CN108610399B - 特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法 - Google Patents
特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法 Download PDFInfo
- Publication number
- CN108610399B CN108610399B CN201810458553.XA CN201810458553A CN108610399B CN 108610399 B CN108610399 B CN 108610399B CN 201810458553 A CN201810458553 A CN 201810458553A CN 108610399 B CN108610399 B CN 108610399B
- Authority
- CN
- China
- Prior art keywords
- stem cells
- glu
- lys
- crispr
- arg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明提供了一些新的增效蛋白ESCS‑higher,能够显著提高表皮干细胞内CRISPR/Cas9基因编辑效率,为提高细胞中基因编辑效率提供了新的途径;还提供了一种更高效的基因组编辑系统,当本发明所述增效蛋白在与CRISPR/Cas9共同使用时,可以显著提升CRISPR/Cas9在表皮干细胞中的基因组编辑的效率。
Description
技术领域
本发明提供一种提高表皮干细胞中CRISPR-cas系统基因编辑效率的方法,特别是涉及一种新的能够显著提高同源重组概率的增效因子,将所述增效因子与CRISPR-cas系统结合可显著提高基因组编辑效率。
背景技术
表皮干细胞(Epidermal stem cells,EpiSCS)是具有自我增殖和多向分化潜能的干细胞,它的正常增殖和分化是维持皮肤及其附属器(汗腺毛发、皮脂腺)结构和功能完整性的基本要求。在生理条件下,表皮干细胞通过不对称分裂方式分化为一个干细胞和一个短暂扩充细胞(transit amplifying cellsTA细胞),TA细胞再经过多次分裂后分化为有丝分裂后细胞(Post-mitotic cells)及终末分化细胞(terminally-differentiatedcells),以补充表皮细胞不断更新的需要。研究表明表皮干细胞不仅能在体外长期传代培养,并保持其增殖分化潜能(Dunnwald et al,Exp Dermatol,2001,10:45-54.Papini etal.stem cells,2003,21:481-494),而且,在一定环境条件下还表现出与胚胎干细胞相似的分化潜能[Liang et al,stem cells,2002:20:21-31]。因此,获得纯化的表皮干细胞不仅可为构建有生理功能的人工皮肤提供种子细胞,而且可用于基因治疗和转基因动物的生产。
人类多能干细胞(Human pluripotent stem cells,hPSCs)和基因组编辑技术结合所建立的细胞模型,为疾病研究提供了一个独特的实验平台。利用这个平台体系,研究人员可以研究特定基因突变甚至染色体结构变异对人类多种细胞类型和组织器官功能的影响及其详细的分子机制,并可建立携带不同遗传突变的“个性化”疾病模型用于大规模药物筛选。该模型体系的建立得益于基因组编辑技术,尤其是CRISPR/Cas9(Clusteredregularly interspaced short palindromic repeats/CRISPR-associated proteins9,CRISPR/Cas9)技术的飞速发展。
最近研究人员利用CRISPR/Cas9技术,建立了在人多能干细胞中进行基因敲除或者敲入的基因组编辑体系。研究以位于人2号染色体上的LINC00116基因组区域为例,利用CRISPR/Cas9技术对人多能干细胞中的该基因组区域进行了基因敲除、FLAG短肽序列定点插入和基因组大片段删除,获得的多个突变干细胞株为下一步对该基因组区域进行功能分析提供了特有的细胞平台。
这项研究的重要性表现在:通过在基因编码框中引入移码突变进行基因敲除;通过单链DNA提供外源模板经由同源重组定点敲入FLAG序列;通过同时靶向多个位点诱导基因组大片段删除。研究结果表明CRISPR/Cas9可以对多能干细胞进行高效基因编辑,获得的突变干细胞株有助于对基因和基因组区域的功能进行分析和干细胞疾病模型的建立。
利用CRISPR对多能干细胞中多个基因组区域进行靶向的研究结果显示,经由NHEJ引入碱基插入或缺失突变的效率为大于50%,提示利用CRISPR技术可以进行高效的基因敲除,甚至多个基因的同时敲除。
这项研究在由同源重组敲入特定点突变或者外源序列方面,通过单链核苷酸模板定点敲入FLAG小肽序列的效率偏低,仅为1.1%。研究还利用同时导入两条gRNA对基因组区域进行了大片段靶向删除,效率约为5%。靶向删除基因组大片段的效率不仅和每条gRNA的基因编辑活性相关,同时也和片段长度相关。靶向删除片段长度的增加可能带来效率的降低。此外,导入两条或者多条gRNAs,不仅可以引入基因组区域缺失,同时还可以引发其他多种染色体结构变异,包括染色体区域插入(Insertion)、重复(Duplication)、易位(Translocation)和倒位(Inversion)等。基因靶向潜在的问题是脱靶效应。这充分说明,在现有技术中,针对基因编辑技术的效果提高以及靶向性的提高有巨大的需求。
CN106399367A中公开了一种提高CRISPR介导的同源重组效率的方法,包括如下步骤:通过shRNA抑制Lig4、DNA-PK和XRCC6的表达从而抑制非同源末端连接(NHEJ)修复途径;将靶向基因组特定位置的sgRNA与shRNA融合表达,形成shRNA-sgRNA多顺反子;将上述多顺反子置于RNA聚合酶II或RNA聚合酶III启动子下游。该方法需要同时敲除3个基因,操作复杂,并不适宜大规模推广使用。
CN107474129A是申请人之前的发明,其中公开了一种提高CRISPR-cas系统基因编辑效率的方法,有效克服了现有技术在动物体内发生同源重组概率低进而影响精确编辑的技术缺陷,特别是针对干细胞进行基因编辑的缺陷。该方法包括向宿主细胞中引入增效蛋白蛋白实现的。但是申请人利用该增效蛋白时发现,其只是能够在骨髓间质干细胞中具有较好的增效效果,而在其他的干细胞,特别是表皮干细胞中并不具有显著的增效效果。
因此开发一种能够在表皮干细胞中增加基因编辑效率的新方法变得迫在眉睫。
发明内容
本发明的目的是提供一种提高CRISPR-cas系统在表皮干细胞中基因编辑效率的方法,有效克服了现有技术在动物体内发生同源重组概率低进而影响精确编辑的技术缺陷,特别是针对干细胞进行基因编辑的缺陷。
为实现上述目的,本发明提供一种提高CRISPR-cas系统在表皮干细胞中同源重组概率的方法,包括向宿主细胞中引入增效蛋白,所述增效蛋白ESCS-higher是由SEQ ID NO:1所示的核苷酸序列编码的蛋白质。
进一步地,所述增效蛋白包含a)或b):
a)SEQ ID NO:1所示的核苷酸序列编码的蛋白质的多核苷酸序列;
b)SEQ ID NO:2所示的氨基酸序列。
进一步地,克隆增效蛋白ESCS-higher基因,构建EGFP标记的增效蛋白ESCS-higher慢病毒表达载体,用GP2-293T细胞包装慢病毒,修饰干细胞。镜下观察绿色荧光蛋白表达,WesternBlot检测增效蛋白ESCS-higher的表达情况。
更进一步地,提供一种在细胞中采用CRISPR/Cas9进行基因编辑的系统,其特征在于所述系统包括:(1)用于表达SEQ ID NO:1所述的ESCS-higher基因的质粒;(1)用于表达sgRNA的质粒;(2)用于表达Cas9的质粒;(3)用于测试CRISPR/Cas9基因编辑效率的报告系统;所述报告系统是将能够编码有效蛋白的核苷酸片段的C-端与报告基因的N-端拼接,拼接处插入两个限制性核酸内切酶酶切位点。
更进一步地,提供一种在细胞中采用CRISPR/Cas9进行基因编辑的系统,组成为:用于表达SEQ ID NO:1所述的ESCS-higher基因的质粒;(1)用于表达sgRNA的质粒;(2)用于表达Cas9的质粒;
为实现上述目的,本发明还提供一种在表皮干细胞中实现高效基因组编辑的方法,包括在生物体中表达所述基因组编辑系统。
为实现上述目的,本发明还提供一种高效编辑靶位点序列的方法,包括将所述基因编辑系统导入细胞中。
本发明提供了一种提高在表皮干细胞中CRISPR/Cas9基因编辑效率的方法,具有以下优点:
1、本发明提供了一些新的增效蛋白ESCS-higher,能够显著提高表皮干细胞内CRISPR/Cas9基因编辑效率,为提高表皮干细胞中基因编辑效率提供了新的途径;
2、本发明提供了一种更高效的基因组编辑系统,当本发明所述增效蛋白在与CRISPR/Cas9共同使用时,可以显著提升表皮干细胞CRISPR/Cas9的基因组编辑的效率。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为干细胞中CRISPR/Cas9编辑效率图。
具体实施方式
下面通过具体实施例进一步说明本发明提高基因组编辑效率的方法的技术方案。
实施例1、克隆增效蛋白ESCS-higher及构建载体
克隆增效蛋白ESCS-higher基因,通过全基因合成的方法,获得SEQ ID NO:1所述的基因序列,以该序列为模板,根据上下游引物序列分别为5'-atgatatactttattagaat-3',5'-tcaagggatttccatttctc-3',引物和全基因组由上海生工有限公司合成。PCR反应扩增ESCS-higher基因目的基因片段,扩增反应体系如下:95℃、40s,57℃、1min,72℃、1min,72℃、10min,循环35次,PCR产物由上海生工有限公司进行测序,通过测序,结合与SEQ ID NO:1完全匹配。随后,将PCR扩增的目的基因连接在空载体慢病毒载体pHIV-CS-CDF-CG-PRE上,通过PCR扩增、酶切、测序等方法鉴定重组慢病毒载体。结合证明重组慢病毒载体构建成功。随后将该重组慢病毒载体质粒同辅助质粒一起共感染表皮干细胞(ESCs)(按照CN1253558C中权利要求1的方法分离培养获得),骨髓间质干细胞(rMSCs)(购买自吉赛生物),通过重组而包装成能表达ESCS-higher基因的表皮干细胞和骨髓间质干细胞。通过PCR筛选鉴定,将稳定转染的干细胞用于后续基因编辑应用。
实施例2CRISPR/Cas9在表皮干细胞以及骨髓间质干细胞中的应用分析
基于含BSD-fsEGFP融合基因pBGN质粒的CRISPR/Cas9编辑载体
(1)BSD-fsEGFP融合基因:利用常规PCR,扩增公知的BSD基因,5’-PCR引物带HindIII位点,3’-PCR引物引入I-SceI和EcoRI位点。将PCR产物(BSD)插入EGFP质粒(EGFP核苷酸序列为本领域公知的序列,例如CN105647968A中的序列1和序列2所示)中CMV驱动子和EGFP编码区的之间的HindIII和EcoRI位点,生成含BSD-fsEGFP融合基因的质粒pBGN,BSD-fsEGFP融合基因核苷酸序列为如CN105647968A中的序列3和序列4所示)。该融合基因由CMV驱动子或PGK驱动子驱动,但EGFP由于移码而无活性,因此称fsEGFP。
5’-PCR引物为
CTCAAGCTTAACTAAACCATGGCCAAGCCTTTGTCTCAAGAAG,
3’-PCR引物为
AGAATTCCAGTAGGGATAACAGGGTAATGCCAGGTCCGCCCTCCCACACATAACCAGAG。
(2)选择针对人细胞次黄嘌呤磷酸核糖基转移酶HPRT的基因敲除的sgRNA,靶序列5’to 3’GCCCTCTGTGTGCTCAAGGGGGG,通过分子克隆,根据sgRNA的23碱基对目标序列,合成两条互补的对应于sgRNA目标序列正反链的寡核苷酸,退火后插入质粒pBGN的I-SceI和EcoRI位点之间,生成带有对应目标序列的CRISPR/Cas9基因编辑效率测试质粒pBGN-T。sgRNA目标序列的插入尽管造成额外2对碱基对的移码,但仍未能纠正移码的报告基因,因而不能编码正常蛋白,在sgRNA介导基因编辑前无活性可以检测。同时,利用常规操作和公知的sgRNA的表达质粒。
(3)将测试质粒pBGN-T,sgRNA表达质粒,公知的Cas9表达质粒共转染表皮干细胞和骨髓间质干细胞。以未转染实施例1的增效基因的干细胞作为阳性对照,同时,将常规用的GFP表达质粒平行转染细胞以测定转染效率,利用转染效率校正获取的CRISPR/Cas9基因编辑相对效率。
(4)转染2-3天后,利用流式细胞仪测量GFP+细胞的频率。
(5)计算特定sgRNA介导的CRISPR/Cas9基因编辑相对效率。这个相对效率由GFP阳性细胞频率与转染效率的比值代表,结果如图1所示。
我们发现在导入了实施例1的增效蛋白的表皮干细胞中GFP阳性细胞频率分别约为91.6%,未导入实施例1的增效蛋白的表皮干细胞中GFP阳性细胞频率分别约为50.1%。在导入了实施例1的增效蛋白的骨髓间质干细胞中GFP阳性细胞频率分别约为58.1%,未导入实施例1的增效蛋白的骨髓间充质干细胞中GFP阳性细胞频率分别约为50.6%。阴性对照没有GFP阳性细胞,其中P值均小于0.01,具有统计学意义。这充分说明,本发明提供的增效蛋白能够显著的、特异性的增加表皮干细胞中的基因编辑效率,而在骨髓间质干细胞中基本没有增效作用。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。
序列表
<110> 洛阳轩智生物科技有限公司
<120> 特异性增强CRISPR-CAS系统在表皮干细胞中进行基因编辑效率的方法
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2280
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 1
atgatatact ttattagaat aatcatgggc cagactggga agaaatctga gaagggacca 60
gtttgttggc ggaagcgtgt aaaatcagag tacatgcgac tgagacagct caagaggttc 120
agacgagctg atgaagtaaa gagtatgttt agttccaatc gtcagaaaat tttggaaaga 180
acggaaatct taaaccaaga atggaaacag cgaaggatac agcctgtgca catcctgact 240
tctgtgagct cattgcgcgg gactagggag tgttcggtga ccagtgactt ggattttcca 300
acacaagtca tcccattaaa gactctgaat gcagttgctt cagtacccat aatgtattct 360
tggtctcccc tacagcagaa ttttatggtg gaagatgaaa ctgttttaca taacattcct 420
tatatgggag atgaagtttt agatcaggat ggtactttca ttgaagaact aataaaaaat 480
tatgatggga aagtacacgg ggatagagaa tgtgggttta taaatgatga aatttttgtg 540
gagttggtga atgcccttgg tcaatataat gatgatgacg atgatgatga tggagacgat 600
cctgaagaaa gagaagaaaa gcagaaagat ctggaggatc accgagatga taaagaaagc 660
cgcccacctc ggaaatttcc ttctgataaa atttttgaag ccatttcctc aatgtttcca 720
gataagggca cagcagaaga actaaaggaa aaatataaag aactcaccga acagcagctc 780
ccaggcgcac ttcctcctga atgtaccccc aacatagatg gaccaaatgc taaatctgtt 840
cagagagagc aaagcttaca ctcctttcat acgcttttct gtaggcgatg ttttaaatat 900
gactgcttcc tacatcgtaa gtgcaattat tcttttcatg caacacccaa cacttataag 960
cggaagaaca cagaaacagc tctagacaac aaaccttgtg gaccacagtg ttaccagcat 1020
ttggagggag caaaggagtt tgctgctgct ctcaccgctg agcggataaa gaccccacca 1080
aaacgtccag gaggccgcag aagaggacgg cttcccaata acagtagcag gcccagcacc 1140
cccaccatta atgtgctgga atcaaaggat acagacagtg atagggaagc agggactgaa 1200
acggggggag agaacaatga taaagaagaa gaagagaaga aagatgaaac ttcgagctcc 1260
tctgaagcaa attctcggtg tcaaacacca ataaagatga agccaaatat tgaacctcct 1320
gagaatgtgg agtggagtgg tgctgaagcc tcaatgttta gagtcctcat tggcacttac 1380
tatgacaatt tctgtgccat tgctaggtta attgggacca aaacatgtag acaggtgtat 1440
gagtttagag tcaaagaatc tagcatcata gctccagctc ccgctgagga tgtggatact 1500
cctccaagga aaaagaagag gaaacaccgg ttgtgggctg cacactgcag aaagatacag 1560
ctgaaaaagg acggctcctc taaccatgtt tacaactatc aaccctgtga tcatccacgg 1620
cagccttgtg acagttcgtg cccttgtgtg atagcacaaa atttttgtga aaagttttgt 1680
caatgtagtt cagagtgtca aaaccgcttt ccgggatgcc gctgcaaagc acagtgcaac 1740
accaagcagt gcccgtgcta cctggctgtc cgagagtgtg accctgacct ctgtcttact 1800
tgtggagccg ctgaccattg ggacagtaaa aatgtgtcct gcaagaactg cagtattcag 1860
cggggctcca aaaagcatct attgctggca ccatctgacg tggcaggctg ggggattttt 1920
atcaaagatc ctgtgcagaa aaatgaattc atctcagaat actgtggaga gattatttct 1980
caagatgaag ctgacagaag agggaaagtg tatgataaat acatgtgcag ctttctgttc 2040
aacttgaaca atgattttgt ggtggatgca acccgcaagg gtaacaaaat tcgttttgca 2100
aatcattcgg taaatccaaa ctgctatgca aaagttatga tggttaacgg tgatcacagg 2160
ataggtattt ttgccaagag agccatccag actggcgaag agctgttttt tgattacaga 2220
tacagccagg ctgatgccct gaagtatgtc ggcatcgaaa gagaaatgga aatcccttga 2280
<210> 2
<211> 759
<212> PRT
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 2
Met Ile Tyr Phe Ile Arg Ile Ile Met Gly Gln Thr Gly Lys Lys Ser
1 5 10 15
Glu Lys Gly Pro Val Cys Trp Arg Lys Arg Val Lys Ser Glu Tyr Met
20 25 30
Arg Leu Arg Gln Leu Lys Arg Phe Arg Arg Ala Asp Glu Val Lys Ser
35 40 45
Met Phe Ser Ser Asn Arg Gln Lys Ile Leu Glu Arg Thr Glu Ile Leu
50 55 60
Asn Gln Glu Trp Lys Gln Arg Arg Ile Gln Pro Val His Ile Leu Thr
65 70 75 80
Ser Val Ser Ser Leu Arg Gly Thr Arg Glu Cys Ser Val Thr Ser Asp
85 90 95
Leu Asp Phe Pro Thr Gln Val Ile Pro Leu Lys Thr Leu Asn Ala Val
100 105 110
Ala Ser Val Pro Ile Met Tyr Ser Trp Ser Pro Leu Gln Gln Asn Phe
115 120 125
Met Val Glu Asp Glu Thr Val Leu His Asn Ile Pro Tyr Met Gly Asp
130 135 140
Glu Val Leu Asp Gln Asp Gly Thr Phe Ile Glu Glu Leu Ile Lys Asn
145 150 155 160
Tyr Asp Gly Lys Val His Gly Asp Arg Glu Cys Gly Phe Ile Asn Asp
165 170 175
Glu Ile Phe Val Glu Leu Val Asn Ala Leu Gly Gln Tyr Asn Asp Asp
180 185 190
Asp Asp Asp Asp Asp Gly Asp Asp Pro Glu Glu Arg Glu Glu Lys Gln
195 200 205
Lys Asp Leu Glu Asp His Arg Asp Asp Lys Glu Ser Arg Pro Pro Arg
210 215 220
Lys Phe Pro Ser Asp Lys Ile Phe Glu Ala Ile Ser Ser Met Phe Pro
225 230 235 240
Asp Lys Gly Thr Ala Glu Glu Leu Lys Glu Lys Tyr Lys Glu Leu Thr
245 250 255
Glu Gln Gln Leu Pro Gly Ala Leu Pro Pro Glu Cys Thr Pro Asn Ile
260 265 270
Asp Gly Pro Asn Ala Lys Ser Val Gln Arg Glu Gln Ser Leu His Ser
275 280 285
Phe His Thr Leu Phe Cys Arg Arg Cys Phe Lys Tyr Asp Cys Phe Leu
290 295 300
His Arg Lys Cys Asn Tyr Ser Phe His Ala Thr Pro Asn Thr Tyr Lys
305 310 315 320
Arg Lys Asn Thr Glu Thr Ala Leu Asp Asn Lys Pro Cys Gly Pro Gln
325 330 335
Cys Tyr Gln His Leu Glu Gly Ala Lys Glu Phe Ala Ala Ala Leu Thr
340 345 350
Ala Glu Arg Ile Lys Thr Pro Pro Lys Arg Pro Gly Gly Arg Arg Arg
355 360 365
Gly Arg Leu Pro Asn Asn Ser Ser Arg Pro Ser Thr Pro Thr Ile Asn
370 375 380
Val Leu Glu Ser Lys Asp Thr Asp Ser Asp Arg Glu Ala Gly Thr Glu
385 390 395 400
Thr Gly Gly Glu Asn Asn Asp Lys Glu Glu Glu Glu Lys Lys Asp Glu
405 410 415
Thr Ser Ser Ser Ser Glu Ala Asn Ser Arg Cys Gln Thr Pro Ile Lys
420 425 430
Met Lys Pro Asn Ile Glu Pro Pro Glu Asn Val Glu Trp Ser Gly Ala
435 440 445
Glu Ala Ser Met Phe Arg Val Leu Ile Gly Thr Tyr Tyr Asp Asn Phe
450 455 460
Cys Ala Ile Ala Arg Leu Ile Gly Thr Lys Thr Cys Arg Gln Val Tyr
465 470 475 480
Glu Phe Arg Val Lys Glu Ser Ser Ile Ile Ala Pro Ala Pro Ala Glu
485 490 495
Asp Val Asp Thr Pro Pro Arg Lys Lys Lys Arg Lys His Arg Leu Trp
500 505 510
Ala Ala His Cys Arg Lys Ile Gln Leu Lys Lys Asp Gly Ser Ser Asn
515 520 525
His Val Tyr Asn Tyr Gln Pro Cys Asp His Pro Arg Gln Pro Cys Asp
530 535 540
Ser Ser Cys Pro Cys Val Ile Ala Gln Asn Phe Cys Glu Lys Phe Cys
545 550 555 560
Gln Cys Ser Ser Glu Cys Gln Asn Arg Phe Pro Gly Cys Arg Cys Lys
565 570 575
Ala Gln Cys Asn Thr Lys Gln Cys Pro Cys Tyr Leu Ala Val Arg Glu
580 585 590
Cys Asp Pro Asp Leu Cys Leu Thr Cys Gly Ala Ala Asp His Trp Asp
595 600 605
Ser Lys Asn Val Ser Cys Lys Asn Cys Ser Ile Gln Arg Gly Ser Lys
610 615 620
Lys His Leu Leu Leu Ala Pro Ser Asp Val Ala Gly Trp Gly Ile Phe
625 630 635 640
Ile Lys Asp Pro Val Gln Lys Asn Glu Phe Ile Ser Glu Tyr Cys Gly
645 650 655
Glu Ile Ile Ser Gln Asp Glu Ala Asp Arg Arg Gly Lys Val Tyr Asp
660 665 670
Lys Tyr Met Cys Ser Phe Leu Phe Asn Leu Asn Asn Asp Phe Val Val
675 680 685
Asp Ala Thr Arg Lys Gly Asn Lys Ile Arg Phe Ala Asn His Ser Val
690 695 700
Asn Pro Asn Cys Tyr Ala Lys Val Met Met Val Asn Gly Asp His Arg
705 710 715 720
Ile Gly Ile Phe Ala Lys Arg Ala Ile Gln Thr Gly Glu Glu Leu Phe
725 730 735
Phe Asp Tyr Arg Tyr Ser Gln Ala Asp Ala Leu Lys Tyr Val Gly Ile
740 745 750
Glu Arg Glu Met Glu Ile Pro
755
<210> 3
<211> 20
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 3
atgatatact ttattagaat 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 4
tcaagggatt tccatttctc 20
Claims (4)
1.一种增效蛋白,具有在表皮干细胞中增加CRISPR-CAS基因编辑效率的功能,所述增效蛋白其氨基酸序列如SEQ ID NO:2所示。
2.一种特异性用于表皮干细胞基因编辑的CRISPR-CAS系统,其特征在于:系统的组成包括:(1)用于表达SEQ ID NO:1所示的ESCS-higher基因的质粒;(2)用于表达sgRNA的质粒;(3)用于表达Cas9的质粒。
3.如权利要求2所述的系统,其特征在于:(1)的质粒提前导入到基因编辑细胞中,筛选得到阳性细胞后,再转入(2)和(3)的质粒。
4.权利要求2或3的系统在制备用于表皮干细胞基因编辑的试剂中的用途。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810458553.XA CN108610399B (zh) | 2018-05-14 | 2018-05-14 | 特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810458553.XA CN108610399B (zh) | 2018-05-14 | 2018-05-14 | 特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108610399A CN108610399A (zh) | 2018-10-02 |
CN108610399B true CN108610399B (zh) | 2019-09-27 |
Family
ID=63663272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810458553.XA Active CN108610399B (zh) | 2018-05-14 | 2018-05-14 | 特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108610399B (zh) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2853829C (en) | 2011-07-22 | 2023-09-26 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US9228207B2 (en) | 2013-09-06 | 2016-01-05 | President And Fellows Of Harvard College | Switchable gRNAs comprising aptamers |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
IL294014B2 (en) | 2015-10-23 | 2024-07-01 | Harvard College | Nucleobase editors and their uses |
IL308426A (en) | 2016-08-03 | 2024-01-01 | Harvard College | Adenosine nuclear base editors and their uses |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
SG11201903089RA (en) | 2016-10-14 | 2019-05-30 | Harvard College | Aav delivery of nucleobase editors |
WO2018119359A1 (en) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Editing of ccr5 receptor gene to protect against hiv infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
EP3592777A1 (en) | 2017-03-10 | 2020-01-15 | President and Fellows of Harvard College | Cytosine to guanine base editor |
JP7191388B2 (ja) | 2017-03-23 | 2022-12-19 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 核酸によってプログラム可能なdna結合蛋白質を含む核酸塩基編集因子 |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN111801345A (zh) | 2017-07-28 | 2020-10-20 | 哈佛大学的校长及成员们 | 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物 |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
CN111757937A (zh) | 2017-10-16 | 2020-10-09 | 布罗德研究所股份有限公司 | 腺苷碱基编辑器的用途 |
WO2020191243A1 (en) | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
DE112021002672T5 (de) | 2020-05-08 | 2023-04-13 | President And Fellows Of Harvard College | Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107474129B (zh) * | 2017-10-12 | 2018-10-19 | 江西汉氏联合干细胞科技有限公司 | 特异性增强crispr-cas系统基因编辑效率的方法 |
CN107586779B (zh) * | 2017-10-14 | 2018-08-28 | 天津金匙生物科技有限公司 | 使用crispr-cas系统对间充质干细胞进行casp3基因敲除的方法 |
-
2018
- 2018-05-14 CN CN201810458553.XA patent/CN108610399B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN108610399A (zh) | 2018-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108610399B (zh) | 特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法 | |
CN107474129B (zh) | 特异性增强crispr-cas系统基因编辑效率的方法 | |
US20230383290A1 (en) | High-throughput precision genome editing | |
US20230203541A1 (en) | Optimized gene editing utilizing a recombinant endonuclease system | |
JP2024023294A (ja) | 遺伝子編集のためのcpf1関連方法及び組成物 | |
US20150376645A1 (en) | Supercoiled minivectors as a tool for dna repair, alteration and replacement | |
CN106566838A (zh) | 一种基于CRISPR‑Cas9技术的miR‑126全长基因敲除试剂盒及其应用 | |
CN107109422A (zh) | 使用由两个载体表达的Cas9蛋白质调节基因表达的方法 | |
CN113278619B (zh) | 双sgRNA、基因敲除载体、基因敲除STING基因的猪成纤维细胞系及其构建方法 | |
CN104611368B (zh) | 重组后不产生移码突变的载体、在爪蛙基因组中进行基因定点敲入的方法及应用 | |
CN109266648A (zh) | 用于在体基因治疗的基因编辑组合物或试剂盒 | |
WO2020173150A1 (zh) | 单碱基编辑导致非靶向单核苷酸变异及避免该变异的高特异性无脱靶单碱基基因编辑工具 | |
JP2023182637A (ja) | 制御性t細胞を改変するための組成物および方法 | |
CN113226336A (zh) | 一种在细胞中递送基因的方法 | |
Laptev et al. | The piggyBac transposon as a tool in genetic engineering | |
WO2019028686A1 (zh) | 基因敲除方法 | |
CN109385421A (zh) | 基因敲除方法 | |
CN115851706A (zh) | 一种碱基编辑系统及其应用 | |
US20240263173A1 (en) | High-throughput precision genome editing in human cells | |
Mamun et al. | Fast-track and integration-free method of genome editing by CRISPR/Cas9 in murine pluripotent stem cells | |
CN114395585B (zh) | 用于碱基编辑的组合物 | |
US20230348873A1 (en) | Nuclease-mediated nucleic acid modification | |
Vogel et al. | Overlapping palindromic sequences associated with somatic deletion and meiotic recombination of MHC class I genes | |
WO2024023734A1 (en) | MULTI-gRNA GENOME EDITING | |
Zhang et al. | Construction of Human Neuromuscular Disease-Related Gene Site-Specific Mutant Cell Line by Cas9 Mutation System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190828 Address after: 050000 First Floor of Zhitong Pharmaceutical Valley Science Park, 197 Taihang South Street, Shijiazhuang High-tech Zone, Hebei Province Applicant after: Hebei Wanma Biomedical Co., Ltd. Address before: 471000 Ludu Yuefu Building 1 Unit 1-1404, South of Qianjiang Road, West of Chang Xiamen Street, Luoyang Economic and Technological Development Zone, Henan Province Applicant before: Luoyang Xuan Zhi Biological Technology Co., Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |