttaatctggc aggtgggcca 6420
tgatgtggac cattttacat ctcctgaagg gatacctgga gtgcccgaaa caaatttcaa 6480
caatcgtcca aactccttca aaatactctc tgcagctcgc acttgtgtgg tgagttccat 6540
ccttatttat gtttaccatt taaagttact tctgatgatt gatttttatc atttcaccct 6600
agaaagatgt tgcaagtgct gagtatggcg gttttgagac attagtttaa tagattatag 6660
acctttatca gcattataaa cacaacatct ctagcatgta actattcttt ttgctgctgt 6720
ctgaacgagc tctaagcata tttgatttct ttctttttaa cttttttcaa atgcaaattt 6780
gtctaggttt actatagagt tgaagaaaaa gaaggaaatc acaacagtag tgatattggt 6840
gctgcaaatg agacattgac agacattgca aagctgggag attttgaagg tatcaacgag 6900
acatcaccag cagatgctgt ggcaaagcag gaggatctta aggcagcaca accttctttg 6960
attgccgatg atattgcaac aaaggcaaac acagaaacag aagagattga ggaagagaca 7020
tcggatgaca aatga 7035
<210> 2
<211> 852
<212> PRT
<213> Manihot esculenta
<400> 2
Met Leu Gly Ser Leu Gly Leu Phe Pro Ala Pro Asp Phe Gly Ser Leu
1 5 10 15
Ser Pro Ser Leu Ala Lys Asn Ser Lys Arg Ala Val Glu Arg Asn Cys
20 25 30
Gln Ile Val Lys Gln Lys Gln Ile Glu Leu Thr Gly Cys Arg Lys Leu
35 40 45
Pro Gly Cys Ser Arg Phe Leu Phe Leu Pro Arg Ile Ser Ile Asp Lys
50 55 60
Arg Val Lys Gln Gly Leu Ala Ile Ser Ala Ala Val Ala Asp Glu Lys
65 70 75 80
Lys Thr Ile Thr Ser Phe Glu Glu Asp Met Glu Ile Thr Gly Leu Leu
85 90 95
Ser Ile Asp Pro Gly Leu Glu Ser Phe Lys Asp His Phe Arg Tyr Arg
100 105 110
Met Gln Arg Phe Thr Asn Gln Lys Gln Leu Ile Glu Lys Tyr Glu Gly
115 120 125
Gly Leu Glu Glu Phe Ser Lys Gly Tyr Leu Lys Phe Gly Phe Asn Arg
130 135 140
Glu Ala Gly Gly Ile Val Tyr Arg Glu Trp Ala Pro Ala Ala Gln Glu
145 150 155 160
Ala Gln Val Ile Gly Asp Phe Asn Gly Trp Asp Gly Ser Asn His Arg
165 170 175
Met Glu Lys Asn Glu Phe Gly Val Trp Ser Ile Asn Ile Pro Asp Ser
180 185 190
Gly Gly Asn Pro Ala Ile His His Asn Ser Arg Val Lys Phe Arg Phe
195 200 205
Lys His Gly Asp Gly Val Trp Val Asp Arg Ile Pro Ala Trp Ile Arg
210 215 220
Tyr Ala Thr Val Asp Pro Thr Lys Phe Gly Ala Pro Tyr Asp Gly Val
225 230 235 240
Tyr Trp Asp Pro Pro Pro Pro Glu Arg Tyr Gln Phe Lys Tyr Pro Arg
245 250 255
Pro Pro Lys Ala Gln Ala Pro Arg Ile Tyr Glu Ala His Val Gly Met
260 265 270
Ser Ser Ser Glu Pro Arg Ile Asn Thr Tyr Arg Glu Phe Ala Asp Asp
275 280 285
Val Leu Pro Arg Ile Arg Ala Asn Asn Tyr Asn Thr Val Gln Leu Met
290 295 300
Ala Val Met Glu His Ser Tyr Tyr Gly Ser Phe Gly Tyr His Val Thr
305 310 315 320
Asn Phe Phe Ala Val Ser Ser Arg Ser Gly Thr Pro Glu Asp Leu Lys
325 330 335
Tyr Leu Ile Asp Lys Ala His Ser Leu Gly Leu Ser Val Leu Met Asp
340 345 350
Val Val His Ser His Ala Ser Asn Asn Ile Thr Asp Gly Leu Asn Gly
355 360 365
Phe Asp Val Gly Gln Ser Thr Gln Asp Ser Tyr Phe His Thr Gly Asp
370 375 380
Arg Gly Tyr His Lys Leu Trp Asp Ser Arg Leu Phe Asn Tyr Ala Asn
385 390 395 400
Trp Glu Val Ile Arg Phe Leu Leu Ser Asn Leu Arg Trp Trp Leu Glu
405 410 415
Glu Tyr Lys Phe Asp Gly Phe Arg Phe Asp Gly Val Thr Ser Met Leu
420 425 430
Tyr His His His Gly Ile Asn Met Ala Phe Thr Gly Asp Tyr Asn Glu
435 440 445
Tyr Phe Ser Glu Ala Thr Asp Ile Asp Ala Val Val Tyr Leu Met Leu
450 455 460
Ala Asn Ser Leu Ile His Asn Ile Leu Pro Asp Ala Thr Val Ile Ala
465 470 475 480
Glu Asp Val Ser Gly Met Pro Gly Leu Gly Arg Ser Val Ser Glu Gly
485 490 495
Gly Ile Gly Phe Asp Tyr Arg Leu Ala Met Ala Ile Pro Asp Lys Trp
500 505 510
Ile Asp Tyr Leu Lys Asn Lys Ser Asp Glu Glu Trp Ser Met Lys Glu
515 520 525
Ile Ser Trp Ser Leu Thr Asn Arg Arg Tyr Thr Glu Lys Cys Val Ala
530 535 540
Tyr Ala Glu Ser His Asp Gln Ala Ile Val Gly Asp Lys Thr Val Ala
545 550 555 560
Phe Leu Leu Met Asp Lys Glu Met Tyr Tyr Gly Met Ser Cys Leu Thr
565 570 575
Asp Ala Ser Pro Met Val Asp Arg Gly Val Ala Leu His Lys Met Val
580 585 590
His Leu Leu Thr Met Ala Leu Gly Gly Glu Gly Tyr Leu Asn Phe Met
595 600 605
Gly Asn Glu Phe Gly His Pro Glu Trp Ile Asp Phe Pro Arg Glu Gly
610 615 620
Asn Gly Trp Ser Tyr Asp Lys Cys Arg Arg Gln Trp Asn Leu Val Asp
625 630 635 640
Thr Glu His Leu Arg Tyr Arg Phe Met Asn Ala Phe Asp Lys Ala Met
645 650 655
Asn Leu Leu Asp Glu Lys Tyr Ser Phe Leu Ala Ser Thr Lys Gln Ile
660 665 670
Val Ser Ser Thr Asn Glu Glu Asp Lys Val Ile Val Phe Glu Arg Gly
675 680 685
Asp Leu Val Phe Val Phe Asn Phe His Pro Glu Asn Thr Tyr Asp Gly
690 695 700
Tyr Lys Val Gly Cys Asp Leu Pro Gly Lys Tyr Arg Val Ala Leu Asp
705 710 715 720
Ser Asp Ala Trp Glu Phe Gly Gly Arg Gly Arg Val Gly His Asp Val
725 730 735
Asp His Phe Thr Ser Pro Glu Gly Ile Pro Gly Val Pro Glu Thr Asn
740 745 750
Phe Asn Asn Arg Pro Asn Ser Phe Lys Ile Leu Ser Ala Ala Arg Thr
755 760 765
Cys Val Val Tyr Tyr Arg Val Glu Glu Lys Glu Gly Asn His Asn Ser
770 775 780
Ser Asp Ile Gly Ala Ala Asn Glu Thr Leu Thr Asp Ile Ala Lys Leu
785 790 795 800
Gly Asp Phe Glu Gly Ile Asn Glu Thr Ser Pro Ala Asp Ala Val Ala
805 810 815
Lys Gln Glu Asp Leu Lys Ala Ala Gln Pro Ser Leu Ile Ala Asp Asp
820 825 830
Ile Ala Thr Lys Ala Asn Thr Glu Thr Glu Glu Ile Glu Glu Glu Thr
835 840 845
Ser Asp Asp Lys
850
<210> 3
<211> 13280
<212> DNA
<213> Manihot esculenta
<400> 3
actttctttg ctagaaaatc tttctccaat tccctgcctc gcgcgtttct cgcgaccgct 60
ttcgatctct cttcccttta aaacaagttg aacatgcaat tagttgcgtc agttctcaca 120
ctctctctaa cttctcagcg aaatgggaca ctacaccata tcaggaatac gttttccttg 180
tgctccacta tgcaaatctc aatctaccgg cttccatggc gatcggagga cctcctcttg 240
cctttccttc aacttcaaga aggaggcgtt ttctagtact atttttctct ttctgtattt 300
tgttttcatc tgtggaattt tgtttgattg atttcgattc cgcatttgtt taatcgcgtt 360
tggatctttt tgattggtta ttgtcattac tatttttgga tgtagcagta gtatatcagt 420
tctgatcaaa gaaatggatc agtttttatt ttatttcagc tgtgatttta gcatagtaat 480
gcagttgcaa tttttgaagt tacagtagtg tttttcaatt gataatattt gttagtttta 540
ttcatgtctg ccgtgcctgc tgtctgctca gttgaatgtt cggtgatttg gtgatttaat 600
tgcgtaaaaa ctatttgttt aaaggcattg cagttggatt gctgatcttt agcattttat 660
ttgaattttt ctcttgtaag ggggagcatt ttgtatttct ttggtactaa gcttgagagt 720
tcttatagta atgctctctc atggagcttt tatactactg gaatttgcag ccttatacct 780
ttggaagaat ctatgaatat tttgctgcag agatctgctg tcttgccttt aagttattag 840
catatatctg gggaaactgg agtttgatat attccatcta cggggtttgg gtgctgtgaa 900
ttgttttttt cagtcccatc tctgccattt tctggaacaa atatatatga ctttatatga 960
gatacgtcag tatttgaatg gttacgggga tctccttgac aagatatcca ttggaatatt 1020
ctgaatttta ttttcagtcg tagctcattg ataagttggt ttgtttcaat tcctagttgg 1080
tgtgtatgtt tatatcttcc tactactaca aacaaaaatt agtatatatt attaactgtt 1140
atatctaagt atctttagaa ttttctaatg gtcaatcctc ttcttatgcc tgttatatat 1200
ataaagaagc tggtaggtat aaaagaagat atatataaat gtaaaaataa tatgtttctt 1260
gtttgtaggg agggtcttct ctggaaagtc atctcatgaa tctgactcct caaatgtaat 1320
ggtcactgcg tctaaaagag tccttcctga tggtcggatt gaatgctatt cttcttcaac 1380
agatcaattg gaagcccctg gcacagtttc agaagaatcc caggtttgta tattgtgtgc 1440
atgtctagat gtatatgata cattttttgt ttaaatgata tttaagttta gagtttgaga 1500
ttcatgggtg gcaataggag gagaacttta tagataaatg caattatggg aagaaaggca 1560
gattcaactg tgggagaaga ggaaaaatag gggagagttt gttgacatgg ttttttcatg 1620
ttcattgaag gcccctggct agtattatga atccatgctt cagtttaaag tggtttggac 1680
ttgaagggtg tggaatgagg ttttgaaagg accattcttg tttccagttt tggtataata 1740
tatggctcaa actaggagtg tgaatcaaaa taacgaaaag gcaagtaata aaatcatgag 1800
acttaagcga atcaatttat aaggaaaacc aaatcttacc aaaccaacta attttggttc 1860
ggttcattgg ttctcaacac caagaagatg acattacaat gcaagactct caattatatc 1920
attgaatcac atccaaataa aaataataat aaaaaaaact atggatcaaa taggagtaaa 1980
gaacacaata cagcatcaag ctacaaatca acaatcaatg atctcataga tgacggatta 2040
caagcaattg caaattgcta tatttaaaat ctcaaatggg ttaaaacgaa ccaatccaaa 2100
accaaattgc catatttaaa atctcaaatg ggttaaaact aaccaataca aaaccaaata 2160
taaaccttca agaaatggga acccgtagat aaatagagaa ctcagttccg gagatgagaa 2220
ttgagtattg agaccttgag gccgattttg ggagccaatg taggagtgac caactcttgc 2280
atgtgtttgt agcctttaac tctaatggtc tcggacttgg ctctatgtca caacctcacc 2340
aaggacacaa ataaggatga caacatcaat gaggccgcaa ttggagatgg caacatcaca 2400
tagagcatga gagagatgca attgcaaaag gggcatgcta gtgtgattgt gcaacaaggg 2460
aatggtttga gatgagatgt tgtgataaac aaggtagaag aaggtgcagc aaggggctag 2520
atggtcaggt gagatggatt gaagagcaag aagaagaggg gttgggggtc aaaaatagat 2580
ggattaacaa ggaagaagaa gatgaaggag aagagtaaga agatgaagag gagatgcaaa 2640
gggtcaggtg atgaggatga gggcgagggc gagggcaaaa taaagtttaa ctagatagga 2700
ttttggttgg ggtaaaatgg tgtagtacaa gagtgaattg gttcggtagt ttcggttttc 2760
tgaccttaat gttgaacaga aaaactgatt ttttttcttt taataattga aactgatctg 2820
atgtacttag aacccaactg aaaaactaaa tcagtttggt ttggttgttt ggttaaacca 2880
atgagcgctc agccccagcc taatccagaa cttgtagaat cacattctat caagaaatgt 2940
caagttgtgc taaggtatag gctttattgc cttctatgga agtttactcc aatttataga 3000
actggaaatc ccctcatttt ccttaattgt gcaatggggt cgataccatg cctcaacaag 3060
aagaagggtg cggcaagggg cttggtggtt aggtgagatg gattgaagga ggaggaggag 3120
ggagggcaaa aaatggctta aatagctagg gtttgggttg gggtaaaatt gtgttctcta 3180
agagtaaaat tgattgagta ggaggaggct tctactaagt tctttattga tccttttcca 3240
tgtccttttc tcctcgtata taatatgtgc tatctaatga ttctttaagg agcaatatca 3300
aaaagctttg tggtttaatt ttatcaattg tgttaatagt ttgagtattt tgacactatc 3360
ctatatttat acactcccaa tttgttgaca catgtatttc tatggcatgc agtgtgttca 3420
taattctgat ccttttgctt gttgcatttg cttgtgttat aaatgaattt attaattttt 3480
ctccaacttg aagcagcata catcgtccaa tgcggcacct agatattatg cagatcttct 3540
gccttaattc tgcaacttga aaggtggaaa aagttaggaa agacagtgag ggggaatgca 3600
aggaatcttt tgtttaagat aagggcaaaa aatgagaggg aaaatagggt actaaatagt 3660
atcttggtca taggtgtcat ggcatatttc ctcttcatat tatttgtcct acctcttaaa 3720
tttgtcttac aaatatgtag agggtatcat tgtaatttca tcattcacat tttatttacc 3780
ccaatttact tttgctttca gaacaaggtt aaattaactt ctctacatct tatttcctcc 3840
acttattttc ccccaattat ccctagcagt ataataattt ttgtttgatt gaatcttgtg 3900
atatttaaat gtccaaaatg tctttccaca aaaaactttc gttcatggca aactcagaca 3960
ttgccataaa agagctgaaa gatggtgtct aaagcagttg gacttagtaa gaaccatgtg 4020
gaaaaatgat cttattttga acagctgaaa ttttggaaat gtgctgcata gcccctattg 4080
gaatgatcat aatcataggc caaagtgaat gcttcttgga tgatagaaga gttcttctga 4140
cagaattatg ctggacttat gaagacttaa agtcatgtgc aatcaaagct cttatgtact 4200
tttactgcta attagcatgt ttttctaaga gtagtcattt ttttttatat tttgcatgtc 4260
ctttatctct tgatgccttt tcaagtaaat gatcatgaca agatcatttt ccacggcatg 4320
aaatttctga caacttatta attaaacatg cttttatgat gcttgtgtta ggtgcttact 4380
gatgttgaga gtctcattat ggatgataag attgttgaag atgaagtaaa taaagaatct 4440
gttccaatgc gggagacagt tagcatcaga aaaattggat ctaaaccaag gtccattcct 4500
ccacccggca gagggcaaag aatatatgac atagatccaa gcttgacagg ctttcgtcaa 4560
cacctagatt accggtgaga tgatgctcct actaagtgtt ttattgatcc ttttcgtgtc 4620
cttttctcct aatttataat atatgatata taatgattat ttagggagca ataccaaaaa 4680
actttgtggt ttaattttat caattatgtt aatattttga gtattttatc actatcctag 4740
agttatactc tctccatttg ttagcacatg caaaattgta attgtacgtc tatggcatgc 4800
tgtgtgctca tatcttttat cctttttact tgttgcattt gcttgcatta tgatcaaagt 4860
tattaatttt tctccatctt gaagtagcat aaatgagtaa acagatgtta acatatcaat 4920
cacaaaagaa agccttcaac tccattccat tttgttctct aaaaacaatt tataccaagt 4980
attttaatta aaggtataat cattgatcaa aatcaccaaa atgcccactt ggaaacccaa 5040
ggaaattaac tctttttcct tgaaagagag ctgaaatata atttccaatt ccacttgtcg 5100
ttttattctt gtgattaagt ggattttctg gtagcactgt ataattttta aggttgagac 5160
ttgagatatt gttttcatta tgcagaagca ttagaattct ttatgggatt gggattttaa 5220
tgctgcaata cttctctgct atcctgttat tagaataact cttgtgttaa tttttgtctt 5280
ttcatttagt attcctgctt cttgctgtgt gtgtgtgttt ttttttcaac cccagcagtt 5340
tagagacttt agcattatga aaagttgagc atattaaagt tgcagaaaag aaaagttgac 5400
agaggagacc taggatgata tgaagcagtg aaaaagggaa aaacatcttt aaactctagg 5460
atatattggc tctatcttct gaagatgtag ccctaaatgg gaggaaaaaa gggaaagcat 5520
ctttgatgtt gactattttt ggactaaggc taatttaatc tattattttt caaatactta 5580
aatctattgt attttctttg atcttttgtc caattatagg tattcacagt acaaaagact 5640
ccgagaagaa attgacaagt atgaaggtgg tctggatgca ttttctcgtg gctatgaaaa 5700
gtttggtttc tcacgcaggt actatcgctg ttttgatcca tgcatgttga tcatgttgct 5760
ttcctatctt ctgttgcatt atgattgtgg cttctttaca tggacatctc tgcatctttt 5820
gtttaatgaa tcttttcttt gctcatatcc tagttttcat cacagtgaac tctaactgaa 5880
aaataatgga caatctttga tgtgaaatgt ggaggaggta ttacaataaa ttgtggaata 5940
tactcgcact attattatct tcagataaag tatttgcaac attagcatca ttatctagat 6000
ggtaccatgg ttcttgagtc agttggtttt tgtccattgc agtttgttat ttatgtatta 6060
taatagttag gaagttcttt tgagacaggt tgacttttta tgttttattt ctaggctttt 6120
ggaagagact tatccttgtg cttagaaatg gcaataagaa gttgggatca gataagttag 6180
tgtggacctt gtaacttcac ctatagattg tttcaaataa tttacttttg taactgaggt 6240
ggcaaattga aagctatgat attggcctat gaatttgaat acttctgttg acttctttgt 6300
gcacttattt atgcttttgg cttctctcat cttcagatgc atgccttttt aaactaacaa 6360
taagtaagaa ataattttgc agttctggag cgaaattttt ttcccttatc aatcaatctt 6420
agtttcttga aataattctt catttttgca tattataatt tctactggat ttcagtgaaa 6480
caggaataac ttatagagag tgggcaccag gagctacggt tagttctgtc ccatttcttt 6540
attatgtgtt ttgaatatcc atttggcata tgtgctctac taaacatgat atttgtgtta 6600
tatactctca aatatggcga cagtcagttg tggtttcatc ttgaatatcc actgcttggt 6660
tgtagtactt gtattacaaa acaagtttgt gggcataatt ttctggtgat gcatcagctc 6720
tctgcttgta taaatatcca ttcatttata caaggggctg cttctttgtg gtctgtcaat 6780
tgaaccacta ggataatgtt ctttttggct gatactgaga actaattgac tgttcaaaaa 6840
gcggcttttg ttttcatttc ttgtcaagta tattaatata tttatgttgt tttcagtggg 6900
ctgcattgat tggagatttc aataactgga atcctaatgc agatgtcatg actcaggtat 6960
gctatttttg catcggtttg ttgattgttc aatccagcca tgaacttttc tcttcaattg 7020
atctgatatc atgaatatat atttatataa ttccttttta aaagatattc gtggtagtgg 7080
tattattgcc actggtgtag tatgatattt aaggttcaat tcagtccaac atctcgccat 7140
ttccaaaaca tctattaaac accatgatta ttacatttat tgatcgtaga tatatattct 7200
ggccattcat tggttgaatg aggatactca tctgaaagaa ttctccatgt tcttatatta 7260
cattatgcaa ttggtacttt tttttctttg tcaaaacaat tgatactgtt tgcttggctg 7320
aaagttgaca attttgctta tttagagttt ggaatagtat ccaaagacta tgaaaaattg 7380
aacatttaga gttctcatct ccttaaaaac tggaatcctc atatgtagtt gcattggggt 7440
tgttcttgga tcatctttat tggccttgag catgggaaag gggcagttat aactttgttt 7500
gaggtagtgg ggtggttctt tgtgttaatt tttttttggg agggggggaa gtaggcagga 7560
actctggaga aagtcgatat ctgcaaaggt ttactatttg cttgcagtat tggattattc 7620
cttctgtatt agatttctta tggtgctaat tgactcacct tcctgtgcag aatgagtgtg 7680
gcgtctggga gatctttttg ccgaataatg cagatggttc accaccaatt ccccatggtt 7740
ctcgagtaaa ggtaatcttt ctagagaatg aaattcggaa tcatatcctt ctgtcctttc 7800
tttttttcat caagtacaca aaatgtgttt gtttcctttt aatttcattt ctagatattt 7860
attcacatga aaagtctaaa taaaagcttc taggaatttt ttgcatttct agttgttttg 7920
ctgaaggggt ggctttttta tactagctag tgaatatcac atcaaatgaa gcaacttctg 7980
tacaaacaga agcagagagc atgtagtttt gtcattttat ctgaactata taaaataata 8040
aggaaaatga ttgtaatctg tatttgcaaa aggatatttt gtttcttatt ggacagtaga 8100
caaatgtaaa tctggcaact gaagatgatc tgttcttttc ttgtaaaaat gaggactgaa 8160
agctcagcac gtgtgaaaat aacatggtgg ctgctttgtt ctgtgtttag ttgccaaaag 8220
gacatgacaa tctgatattt tttttgtaaa aatgaaaagg gggtgagacc gtgagagttc 8280
agcaagcttg aaactaacac gatggcttct ttgctctgtg acaaaattat ctttaagctt 8340
tctgtgccat agaacttctt cctgtaattt gagcataatt actaattaat tatccaagcc 8400
ttgggcacag tggttaagca cattctgaat ttgaaggttt tatctttttc tcattataga 8460
tgatgaaatt tctagaagat ggaacaagtg aagctctttt ttatttctgg attgtacaag 8520
agagacttct ttagtagccc ctatattcct cagcaactga aattaaatct atttgattct 8580
taaaagcctt gtccacctcc ccagacaagt acttcaagtt actcaaaata tggcacatta 8640
ccattttatt tatgcttctt tttcctttac gaaaaatact ttcatgaggt gtctgtatat 8700
gtggatgcgt gaggtttagc actttagctt ctgccattta ccttccatgc tttctaagaa 8760
gacagaagac taatatctga atgggcttcc agttatagtt gtttggatta attatggttt 8820
agtaagatgg taaatcttat ttaaggtctt taaaactatg ccatgtcaga attgctggtc 8880
tttgaaattt gaaaatctaa aatgtcgtta acctaagact ctaagtcgcg agccctaact 8940
caaccatgtg tatgtagata cgcatggata ctccatctgg caacaaagat tctattcctg 9000
cttggatcaa gttctcagtt caagcaccag gtgaactccc atataatggc atatactatg 9060
atcctcccga ggaggtatgt ttgtcccttt ttcttctttc ttagtttttt tttccttaac 9120
agtaagagaa gttactgaac tgctgataat aatatggaat ttaagtcaat aaaaagtagc 9180
agaaaatgtt aaaaattggt agtaatatta ctaaaaccag gttttgtgaa tgcttaaaaa 9240
atatgtcacc tgttgttggc cccaccagtt ttccattgtc cttggaaaga agtcagaaaa 9300
taatacccat ggttgggagt tgggcatttt atatgctgca aaagagaatg gtttgttagg 9360
tttacaaagc atcatcataa tgaacaaatg tatttgactg gccacaatac tcaatatagc 9420
cttacttgta cctatgtagg acttttggct tttgtggaga gatgcatttg attctataaa 9480
atgcttgcaa ttgcaaaatc agttgaaatt ttcttgtact ttaaaaaaaa aaattcattg 9540
gcattgatgg tgttacttgt tttttcgcag gagaagcatg tgttcaaaaa tcctcagcca 9600
aagagaccaa aatcacttcg gatttatgag tcgcacgttg gaatgagtag tacggtgtga 9660
ttttttcccc attgtctcat gtaaaattat ttgttaatta ttttcaaaaa catggtaata 9720
tatataggta acacgctcac acacatatat atacacattt atcttgaaga actctaggat 9780
attattagag ttgagtcctt gttaggcaca atttagtttg tcgatttaca accttattat 9840
ggttctggtt tccattgaac ctgaaggatt ggcatgcttt gtatataaaa catgtcaact 9900
ttgaattgca ggagccagta attaacacat atgccaactt tagagatgat gtgcttcctc 9960
gcatcaaaaa gcttggctac aatgctgttc agctcatggc tattcaagag cattcatatt 10020
atgctagttt tgggtttggt tctttggcat tagctccatg tttattgttt atcaacagtt 10080
ggtgcttgtg ttggagtgcc tcttccttgt ctcctcataa acttgcaagt tccctttggt 10140
ccaatgcagg tatcacgtca caaactttta tgcagctagc agccgatttg gaactcctga 10200
tgatttaaag tctctaatag ataaagctca cgagttagat cttcttgttc tcatggatat 10260
tgttcatagg tactattgct acaaacgtta gatactgtca aatgtcaata tttgtaataa 10320
ttgctaagct ctttttagcg ttggggttag ggggctattt ggctgaatta agaaattaaa 10380
tggttttctg gcttattcat tctatttttt ttaaaatttg ctttgtttgc tgccattgac 10440
attgagctcg atcccgttat gttgaaatat tcaattttgc acctattata attttattct 10500
tttgtatatt actaagctgt tgaaaaagat tgtaggaaac agacatgttg tggagtgatc 10560
tagaagttag tatgcttagt cagatttagt tgaaattaca ttaagaacta tctcaacatt 10620
tattaggatt gacaacttgt aaaaagtagc aacctgagct taggttttgc taagcgtctc 10680
aggtttgttg ttcaaatatt cagctgactc acattgttac tgcatctgac agaagcatgt 10740
taatattaat atgatttcaa cttcatctga tgtatggaca gaattctctt tcttagattg 10800
gttgcaaatg tcctctcttg catatttgtt tagtgaactt gttttagcat ctttgtgatc 10860
attaatgtga tgatgcgatt ctctcatatt ttctgttacc taggatacta gtggaatcat 10920
ttgccacaaa tctcggtcaa attttacctc ttattcattt ggtccactaa tatttttgtc 10980
ttgttcaatg aaatttatca aacaaatatc tagccatgca tcaactaata cgttggatgg 11040
gctgaatatg tttgatggta cggatggtca ctactttcac tctggaccac ggggtcatca 11100
ttggatgtgg gactctcgcc ttttcaacta tgggagctgg gaggtatata attttttgaa 11160
atttgtgaaa tagtttactg tactgagttt tccagtgtgc tttcccttta tcctgtcatt 11220
ggtcaagact aattcttgct gattgattca ggttctaagg tttcttcttt caaatgcaag 11280
gtggtggttg gatgagtaca agtttgatgg gttcagattt gatggggtga cttcaatgat 11340
gtacacccat catggattgc aggtaccatt taagtggcta ggaaatttat tgtttttcat 11400
tctgaagcac aatgatttgg ttaattgttc aatagctttt tatcaaggca tcaatatgcc 11460
taatttactc gattggatgg gctaacttga ttcctacttt aagttaacca aacatcattc 11520
tgactggtaa tgatgagttt catgttctca ttttggcatt tagcctatct ggggaaatta 11580
ataatgcaac ttatcttttt cttaaaactt ctttgttgat ggtaaatgtt ccctcctaca 11640
ctcacaattt tgcatgcttg atgtaggtag attttaccgg caactacaat gaatactttg 11700
gatatgcaac tgatgtagat gctgtggttt atttgatgct gttgaatgat atgattcatg 11760
gtctcttccc agaggctgtc accattggtg aagatgtatg ttaattccat cattgcagaa 11820
accatcacct agactcttag atctaataat cttctcatgc tctttcctga cttttctgtt 11880
taaaatgata atttcactct ttacaggtta gtggaatgcc aacagtttgc attccggttg 11940
aagatggtgg tgttggcttt gattatcgtc tccacatggc tgttgctgat aaatgggttg 12000
agattattca gtatgcttct ttaaaaacct ttaccacttc atttttacta gctggaatct 12060
atcatctctg agttgatgtt agttttgagt tgtaaggtca aatctatcct atatttttct 12120
ttgtactgat actggatgta ggaagagaga tgaagattgg aaaatgggtg acattgtaca 12180
tatgctgacc aacaggcggt ggttggaaaa gtgtgtttct tatgctgaaa gtcatgacca 12240
ggcccttgtt ggtgacaaaa ctattgcatt ttggctgatg gacaaggtca gagaattttt 12300
ctcctattga tttgtgcaca tcactctacc ctgcacacaa tccaaagtta gaatgtccaa 12360
gctttatggt tctaaggatg ggcttggata gacatcacat attttgtgac accttgatac 12420
agcaattctt tgaaaagcat aagtgaatta attctgctgt ttaatcttga ctggtcaacc 12480
ttcttgaggt catcttaact tgatggagaa tttttttttc accacaataa aactagaggg 12540
ataaattacc tgtatgatct tttaaaggga ctgatcttgg aaactactat accagaatca 12600
atttggtgtc ccttgcttct ctaactctat gataaaccaa agttatagtt tacacaagca 12660
ttggaaactc cattatgtgc atacaagatg ggaaattttg ctctttactt ttagaacata 12720
agcaattaat caattcttta tgaacatctt tttagataga tgccctctta tgaaacaatg 12780
ttgatatgca tcgggtaaag catgacttta aaaaagaggg catggtaaaa gagtaatttt 12840
atcaactggg cttgttagtt gctaaataat tgcggttggg cctggaacca ttcaacagtt 12900
caagtgccca gaccgaaacc agagccccag gggtcagaga tcaattttgc ctccccaacc 12960
ctcaaacctg actggagtct aagattcaac ctgctttttt tttcctaaga aaattgaaaa 13020
aaaaaattgg ccatgattgc ttcaaaccca gtgctgaact gggactggac ctatgtagtc 13080
tggtttaggg gcttccagcg atgattggaa ctgccagttc caacctggaa ccagcccggt 13140
gccgggatta catggtacct acttatttca tgctcttaca atattttatt gtgtagaatt 13200
tactaggagc caccagtgct tgtatattta tataaaagtt attttacttg ccatttgcaa 13260
acatatatta agaaaatgat 13280
<210> 4
<211> 837
<212> PRT
<213> Manihot esculenta
<400> 4
Met Gly His Tyr Thr Ile Ser Gly Ile Arg Phe Pro Cys Ala Pro Leu
1 5 10 15
Cys Lys Ser Gln Ser Thr Gly Phe Tyr Gly Asp Arg Arg Thr Ser Ser
20 25 30
Cys Leu Ser Phe Asn Phe Lys Lys Glu Ala Phe Ser Arg Arg Val Phe
35 40 45
Ser Gly Lys Ser Ser His Glu Ser Asp Ser Ser Asn Val Met Val Thr
50 55 60
Ala Ser Lys Arg Val Leu Pro Asp Gly Arg Ile Glu Cys Tyr Ser Ser
65 70 75 80
Ser Thr Asp Gln Leu Glu Ala Pro Gly Thr Val Ser Glu Glu Ser Gln
85 90 95
Val Leu Thr Asp Val Glu Ser Leu Ile Met Asp Asp Lys Ile Val Glu
100 105 110
Asp Glu Val Asn Lys Glu Ser Val Pro Met Arg Glu Thr Val Ser Ile
115 120 125
Arg Lys Ile Gly Ser Lys Pro Arg Ser Ile Pro Pro Pro Gly Arg Gly
130 135 140
Gln Arg Ile Tyr Asp Ile Asp Pro Ser Leu Thr Gly Phe Arg Gln His
145 150 155 160
Leu Asp Tyr Arg Tyr Ser Gln Tyr Lys Arg Leu Arg Glu Glu Ile Asp
165 170 175
Lys Tyr Glu Gly Gly Leu Asp Ala Phe Ser Arg Gly Tyr Glu Arg Phe
180 185 190
Gly Phe Ser Arg Ser Glu Thr Gly Ile Thr Tyr Arg Glu Trp Ala Pro
195 200 205
Gly Ala Thr Trp Ala Ala Leu Ile Gly Asp Phe Asn Asn Trp Asn Pro
210 215 220
Asn Ala Asp Val Met Thr Gln Asn Glu Cys Gly Val Trp Glu Ile Phe
225 230 235 240
Leu Pro Asn Asn Ala Asp Gly Ser Pro Pro Ile Pro His Gly Ser Arg
245 250 255
Val Lys Ile Arg Met Asp Thr Pro Ser Gly Asn Lys Asp Ser Ile Pro
260 265 270
Ala Trp Ile Lys Phe Ser Val Gln Ala Pro Gly Glu Leu Pro Tyr Asn
275 280 285
Gly Ile Tyr Tyr Asp Pro Pro Glu Glu Glu Lys Tyr Val Phe Lys Asn
290 295 300
Pro Gln Pro Lys Arg Pro Lys Ser Leu Arg Ile Tyr Glu Ser His Val
305 310 315 320
Gly Met Ser Ser Thr Glu Pro Val Ile Asn Thr Tyr Ala Asn Phe Arg
325 330 335
Asp Asp Val Leu Pro Arg Ile Lys Lys Leu Gly Tyr Asn Ala Val Gln
340 345 350
Leu Met Ala Ile Gln Glu His Ser Tyr Tyr Ala Ser Phe Gly Tyr His
355 360 365
Val Thr Asn Phe Tyr Ala Ala Ser Ser Arg Phe Gly Thr Pro Asp Asp
370 375 380
Leu Lys Ser Leu Ile Asp Lys Ala His Glu Leu Gly Leu Leu Val Leu
385 390 395 400
Met Asp Ile Val His Ser His Ala Ser Thr Asn Thr Leu Asp Gly Leu
405 410 415
Asn Met Phe Asp Gly Thr Asp Gly His Tyr Phe His Ser Gly Pro Arg
420 425 430
Gly His His Trp Met Trp Asp Ser Arg Leu Phe Asn Tyr Gly Ser Trp
435 440 445
Glu Val Leu Arg Phe Leu Leu Ser Asn Ala Arg Trp Trp Leu Asp Glu
450 455 460
Tyr Lys Phe Asp Gly Phe Arg Phe Asp Gly Val Thr Ser Met Met Tyr
465 470 475 480
Thr His His Gly Leu Gln Val Asp Phe Thr Gly Asn Tyr Asn Glu Tyr
485 490 495
Phe Gly Tyr Ala Thr Asp Val Asp Ala Val Val Tyr Leu Met Leu Leu
500 505 510
Asn Asp Met Ile His Gly Leu Phe Pro Glu Ala Val Thr Ile Gly Glu
515 520 525
Asp Val Ser Gly Met Pro Thr Val Cys Ile Pro Val Glu Asp Gly Gly
530 535 540
Val Gly Phe Asp Tyr Arg Leu His Met Ala Val Ala Asp Lys Trp Val
545 550 555 560
Glu Ile Ile Gln Lys Arg Asp Glu Asp Trp Lys Met Gly Asp Ile Val
565 570 575
His Met Leu Thr Asn Arg Arg Trp Leu Glu Lys Cys Val Ser Tyr Ala
580 585 590
Glu Ser His Asp Gln Ala Leu Val Gly Asp Lys Thr Ile Ala Phe Trp
595 600 605
Leu Met Asp Lys Asp Met Tyr Asp Phe Met Ala Leu Asp Arg Pro Ser
610 615 620
Thr Pro Leu Ile Asp Arg Gly Val Ala Leu His Lys Met Ile Arg Leu
625 630 635 640
Ile Thr Met Gly Leu Gly Gly Glu Gly Tyr Leu Asn Phe Met Gly Asn
645 650 655
Glu Phe Gly His Pro Glu Trp Ile Asp Phe Pro Arg Gly Asp Leu His
660 665 670
Leu Pro Ser Gly Lys Phe Val Pro Gly Asn Asn Tyr Ser Tyr Asp Lys
675 680 685
Cys Arg Arg Arg Phe Asp Leu Gly Asn Ser Lys Arg Leu Arg Tyr His
690 695 700
Gly Met Gln Glu Phe Asp Gln Ala Ile Gln His Leu Glu Glu Ala Tyr
705 710 715 720
Gly Phe Met Thr Ser Glu His Gln Tyr Ile Ser Arg Lys Asp Glu Arg
725 730 735
Asp Arg Ile Ile Val Phe Glu Arg Gly Asn Leu Val Phe Val Phe Asn
740 745 750
Phe His Trp Thr Ser Ser Tyr Ser Asp Tyr Arg Val Gly Cys Leu Lys
755 760 765
Pro Gly Lys Tyr Lys Ile Val Leu Asp Ser Asp Asp Pro Leu Phe Gly
770 775 780
Gly Phe Gly Arg Leu Ser His Asp Ala Glu His Phe Ser Phe Glu Gly
785 790 795 800
Trp Tyr Asp Asn Arg Pro Arg Ser Phe Met Val Tyr Thr Pro Cys Arg
805 810 815
Thr Ala Val Val Tyr Ala Leu Val Glu Asp Glu Val Glu Asn Glu Val
820 825 830
Glu Pro Val Ala Gly
835
<210> 5
<211> 20
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEI-sgRNA1
<400> 5
ggatggttcc aaccatagga 20
<210> 6
<211> 20
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEI-sgRNA2
<400> 6
ccatcatcat gggatcaaca 20
<210> 7
<211> 25
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBE1-sgRNA1-LP
<400> 7
gattgggatg gttccaacca tagga 25
<210> 8
<211> 25
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEI-sgRNA1-RP
<400> 8
aaactcctat ggttggaacc atccc 25
<210> 9
<211> 25
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEI-sgRNA2-LP
<400> 9
gattgccatc atcatgggat caaca 25
<210> 10
<211> 25
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEI-sgRNA2-RP
<400> 10
aaactgttga tcccatgatg atggc 25
<210> 11
<211> 20
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEII-sgRNA1
<400> 11
atgggacact acaccatatc 20
<210> 12
<211> 20
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEII-sgRNA2
<400> 12
aaagagtcct tcctgatggt 20
<210> 13
<211> 25
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEII-sgRNA1-LP
<400> 13
gattgatggg acactacacc atatc 25
<210> 14
<211> 25
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEII-sgRNA1-RP
<400> 14
aaacgatatg gtgtagtgtc ccatc 25
<210> 15
<211> 25
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEII-sgRNA2-LP
<400> 15
gattgaaaga gtccttcctg atggt 25
<210> 16
<211> 25
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEII-sgRNA2-RP
<400> 16
aaacaccatc aggaaggact ctttc 25
<210> 17
<211> 23
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEI-FP 引物序列
<400> 17
aatttggatt taatagagaa gca 23
<210> 18
<211> 22
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEI-RP 引物序列
<400> 18
ctgtgattgc tgaagatgtt tc 22
<210> 19
<211> 23
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEII-FP 引物序列
<400> 19
actttctttg ctagaaaatc ttt 23
<210> 20
<211> 22
<212> DNA
<213> 人工合成
<220>
<221> misc_feature
<223> SBEII-RP 引物序列
<400> 20
atatttaagt ttagagtttg ag 22
Claims (3)
1.提高植物直链淀粉含量和降低支链淀粉含量的方法及应用,其特征在于:它采用如下的方法步骤:
步骤一:利用CRISPR/Cas9多元系统编辑薯类植物SBEI或者SBEII基因;
步骤二:步骤一中所述的CRISPR/Cas9多元系统包括:系统中含有一个、两个及两个以上的sgRNA序列的CRISPR/Cas9系统;
步骤三:步骤二中的所述的CRISPR/Cas9多元系统的sgRNA核苷酸序列选自下组:
(a)如SEQ ID NO:1或者SEQ ID NO:3核苷酸序列中的核酸序列;
(b)将SEQ ID NO:1或者SEQ ID NO:3核苷酸序序列经过一个或多个核苷酸的取代、缺失或添加而形成的,且具有(a)核苷酸功能的由(a)衍生的核酸序列;
(c)或者与(a)限定的核酸序列有70%以上同源性且具有(a)核酸功能的由(a)衍生的多核酸序列;
步骤四:步骤一中所述的对SBEI或者SBEII基因的编辑包括如下方面:
(a)对SBEI或者SBEII基因所在基因组区域的编辑或对包含SBEI或者SBEII基因所在基因组区域的编辑;
(b)对(a)中所述编辑包括:单个或多个核酸位点的取代、缺失或添加;
步骤五:终止植物中SBEI或者SBEII多肽的表达或终止有生物功能的SBEI或者SBEII多肽的形成,从而提高薯类植物储藏根中直链淀粉含量,降低支链淀粉的含量;以及调节薯类植物储藏根重量、直径或数目;
步骤六:从终止SBEI或者SBEII多肽的表达或终止有生物功能的SBEI或者SBEII多肽的形成后的植物中选择出相较调节前植物而言性状获得变化的植物,包括:直接产生的较调节前而言性状获得变化的植物;杂交或者自交产生的有外源基因的相较调节前植物而言性状获得变化的植物;杂交或者自交产生的无外源基因的相较调节前植物而言性状获得变化的植物。
2.根据权利要求1所述的提高植物直链淀粉含量和降低支链淀粉含量的方法及应用,其特征在于:所述薯类植物包括:木薯,甘薯、马铃薯、山药、芋头、葛根、魔芋、洋姜或雪莲果。
3.根据权利要求1所述的提高植物直链淀粉含量和降低支链淀粉含量的方法及应用,其特征在于:编辑所述SBEI或者SBEII核苷酸序列的sgRNA靶向SBEI或者SBEII基因组核苷酸序列;较佳地,靶向SBEI基因组的第1939-1958位和2948-2967位;或者SBEII基因组序列的1-20位和1193-1212位。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710482844.8A CN107058328A (zh) | 2017-06-22 | 2017-06-22 | 一种提高植物直链淀粉含量的方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710482844.8A CN107058328A (zh) | 2017-06-22 | 2017-06-22 | 一种提高植物直链淀粉含量的方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107058328A true CN107058328A (zh) | 2017-08-18 |
Family
ID=59613253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710482844.8A Pending CN107058328A (zh) | 2017-06-22 | 2017-06-22 | 一种提高植物直链淀粉含量的方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107058328A (zh) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
CN110607322A (zh) * | 2019-09-25 | 2019-12-24 | 山西省农业科学院作物科学研究所 | 一种应用于马铃薯上的CRISPR/Cas9载体的构建方法 |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
CN113293170A (zh) * | 2021-05-27 | 2021-08-24 | 中国热带农业科学院热带生物技术研究所 | 调控木薯淀粉含量的基因MeTIR1及其应用 |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
WO2022053494A1 (en) * | 2020-09-08 | 2022-03-17 | John Innes Enterprises Limited | Foodstuffs having improved digestion properties |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
CN114438115A (zh) * | 2021-12-23 | 2022-05-06 | 中国热带农业科学院热带生物技术研究所 | 一种CRISPR/Cas9基因编辑载体、构建方法及其应用 |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005040381A1 (en) * | 2003-10-27 | 2005-05-06 | Commonwealth Scientific And Industrial Research Organisation | Rice and products thereof having starch with an increased proportion of amylose |
CN1777677A (zh) * | 2003-03-07 | 2006-05-24 | 巴斯福植物科学有限公司 | 增强植物中直链淀粉产量 |
CN103298940A (zh) * | 2010-11-04 | 2013-09-11 | 阿里斯塔谷类科技有限公司 | 高直链淀粉的小麦 |
CN106701814A (zh) * | 2015-08-03 | 2017-05-24 | 中国科学院上海生命科学研究院 | 调节薯类叶片中淀粉含量的方法及应用 |
-
2017
- 2017-06-22 CN CN201710482844.8A patent/CN107058328A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1777677A (zh) * | 2003-03-07 | 2006-05-24 | 巴斯福植物科学有限公司 | 增强植物中直链淀粉产量 |
WO2005040381A1 (en) * | 2003-10-27 | 2005-05-06 | Commonwealth Scientific And Industrial Research Organisation | Rice and products thereof having starch with an increased proportion of amylose |
CN103298940A (zh) * | 2010-11-04 | 2013-09-11 | 阿里斯塔谷类科技有限公司 | 高直链淀粉的小麦 |
CN106701814A (zh) * | 2015-08-03 | 2017-05-24 | 中国科学院上海生命科学研究院 | 调节薯类叶片中淀粉含量的方法及应用 |
Non-Patent Citations (4)
Title |
---|
JOBLING S A, 等: "A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: Cloning and characterization of multiple forms of SBE A.", 《PLANT J》 * |
SUN YONGWEI 等: "Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes", 《FRONTIERS IN PLANT SCIENCE》 * |
潘京: "应用CRISPR_Cas9基因编辑技术获得高直链淀粉马铃薯", 《中国优秀硕士学位论文全文数据库.农业科技辑》 * |
郭志鸿 等: "用RNA干扰技术创造高直链淀粉马铃薯材料", 《中国农业科学》 * |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
CN110607322A (zh) * | 2019-09-25 | 2019-12-24 | 山西省农业科学院作物科学研究所 | 一种应用于马铃薯上的CRISPR/Cas9载体的构建方法 |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
WO2022053494A1 (en) * | 2020-09-08 | 2022-03-17 | John Innes Enterprises Limited | Foodstuffs having improved digestion properties |
CN113293170B (zh) * | 2021-05-27 | 2022-10-18 | 中国热带农业科学院热带生物技术研究所 | 调控木薯淀粉含量的基因MeTIR1及其应用 |
CN113293170A (zh) * | 2021-05-27 | 2021-08-24 | 中国热带农业科学院热带生物技术研究所 | 调控木薯淀粉含量的基因MeTIR1及其应用 |
CN114438115A (zh) * | 2021-12-23 | 2022-05-06 | 中国热带农业科学院热带生物技术研究所 | 一种CRISPR/Cas9基因编辑载体、构建方法及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107058328A (zh) | 一种提高植物直链淀粉含量的方法及应用 | |
CN107119071A (zh) | 一种降低植物直链淀粉含量的方法及应用 | |
CN110079534B (zh) | 调控玉米开花期的基因、启动子及其应用 | |
CN112626080B (zh) | 一种控制大豆-根瘤菌匹配性的r基因及其蛋白质和应用 | |
CN113862280B (zh) | 一种水稻理想脆秆突变体ibc的突变位点、控制基因IBC及其应用 | |
CN109912702B (zh) | 蛋白质OsARE1在调控植物抗低氮性中的应用 | |
CN110964733B (zh) | 一种水稻半显性脆秆控制基因、分子标记及应用 | |
CN113646326A (zh) | 用于抗植物病害的基因 | |
CN114369147B (zh) | Bfne基因在番茄株型改良和生物产量提高中的应用 | |
CN112210566B (zh) | 水稻OsS6K1基因或OsS6K2基因在提高水稻产量和/或抗旱性中的应用 | |
CN113621625A (zh) | 芝麻SiERF103基因在增强植物抗性中的应用 | |
LU504522B1 (en) | Gene related to low potassium stress of tobacco, promoter and application thereof | |
CN111826391B (zh) | 一种nhx2-gcd1双基因或其蛋白的应用 | |
CN110656118A (zh) | 一种橡胶草菊糖降解酶基因Tk1-FEH及其应用 | |
CN114410658B (zh) | 一种降低水稻糙米镉含量的基因OsWNK9及其编码蛋白和应用 | |
CN113563439B (zh) | 一种果形发育相关蛋白及其编码基因与应用 | |
CN112679591B (zh) | 抑制OaGS3基因表达的物质在调控四倍体野生稻籽粒长度中的应用 | |
CN101560251A (zh) | 植物根生长发育相关蛋白及其编码基因与应用 | |
CN114736280A (zh) | ZmROA1蛋白在调控植物耐密性中的应用 | |
CN108034662A (zh) | 小麦条锈菌pstg_06025基因在条锈病防治中的应用和抗条锈菌小麦的培育方法 | |
CN115369120A (zh) | 水稻温敏两用不育系育性转育起点温度调控基因及其应用 | |
CN101906154B (zh) | 调节植物叶片转绿过程的蛋白、其编码基因及应用 | |
CN106349353B (zh) | 一种调控植物淀粉合成相关蛋白OsFSE及其编码基因与应用 | |
CN111454964A (zh) | 油菜抗寒基因BnTR1及其编码蛋白与应用 | |
CN114540375B (zh) | 调控玉米开花期和光周期适应性的基因、分子标记及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170818 |