KR102545913B1 - 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도 - Google Patents

히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도 Download PDF

Info

Publication number
KR102545913B1
KR102545913B1 KR1020210014635A KR20210014635A KR102545913B1 KR 102545913 B1 KR102545913 B1 KR 102545913B1 KR 1020210014635 A KR1020210014635 A KR 1020210014635A KR 20210014635 A KR20210014635 A KR 20210014635A KR 102545913 B1 KR102545913 B1 KR 102545913B1
Authority
KR
South Korea
Prior art keywords
efficiency
hdac
base editing
base
delete delete
Prior art date
Application number
KR1020210014635A
Other languages
English (en)
Other versions
KR20220111421A (ko
Inventor
김용섭
시지은
Original Assignee
재단법인 아산사회복지재단
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 아산사회복지재단, 울산대학교 산학협력단 filed Critical 재단법인 아산사회복지재단
Priority to KR1020210014635A priority Critical patent/KR102545913B1/ko
Publication of KR20220111421A publication Critical patent/KR20220111421A/ko
Application granted granted Critical
Publication of KR102545913B1 publication Critical patent/KR102545913B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/04Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
    • C07C259/06Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/82Benzo [b] furans; Hydrogenated benzo [b] furans with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/84Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D307/85Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

본 발명은 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도에 관한 것으로서, 로미뎁신(Romidepsin)을 포함한 다양한 HDAC 억제제는 그 표적 유전자인 HDAC1 과 HDAC2를 억제함으로써, Cas9의 효율과 ABE, CBE의 염기교정 효율을 향상시켰다. 이는 HDAC 억제제가 단백질과 gRNA의 발현을 증가시키고 gRNA 표적위치의 히스톤 3 아세틸화(Histone 3 aceylation)를 증가시켜 크로마틴 상태(chromatin state)를 변화시키기 때문이다. 특히 HDAC 억제제는 시토신 염기교정 기술의 효율을 향상시킬 뿐 아니라 기존에 문제점으로 지적된 산물 정확도(product purity)를 향상시킴으로써 약물처리로 손쉽게 효율과 정확도를 향상시킬 수 있음을 확인하였다.

Description

히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도{Composition for improving efficiency and product purity on base editing comprising inhibitors of histone deacetylase and uses thereof}
본 발명은 히스톤 탈아세틸화(histone deacetylase; HDAC) 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도에 관한 것이다.
CRISPR-Cas9 유전자 가위 시스템에 있어서, Cas9은 살아있는 세포 내의 게놈(genome) 상에서 타겟 위치를 인식하고, DNA 이중 나선 절단(double strand break; DSB)를 일으킨다. DSB는 세포 내의 DNA 수선 기작에 의해서 수리되는데, 그 과정을 연구자들이 이용하여 유전자를 녹아웃하거나 교정한다. Cas9을 이용한 유전자 녹아웃은 상대적으로 효율이 높고 간편하지만, 유전자교정은 효율도 낮고 어렵다. 특히 세포는 Cas9에 의한 DSB를 세포 내의 손상(damage)으로 인식하기 때문에 이는 p53 유전자의 활성을 통해 세포 사멸을 유도할 수 있다. DSB를 일으킨다는 점은 Cas9을 세포치료제로 사용하는데, 안전성 문제로 인해 걸림돌이 된다.
염기교정 기술에는 시토신 염기교정 기술(Cytosine base editors; CBEs)과, 아데닌 염기교정 기술(adenine base editors; ABEs)이 있다. CBE는 Cas9 변이체를 이용하여, C에서 T로 변환하는 기작의 염기교정 기술로서, 2016년에 Cas9 단백질에 시티딘 디아미네이즈(cytidine deaminase)를 결합한 새로운 형태의 유전자가위가 보고되었다(Base editor, BE1~4). 이는 Cas9 단백질(dCas9 또는 nCas9)에 시티딘 디아미네이즈(cytidine deaminase)와 우라실 글리코실레이즈 억제제(uracil glycosilase inhibitor; UGI)를 결합하여 C에서 T로 변환을 일으키는 기작이다. 이 기술은 기존의 Cas9에 의한 염기교정보다 효율을 높이면서 DSB를 일으키지 않는다는 점에서 Cas9 보다 뛰어난 기술로 인정받고 있다.
또한, ABE는 Cas9 변이체를 이용하여, A에서 G로 변환하는 기작의 염기교정 기술로서, 세포 내의 DNA 상에서 아데닌(adenine)을 탈아미노화(deamination)시키는 단백질(예를 들어, APOBEC)은 이미 알려져 이를 Cas9과 결합하여 사용할 수 있었지만, 아데닌(adenine)을 탈아미노화시키는 단백질은 없었다. 이후, Harvard 연구진은 RNA에서 아데닌을 탈아미노화하는 단백질 TadA의 개량을 통해 DNA에서도 아데닌을 탈아미노화할 수 있게 하였다.
염기교정 기술의 사용에 있어, 염기교정 기술의 효율성 및 정확성이 매우 중요한데, 특히 C>T 또는 A>G로의 변이도입의 정확성을 일컫는 산물 정확도(product purity)를 향상시켜, 원치 않는 변이를 일으키지 않게 하는 것이 중요하다. 한편, CBE의 경우, 표적 위치에 따라 산물 정확도(product purity)가 떨어지는 경우가 많은데, 정확한 염기교정을 위해 CBE의 정확도(purity)를 높이는 방법이 매우 중요하나, 이를 가능하게 하는 방법은 극히 제한적이다.
한국공개특허 10-2019-0127797 (2019.11.13. 공개)
본 발명의 목적은 히스톤 탈아세틸화(histone deacetylase; HDAC) 억제제를 유효성분으로 포함하는 크리스퍼(CRISPR) 유전자 가위 염기교정(base editors; BEs)의 효율성 및 정확도 향상용 조성물 및 이를 이용한 염기교정의 효율성 및 정확도 향상 방법을 제공하는 데에 있다.
상기 목적을 달성하기 위하여, 본 발명은 히스톤 탈아세틸화(histone deacetylase; HDAC) 억제제를 유효성분으로 포함하는 크리스퍼(CRISPR) 유전자 가위 염기교정(base editors; BEs)의 효율성 및 정확도 향상용 조성물을 제공한다.
또한, 본 발명은 크리스퍼(CRISPR) 유전자 가위의 염기교정(base editors; BEs) 과정에서 HDAC 억제제를 처리하는 단계를 포함하는 염기교정의 효율성 및 정확도 향상 방법을 제공한다.
본 발명은 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도에 관한 것으로서, 로미뎁신(Romidepsin)을 포함한 다양한 HDAC 억제제는 그 표적 유전자인 HDAC1 과 HDAC2를 억제함으로써, Cas9의 효율과 ABE, CBE의 염기교정 효율을 향상시켰다. 이는 HDAC 억제제가 단백질과 gRNA의 발현을 증가시키고 gRNA 표적위치의 히스톤 3 아세틸화(Histone 3 aceylation)를 증가시켜 크로마틴 상태(chromatin state)를 변화시키기 때문이다. 특히 HDAC 억제제는 시토신 염기교정 기술의 효율을 향상시킬 뿐 아니라 기존에 문제점으로 지적된 산물 정확도(product purity)를 향상시킴으로써 약물처리로 손쉽게 효율과 정확도를 향상시킬 수 있음을 확인하였다.
도 1은 로미뎁신(Romidepsin)이 ABE7.10의 아데닌 염기교정 효율을 향상시키는지 확인한 결과이다.
도 2는 로미뎁신(Romidepsin)이 BE3의 시토신 염기교정 효율을 향상시키는지 확인한 결과이다.
도 3은 로미뎁신(Romidepsin)이 Cas9의 효율을 향상시키는지 확인한 결과이다.
도 4는 로미뎁신(Romidepsin)이 BE3의 시토신 염기교정 산물 정확도(product purity)를 높이는지 확인한 결과이다.
도 5는 여러 HDAC 억제제가 여러가지 시토신 염기교정 산물 정확도(product purity)를 향상시키는지 확인한 결과이다.
도 6은 여러 HDAC 억제제가 ABE7.10의 아데닌 염기교정 효율을 향상시키는지 확인한 결과이다.
도 7은 HeLa 세포에서 로미뎁신이 ABE7.10의 아데닌 염기교정 성능을 향상시킴을 확인한 결과이다.
도 8은 여러 프로모터에 대해서 HDAC 억제제가 ABE7.10의 아데닌 염기교정 효율을 향상시키는지 확인한 결과이다.
도 9는 HDAC1 또는 HDAC2 유전자를 억제함으로써 염기교정 효율을 향상시킬 수 있음을 확인한 결과이다.
도 10은 HDAC 억제제가 ABE7.10 단백질과 gRNA의 발현을 증가시키고, gRNA의 표적위치에서 히스톤 3 아세틸화(Histone 3 acetylation) 증가를 통해 크로마틴 상태를 변화시키는 것을 확인한 결과이다.
본 발명은 히스톤 탈아세틸화(histone deacetylase; HDAC) 억제제를 유효성분으로 포함하는 크리스퍼(CRISPR) 유전자 가위 염기교정(base editors; BEs)의 효율성 및 정확도 향상용 조성물을 제공한다.
바람직하게는, 상기 HDAC 억제제는 HDAC 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 작은 간섭 RNA(small interfering RNA; siRNA) 또는 짧은 헤어핀 RNA(short hairpin RNA; shRNA)인 HDAC 발현 억제제일 수 있고, 상기 HDAC 억제제는 HDAC 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머, 항체 또는 천연물인 HDAC 활성 억제제일 수 있으나, 이에 한정되는 것은 아니다.
보다 바람직하게는, 상기 HDAC 활성 억제제는 로미뎁신(romidepsin), 아벡시노스타트(abexinostat), 퀴시노스타트(quisinostat), 트리코스타틴(trichostatin A; TSA) 또는 보리노스타트(vorinostat)일 수 있으나, 이에 한정되는 것은 아니다.
바람직하게는, 상기 염기교정은 시토신 염기교정(Cytosine base editors; CBEs) 또는 아데닌 염기교정(adenine base editors; ABEs)일 수 있으나, 이에 한정되는 것은 아니다.
바람직하게는, 상기 정확도는 산물 정확도(product purity)일 수 있으나, 이에 한정되는 것은 아니다.
바람직하게는, 상기 조성물은 gRNA의 표적위치에서 히스톤 3 아세틸화(Histone 3 acetylation)를 증가시켜 크로마틴 상태를 변화시킬 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 용어 "염기교정(base editors; BEs)"은 표적 유전자 내의 표적 부위에 이중가닥 절단 (double-stranded DNA cleavage)을 발생시키지 않고, 하나 이상의 뉴클레오타이드의 변이 (결실, 치환, 및/또는 삽입 등)를 유발하는 작용을 의미한다. 일 예에서, 상기와 같은 염기 교정은 표적 부위에 종료 코돈을 생성시키거나, 야생형과 다른 아미노산을 코딩하는 코돈을 생성시킴으로써, 표적 유전자를 불활성화 (knock-out)시키거나, 단백질을 생성하지 않는 비코딩 DNA 서열에 변이를 도입하는 등 다양한 형태일 수 있으나, 이에 한정되는 것은 아니다.
특히, 시토신 염기교정 기술(Cytosine base editors; CBEs)은 Cas9 변이체를 이용하여, C에서 T로 변환하는 기작의 염기교정 기술이고, 아데닌 염기교정 기술(adenine base editors; ABEs)은 Cas9 변이체를 이용하여, A에서 G로 변환하는 기작의 염기교정 기술을 의미한다.
본 발명에서 용어 "표적위치" 란, 표적 특이적 효소를 이용하여 변이(염기교정)를 도입하고자 하는 위치를 의미하며, 그 목적에 따라 임의로 선택될 수 있는 것으로 특정 유전자의 코딩 서열 내부에 존재할 수 있을 뿐만 아니라, 단백질을 생성하지 않는 비-코딩 DNA 서열에 존재할 수도 있다.
또한, 본 발명은 크리스퍼(CRISPR) 유전자 가위의 염기교정(base editors; BEs) 과정에서 HDAC 억제제를 처리하는 단계를 포함하는 염기교정의 효율성 및 정확도 향상 방법을 제공한다.
바람직하게는, 상기 HDAC 억제제는 HDAC 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 작은 간섭 RNA(small interfering RNA; siRNA) 또는 짧은 헤어핀 RNA(short hairpin RNA; shRNA)인 HDAC 발현 억제제일 수 있고, 상기 HDAC 억제제는 HDAC 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머, 항체 또는 천연물인 HDAC 활성 억제제일 수 있으나, 이에 한정되는 것은 아니다.
보다 바람직하게는, 상기 HDAC 활성 억제제는 로미뎁신(romidepsin), 아벡시노스타트(abexinostat), 퀴시노스타트(quisinostat), 트리코스타틴(trichostatin A; TSA) 또는 보리노스타트(vorinostat)일 수 있으나, 이에 한정되는 것은 아니다.
바람직하게는, 상기 염기교정은 시토신 염기교정(Cytosine base editors; CBEs) 또는 아데닌 염기교정(adenine base editors; ABEs)일 수 있으나, 이에 한정되는 것은 아니다.
바람직하게는, 상기 정확도는 산물 정확도(product purity)일 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
< 실험예 >
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.
1. 플라스미드 DNA의 구축
gRNAs는 pRG2 (Addgene plasmid #104174) 벡터 내로 클로닝하였다. p3s-Cas9HC (Addgene plasmid #43945), pCMV-BE3 (Addgene plasmid #73021), pCMV-ABE7.10 (Addgene plasmid #102919), pCMV-ABEmax (Addgene plasmid #112095), pCMV-BE4max (Addgene plasmid #112093), pCMV-ABEmax-P2A-GFP (Addgene plasmid #112101) 및 pCMV-BE4max-P2A-GFP (Addgene plasmid #112099)는 플라스미드 DNA 형질감염 실험에 사용되었다. 단백질 발현 분석을 위해, 본 발명자들은 Gibson Assembly Master Mix (New England BioLabs)를 사용하여 상기 나열한 플라스미드의 DNA 정지 코돈 앞에 P2A-GFP 코딩 서열을 삽입하였다. 다른 프로모터들에 의해 작동하는 ABE7.10 발현 상의 HDACi 효과를 조사하기 위해서, EFS (from Lenti-Cas9-Blast, Addgene plasmid #) 및 hPGK (from pCW-Cas9, Addgene plasmid #) 프로모터를 증폭하였고, Gibson Assembly Master Mix (New England BioLabs)를 사용하여 ABE7.10-P2A-GFP 플라스미드 내로 서브클로닝하였다. 상기 컨스트럭트들은 Addgene에 기탁되었다.
2. 동물세포 배양
HEK293T/17 (ATCC CRL-11268) 및 HeLa (ATCC CCL-2) 세포는 10% 우태아혈청 및 1% 페니실린/스트렙토마이신(Welgene)이 첨가된 Dulbecco's modified Eagle's medium에서 유지되었다.
3. 형질감염 및 약물 처리
내재적 사이트에서 염기교정 효율을 측정하기 위해, 형질감염 하루 전에, 1.6 × 105 HEK293T/17 세포 또는 8 × 104 HeLa 세포를 24-웰 플레이트에 접종하였고, 70-80% 컨플루언시(confluency)에서 BEs (ABE7.10, BE3, ABEmax, 및 BE4max, 1.5 μg)를 코딩하는 플라스미드들 또는 gRNA (500 ng)를 코딩하는 플라스미드를 가진 Cas9 (0.5 μg)를 Lipofectamine 2000 (Invitrogen; 3 μL for BEs and 2 μL for Cas9)을 사용하여 형질감염시켰다. 이후, 플라스미드 DNA 형질감염 6시간 후에, 5-10 nM의 로미뎁신(romidepsin, Selleckchem), 아벡시노스타트(abexinostat, Selleckchem), 퀴시노스타트(quisinostat, Selleckchem), 100 nM의 트리코스타틴 A(trichostatin A; TSA, Sigma-Aldrich) 및 0.5 μM의 보리노스타트(vorinostat; Sigma-Aldrich)를 지정한 농도로 적용하였고, 형질감염 72시간 후에 게놈 DNA를 추출하여, 염기교정 효율을 측정하였다. 모든 형질감염은 생물학적으로 3번 반복하여 수행하였다.
4. 염기교정 효율 분석
표적 사이트는 Phusion High-Fidelity DNA Polymerase (New England Biolabs) 및 각 표적 사이트에 대한 적절한 프라이머들을 사용하여 증폭시켰고, 차세대 서열분석(next-generation sequencing; NGS) 라이브러리 제작을 위해, 증폭물은 TruSeq HT Dual index-함유 프라이머들을 사용하여 다시 증폭시켰다. 라이브러리들은 paired-end Illumina Miniseq 및 iSeq 100 with paired-end sequencing systems에 적용시켰다. paired-end reads는 fastq-join을 사용하여 결합되었으며, MAUND (https://github.com/ibs-cge/maund)를 사용하여, 염기 편집 범위 내에서 염기교정된 reads를 총 reads로 나누어서 염기교정 효율성을 계산하였다. 또한, 상기 결과들은 염기교정 효율을 분석하는 툴인, BE-Analyzer를 통해 확인하였다.
5. 단백질 발현 수준 측정
GFP 융합 단백질의 발현 수준을 측정하기 위해서, GFP 융합 단백질을 코딩하는 2 μg의 플라스미드 DNA를 1.6 × 105 HEK293T/17 세포 내로 형질감염시켰고, 형질감염 6시간 후에, 10 nM 로미뎁신(romidepsin)을 적용하였다. 형질감염 72시간 후, 세포들을 수집하였고, GFP 발현 수준을 BD FACSCanto Ⅱ로 분석하였다. 종합하면, 각 조건에서 10,000개의 세포들을 분석하였고, FITC 양성으로 염색된 세포들의 비율을 측정하였다. FACS 데이터는 Flowjo program를 사용하여 분석하였다. 웨스턴 블랏 분석을 위해, 1 × RIPA buffer를 사용하여 전체 세포 용해물(whole cell lysate; WCL)을 제조하였고, 제조사의 프로토콜에 따라 iWestern system (Thermo Fisher)으로 시험하였다. 간단히 설명하면, 10 μg의 WCL을 4-12% Bis-Tris Plus Gels에서 분리하였고, iBlot 2 Dry Blotting System을 사용하여 폴리비닐리덴 디플루오라이드 멤브레인으로 옮겼다. anti-Cas9 (Invitrogen, MA1-201), anti-HDAC1 (Cell Signaling Technology, #5356), HDAC2 (Cell Signaling Technology, #5113) 및 anti-GAPDH (Santacruz, sc-47724) 항체들로 면역블랏팅을 수행하였다. 향상된 화학형광분석을 사용하여, 웨스턴 블랏들을 검출하였다. 단백질 밴드들의 세기는 ImageJ Gel Analysis program을 사용하여 정량화하였다.
6. 크로마틴 면역침전 분석
크로마틴 면역침전(Chromatic immunoprecipitation; ChIP) 분석은 Pierce Magnetic ChIP Kit (Thermo Scientific, Pierce™ Magnetic ChIP Kit, #26157)를 사용하여 제조사의 지시에 따라 수행하였다. 간단히 설명하면, HEK293T 세포를 1% 포름알데히드로 고정하여, 10 nM 로미뎁신으로 72시간 동안 처리하였다. 세포 용해 후, 제조사의 지시에 따라 MNase 절단을 수행하였다. 다음으로, 용해물을 20 s 펄스로 3번 초음파처리하여, 200-1000 bp 길이의 DNA 단편으로 잘라냈다. 키트에 포함된 Anti-normal rabbit IgG 또는 anti-acetyl-histone H3 Lys9 (Upstate, #06-942) 항체를 사용하여, DNA-단백질 복합체를 침전시켰다. 면역침전된 DNA를 qPCR로 시험하였다.
7. 표적 위치 정보 및 프라이머 정보
본 발명에 사용된 표적 위치정보(표 1) 및 프라이머 정보(표 2 및 표 3)는 다음과 같다.
Figure 112021013382880-pat00001
Figure 112021013382880-pat00002
Figure 112021013382880-pat00003
< 실시예 >
로미뎁신(Romidepsin)이 ABE7.10의 아데닌 염기교정 효율을 향상시키는지 확인하기 위해, 세포내 표적 위치 16개에 대하여 실험을 수행하였다. HEK293T 세포에서 형질감염한 후 로미뎁신을 처리하고 3일 후 NGS를 이용하여 염기교정 효율을 측정한 결과, 대부분의 세포내 표적위치에서 유의미하게 ABE7.10의 아데닌 염기교정 효율을 향상시키는 것을 확인하였다(도 1).
로미뎁신(Romidepsin)이 아데닌 염기교정 뿐만 아니라 시토신 염기교정 효율을 향상시키는지 확인하기 위해, 세포내 표적 위치 12개에 대하여 BE3를 이용하여 시토신 염기교정 실험을 수행하였다. HEK293T 세포에서 형질감염한 후 로미뎁신을 처리하고 3일 후 NGS를 이용하여 염기교정 효율을 측정한 결과, 대부분의 세포내 표적위치에서 유의미하게 BE3의 시토신 염기교정 효율을 향상시키는 것을 확인하였다(도 2).
로미뎁신(Romidepsin)이 염기교정 뿐 아니라 Cas9의 효율을 향상시키는지 확인하기 위해, 세포내 표적 위치 11개에 대하여 실험을 수행하였다. HEK293T 세포에서 형질감염한 후 로미뎁신을 처리하고 3일 후 NGS를 이용하여 Cas9에 의해 도입된 indel 효율을 측정한 결과, 대부분의 세포내 표적위치에서 유의미하게 Cas9의 효율을 향상시키는 것을 확인하였다(도 3).
기존의 ABE7.10 과 BE3의 성능을 향상시킨 구조물 ABEmax 와 BE4max가 보고된 바 있다. 이는 세포 내 단백질 발현효율을 높이고 핵 내로의 전달효율을 높인 구조물이다. 로미뎁신(Romidepsin)이 이들 향상된 염기교정 기술의 효율도 증가시키는지 확인하기 위해 실험을 수행하였다. HEK293T 세포에서 형질감염한 후 로미뎁신을 처리하고 3일 후 NGS를 이용하여 염기교정 효율을 측정한 결과, 일부 표적 위치 (4개 중 3개)에서 염기교정 효율을 향상시키는 것을 확인하였다.
현재까지 개발된 시토신 염기교정기술은 표적위치 내의 시토신을 티민으로 바꾸는 것을 유도하지만, 원치않게 아데닌이나 구아닌으로 바꾸기도 하는데, 일반적으로 시토신을 구아닌으로 바꾸는 사례가 많이 알려져 있다. 염기교정 기술의 성능 중 원하는 염기교정을 정확히 일으켰는지를 확인하는 척도를 산물 정확도(product purity)로 표기하며 아래와 같이 정의된다.
- 표적 위치 내 시토신 위치에서 티민 / (티민+아데닌+구아닌) 의 비율
한편, 아데닌 염기교정기술은 대부분의 아데닌을 구아닌으로 바꾸어 산물 정확도(product purity)가 매우높아 정확도(purity)가 문제가 되는 사례는 많지 않다.
로미뎁신(Romidepsin)이 시토신 염기교정기술의 효율뿐 아니라 산물 정확도(product purity)도 높이는지 확인하기 위해, 산물 정확도(product purity)가 낮은 HEK2, RNF2, CCR5 site에서 정확도(purity)를 분석하였다. 앞서 말한 바와 같이 HEK293T 세포에서 형질감염한 후 로미뎁신을 처리하고 3일 후 NGS를 이용하여 결과를 얻고 분석하였으며, 그 결과 모든 위치에서 산물 정확도(product purity)를 향상시키는 것을 확인하였다(도 4).
시토신 염기교정 기술의 향상된 구조물로 알려진 BE4, BE4max, AncBE4max에 대하여 로미뎁신의 효과를 확인한 결과, 서로 다른 시토신 염기교정기술에서 모두 산물 정확도(product purity)를 향상시키는 것을 확인하였다. 로미뎁신은 HDAC1과 HDAC2의 억제제로 알려져 있다. 트리코스타틴 A(Trichostatin A; TSA)는 모든 HDAC 을 억제하는 pan-HDAC 억제제로 알려져 있으며, 퀴시노스타트(Quisinostat)은 HDAC1 억제제로 알려져 있다. 이들은 구조적으로 전혀 다른 약물이다. 서로 다른 HDAC 억제제가 시토신 염기교정기술의 산물 정확도(product purity)를 향상시키는지 확인하기 위해, HEK293T 세포에서 HEK2 위치에 대해 동일한 방법으로 실험을 수행하였고, 그 결과 로미뎁신 뿐 아니라 TSA 와 퀴시노스타트 또한 시토신 염기교정 기술의 산물 정확도(product purity)를 향상시키는 것을 확인하였다(도 5).
ABE의 효율 향상 또한 여러 HDAC 억제제에 대해 동일하게 나타나는 결과임을 확인하기 위해 아벡시노스타트(Abexinistat), 퀴시노스타트(Quisinostat), 보리노스타트(vorinostat), 트리코스타틴 A(Trichostatin A) 등 여러 약물에 대해 실험을 수행하였고, 실제 여러 HDAC 억제제가 모두 아데닌 염기교정 기술의 효율을 향상시키는 것을 확인하였다(도 6).
HDAC 억제제의 아데닌 염기교정 효율의 향상이 HEK293T 세포에 한정된 것이 아님을 확인하기 위해, 다른 세포주에서 추가 검증 실험을 수행하였다. HeLa 세포에서 아데닌 염기교정기술의 성능 향상 확인 실험을 수행하였고, 이전 방법과 동일하게 세포 내 ABE7.10과 표적 gRNA 를 발현하는 플라스미드를 형질감염하고 로미뎁신 약물을 처리하였다. 3일 후 NGS를 이용하여 아데닌 염기교정 효율을 분석한 결과, HeLa 세포주에서도 로미뎁신이 염기교정 효율을 향상시키는 것을 확인하였다(도 7).
Cas9이나 염기교정기술 (ABE, CBE)를 발현하는 플라스미드는 모두 CMV 프로모터 하에서 단백질이 발현되도록 설계되어 있다. 본 발명의 HDAC 억제제의 효과가 CMV 프로모터에 국한되는 것인지를 확인하기 위해, 여러 프로모터 (EF1alpha short promoter, hPGK promoter)에서도 효과가 있는지 확인하기 위한 실험을 수행하였고, 그 결과 여러 가지 프로모터에 대해서도 동일하게 HDAC 억제제가 아데닌 염기교정 기술의 효율을 향상시키는 것을 확인하였다(도 8).
위에서 보여준 결과와 같이, 여러 가지 HDAC 억제제가 염기교정 효율을 향상시키는 것으로 확인되었고, 이러한 효과가 약물의 표적 유전자의 억제에 의한 것임을 검증하기 위해, 여러 약물들의 공통된 표적인 HDAC1 과 HDAC2를 억제하였을 때 염기교정 효율이 향상되는지 확인하는 실험을 수행하였다. shRNA를 이용하여 HDAC1 과 HDAC2가 각각 발현이 억제된 세포주를 만들고, 이를 웨스턴 블랏으로 확인하였다. 이 세포주들에 대해 ABE7.10과 표적 gRNA를 발현하는 플라스미드를 형질감염하고, 3일 후 NGS를 이용하여 염기교정 효율을 분석한 결과, 야생형(wildtype) HEK293T 에 비해 HDAC1 녹다운(knockdown) 세포주와 HDAC2 녹다운(knockdown) 세포주에서 현저하게 아데닌 염기교정 효율이 향상되는 것을 확인하였다. 이를 통해 HDAC1 또는 HDAC2 유전자를 억제함으로써 염기교정기술의 효율을 향상시킬 수 있음을 검증하였다(도 9).
HDAC 억제제가 실제로 어떻게 아데닌 염기교정 기술의 효율을 증가시키는지 확인하기 위한 실험을 수행하였다. 앞서 말한 것처럼 HDAC 억제제가 프로모터에 영향을 주므로 실제 발현에 영향을 주는지 확인하였고, 그 결과 ABE7.10 단백질과 gRNA 발현 모두 로미뎁신에 의해 증가됨을 확인하였다. HDAC 억제제는 실제로 게놈(genome) 상의 크로마틴 상태(chromatin state)도 바꾸는 것으로 알려져 있는데 실제로 gRNA의 표적위치에서 히스톤 3 아세틸화(Histone 3 acetylation)를 증가시켜 크로마틴 상태도 바꾸는 것을 확인하였다(도 10).
결론적으로, 로미뎁신을 포함한 다양한 HDAC 억제제는 그 표적 유전자인 HDAC1 과 HDAC2를 억제함으로써, Cas9의 효율과 ABE, CBE의 염기교정 효율을 향상시켰다. 이는 HDAC 억제제가 단백질과 gRNA의 발현을 증가시키고 gRNA 표적위치의 히스톤 3 아세틸화를 증가시켜 크로마틴 상태를 변화시키기 때문이다. 특히 HDAC 억제제는 시토신 염기교정 기술의 효율을 향상시킬 뿐 아니라 기존에 문제점으로 지적된 산물 정확도(product purity)를 향상시킴으로써 약물처리로 손쉽게 효율과 정확도를 향상시킬 수 있음을 확인하였다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (13)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 크리스퍼(CRISPR) 유전자 가위의 시토신 염기교정(Cytosine base editors; CBEs) 또는 아데닌 염기교정(adenine base editors; ABEs) 과정에서 HDAC 억제제를 처리하는 단계를 포함하는 CBEs 또는 ABEs의 효율성 및 산물 정확도(product purity) 향상 방법.
  9. 제8항에 있어서, 상기 HDAC 억제제는 HDAC 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 작은 간섭 RNA(small interfering RNA; siRNA) 및 짧은 헤어핀 RNA(short hairpin RNA; shRNA)로 구성된 군으로부터 선택된 어느 하나 이상인 HDAC 발현 억제제인 것을 특징으로 하는 방법.
  10. 제8항에 있어서, 상기 HDAC 억제제는 PDK2 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머, 항체 및 천연물로 구성된 군으로부터 선택된 어느 하나 이상인 HDAC 활성 억제제인 것을 특징으로 하는 방법.
  11. 제10항에 있어서, 상기 HDAC 활성 억제제는 로미뎁신(romidepsin), 아벡시노스타트(abexinostat), 퀴시노스타트(quisinostat), 트리코스타틴(trichostatin A; TSA) 및 보리노스타트(vorinostat)로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 방법.
  12. 삭제
  13. 삭제
KR1020210014635A 2021-02-02 2021-02-02 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도 KR102545913B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210014635A KR102545913B1 (ko) 2021-02-02 2021-02-02 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210014635A KR102545913B1 (ko) 2021-02-02 2021-02-02 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도

Publications (2)

Publication Number Publication Date
KR20220111421A KR20220111421A (ko) 2022-08-09
KR102545913B1 true KR102545913B1 (ko) 2023-06-22

Family

ID=82844808

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210014635A KR102545913B1 (ko) 2021-02-02 2021-02-02 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도

Country Status (1)

Country Link
KR (1) KR102545913B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064630B (zh) * 2022-11-18 2024-04-02 华东理工大学 一种基于Cas蛋白酰基化修饰工程改进CRISPR基因编辑效率的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
KR102537447B1 (ko) * 2017-04-10 2023-05-30 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. 유전체 편집 효율 증가를 위한 화합물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nucleic Acids Research, 2020, Vol.48, No.2, pp.517-532 1부.*
Sci China Life Sci., Vol.64, No.9, pp.1449-1462 (온라인 공개 : 2021.01.06.) 1부.*

Also Published As

Publication number Publication date
KR20220111421A (ko) 2022-08-09

Similar Documents

Publication Publication Date Title
US20230042624A1 (en) Crispr/cas transcriptional modulation
Zhang et al. Circular intronic long noncoding RNAs
WO2018179578A1 (ja) ゲノム編集によるエクソンスキッピング誘導方法
Zuris et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
US10676735B2 (en) High-throughput screening of regulatory element function with epigenome editing technologies
JP6788584B2 (ja) Crisprについての超並列コンビナトリアル遺伝学
Begum et al. The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation
US20210047375A1 (en) Lentiviral-based vectors and related systems and methods for eukaryotic gene editing
JP2023168355A (ja) 改良された相同組換えおよびその組成物のための方法
Rush et al. Targeting of EZH2 to a defined genomic site is sufficient for recruitment of Dnmt3a but not de novo DNA methylation
JP2017537613A5 (ko)
JP2021524272A (ja) ガイドrna分子および/またはガイドrna分子/rna誘導型ヌクレアーゼ複合体の無痕跡送達のための小胞およびその産生方法
Pradeepa et al. Psip1/Ledgf p75 restrains Hox gene expression by recruiting both trithorax and polycomb group proteins
US20210269805A1 (en) Transcription Factor Trapping by RNA in Gene Regulatory Elements
KR102545913B1 (ko) 히스톤 탈아세틸화 억제제를 포함하는 염기교정 기술의 효율성 및 정확도 향상용 조성물 및 이의 용도
Zhang et al. HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs
Haque et al. Chromatin and splicing
Leader et al. The upstream 5′ splice site remains associated to the transcription machinery during intron synthesis
EP4135778A1 (en) Crispr-inhibition for facioscapulohumeral muscular dystrophy
Eberle et al. An interaction between RRP6 and SU (VAR) 3-9 targets RRP6 to heterochromatin and contributes to heterochromatin maintenance in Drosophila melanogaster
Wang et al. Enhancing expression level and stability of transgene mediated by episomal vector via buffering DNA methyltransferase in transfected CHO cells
JPWO2019017321A1 (ja) 遺伝子変異導入方法
Voon et al. Pediatric glioma histone H3. 3 K27M/G34R mutations drive abnormalities in PML nuclear bodies
JP2024518793A (ja) 向上した安定性を有するcas9エフェクタータンパク質
WO2020036653A2 (en) Improved method for homology directed repair in cells

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)