CN104805099B - 一种安全编码Cas9蛋白的核酸分子及其表达载体 - Google Patents

一种安全编码Cas9蛋白的核酸分子及其表达载体 Download PDF

Info

Publication number
CN104805099B
CN104805099B CN201510092144.9A CN201510092144A CN104805099B CN 104805099 B CN104805099 B CN 104805099B CN 201510092144 A CN201510092144 A CN 201510092144A CN 104805099 B CN104805099 B CN 104805099B
Authority
CN
China
Prior art keywords
cas9
nucleic acid
expression
acid molecules
microrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510092144.9A
Other languages
English (en)
Other versions
CN104805099A (zh
Inventor
刘厚奇
蒋俊锋
王越
张莉
仵敏娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Military Medical University SMMU
Original Assignee
Second Military Medical University SMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Military Medical University SMMU filed Critical Second Military Medical University SMMU
Priority to CN201510092144.9A priority Critical patent/CN104805099B/zh
Publication of CN104805099A publication Critical patent/CN104805099A/zh
Application granted granted Critical
Publication of CN104805099B publication Critical patent/CN104805099B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及生物技术领域,提供了一种更安全的编码Cas9蛋白的核酸分子及其重组表达载体,以及在CRISPR‑Cas9技术中的应用,以及一种减弱Cas9核酸分子与microRNA结合的方法。实验发现目前广泛应用的Cas9表达载体虽然能成功表达Cas9蛋白发挥作用,但载体所转录的mRNA序列本身可以作为microRNA let‑7家族的吸附体而抑制let‑7的功能,而let‑7可以抑制多个癌基因的表达,因此目前应用的Cas9表达载体可以增加一些癌基因的表达从而增加癌症的风险。本发明提供的M‑mir‑Cas9表达载体,所转录出的mRNA不能吸附let‑7,同时依然能翻译成完整的Cas9蛋白发挥作用,增加CRISPR‑Cas9基因编辑工具的安全性。

Description

一种安全编码Cas9蛋白的核酸分子及其表达载体
技术领域
本发明涉及生物技术领域,尤其涉及一种安全编码Cas9蛋白的核酸分子及其表达载体。
背景技术
CRISPR-Cas9(Clustered regularly interspaced short palindromic repeat(CRISPR)-CRISPR-associated endonuclease(Cas9))技术是近年出现的革命性的基因编辑技术。该技术可以快速,容易的实现对目标DNA序列在精确的位点进行编辑,包括突变,修改,插入等改变,使得生命的遗传密码可以按照人类的意愿改变,可以在细胞层面,也可以在生命个体层面。该技术还近年还有广泛的拓展应用,如用于基因的激活,干扰,活细胞基因标记,RNA的切割等等。对于农业,工业,药业,以及人类的健康都有广泛的应用前景(参见文献:Hsu,P.D.,Lander,E.S.,and Zhang,F.(2014).Development and Applications ofCRISPR-Cas9for Genome Engineering.Cell 157,1262-1278)。
CRISPR(clustered regularly interspaced short palindromic repeats)即成簇规律间隔短回文重复,是存在于细菌基因组中的DNA序列,Cas(CRISPR associated)即CRISPR相关基因,有多种类型,Cas9是其中一种。CRISPR-Cas9系统本身是细菌的一种获得性免疫机制,用于切割入侵的外源DNA。将其用于基因编辑,该技术以其简单,高效,精确等优势,迅速得到广泛应用,该技术也被评为生物学2013年10大突破之一。
该技术主要是通过向细胞内导入gRNA和Cas9蛋白实现对目标DNA的切割。gRNA是一个经过特殊设计的向导RNA,可以识别并结合靶基因DNA序列,Cas9蛋白是一个酶,可以与gRNA以及其识别的DNA结合,将目的DNA序列切断,再利用细胞DNA的损伤修复机制以及同源重组等机制,实现对DNA在断裂位点及附近进行突变,插入,替换等等修改,实现基因编辑的目的(参见文献:Mali,P.,Yang,L.,Esvelt,K.M.,Aach,J.,Guell,M.,DiCarlo,J.E.,Norville,J.E.,and Church,G.M.(2013).RNA-guided human genome engineering viaCas9.Science 339,823-826)。通常情况下,向细胞内导入Cas9蛋白是通过转染或感染Cas9表达载体而实现的,比如在细胞里转染Cas9表达质粒,而Cas9表达质粒在细胞内被转录为mRNA,进而翻译为Cas9蛋白,发挥结合gRNA,靶向切割DNA的作用。由此我们想到,Cas9的mRNA作为外源的核酸物质,会不会影响细胞内环境,对细胞产生影响?
mRNA和microRNA有广泛的相互作用,近年不断发现mRNA可以结合并吸附与其序列部分互补的microRNA,从而抑制这些microRNA,使得这些microRNA所抑制的mRNA表达上调(参见文献:Hansen,T.B.,Jensen,T.I.,Clausen,B.H.,Bramsen,J.B.,Finsen,B.,Damgaard,C.K.,and Kjems,J.(2013).Natural RNA circles function as efficientmicroRNA sponges.Nature 495,384-388)。本发明人所在的实验室前期的实验也在胚胎干细胞中发现一条长链非编码RNA,lincRNA-RoR可以吸附mir-145,从而上调mir-145的靶基因:Oct4,Nanog等干细胞多能因子,维持胚胎干细胞的多能性(参见文献:Wang,Y.,Xu,Z.,Jiang,J.,Xu,C.,Kang,J.,Xiao,L.,Wu,M.,Xiong,J.,Guo,X.,and Liu,H.(2013).Endogenous miRNA sponge lincRNA-RoR regulates Oct4,Nanog,and Sox2in humanembryonic stem cell self-renewal.Dev Cell 25,69-80)。因此,本发明人深知在存在序列部分互补的情况下,在mRNA表达量比较高的条件下,mRNA完全可以吸附microRNA,从而上调该microRNA的靶基因。
由于CRISPR-Cas9技术通常需要在细胞中表达高水平的Cas9的mRNA,因此本发明人认为极有必要评估这条外源mRNA是否能够影响某些重要microRNA。
经检索国内外科技文献和专利文献,CRISPR-Cas9技术应用于基因工程的研究很多,例如中国专利申请CN201410400098.X等,也致力于研发新的携带Cas9蛋白的编码基因的重组表达载体,该专利申请涉及的是携带CAS9的重组腺病毒,申请公布号为CN104178461A。
但目前尚无文献报道Cas9的mRNA与microRNA的相互作用,并从此方面入手改进CRISPR-Cas9技术。
发明内容
本发明的目的在于提供一种更安全的编码Cas9蛋白的核酸分子,本发明的另一目的在于提供携带上述编码Cas9蛋白的核酸分子的重组表达载体。
本发明的第三目的在于提供上述的核酸分子及其重组表达载体在CRISPR-Cas9技术中的应用。
本发明的第四目的在于提供一种减弱Cas9核酸分子与microRNA结合的方法。
本发明人通过生物信息学分析发现,现在广泛应用的Cas9表达载体所转录的mRNA上存在3个microRNA let-7家族的结合位点(如图1所示),而已报道的let-7家族的靶基因大多是癌基因。当细胞转染现有的Cas9表达载体后,本发明人检测发现一些重要的癌基因表达水平明显上升,如CCND2、hRAS、kRAS等(如图2A所示)。
因此,本发明人认为,将现有的Cas9表达载体导入细胞有增加癌症的风险。
本发明人设想构建一种新的Cas9表达载体,降低其mRNA与重要microRNA的结合力,且仍能翻译为功能完全的Cas9蛋白,将有利于提高CRISPR-Cas9技术的安全性。
本发明的第一方面,提供一种更安全的编码Cas9蛋白的核酸分子,所述的编码Cas9蛋白的核酸分子,其mRNA形式的序列选自以下任一:
a)如SEQ ID NO:1所示;或
b)是对SEQ ID NO:1所示的序列修改、添加、缺失或取代若干个核苷酸而得的序列,并且所述Cas9的mRNA与microRNA let-7的结合力弱。
所述Cas9的mRNA与microRNA let-7的结合力弱,是指不至于上调let-7抑制的癌基因,或上调程度降低,可减低Cas9核酸分子的致癌风险。
本发明所述的M-mir-Cas9的序列,可以是在SEQ ID NO:1所示的序列的基础上修改、添加、缺失或取代若干个核苷酸而得的核酸序列。且达到同样的与let-7结合减弱并能翻译为发挥功能的Cas9蛋白。本领域技术人员知晓,要达到减低Cas9的mRNA与let-7结合减弱,对Cas9的mRNA与let-7的结合位点进行同义突变就可以,本发明所提供的序列只提供一种特例,本发明还包括其他能达到同义突变目的的序列。本领域技术人员还知晓,mRNA可以包括5’UTR和3’UTR,本发明所提供的序列只提供编码M-mir-Cas9的CDS区,其5’UTR和3’UTR可以有多种序列样式。
本发明优选的Cas9核酸分子,如SEQ ID NO:1所示。
本发明的第二方面,提供一种携带上述编码Cas9蛋白的核酸分子的重组表达载体,所述的携带编码Cas9蛋白的核酸分子的重组表达载体,本发明命名为M-mir-Cas9,其中携带的编码Cas9蛋白的核酸分子其mRNA形式的序列选自以下任一:
a)如SEQ ID NO:1所示;或
b)是对SEQ ID NO:1所示的序列修改、添加、缺失或取代若干个核苷酸而得的序列,并且所述Cas9的mRNA与microRNA let-7的结合力弱。
所述的载体可以是质粒、病毒(如慢病毒或腺病毒等)、合成序列、人工染色体等,也可以是RNA等。
所述Cas9的mRNA与microRNA let-7的结合力弱,是指不至于上调let-7抑制的癌基因或上调程度降低,可减低Cas9核酸分子的致癌风险。
本发明优选的Cas9核酸分子,如SEQ ID NO:1所示。
本发明的第三方面,提供上述的核酸分子及其重组表达载体在CRISPR-Cas9技术中的应用。
本发明人提供的M-mir-Cas9核酸序列,将之前的Cas9序列上3个结合let-7家族的位点全部做了同义突变,因此M-mir-Cas9不具有与let-7结合的序列基础,本发明人通过实验证实,将M-mir-Cas9表达载体导入细胞后,CCND2,hRAS,kRAS等癌基因的表达水平没有明显上调(图2B),再导入相应gRNA后,目的基因仍能被成功敲除(图3)。说明本发明人提供的M-mir-Cas9表达载体相对于现在广泛应用的Cas9表达载体具有同样功能,但安全性更高。
本发明提供的一个新的Cas9表达载体(M-mir-Cas9),所转录出的mRNA与关键microRNAlet-7的结合力弱,不能吸附let-7,同时依然能翻译成完整的Cas9蛋白发挥作用,增加CRISPR-Cas9基因编辑工具的安全性。本发明不上调let-7抑制的癌基因,可以克服现有Cas9表达载体增加癌症风险的弊端,涉及更加安全的CRISPR-Cas9基因编辑工具及其应用。
本发明的第四方面,提供一种减弱Cas9核酸分子与microRNA结合的方法,使得Cas9的应用中考虑其与microRNA的相互作用,从而对其进行改进。
所述的方法包括以下步骤:
E.生物信息学方法分析现有的Cas9表达载体与microRNA结合的位点;分析可与Cas9的mRNA结合的microRNA的作用,确定关键的microRNA,作为一个特例,本发明主要研究Cas9与microRNA let-7的相互作用,也可以研究Cas9与其他任何microRNA的相互作用,如mir-145,mir-22,mir-15等;
F.分析Cas9对步骤A确定的microRNA所抑制的基因表达情况的影响;作为一个特例,本发明主要研究Cas9表达载体所转录出的mRNA对let-7所抑制的基因如CCND2,hRAS,kRAS的影响。
G.步骤B确认Cas9与相应microRNA靶基因的表达情况成正比(或反比)后,同义突变Cas9中与相应microRNA结合的位点,设计并合成Cas9核酸分子;
H.构建携带步骤C合成的Cas9核酸分子的重组表达载体。
进一步地,实验分析步骤D获得的M-mir-Cas9表达载体所转录出的mRNA对相应microRNA靶基因的影响。
进一步地,实验验证步骤D获得的M-mir-Cas9表达载体具有在gRNA的帮助下位点特异性的切割靶DNA的功能。
所述的同义突变,是利用遗传密码是简并性,即决定一个氨基酸的密码子大多不止一个,置换对应同一个氨基酸的核酸三联体密码子,这种核酸序列的突变并不会改变氨基酸的组成。(参见文献:Kimchi-Sarfaty,C.;Oh,J.M.and Gottesman,M.M.(2007)"A"Silent"Polymorphism in the MDR1Gene Changes Substrate Specificity".Science315(5811):525–528。所述的microRNA靶基因指microRNA能特意性结合并影响表达水平的基因。
附图说明
图1为物信息学分析软件miRanda对Cas9的mRNA与人的microRNA结合位点的分析结果;其中A:Cas9的mRNA与let-7家族的结合位点示意图,可见3个与let-7的结合位点;B:miRanda分析软件所示的直接结果,可见该软件可以提供mRNA与microRNA是否有结合,以及结合位点,结合自由能大小等信息。
图2为实时定量PCR的检测结果;其中A:HEK293细胞转染现有Cas9表达载体后的结果,图中可以看出,相对于转染空载体,转染Cas9表达载体后,CCND2,CDKN1A,HRAS,IGF1R,KRAS表达均有所提高,其中HRAS表达水平提高到对照组的7倍;B:HEK293细胞转染M-mir-Cas9表达载体后的结果;图中可以看出,相对于转染空载体,转染Cas9表达载体后,CCND2,CDKN1A,HRAS,IGF1R,KRAS表达均无明显差异;表明现有Cas9表达载体有增加癌症的风险,而M-mir-Cas9表达载体此方面明显优于Cas9表达载体,其安全性更高。
图3为Cas9与M-mir-Cas9的功能验证的结果;所用细胞为EGFP基因整合进细胞基因组中的HEK293细胞,命名为HEK293-EGFP,该细胞稳定表达EGFP;其中A:HEK293-EGFP细胞转染EGFP-gRNA和不含Cas9表达元件的空载体后的结果,可见每个细胞都表达EGFP,A1为明视野结果,A2为绿色荧光结果,A3为明视野与绿色荧光merge后的结果;B:HEK293-EGFP细胞转染EGFP-gRNA和Cas9表达载体后的结果,可见有些细胞不再表达EGFP,说明Cas9发挥了定点切割DNA的功能,EGFP基因在这些细胞中被成功敲除,B1为明视野结果,B2为绿色荧光结果,B3为明视野与绿色荧光merge后的结果;C:HEK293-EGFP细胞转染EGFP-gRNA和M-mir-Cas9表达载体后的结果,可见有些细胞不再表达EGFP,说明M-mir-Cas9发挥了定点切割DNA的功能,EGFP基因在这些细胞中被成功敲除,C1为明视野结果,C2为绿色荧光结果,C3为明视野与绿色荧光merge后的结果;箭头指示被成功敲除EGFP的细胞。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
下列实施例中未注明具体条件的实验方法,通常按照常规条件如Sambrook等人,分子克隆:实验室指南(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明中。文中所述的较佳实施方法与材料仅作示范之用。
实施例1:生物信息学方法分析现有广泛应用的Cas9表达载体与microRNA结合的位点。
microRNA与RNA相互结合分析软件miRanda可以从如下网址下载:
http://www.microrna.org/microrna/getDownloads.do
下载后按照网站提供的软件使用说明使用,具体的,我们将目前广泛应用的Cas9的编码序列(SEQ ID NO:2,Addgene ID为Plasmid#41815,网址:http://www.addgene.org/search/advanced/?q=41815)导入分析软件,分析其与软件所收录的所有人的microRNA的相互结合情况,我们采用Score Threshold:
140的条件控制指标,得到了与SEQ ID NO:2有相互结合的所有microRNA的情况,以及相应在SEQ ID NO:2中的位点,如图1B所示的一个特例。
经过分析,我们发现SEQ ID NO:2上与microRNA let-7家族有3个结合位点,经分析图示如图1A。
由于文献报道的let-7下游所抑制的靶基因多为癌基因(参见文献:Chiu SC,Chung HY,and Lin SZ(2014)Therapeutic potential of microRNA let-7:tumorsuppression or impeding normal stemness.Cell Transplant.23(4-5):459-469。因此,我们猜测SEQ ID NO:2,也就是Cas9表达载体所转录的mRNA可能通过吸附let-7而影响相关癌基因。
实施例2:实验分析现有Cas9表达载体所转录出的mRNA对let-7所抑制的基因的影响。
一、细胞培养及转染
人胚肾上皮细胞(HEK293,购自中国科学院典型培养物保藏委员会细胞库)分两组培养于含10%胎牛血清的高糖DMEM培养基中,置于37℃,5%二氧化碳培养箱静置培养。当两组细胞密度达到约50%,利用Lipofectamine2000试剂(美国Invitrogene公司),按照转染试剂说明书的步骤和试剂比例,分别转染现有广泛应用的Cas9表达载体(购自AddgenePlasmid ID号:41815,其蛋白编码序列参照序列2)和不具备Cas9编码序列的空质粒作为对照。转染72小时后收细胞进行Real-time PCR实验。
二、Real-time PCR检测
利用Trizol(Invitrogen,15596-026)分别提取上述两组质粒转染72小时后的HEK293细胞,获得的总RNA,并用MMLV反转录试剂盒(美国invitrogene公司试剂盒)反转录为cDNA模板。
Real-time PCR检测引物如下:
CCND2-P1:TGCCACCGACTTTAAGTTTGC(SEQ ID NO:3)
CCND2-P2:GCTCAGTCAGGGCATCACAA(SEQ ID NO:4)
CDKN1A-P1:TGTTCAGGCGCCATGTCAGAA(SEQ ID NO:5)
CDKN1A-P2:TCGAAGTTCCATCGCTCACG(SEQ ID NO:6)
HRAS-P1:TTCTACACGTTGGTGCGTGA(SEQ ID NO:7)
HRAS-P2:GCTTGTGCTGCGTCAGGAG(SEQ ID NO:8)
IGF1R-P1:ACGAGTGGAGAAATCTGCGG(SEQ ID NO:9)
IGF1R-P2:ATGTGGAGGTAGCCCTCGAT(SEQ ID NO:10)
KRAS-P1:AGACAAGACAGAGAGTGGAGG(SEQ ID NO:11)
KRAS-P2:TTCACACAGCCAGGAGTCTTT(SEQ ID NO:12)
内参β-actin的引物如下:
P1:AGTTGCGTTACACCCTTTCTTG(SEQ ID NO:13)
P2:GCTGTCACCTTCACCGTTCC(SEQ ID NO:14)
采用TOYOBO公司的SYBR Green I premix试剂按照下述体系进行PCR反应:
经过预实验后,最终确定以下条件:
结果图2A所示,可见转染现有Cas9表达载体后,相对于转染空载体的HEK293细胞,癌基因CCND2,CDKN1A,HRAS,IGF1R,KRAS表达均有所提高,其中HRAS表达水平提高到对照组的7倍。因此,现有Cas9表达载体有增加癌症的风险。
实施例3:同义突变现有Cas9与microRNA let-7的结合位点,构建M-mir-Cas9表达载体。
现有广泛应用的Cas9表达载体购自Addgene,其Plasmid ID号为:41815。同义突变以此质粒为基础。
快速定点突变试剂盒购自TIANGEN BIOTECH(BEIJING)CO.,LTD,其目录号为KM101。
由于原Cas9上有三个与Let-7的结合位点,我们分三步突变Cas9质粒。
一、突变Cas9表达质粒位点1
突变的目标是使得序列5’-AATCGGATCTGCTACCTG-3’(SEQ ID NO:15,即SEQ IDNO:2中的第229位至第246位)突变为5’-AACCGGATCTGTTATTTG-3’(SEQ ID NO:16,即SEQ IDNO:1中的第229位至第246位)。突变前后不产生框移突变,且翻译后的氨基酸序列一致,都是:NRICYL(SEQ ID NO:17)。
按照以上突变目标,按照突变试剂盒说明书,设计引物:
位点1正向突变引物:
5’-CCCGCAGAAAGAACCGGATCTGTTATTTGCAGGAGATCTT-3’(SEQ ID NO:18)
位点1反向突变引物:
5’-AAGATCTCCTGCAAATAACAGATCCGGTTCTTTCTGCGGG-3’(SEQ ID NO:19)
然后按照说明书加样进行PCR反应,具体反应体系如下:
具体反应条件如下:
反应结束后,再加入1μl的Dpn I restriction enzyme(20U/μl),于37℃消化1小时,然后按照通用流程转化宿主菌。带菌落长出,挑选克隆,测序鉴定成功突变质粒,此处命名为M-mir-Cas9-site1。
二、突变M-mir-Cas9-site1质粒位点2
突变的目标是使得序列5’-CTCTACCTGTACTACCTG-3’(SEQ ID NO:20,即SEQ IDNO:2中的第2431位至第2448位)突变为5’-CTCTATCTGTATTATTTG-3’(SEQ ID NO:21,即SEQID NO:1中的第2431位至第2448位)。突变前后不产生框移突变,且翻译后的氨基酸序列一致,都是:LYLYYL(SEQ ID NO:22)。
按照以上突变目标,按照突变试剂盒说明书,设计引物:
位点2正向突变引物:
5’-CAGAATGAGAAGCTCTATCTGTATTATTTGCAGAACGGCAGGG-3’(SEQ ID NO:23)
位点2反向突变引物:
5’-CCCTGCCGTTCTGCAAATAATACAGATAGAGCTTCTCATTCTG-3’(SEQ ID NO:24)
然后按照上述突变位点1的方式,进一步突变M-mir-Cas9-site1,然后转化挑选克隆,测序鉴定成功突变质粒,此处命名为M-mir-Cas9-site2.
三、突变M-mir-Cas9-site2质粒位点3
突变的目标是使得序列5’-CAA CAC AAA CAC TAC CTT-3’(SEQ ID NO:25,即SEQID NO:2中的第3781位至第3798位)突变为5’-CAG CAT AAA CAT TAT TTG-3’(SEQ ID NO:26,即SEQ ID NO:1中的第3781位至第3798位)。突变前后不产生框移突变,且翻译后的氨基酸序列一致,都是:QHKHYL(SEQ ID NO:27)。
按照以上突变目标,按照突变试剂盒说明书,设计引物:
位点3正向突变引物:
5’-CTGTTCGTGGAACAGCATAAACATTATTTGGATGAGATCATCG-3’(SEQ ID NO:28)
位点3反向突变引物:
5’-CGATGATCTCATCCAAATAATGTTTATGCTGTTCCACGAACAG-3’(SEQ ID NO:29)
然后按照上述突变位点1的方式,进一步突变M-mir-Cas9-site2,然后转化挑选克隆,测序鉴定成功突变质粒,此时,原Cas9上三个与Let-7结合的位点全部同义突变完成,命名为M-mir-Cas9.
实施例4:实验分析现有M-mir-Cas9表达载体所转录出的mRNA对let-7所抑制的基因的影响。
一、细胞培养及转染
人胚肾上皮细胞(HEK293)分两组培养于含10%胎牛血清的高糖DMEM培养基中,置于37℃,5%二氧化碳培养箱静置培养。当两组细胞密度达到约50%,利用Lipofectamine2000试剂(美国Invitrogene公司),按照转染试剂说明书的步骤和试剂比例,分别转染M-mir-Cas9表达载体和不具备Cas9编码序列的空质粒作为对照。转染72小时后收细胞进行Real-time PCR实验。
二、Real-time PCR检测
利用Trizol(Invitrogen,15596-026)分别提取上述两组质粒转染72小时后的HEK293细胞,获得的总RNA,并用MMLV反转录试剂盒(美国invitrogene公司试剂盒)反转录为cDNA模板。
Real-time PCR检测引物如下(同之前SEQ ID NO:3--14):
CCND2-P1:TGCCACCGACTTTAAGTTTGC
CCND2-P2:GCTCAGTCAGGGCATCACAA
CDKN1A-P1:TGTTCAGGCGCCATGTCAGAA
CDKN1A-P2:TCGAAGTTCCATCGCTCACG
HRAS-P1:TTCTACACGTTGGTGCGTGA
HRAS-P2:GCTTGTGCTGCGTCAGGAG
IGF1R-P1:ACGAGTGGAGAAATCTGCGG
IGF1R-P2:ATGTGGAGGTAGCCCTCGAT
KRAS-P1:AGACAAGACAGAGAGTGGAGG
KRAS-P2:TTCACACAGCCAGGAGTCTTT
内参β-actin的引物如下:
P1:AGTTGCGTTACACCCTTTCTTG
P2:GCTGTCACCTTCACCGTTCC
采用TOYOBO公司的SYBR Green I premix试剂按照下述体系进行PCR反应:
经过预实验后,最终确定以下条件:
58℃-95℃制备融解曲线。结果图2B所示。
可见转染现有M-mir-Cas9表达载体后,癌基因CCND2,CDKN1A,HRAS,IGF1R,KRAS的表达水平,相对于转染空载体的HEK293细胞无明显差异。因此,相对于现广泛应用的Cas9表达载体,M-mir-Cas9表达载体可以降低癌症的风险,增加CRISPR-Cas9基因编辑技术的安全性。
实施例5:实验验证M-mir-Cas9表达载体具有在gRNA的帮助下位点特异性的切割靶DNA的功能。
一、细胞准备
人胚肾上皮细胞(HEK293)培养于含10%胎牛血清的高糖DMEM培养基中,置于37℃,5%二氧化碳培养箱静置培养。当细胞密度达到约70%,利用Lipofectamine2000试剂(美国Invitrogene公司),按照转染试剂说明书的步骤和试剂比例,转染EGFP-N1表达载体,转染72小时后加入G418筛选3个星期,获得EGFP稳定表达的HEK293细胞。进一步将HEK293细胞单克隆化,挑选EGFP表达均一的,来自一个细胞的EGFP稳定表达的HEK293细胞系,命名为HEK293-EGFP细胞。
二、靶向EGFP的gRNA表达质粒构建
靶向编码EGFP的DNA序列的gRNA表达质粒的识别序列设计为GCCACAAGTTCAGCGTGTC,其后紧随的PAM序列为CGG,按照Addgene网站(http://www.addgene.org/static/cms/files/hCRISPR_gRNA_Synthesis.pdf)公布的步骤将该gRNA表达元件构建到PLKO质粒里,经测序正确后,被后续实验使用,命名为EGFP-gRNA。
三、检测CRISPR-Cas9与CRISPR-M-mir-Cas9的基因编辑功能
将HEK293-EGFP细胞分三组,其中第一组转染Cas9表达载体和EGFP-gRNA表达载体,第二组转染M-mir-Cas9表达载体和EGFP-gRNA表达载体,第三组转染空载体和EGFP-gRNA表达载体,作为对照组。转染2天后传代,再过两天在荧光显微镜中镜检结果如图3,可见在对照组中全部细胞依然表达EGFP,而在共转染Cas9和EGFP-gRNA表达载体的细胞组中,有部分细胞呈现EGFP表达阴性,表明EGFP被成功敲除,说明EGFP基因的DNA双链发生被Cas9切断事件。在共转染M-mir-Cas9和EGFP-gRNA表达载体的细胞组中,也有部分细胞呈现EGFP表达阴性,表明EGFP被成功敲除,说明EGFP基因的DNA双链发生被Cas9切断事件。证明M-mir-Cas9也具有和Cas9一样的功能。然而结合实施例2和实施例4的结果,我们知道Cas9表达载体可以增加相关癌基因的表达水平,而M-mir-Cas9表达载体没有明显增加相关癌基因的表达水平,说明M-mir-Cas9相对于现有Cas9来说,功能一样,安全性更高,有一定优越性。
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (5)

1.一种编码Cas9蛋白的核酸分子,其特征在于,所述的编码Cas9蛋白的核酸分子,其mRNA形式的序列如SEQ ID NO:1所示。
2.一种携带编码Cas9蛋白的核酸分子的重组表达载体,其特征在于,其中携带的编码Cas9蛋白的核酸分子其mRNA形式的序列如SEQ ID NO:1所示。
3.根据权利要求2所述的一种携带编码Cas9蛋白的核酸分子的重组表达载体,其特征在于,所述的载体为质粒、病毒、合成序列,或人工染色体。
4.一种如权利要求1所述的编码Cas9蛋白的核酸分子在CRISPR-Cas9技术中的应用。
5.一种如权利要求2或3所述的携带编码Cas9蛋白的核酸分子的重组表达载体在CRISPR-Cas9技术中的应用。
CN201510092144.9A 2015-03-02 2015-03-02 一种安全编码Cas9蛋白的核酸分子及其表达载体 Active CN104805099B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510092144.9A CN104805099B (zh) 2015-03-02 2015-03-02 一种安全编码Cas9蛋白的核酸分子及其表达载体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510092144.9A CN104805099B (zh) 2015-03-02 2015-03-02 一种安全编码Cas9蛋白的核酸分子及其表达载体

Publications (2)

Publication Number Publication Date
CN104805099A CN104805099A (zh) 2015-07-29
CN104805099B true CN104805099B (zh) 2018-04-13

Family

ID=53690299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510092144.9A Active CN104805099B (zh) 2015-03-02 2015-03-02 一种安全编码Cas9蛋白的核酸分子及其表达载体

Country Status (1)

Country Link
CN (1) CN104805099B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013066438A2 (en) 2011-07-22 2013-05-10 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
PT3066201T (pt) 2013-11-07 2018-06-04 Massachusetts Inst Technology Métodos e composições relacionadas com crispr com arng reguladores
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
AU2015298571B2 (en) 2014-07-30 2020-09-03 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
JP7109784B2 (ja) 2015-10-23 2022-08-01 プレジデント アンド フェローズ オブ ハーバード カレッジ 遺伝子編集のための進化したCas9蛋白質
CN105907777A (zh) * 2016-06-28 2016-08-31 中国科学院海洋研究所 一种Cas9核酸内切酶分泌型表达载体及其构建方法和应用
CN110214183A (zh) 2016-08-03 2019-09-06 哈佛大学的校长及成员们 腺苷核碱基编辑器及其用途
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
CN109689693B (zh) * 2016-11-03 2022-06-28 深圳华大生命科学研究院 提高基因编辑效率的方法和系统
CN108220339A (zh) * 2016-12-14 2018-06-29 深圳华大生命科学研究院 细胞改造的方法
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
EP3592853A1 (en) 2017-03-09 2020-01-15 President and Fellows of Harvard College Suppression of pain by gene editing
JP2020510439A (ja) 2017-03-10 2020-04-09 プレジデント アンド フェローズ オブ ハーバード カレッジ シトシンからグアニンへの塩基編集因子
IL306092A (en) 2017-03-23 2023-11-01 Harvard College Nucleic base editors that include nucleic acid programmable DNA binding proteins
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
EP3658573A1 (en) 2017-07-28 2020-06-03 President and Fellows of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace)
EP3676376A2 (en) 2017-08-30 2020-07-08 President and Fellows of Harvard College High efficiency base editors comprising gam
CN111757937A (zh) 2017-10-16 2020-10-09 布罗德研究所股份有限公司 腺苷碱基编辑器的用途
WO2020191241A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
CA3177481A1 (en) 2020-05-08 2021-11-11 David R. Liu Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004778A (zh) * 2014-06-06 2014-08-27 重庆高圣生物医药有限责任公司 含有CRISPR/Cas9系统的靶向敲除载体及其腺病毒和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2898184A1 (en) * 2013-01-16 2014-07-24 Emory University Cas9-nucleic acid complexes and uses related thereto

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004778A (zh) * 2014-06-06 2014-08-27 重庆高圣生物医药有限责任公司 含有CRISPR/Cas9系统的靶向敲除载体及其腺病毒和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
microRNAs和高表达small RNAs在水稻两个亚种及正反交F1代中的杂种优势分析;陈芳芳;《中国优秀硕士学位论文全文数据库 农业科技辑》;20120315;第23页第3段 *
Natural RNA circles function as efficient microRNA sponges;Thomas B. Hansen et al.;《NATURE》;20130227;第495卷;第384页左栏第2段 *
RNA-Guided Human Genome Engineering via Cas9;Prashant Mali et al.;《SCIENCE》;20130103;第339卷;第823页中栏第2段 *
内向整流钾通道J亚家族成员5基因C171T变异与原发性醛固酮增多症患者低血钾的相关性;李红建等;《中华高血压杂志》;20130831;第21卷(第8期);第757页右栏第2段 *

Also Published As

Publication number Publication date
CN104805099A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
CN104805099B (zh) 一种安全编码Cas9蛋白的核酸分子及其表达载体
Xu et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing
Wang et al. Identification of circular RNAs in kiwifruit and their species-specific response to bacterial canker pathogen invasion
Chen et al. Genome-wide identification of circular RNAs in Arabidopsis thaliana
Zhou et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
Kumar et al. A high-throughput method for Illumina RNA-Seq library preparation
Suga et al. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis
Gao et al. A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes
Li et al. Genome-wide DNA methylome variation in two genetically distinct chicken lines using MethylC-seq
CN109750035B (zh) 靶向并引导Cas9蛋白高效切割TCR及B2M基因座的sgRNA
EP3940078A1 (en) Off-target single nucleotide variants caused by single-base editing and high-specificity off-target-free single-base gene editing tool
Xu et al. Radiation-induced epigenetic bystander effects demonstrated in Arabidopsis thaliana
Zheng et al. Insights into an extensively fragmented eukaryotic genome: de novo genome sequencing of the multinuclear ciliate Uroleptopsis citrina
WO2019227640A1 (zh) 利用碱基编辑修复fbn1t7498c突变的试剂和方法
Stelzer et al. Differentiation of human parthenogenetic pluripotent stem cells reveals multiple tissue-and isoform-specific imprinted transcripts
Kouprina et al. Highly selective, CRISPR/Cas9‐mediated isolation of genes and genomic loci from complex genomes by TAR cloning in yeast
Pathak et al. Repetitive DNA: A tool to explore animal genomes/transcriptomes
Wang et al. De novo transcriptome analysis of mulberry (Morus L.) under drought stress using RNA-Seq technology
Huang et al. The maize B chromosome is capable of expressing microRNAs and altering the expression of microRNAs derived from A chromosomes
CN110819592A (zh) 一种通用供体干细胞及其制备方法
Wang et al. Exonic circular RNAs are involved in Arabidopsis immune response against bacterial and fungal pathogens and function synergistically with corresponding linear RNAs
Dueck et al. Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants
Smith et al. Does mitochondrial DNA replication in Chlamydomonas require a reverse transcriptase?
Saint-Marcoux et al. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae
CN106566872B (zh) 基于测序基因分型技术的猪snp标记位点的分析方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant