CN107858373B - 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法 - Google Patents

内皮细胞条件性敲除ccr5基因小鼠模型的构建方法 Download PDF

Info

Publication number
CN107858373B
CN107858373B CN201711139533.8A CN201711139533A CN107858373B CN 107858373 B CN107858373 B CN 107858373B CN 201711139533 A CN201711139533 A CN 201711139533A CN 107858373 B CN107858373 B CN 107858373B
Authority
CN
China
Prior art keywords
mouse
mice
ccr5
endothelial cell
loxp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711139533.8A
Other languages
English (en)
Other versions
CN107858373A (zh
Inventor
张钟文
廖琳
董建军
吴红霞
张瀚允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Keyuan Pharmaceutical Co ltd
First Affiliated Hospital of Shandong First Medical University
Original Assignee
Shandong Qianfoshan Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Qianfoshan Hospital filed Critical Shandong Qianfoshan Hospital
Priority to CN201711139533.8A priority Critical patent/CN107858373B/zh
Publication of CN107858373A publication Critical patent/CN107858373A/zh
Application granted granted Critical
Publication of CN107858373B publication Critical patent/CN107858373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0362Animal model for lipid/glucose metabolism, e.g. obesity, type-2 diabetes

Abstract

本发明公开了一种内皮细胞条件性敲除CCR5基因小鼠模型的构建方法:首先,获得CCR5loxp/loxp小鼠,然后与Tie‑2‑cre/ERT2小鼠交配,得到在内皮细胞中特异性敲除CCR5基因的杂合子小鼠,然后该杂合子小鼠进行相互交配,从而得到在内皮细胞中特异性敲除CCR5基因的纯合子小鼠。本发明的构建方法,通过CRISPR/Cas9系统构建条件性内皮细胞基因敲除小鼠,在小鼠体内以一种细胞特异性方式引入突变,从而使CCR5靶基因的缺失发生在试验动物的某一特定的组织器官,最大限度达到机理研究的可控性,克服了常规基因敲除术不区分不同组织或细胞,在小鼠体内行所有组织或细胞剔除靶基因的弊端。

Description

内皮细胞条件性敲除CCR5基因小鼠模型的构建方法
技术领域
本发明涉及一种内皮细胞条件性敲除CCR5基因小鼠模型的构建方法,属于动物模型及其应用领域。
背景技术
趋化因子受体CCR5(chemokine receptor 5)是一类G蛋白7次跨膜受体,分子量约为40.6KDa,由352个氨基酸残基组成,结构上可分为:胞外N末端、3个胞外环(extracellular loop)区域(ECL1、ECL2、ECL3)、3个胞内环区域、7个跨膜α螺旋和胞内C末端(Szpakowska M,Perez Bercoff D,Chevigne A.Closing the ring:a fourthextracellular loop in chemokine receptors.Science signaling,2014,7(341):pe21.),主要表达在单核细胞和某些T细胞亚群。CCR5的配体主要为趋化因子CCL3(chemokine C-C motif ligand 3)、CCL4(chemokine C-C motif ligand 4)和CCL5(chemokine C-C motif ligand 5)。CCR5作为一种G蛋白偶联受体,通过胞外环与配体结合后,使G蛋白上α亚基与β、γ亚基分离,变为激活状态,激活下游信号通路,参与机体生理与病理调节过程如刺激淋巴细胞增生,调节巨噬细胞侵润和MI/M2型极化等。高糖条件下,CCR5在单核/巨噬细胞中表达明显升高,高浓度水平的CCR5可促进巨噬细胞侵润,加重机体炎症反应。长期以来,CCR5一直被看作是调控巨噬细胞迁移、加重糖尿病微血管损伤的重要因子。然而我们前期研究发现:CCR5基因功能性缺失会导致糖尿病患者微血管并发症发病风险增加(Zhang ZW,Zhang XQ,Dong JJ,et al.Association of CCL5/CCR5 genepromoter polymorphisms with diabetic microvascular complications:A meta-analysis.Journal of diabetes investigation,2016,Mar;7(2):212-8.),我们进一步研究证实,CCR5不仅表达于单核/巨噬细胞中,也特异性表达于内皮/内皮祖细胞中,敲除CCR5虽然能减轻炎症反应,但是也加重了内皮损伤(Zhang Z,Dong J,Lobe C G,et al.CCR5facilitates endothelial progenitor cell recruitment and promotes thestabilization of atherosclerotic plaques in ApoE-/-mice.Stem Cell Research&Therapy,2015,6(1):36.),而内皮细胞特异表达的CCR5是组织血管再生的重要调节因子。与CCR5基因沉默的细胞相比,表达CCR5基因的内皮祖细胞有更强的促血管生成能力。靶向敲除CCR5会导致内皮祖细胞向受损部位聚集减少,促血管生成因子VEGF表达量降低,皮肤损伤愈合延迟(Ishida Y,Kimura A,Kuninaka Y,et al.Pivotal role of the CCL5/CCR5interaction for recruitment of endothelial progenitor cells in mouse woundhealing.The Journal of clinical investigation,2012,122(2):711-721.)。我们前期研究进一步证实,高糖条件下,小鼠微血管内皮细胞中转染CCR5表达质粒后,细胞促血管新生能力增强,而靶向敲除CCR5后这一促血管新生能力又被明显抑制。上述证据提示CCR5在巨噬/内皮细胞的功能存在异质性,CCR5是介导微血管内皮细胞发挥血管新生功能的关键分子。
基于CCR5在不同的细胞中具体独特的调控机理和特异的功能活性,有必要构建一种动物模型以便于实验和研究,但是国内外尚无CCR5条件性敲除鼠的构建,也无人开展在内皮细胞特异性敲除CCR5的研究。申请人首次证实CCR5在巨噬/内皮细胞中存在“双刃剑”作用,该动物模型一旦构建成功,能为研究CCR5在内皮细胞特异性奠定技术基础,阐明CCR5同一基因在不同细胞、组织中存在异质性,为下一步干预或减缓微血管并发症的进展提供精准分子靶点,符合精准医学的范畴。因此,本发明拟构建条件性内皮细胞基因敲除小鼠,在小鼠体内以一种细胞特异性方式引入突变,从而使CCR5靶基因的缺失发生在试验动物的某一特定的组织器官,最大限度达到机理研究的可控性,克服了常规基因敲除术不区分不同组织或细胞,在小鼠体内行所有组织或细胞剔除靶基因的弊端。本发明现就条件性内皮细胞CCR5基因敲除小鼠制备及繁育方法进行详细的介绍和探讨。
发明内容
针对上述现有技术,本发明提供了一种内皮细胞条件性敲除CCR5基因小鼠模型的构建方法。本发明填补了现有技术在内皮细胞中特异性敲除CCR5基因小鼠的空缺,为微血管病变的机制研究提供一个可信的小鼠模型及该小鼠模型的制备方法。
本发明是通过以下技术方案实现的:
一种内皮细胞条件性敲除CCR5基因小鼠模型的构建方法:首先,获得CCR5loxp/loxp小鼠,然后与Tie-2-cre/ERT2小鼠(携带有Tie2-Cre基因的Cre工具小鼠,该品系小鼠的Cre重组酶由小鼠内皮特异性受体酪氨酸激酶Tie2启动子驱动,经他莫昔芬诱导可在内皮细胞中特异表达Cre重组酶)交配,得到在内皮细胞中特异性敲除CCR5基因的杂合子小鼠(CCR5flox/+,Cre),然后该杂合子小鼠进行相互交配,从而得到在内皮细胞中特异性敲除CCR5基因的纯合子小鼠(CCR5flox/flox,Cre);
其中,CCR5loxp/loxp小鼠的构建方法包括以下步骤:
(1)使用显微注射仪将Cas9 mRNA、gRNA和Donor DNA按一定浓度比例混匀后,注射入小鼠的受精卵中,则Cas9蛋白在gRNA的靶向作用下对CCR5基因的DNA双链进行切割(如图5所示),从而诱发同源重组修复机制以Donor DNA为模板对损伤的CCR5基因进行修复,将LoxP序列整合到小鼠基因组中的特定位点;然后将受精卵移植入假孕母鼠的输卵管中,通常注射150~200枚受精卵,并移植到2只假孕母鼠中;
所述gRNA的序列为:
上游靶点:CCR5-L4:GGGTGCTAATTACTGTTCTA;反向互补序列:TAGAACAGTAATTAGCACCC;
下游靶点:CCR5-R:GAAGAAAGTTTTACGGTTGT;
所述Donor DNA的序列如SEQ ID NO.20所示;
(2)上述胚胎移植的小鼠出生后,选取雄性的5’端和3’端均有FloxP插入的小鼠,待7周龄后,与野生型异性小鼠(C57BL/6雌性小鼠)交配,得到F1代loxp杂合子小鼠(CCR5flox/+);
(3)将上述F1代loxp杂合子小鼠进行相互近交,得到F2代小鼠,从F2代小鼠中选取CCR5 loxp纯合子小鼠(CCR5flox/flox),CCR5 loxp纯合子小鼠相互近交产生F3代,得到稳定的CCR5 loxp纯合子小鼠品系。
本发明的内皮细胞条件性敲除CCR5基因小鼠模型的构建方法,是在小鼠体内以一种细胞特异性方式引入突变,从而使CCR5靶基因的缺失发生在试验动物的某一特定的细胞,最大限度达到机理研究的可控性。本发明构建的内皮细胞条件性敲除CCR5基因小鼠,将其诱导成糖尿病模型后,与对照组小鼠相比,血管完整性被破坏,内皮细胞密度降低,促血管生成因子如VEGF表达明显降低,微循环功能障碍,该模型构建成功后,可以用于糖尿病微血管并发症如糖尿病心肌病的发病机制研究,也可用于药物的药效观察和药效评价,以及开发相应的微循环治疗药物和治疗方法的研究。
本发明使用的各种术语和短语,若无特别说明,具有本领域技术人员公知的一般含义。
附图说明
图1:gRNA载体示意图。
图2:Cas9蛋白表达载体示意图。
图3:报告质粒示意图。
图4:gRNA的活性检测结果柱形图。
图5:gRNA/Cas9的工作原理示意图。
图6:5’端FloxP插入情况鉴定结果图。
图7:3’端FloxP插入情况鉴定结果图。
图8:5’端插入FloxP序列的小鼠鉴定结果图。
图9:3’端插入FloxP序列的小鼠鉴定结果图。
具体实施方式
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。本领域的专业人员能够理解,在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。
本发明对试验中所使用到的材料以及试验方法进行一般性和/或具体的描述。虽然为实现本发明目的所使用的许多材料和操作方法是本领域公知的,但是本发明仍然在此作尽可能详细描述。
对于以下全部实施例,可以使用本领域技术人员已知的标准操作和纯化方法。除非另有说明,所有温度以℃(摄氏度)表示。所有反应均中室温下进行,除非另有说明。所涉及的序列,均为5’-3’。
下述实施例中所涉及的仪器、试剂、材料等,若无特别说明,均为现有技术中已有的常规仪器、试剂、材料等,可通过正规商业途径获得。下述实施例中所涉及的实验方法,检测方法等,若无特别说明,均为现有技术中已有的常规实验方法,检测方法等。
实验利用CRISPR/Cas9技术进行CCR5基因条件性敲除小鼠的构建
一、Guide RNA(gRNA)靶序列设计
(1)Floxp序列插入位置设计:
根据生物信息学分析:CCR5基因有2个转录本可编码蛋白。以CCR5-001转录本为例,该转录本包括2个外显子(exon),编码354aa,因为蛋白翻译起始于exon2,终止于exon2。故选exon2作为flox区,用同源重组的方式将loxp位点定点整合到exon2编码区上下游约100-200bp的序列中。
(2)gRNA靶序列设计:
在要插入FloxP的外显子两端,设计gRNA靶点,剪切基因组DNA。Mouse小鼠CCR5基因组序列如下(如SEQ ID NO.1所示):
Figure GDA0002291878850000041
Figure GDA0002291878850000051
Figure GDA0002291878850000061
Figure GDA0002291878850000071
Figure GDA0002291878850000081
注:mouse CCR5基因组序列:exon2;灰色背景:外显子exon2;下划线:CCR5基因编码区序列;双下划线:Cas9/gRNA剪切基因组DNA的大致位置。
根据基因编码区上下游的序列,设计gRNA靶点,一般在上下游各设计3~6个靶点。在设计靶点时,通常在待删除目标外显子两侧的内含子中或非翻译区寻找合适的靶序列,gRNA靶序列的长度一般选择20bp,其3’端以NGG结尾。其中,设计的CCR5基因gRNA靶序列如下所示(如SEQ ID NO.2~16所示):
CCR5-L1:
Figure GDA0002291878850000082
反向互补:CCATCTGATGATGGGAAAATTAA;
CCR5-L2:
Figure GDA0002291878850000083
反向互补:CCCCACATTGATATGGAAAGCAA;
CCR5-L3:
Figure GDA0002291878850000084
反向互补:CCTAGAAGCAGCATCTTCTATAG;
CCR5-L4:
Figure GDA0002291878850000085
反向互补:CCATAGAACAGTAATTAGCACCC;
CCR5-L5:
Figure GDA0002291878850000086
反向互补:CCAGAAAAACATAAACAGTATAT;
CCR5-R1:
Figure GDA0002291878850000087
CCR5-R2:
Figure GDA0002291878850000091
CCR5-R3:
Figure GDA0002291878850000092
CCR5-R4:
Figure GDA0002291878850000093
CCR5-R5:
Figure GDA0002291878850000094
注:灰色背景为PAM序列,上述带有反向互补序列的靶点,表示该靶点序列位于上述基因组序列的互补链上;
二、gRNA的活性检测
将上述设计好的gRNA靶点构建入gRNA表达载体中(如图1所示),并与Cas9蛋白表达质粒(如图2所示)以及报告质粒(如图3所示)一同转入细胞中,在细胞中进行活性验证。选择活性较高的靶点进行后续实验,并根据所选靶点的序列设计同源臂。实验步骤如下:
(1)合成上述设计的gRNA靶点(不包含3’端的NGG序列),并在退火形成双链后,连接入gRNA表达载体中(图1),然后转入大肠杆菌中进行扩增,并提取质粒备用;
(2)合成上述设计的gRNA靶序列(包含3’端的NGG序列),并在退火形成双链后,连接入Luciferase报告质粒中(图3),然后转入大肠杆菌中进行扩增,并提取质粒备用;
(3)将上述提取的gRNA质粒、luciferase报告质粒和Cas9蛋白表达质粒共转入293细胞中,转染24h后裂解细胞,检测Luciferase的表达水平;
gRNA的活性检测结果如图4所示。
通过以上结果分析,分别选用CCR5-L4和CCR5-R5作为上、下游靶点,进行后续实验:
上游靶点:CCR5-L:GGGTGCTAATTACTGTTCTA(如SEQ ID NO.17所示);反向互补序列:TAGAACAGTAATTAGCACCC(如SEQ ID NO.18所示);
下游靶点:CCR5-R:GAAGAAAGTTTTACGGTTGT(如SEQ ID NO.19所示)。
三、同源重组模板(Donor)的构建
(1)根据上述活性较高的上下游gRNA靶点序列(CCR5-L and CCR5-R)的位置,设计并构建Donor DNA,序列描述如下:
CCR5-exon2-loxp-donor(如SEQ ID NO.20所示):
Figure GDA0002291878850000095
Figure GDA0002291878850000101
Figure GDA0002291878850000111
注:CCR5基因组序列,exon2;双下划线:Cas9/gRNA剪切基因组DNA的大致位置;斜体:FloxP序列ATAACTTCGTATAGCATACATTATACGAAGTTAT;灰色背景:同源臂序列;下划线:CCR5基因编码区。
(2)克隆灰色背景间并包括灰色背景的基因组DNA序列作为同源臂;
(3)在同源臂上的指定位置插入FloxP序列;
(4)将上述构建或合成好的序列,克隆进Donor质粒上,转入大肠杆菌扩增后,提取备用;
四、CCR5-FloxP Founder小鼠的建立
将步骤二中所构建的gRNA表达质粒(CCR5-L4 and CCR5-R)和Cas9蛋白表达质粒线性化后,通过体外转录试剂盒转录出相应的gRNA和Cas9 mRNA,使用显微注射仪将上述Cas9mRNA、gRNA和Donor DNA按一定浓度比例混匀后,注射入小鼠的受精卵中,Cas9蛋白在gRNA的靶向作用下对CCR5基因的DNA双链进行切割(如图5所示),从而诱发同源重组修复机制以Donor DNA为模板对损伤的CCR5基因进行修复,将LoxP序列整合到小鼠基因组中的特定位点。之后将受精卵移植入假孕母鼠的输卵管中。通常注射150~200枚受精卵,并移植到2只假孕母鼠中。
五、Founder小鼠鉴定
(1)胚胎移植的小鼠将在手术后19天左右出生,待小鼠出生20天后剪尾提取DNA并进行基因型鉴定。鉴定结果如图6、图7所示。图6示5’端FloxP插入情况鉴定结果图;共出生4只小鼠,分别标记为1#,2#,3#,4#,如上图红色箭头所示,1#和3#小鼠为5’端插入FloxP序列的小鼠。图7示3’端FloxP插入情况鉴定结果图;总共出生4只小鼠,分别标记为1#,2#,3#,4#,如上图红色箭头所示,3#小鼠为3’端插入FloxP序列的小鼠。
(2)综合以上跑胶结果,初步判断3#为5’端和3’端均有FloxP插入的KI小鼠。
六、Founder小鼠与野生型小鼠交配得到F1代
(1)待雄性Founder小鼠(上述鉴定结果为KI的3#小鼠)到7周龄,与野生型异性小鼠交配,得到F1代loxp杂合子小鼠(CCR5flox/+)9只,小鼠出生20天后取鼠尾,对基因组DNA进行基因型鉴定(如图8、图9所示)。若有阳性小鼠出生,则表示敲入基因已经整合到生殖细胞,标志品系建立成功,确保测序结果与F0代相同。
图8示5’端插入FloxP序列的小鼠鉴定结果图;共出生9只小鼠,分别标记为3-1,3-2,3-3,3-4,3-5,3-6,3-7,3-8,3-9。如图箭头所示,3-2,3-3,3-4,3-7四只小鼠均为5’端插入FloxP序列的小鼠。
图9示3’端插入FloxP序列的小鼠鉴定结果图;共出生9只小鼠,分别编号为3-1,3-2,3-3,3-4,3-5,3-6,3-7,3-8,3-9。如图箭头所示,3-2,3-3,3-4,3-7小鼠均为3’端插入FloxP序列的小鼠;
(2)综合以上跑胶结果,判断编号为3-2,3-3,3-4,3-7小鼠为5’端和3’端均有FloxP插入的F1代小鼠。
七、内皮细胞特异性敲除CCR5基因小鼠的获得
首先将F1代杂合子小鼠(上述鉴定结果为KI的小鼠,编号分别为3-2,3-3,3-4,3-7)进行相互近交,得到F2代小鼠,从F2代小鼠中选取CCR5 loxp纯合子小鼠(CCR5flox/flox),CCR5 loxp纯合子小鼠相互近交产生F3代,得到稳定的CCR5 loxp纯合子小鼠品系,再与携带有Tie2-Cre基因的Cre工具小鼠(Tie2-Cre/ERT2,该品系小鼠的Cre重组酶由小鼠内皮特异性受体酪氨酸激酶(Tie2)启动子驱动,经他莫昔芬诱导可在内皮细胞中特异表达Cre重组酶)交配即可得到在内皮细胞中特异性敲除CCR5基因的杂合子小鼠(CCR5flox/+,Cre),然后再将在内皮细胞中特异性敲除CCR5基因的杂合子小鼠(CCR5flox/+,Cre)进行相互交配从而得到在内皮细胞中特异性敲除CCR5基因的纯合子小鼠(CCR5flox/flox,Cre)。
给本领域技术人员提供上述实施例,以完全公开和描述如何实施和使用所主张的实施方案,而不是用于限制本文公开的范围。对于本领域技术人员而言显而易见的修饰将在所附权利要求的范围内。本说明书引述的所有出版物、专利和专利申请通过引用并入本文,如同这些出版物、专利和专利申请各自特别地和个别地表明通过引用并入本文。
序列表
<110> 山东省千佛山医院
<120> 内皮细胞条件性敲除CCR5基因小鼠模型的构建方法
<141> 2017-11-15
<160> 20
<170> SIPOSequenceListing 1.0
<210> 1
<211> 9939
<212> DNA
<213> Mus musculus
<400> 1
tagcaggtgg ccttaatgga ggcggcccat cttttagcat ggacaaagct ctaagaggca 60
aggtcccaaa gagacttggg tttaggattg cttcttgcag ctgagaagcc ttttcctatc 120
acttcacata gcctaaaagt tcgtgggtat cagcccacca tattggtcag atttcttgca 180
catcaacata aagatgaact ttcatgaatt aactaatgct gtttaggtga attaatgact 240
ttatagagtt cctgatttga tttaaataat cttaggaaga aatttttaaa agatggtttt 300
agttgtttgc tagaaagatg taataaagtt aaaatcaaga atagaatgta cccactcctc 360
ataatagtaa gtaaggctgc ataataagaa atataatgag ttgttatcac tacactaaaa 420
agagaaatat gcttgggaca aatttgtgtt taaggaaaaa gtattcaagt ttaagaatta 480
agccacaggt gtacactatt ataagacaaa gccatgtgaa acagtgacta tgaacttaag 540
tatatagaat gaaaaactgc tttaaagtta atatcaacat ccttttgtaa ctctcatttt 600
gtataacatt ttgtcatgag gtaattttct aataactttt atctataaaa aggccagaga 660
gaggaaataa agatgagtgg gtggttgagg gggaatctgt accatctacc cacctaccca 720
tccatccata catacatcca tccaaggtag tgatgcagcc attttctcct tcacccagtg 780
tgtatgtgtc tgtgagagtg acatctttcc tttccttttt ctctctgatt caaaaagagt 840
taaccagcct ggccagtgaa gggcttctgg ctgcctggca ataaatcctt tatttaatcc 900
cctgttgtta agcaacaggt gataattcct ctgaagcctt tggcttctgg cccaagaaca 960
atgaagaatc aagagtaaat attatttata ctaagaaacc tttattcttg aaaaatcaag 1020
ttttggtccc cacccttcta ctgctctccc aattggctac tatccagaaa gagccagtgt 1080
tctggaaagc tcaaggaaaa ccatggagag agagagagag agagagagag agagagagag 1140
agagagagag agagagaagg aaggagaaag agagagagag agagagagag aaggaaggag 1200
agagagagag agagagagag agagagagag agagagagag agagagacat cttattagtt 1260
accaaggagt gacaagcaac atatgtcagt taaggtttca tactgcccaa attcaaagta 1320
agttacttcc tggtagtgtg gtttttatat taacattcat tttctctata cttggggagt 1380
gttttatcca gaaaaacata aacagtatat ttcttgcctc aagcagttaa ctcaagcgtt 1440
tagcaaatgc atatgtcata ccatagaaca gtaattagca cccactactc attctttctg 1500
gcatttgtgt gaactctagg atttatggat aaatgcctag aagcagcatc ttctatagag 1560
atcttaagcc catgaattag agaggacctg actcagtttc acagattaat tcaccccaca 1620
ttgatatgga aagcaacatt ttatttgatc aaatgcatct ttggtgaatt tcaagccatc 1680
tgatgatggg aaaattaaat gtagaagtct atgcctcaaa gacccactaa gttataaaac 1740
aataattgtg gtaggccaac aattgcttta acctttatta agcattgtct tttatttatt 1800
cataggctct tgcaggatgg attttcaagg gtcagttccg acctatagct atgacatcga 1860
ttatggtatg tcagcaccct gccaaaaaat caatgtgaaa caaattgcgg ctcagctcct 1920
gcccccactc tactccctgg tattcatctt tggttttgtg ggtaacatga tggtcttcct 1980
catcttgata agctgcaaaa agctgaagag cgtgactgat atctacctgc tcaacctggc 2040
catctctgac ctgctcttcc tgctcacact accattctgg gctcactatg ctgcaaatga 2100
gtgggtcttt gggaacataa tgtgtaaagt attcacaggg ctctatcaca ttggttattt 2160
tggtggaatc ttcttcatta tcctcctgac aattgatagg tacttggcta ttgtccatgc 2220
tgtgtttgct ttaaaagtca gaacggtcaa ctttggggtg ataacaagtg tagtcacttg 2280
ggcggtggct gtgtttgcct ctctcccaga aataatcttt accagatctc agaaagaagg 2340
ttttcattat acatgcagtc ctcattttcc acacactcag tatcatttct ggaagagttt 2400
ccaaacatta aagatggtca tcttgagcct gatcctgcct ctacttgtca tggtcatctg 2460
ctactcagga attctccaca ccctgtttcg ctgtaggaat gagaagaaga ggcacagggc 2520
tgtgaggctc atctttgcca tcatgattgt ctactttctc ttctggactc cctacaacat 2580
tgtcctcctc ctgaccacct tccaggaatt ctttggactg aataactgca gtagttctaa 2640
tagactagac caggccatgc aggcaacaga gactcttgga atgacacact gctgcctaaa 2700
ccctgtcatc tatgcctttg ttggagagaa gttccggagt tatctctcag tgttcttccg 2760
aaaacacatg gtcaaacgct tttgcaaacg gtgttcaatt ttccagcaag acaatcctga 2820
tcgtgcaagc tcagtctata cccgatccac aggagaacat gaagtttcta ctggtttatg 2880
acctggttga cttttgtgta tcacgtagtt tttctatgca gcttgggagt aggaatggtt 2940
cttttaaaaa aagaaattag tatcatagag ggcccaagat acatgcatct ttttgatatt 3000
tatttttaga tagattgggt cttttaaaac tgaatgggga ggttggggtg gaggagcagg 3060
gagaacgagt cttttatcag ggccgggaaa tatgcacaaa gagacttgag gcaggtgcca 3120
tgacccatat gcaaagggac ggacacaggg ccgatgctgt ggcctagaga tgacgtgtct 3180
caccgctggg ttcctgaaag gcggctgtaa atatgcctga ttgccataaa gtcgcttctt 3240
gctgtctatg gatgtgcctg actgccaaca gggaagaacc acttctgcct ataaaacgta 3300
gagtcagcag aacttggggt aaatcggagt tagaggtgca taagaacccc taggcttagt 3360
taggttgaaa tacccattga ggaaacagca aatacaaagg aagaataaag agtttagccg 3420
ggaaggtagt ctcattttac agccggaata taatgttatc tcaggctagc attttgttcc 3480
tgccttcaga cctaaatcct accacaccgg gactgtgaaa cacctggatt atgaatcatg 3540
agcctgaggt ctaggaataa taataacgtt tgtgatttta gatgagggct gtttccatag 3600
tttgaagcca gaactttatc atcttgagca gaagctccaa gagatgagga aagagcacca 3660
atttttctct aatttactta gcagtcatca tctctggaag attcatttta gaaacaagtt 3720
gttgtgcccc tcagaagcca tgagagtata acgactgctc tctgtgttcc aggctgagta 3780
tgaggacttc agtcacactt tccagatggc ttctccacac aaacaatgct aagtttggcc 3840
atttcagagg tttaggattt tttgttgttt ttgcagttga tattttgaat tttagagcag 3900
ttgagatctt cctagtgaag gctagaggag gaaagaaagg ggttagaatc tctcaggaga 3960
ttaaagtttc tgcctaacaa gaggtgttac tggtttttct caagctccga ttgtgaaacc 4020
agaggcctgg gactgtcagc aggaagtgag catttgcttt tttcttcctt gtgatccaca 4080
ttcctccccc actctgttgc tcagactggc gtcaagctca cgatcctcct gcttacatct 4140
caagttctga gattacaagt atatgtgaac atatccagcg gttattttat tcattagcat 4200
atagaaagtt atacgttctt tgaagataat gagtcttata aaaagtgctt tgtaaaaaaa 4260
attgcatttt atactttcaa tcaagtgtac atttagtgag tagtacgtaa aattatgaga 4320
gtattttgta agtagttgtt ttggagaacg cccccaataa tacttgttta aatatagcgt 4380
tcttggatta agtgggtggt ggtgatgata atatttcctt gaaagtattt ttagccgtta 4440
actttcttcc ttaaacaatt tttcataata atttgttctt aaagatgtta tgtccaagca 4500
tgcagtttcg gagcagtgtt gctttgaaag agtgtaaatt ttaaattgtg cttactctca 4560
atcaaaagag ttttaacata tttacgaatt tatttcagaa gtcaagaatc tggttgaaaa 4620
taaagatatg caactttatg gtctggtatt tgagtgggag tcagagaggg tgaggccttt 4680
ctctctctct ctctctctct ctctctctct ctctctcaag tgtgttaata atttcagtaa 4740
tggaaattct ataacactgg gatttctgtg cacatgtttc ttgtccagag agaggataga 4800
tcctccaagg agagtctgga acaatgctga ttttcagtct gctacagccc cagcttccaa 4860
agagggtgtg caaagatgtt cgggctatta atgctcctaa tgaaagagac aaacgagcag 4920
gaagtaaaat gggctctgag tggtttagta acttctcacc agattcaaag ggttgctttt 4980
catctcttag atttgaaggt agaaagtgtt aaagaagagt ggaaggcagc tgggcttagg 5040
agaaaggagt caggggaagg gagccctcta tctgctatga taaagccagc ttttgtgggg 5100
atgagggaaa gtgtgttaat aacttatctt gtggctgtga caaaatatct gacaaaggca 5160
gcttaaagaa gaaagtttta cggttgttgg tagtttgatg gaatacattc taccgtggtg 5220
tgttaggagt gtgagcttgg tggtaatgtc acatctacat ccaggaagca aagaattgaa 5280
tgctggtgtc agctctcttt ctcctcttta ttcagtccaa ttccccagtc cataaaatgg 5340
tgttgttcat attcagggtg ggtcttctct ccttggctaa tcctttgtgg aaacatcctc 5400
ataggtacag acagaaatgt ttatcctagg tagttctaaa tccagtaaag caatcaatca 5460
atactaacca ctacaaaagc tctctctctc tctctctctc cctctctctc tctctctttc 5520
tctctctccc tttttttatg gctgatgtac acactccttc ttaccttgcc atatgttaga 5580
tgaatttaca aagaaaaacc acttgaggta ttgtataact atgtatatat tttctttcat 5640
aatttaaaaa atactttaat gttccatttg gctccatatt gttacttttt cgatgaatta 5700
taatttctgt gttattataa ttctgtaata cctcaagagc ttattttgtt ttaaaaatag 5760
gggattttgt ttgtctattt tgagagtttc ttctgtagtc caggctgccc tggaacttcc 5820
tctgtagatc aggctggcct caaatatgaa atatgcccgc ctctgcttcc aaattgcttg 5880
gattaaaggt gtgcactacc attacctggc tcaaagatga gttttaaagc atacatagtg 5940
aaaaataacc ccttttcctg attgagccaa gctatcaaaa ctgcaaataa cctaggctat 6000
attgattcta tactgccctc cagtggccaa ctagcaaata acaaagatgt ttggcaacca 6060
gcatggacca catcatacaa ataaggagta tggcttcact gaatttttta ctgtttgtgt 6120
ctttaattcc agtgtggaca gaggcatatc cagagcagct cagggtattt gacacacagc 6180
tctttctcac tgcttctgaa gaacaggaag agccccagtt gaggatacaa gttgacactt 6240
tgaaataatg gtttcaggtg gatctgcaga atgctggagc ccagaccttg aaaaggctcg 6300
ggaaattact tataaacagg tattttcaca tgcatgaagt gccccagact ctccttgcat 6360
ttcactctaa ccctgcatat cccaagtgtt tgcagtgttc caatatagtt gaaaggcagg 6420
tggctttctt tgattctttt tattctcttt tcttcattac cattattatt ccatccacac 6480
ggatgaaaca ttcttacaaa actatacacc tttaaaatgg aaaagctgtt gaggatcact 6540
cagtccaggt gcctctctct gtaggtgaaa agcagagtct actccacact ctcaaagagg 6600
gtttcagagg actcaagaat tagcaagttt tgacagtgtt ttccaatctc agtgtgcagt 6660
cggtgataag ccattgaacg agtgggtggg gagagggtct gataccactt acaatcatgc 6720
ctagataaat tcaggagatg agtttacaat taatgaaggc tacattctag tcctggcttc 6780
atcttagcta cactttgaaa tgacacggga agttgacacc aagtctcact acaattctac 6840
actgaacaac tctctttaat caacccacat gtacctgtgt ttctaactct taggaattcc 6900
ccaggtggtt ctcaaaatag ccaagtttga gacactggta gtgaaaactg ggttgaagtc 6960
tgtcatactg gatatgatgt ttggaatctg agctttgtca cacagtgtga gggtttggag 7020
aatgaagaag atcatgacct ggtcaggcaa ggttaattcg gaaaaagttg aaaagttagc 7080
attcagagag taacttttag atggcctggc acctaattta aatgtgtgca catatatgca 7140
tgaaacaaag cttggcttgc attagttact tttgtgtctc tgtgaccata gtactcagct 7200
aaaacaactg aaggaaagag tttactttgg ctcatagctt tagttcatta tggggaagtc 7260
atagcattgt atcaaagtac atgggtatgt ataccagaga ctgttcatgt tacagacgtc 7320
cagaaagcag agtccagaag caggggcaag ctataacttt caaaggatca tccctagtgc 7380
cttcaagcca gccagacttc acctcctaaa gaatctatgg gcttaccaat agtgccagtc 7440
tggacatatt ttgctataca caaaacatga ccctgtgagg gatatttctg aaagacagat 7500
ataagttgct ctttttgttt tgagtcaaga caacatcccc tcttgaaact aagtatcact 7560
gaacataatg cagctaagtt taaaaataaa aacatcgtgg aaatgcttca ggatagtcta 7620
tatttaccag aaaattctac caggattttt ctacttacat ttatttccat tatcttagat 7680
tactcaaaaa atatcctata aagaagttat aatgttttct caatatataa tcaaatcaat 7740
catctgttaa tgggacagct cagtctttcc tgcatggtaa aaaccaaact ctgggatgag 7800
aaggtaagaa cttaaaattc atattggcct gaatatcatg ttgaagcagt gggagcttag 7860
gaagtaatct gagttcttat agccttttgt tccttttggt aatttgaaga ctactaatat 7920
cagcagacag ggatgttttg gatagaaaat atctatacta ggctgcacaa tagaattttc 7980
ctaacatcat gctttctttc tatatcttct aatatggtag catattacat gaatgtagaa 8040
tgtggctaat gtgggttata tattattttt aattttaatg tggccaggat tattatattg 8100
aatattccaa gtctggtgtg cataaaatag tatagtttga cttgtgttta gtcattacag 8160
tattgagcta actatgaaag catactattt ttaagccttg acttttttct ctgtaattga 8220
gtataataat atctatctat ctatctcata gttttgatta gagggtaact aagatattgc 8280
atgataagac cttaagatag tgtcacctag ttcacagaca tccttgtaaa tatttgctat 8340
tgtaaaaatt ttctgagaat gtctattttt ttttatcttg aagcaaataa ggcacataag 8400
acactaaatg actctgtgta aactgactta tggtgtagct caatgagatc attagccttt 8460
agagtgaggt ttcaatcatc taccagttat aaccatgcaa ggacatacac tttagaatct 8520
aatattagta tccaattcaa taactttcag gcatactcaa gatatgtaga atttattgtt 8580
tttgttctgt gctccctaat tttatttctt ccttatttaa cccactgttg attctcctag 8640
agtagttatt ctcaatgaga ggatggtaat accctcaggg ggtatccaga aatttctaga 8700
gacattttgg tagctgaact gagagacttg ttactaatag gatctcacag atgaagtcaa 8760
ggatgctatt taacattcta caatatacac cataattcat tttgtaaaag tttttatcat 8820
tctgacaaag tgcatgagca aaacaacttt aaggaggaaa gatttatttt ggttcagaga 8880
ttcagaagtt agtccatcat ggcagaaaga tagtgttaga gcagaacagc taacatcatg 8940
gtgctcggaa aacagagaaa aattggctac tttggttgtt tttctctttt ccccctttta 9000
ttctatctag gcttttaacc tgtaaatggt gctactactt tcaggacaga tcttccccct 9060
ttagataagt ctctctataa acaccttcac agacttacct agagaagagc tttattgtgt 9120
tcttctaggt acttctcaat ccaatcaagc tggtggacaa gataaatcac actactccac 9180
tataagaact tattaaatcc agagtatcca cagaaacatg attgaaagcc cttttacagt 9240
gttctcagct aaccatagcc acatgaaaga aggctctcca aaaagaggag acttgtatgg 9300
gctctggctg atttctgtgg ttgattttat actcataata tgtccttggt ttttttgatt 9360
gactacagga gactcagact gtctccagac tctttatttt aatctacatg tccattgcct 9420
ttcttcatga gttgttccag gactgtgaat aagtggtttt gatgagcatt tgtagcctct 9480
accctaactg gcaagtgcta gactgctaga acccagccta gtatcacagt tccctgagaa 9540
gggcagcaag ggtggcattg gtgatcccag agccaaaacc ttcttacttt tggcaattta 9600
actgttactt taactctttg ctgttctgtg gcccaaagcc actggcttct ggcaatttaa 9660
ctcctcctga tagcagctgg ggggtgggag agaggtgggg ggaggggagt ggtggaaaga 9720
aatttaatta ctttggttct tttctctgta atcaggtctc ttgctggcct gatcacatga 9780
gccagagagg agaggaaagg aaaggaaagg aaaggaaagg aaaggaaagg aaaggaaagg 9840
aaaggaaagg aaaggaaaaa ggaaaggaaa aaggaaagga aaaaggaaag gaaaaaggaa 9900
aggaaaaagg aaaggaaaaa ggaaaggaaa aaggaaagg 9939
<210> 2
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 2
ttaattttcc catcatcaga tgg 23
<210> 3
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 3
ccatctgatg atgggaaaat taa 23
<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 4
ttgctttcca tatcaatgtg ggg 23
<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 5
ccccacattg atatggaaag caa 23
<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 6
ctatagaaga tgctgcttct agg 23
<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 7
cctagaagca gcatcttcta tag 23
<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 8
gggtgctaat tactgttcta tgg 23
<210> 9
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 9
ccatagaaca gtaattagca ccc 23
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 10
atatactgtt tatgtttttc tgg 23
<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 11
ccagaaaaac ataaacagta tat 23
<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 12
aagtcgcttc ttgctgtcta tgg 23
<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 13
aacgtttgtg attttagatg agg 23
<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 14
gtatatgtga acatatccag cgg 23
<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 15
agagggtgtg caaagatgtt cgg 23
<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 16
gaagaaagtt ttacggttgt tgg 23
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 17
gggtgctaat tactgttcta 20
<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 18
tagaacagta attagcaccc 20
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 19
gaagaaagtt ttacggttgt 20
<210> 20
<211> 5386
<212> DNA
<213> Artificial Sequence
<400> 20
ataaagatga gtgggtggtt gagggggaat ctgtaccatc tacccaccta cccatccatc 60
catacataca tccatccaag gtagtgatgc agccattttc tccttcaccc agtgtgtatg 120
tgtctgtgag agtgacatct ttcctttcct ttttctctct gattcaaaaa gagttaacca 180
gcctggccag tgaagggctt ctggctgcct ggcaataaat cctttattta atcccctgtt 240
gttaagcaac aggtgataat tcctctgaag cctttggctt ctggcccaag aacaatgaag 300
aatcaagagt aaatattatt tatactaaga aacctttatt cttgaaaaat caagttttgg 360
tccccaccct tctactgctc tcccaattgg ctactatcca gaaagagcca gtgttctgga 420
aagctcaagg aaaaccatgg agagagagag agagagagag agagagagag agagagagag 480
agagagagag aaggaaggag aaagagagag agagagagag agagaaggaa ggagagagag 540
agagagagag agagagagag agagagagag agagagagag acatcttatt agttaccaag 600
gagtgacaag caacatatgt cagttaaggt ttcatactgc ccaaattcaa agtaagttac 660
ttcctggtag tgtggttttt atattaacat tcattttctc tatacttggg gagtgtttta 720
tccagaaaaa cataaacagt atatttcttg cctcaagcag ttaactcaag cgtttagcaa 780
atgcatatgt cataccatag ataacttcgt atagcataca ttatacgaag ttataacagt 840
aattagcacc cactactcat tctttctggc atttgtgtga actctaggat ttatggataa 900
atgcctagaa gcagcatctt ctatagagat cttaagccca tgaattagag aggacctgac 960
tcagtttcac agattaattc accccacatt gatatggaaa gcaacatttt atttgatcaa 1020
atgcatcttt ggtgaatttc aagccatctg atgatgggaa aattaaatgt agaagtctat 1080
gcctcaaaga cccactaagt tataaaacaa taattgtggt aggccaacaa ttgctttaac 1140
ctttattaag cattgtcttt tatttattca taggctcttg caggatggat tttcaagggt 1200
cagttccgac ctatagctat gacatcgatt atggtatgtc agcaccctgc caaaaaatca 1260
atgtgaaaca aattgcggct cagctcctgc ccccactcta ctccctggta ttcatctttg 1320
gttttgtggg taacatgatg gtcttcctca tcttgataag ctgcaaaaag ctgaagagcg 1380
tgactgatat ctacctgctc aacctggcca tctctgacct gctcttcctg ctcacactac 1440
cattctgggc tcactatgct gcaaatgagt gggtctttgg gaacataatg tgtaaagtat 1500
tcacagggct ctatcacatt ggttattttg gtggaatctt cttcattatc ctcctgacaa 1560
ttgataggta cttggctatt gtccatgctg tgtttgcttt aaaagtcaga acggtcaact 1620
ttggggtgat aacaagtgta gtcacttggg cggtggctgt gtttgcctct ctcccagaaa 1680
taatctttac cagatctcag aaagaaggtt ttcattatac atgcagtcct cattttccac 1740
acactcagta tcatttctgg aagagtttcc aaacattaaa gatggtcatc ttgagcctga 1800
tcctgcctct acttgtcatg gtcatctgct actcaggaat tctccacacc ctgtttcgct 1860
gtaggaatga gaagaagagg cacagggctg tgaggctcat ctttgccatc atgattgtct 1920
actttctctt ctggactccc tacaacattg tcctcctcct gaccaccttc caggaattct 1980
ttggactgaa taactgcagt agttctaata gactagacca ggccatgcag gcaacagaga 2040
ctcttggaat gacacactgc tgcctaaacc ctgtcatcta tgcctttgtt ggagagaagt 2100
tccggagtta tctctcagtg ttcttccgaa aacacatggt caaacgcttt tgcaaacggt 2160
gttcaatttt ccagcaagac aatcctgatc gtgcaagctc agtctatacc cgatccacag 2220
gagaacatga agtttctact ggtttatgac ctggttgact tttgtgtatc acgtagtttt 2280
tctatgcagc ttgggagtag gaatggttct tttaaaaaaa gaaattagta tcatagaggg 2340
cccaagatac atgcatcttt ttgatattta tttttagata gattgggtct tttaaaactg 2400
aatggggagg ttggggtgga ggagcaggga gaacgagtct tttatcaggg ccgggaaata 2460
tgcacaaaga gacttgaggc aggtgccatg acccatatgc aaagggacgg acacagggcc 2520
gatgctgtgg cctagagatg acgtgtctca ccgctgggtt cctgaaaggc ggctgtaaat 2580
atgcctgatt gccataaagt cgcttcttgc tgtctatgga tgtgcctgac tgccaacagg 2640
gaagaaccac ttctgcctat aaaacgtaga gtcagcagaa cttggggtaa atcggagtta 2700
gaggtgcata agaaccccta ggcttagtta ggttgaaata cccattgagg aaacagcaaa 2760
tacaaaggaa gaataaagag tttagccggg aaggtagtct cattttacag ccggaatata 2820
atgttatctc aggctagcat tttgttcctg ccttcagacc taaatcctac cacaccggga 2880
ctgtgaaaca cctggattat gaatcatgag cctgaggtct aggaataata ataacgtttg 2940
tgattttaga tgagggctgt ttccatagtt tgaagccaga actttatcat cttgagcaga 3000
agctccaaga gatgaggaaa gagcaccaat ttttctctaa tttacttagc agtcatcatc 3060
tctggaagat tcattttaga aacaagttgt tgtgcccctc agaagccatg agagtataac 3120
gactgctctc tgtgttccag gctgagtatg aggacttcag tcacactttc cagatggctt 3180
ctccacacaa acaatgctaa gtttggccat ttcagaggtt taggattttt tgttgttttt 3240
gcagttgata ttttgaattt tagagcagtt gagatcttcc tagtgaaggc tagaggagga 3300
aagaaagggg ttagaatctc tcaggagatt aaagtttctg cctaacaaga ggtgttactg 3360
gtttttctca agctccgatt gtgaaaccag aggcctggga ctgtcagcag gaagtgagca 3420
tttgcttttt tcttccttgt gatccacatt cctcccccac tctgttgctc agactggcgt 3480
caagctcacg atcctcctgc ttacatctca agttctgaga ttacaagtat atgtgaacat 3540
atccagcggt tattttattc attagcatat agaaagttat acgttctttg aagataatga 3600
gtcttataaa aagtgctttg taaaaaaaat tgcattttat actttcaatc aagtgtacat 3660
ttagtgagta gtacgtaaaa ttatgagagt attttgtaag tagttgtttt ggagaacgcc 3720
cccaataata cttgtttaaa tatagcgttc ttggattaag tgggtggtgg tgatgataat 3780
atttccttga aagtattttt agccgttaac tttcttcctt aaacaatttt tcataataat 3840
ttgttcttaa agatgttatg tccaagcatg cagtttcgga gcagtgttgc tttgaaagag 3900
tgtaaatttt aaattgtgct tactctcaat caaaagagtt ttaacatatt tacgaattta 3960
tttcagaagt caagaatctg gttgaaaata aagatatgca actttatggt ctggtatttg 4020
agtgggagtc agagagggtg aggcctttct ctctctctct ctctctctct ctctctctct 4080
ctctcaagtg tgttaataat ttcagtaatg gaaattctat aacactggga tttctgtgca 4140
catgtttctt gtccagagag aggatagatc ctccaaggag agtctggaac aatgctgatt 4200
ttcagtctgc tacagcccca gcttccaaag agggtgtgca aagatgttcg ggctattaat 4260
gctcctaatg aaagagacaa acgagcagga agtaaaatgg gctctgagtg gtttagtaac 4320
ttctcaccag attcaaaggg ttgcttttca tctcttagat ttgaaggtag aaagtgttaa 4380
agaagagtgg aaggcagctg ggcttaggag aaaggagtca ggggaaggga gccctctatc 4440
tgctatgata aagccagctt ttgtggggat gagggaaagt gtgttaataa cttatcttgt 4500
ggctgtgaca aaatatctga caaaggcagc ttaaagaaga aagttttacg gtataacttc 4560
gtatagcata cattatacga agttattgtt ggtagtttga tggaatacat tctaccgtgg 4620
tgtgttagga gtgtgagctt ggtggtaatg tcacatctac atccaggaag caaagaattg 4680
aatgctggtg tcagctctct ttctcctctt tattcagtcc aattccccag tccataaaat 4740
ggtgttgttc atattcaggg tgggtcttct ctccttggct aatcctttgt ggaaacatcc 4800
tcataggtac agacagaaat gtttatccta ggtagttcta aatccagtaa agcaatcaat 4860
caatactaac cactacaaaa gctctctctc tctctctctc tccctctctc tctctctctt 4920
tctctctctc ccttttttta tggctgatgt acacactcct tcttaccttg ccatatgtta 4980
gatgaattta caaagaaaaa ccacttgagg tattgtataa ctatgtatat attttctttc 5040
ataatttaaa aaatacttta atgttccatt tggctccata ttgttacttt ttcgatgaat 5100
tataatttct gtgttattat aattctgtaa tacctcaaga gcttattttg ttttaaaaat 5160
aggggatttt gtttgtctat tttgagagtt tcttctgtag tccaggctgc cctggaactt 5220
cctctgtaga tcaggctggc ctcaaatatg aaatatgccc gcctctgctt ccaaattgct 5280
tggattaaag gtgtgcacta ccattacctg gctcaaagat gagttttaaa gcatacatag 5340
tgaaaaataa ccccttttcc tgattgagcc aagctatcaa aactgc 5386

Claims (1)

1.一种内皮细胞条件性敲除CCR5基因小鼠模型的构建方法,其特征在于:首先,获得CCR5 loxp/loxp小鼠,然后与Tie-2-cre/ERT2小鼠交配,得到在内皮细胞中特异性敲除CCR5基因的杂合子小鼠,然后该杂合子小鼠进行相互交配,从而得到在内皮细胞中特异性敲除CCR5基因的纯合子小鼠;
其中,CCR5 loxp/loxp小鼠的构建方法包括以下步骤:
(1)将Cas9 mRNA、gRNA和Donor DNA混匀后,注射入小鼠的受精卵中,则Cas9蛋白在gRNA的靶向作用下对CCR5基因的DNA双链进行切割,从而诱发同源重组修复机制以DonorDNA为模板对损伤的CCR5基因进行修复,将LoxP序列整合到小鼠基因组中的特定位点;然后将受精卵移植入假孕母鼠的输卵管中;
所述gRNA的序列为:
上游靶点:CCR5-L4:GGGTGCTAATTACTGTTCTA;反向互补序列:TAGAACAGTAATTAGCACCC;
下游靶点:CCR5-R:GAAGAAAGTTTTACGGTTGT;
所述Donor DNA的序列如SEQ ID NO.20所示;
(2)上述受精卵移植成功的小鼠出生后,选取雄性的5’端和3’端均有FloxP插入的小鼠,与野生型异性小鼠交配,得到F1代loxp杂合子小鼠;
(3)将上述F1代loxp杂合子小鼠进行相互近交,得到F2代小鼠,从F2代小鼠中选取CCR5loxp纯合子小鼠,CCR5 loxp纯合子小鼠相互近交产生F3代,得到稳定的CCR5 loxp纯合子小鼠品系。
CN201711139533.8A 2017-11-16 2017-11-16 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法 Active CN107858373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711139533.8A CN107858373B (zh) 2017-11-16 2017-11-16 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711139533.8A CN107858373B (zh) 2017-11-16 2017-11-16 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法

Publications (2)

Publication Number Publication Date
CN107858373A CN107858373A (zh) 2018-03-30
CN107858373B true CN107858373B (zh) 2020-03-17

Family

ID=61701974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711139533.8A Active CN107858373B (zh) 2017-11-16 2017-11-16 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法

Country Status (1)

Country Link
CN (1) CN107858373B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
AU2015298571B2 (en) 2014-07-30 2020-09-03 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
IL258821B (en) 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
CN109804066A (zh) 2016-08-09 2019-05-24 哈佛大学的校长及成员们 可编程cas9-重组酶融合蛋白及其用途
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR102622411B1 (ko) 2016-10-14 2024-01-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
GB2575930A (en) 2017-03-23 2020-01-29 Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
EP3676376A2 (en) 2017-08-30 2020-07-08 President and Fellows of Harvard College High efficiency base editors comprising gam
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
WO2020191249A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
CN109943566A (zh) * 2019-03-28 2019-06-28 和元生物技术(上海)股份有限公司 特异性靶向YBX1基因的sgRNAs及其应用
CN110476877A (zh) * 2019-08-15 2019-11-22 上海交通大学医学院附属瑞金医院 一种β细胞中特异性Raptor敲除同时GFP示踪的小鼠的制备方法
CN110777167B (zh) * 2019-11-06 2021-07-06 广州市妇女儿童医疗中心 运动功能障碍表型gtpch酶缺陷病小鼠模型的构建方法
MX2022014008A (es) 2020-05-08 2023-02-09 Broad Inst Inc Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo.
CN112226464B (zh) * 2020-09-16 2021-11-05 哈尔滨工业大学 一种新冠病毒人源化受体hACE2小鼠模型的构建方法及应用
CN113584030A (zh) * 2021-08-18 2021-11-02 昆明医科大学第一附属医院 基于Cre-FloxP系统的CNN3基因敲除小鼠模型的构建方法
CN114181955A (zh) * 2021-11-22 2022-03-15 宁夏医科大学 血管内皮细胞pdha1基因特异性敲除鼠构建实验方法
CN114410629A (zh) * 2022-01-05 2022-04-29 南方医科大学珠江医院 巨核细胞条件性敲除tymp基因小鼠模型的构建方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624191A (zh) * 2015-12-24 2016-06-01 江苏大学 一种建立cyp2d1基因敲除大鼠模型的方法
CN103923911B (zh) * 2014-04-14 2016-06-08 上海金卫生物技术有限公司 CRISPR-Cas9特异性敲除人CCR5基因的方法以及用于特异性靶向CCR5基因的sgRNA
CN106755092A (zh) * 2016-11-29 2017-05-31 中南大学湘雅医院 GLCCI1基因基于Cre‑LoxP条件性基因敲除小鼠模型构建试剂盒及构建方法
CN107177591A (zh) * 2016-03-09 2017-09-19 北京大学 利用CRISPR技术编辑CCR5基因的sgRNA序列及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923911B (zh) * 2014-04-14 2016-06-08 上海金卫生物技术有限公司 CRISPR-Cas9特异性敲除人CCR5基因的方法以及用于特异性靶向CCR5基因的sgRNA
CN105624191A (zh) * 2015-12-24 2016-06-01 江苏大学 一种建立cyp2d1基因敲除大鼠模型的方法
CN107177591A (zh) * 2016-03-09 2017-09-19 北京大学 利用CRISPR技术编辑CCR5基因的sgRNA序列及其用途
CN106755092A (zh) * 2016-11-29 2017-05-31 中南大学湘雅医院 GLCCI1基因基于Cre‑LoxP条件性基因敲除小鼠模型构建试剂盒及构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo";Lei Xu et al.,;《Molecular Therapy》;20170831;第25卷(第8期);第1782-1789页 *

Also Published As

Publication number Publication date
CN107858373A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
CN107858373B (zh) 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法
WO2018177351A1 (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
CN110885858B (zh) Amy1基因敲除小鼠动物模型的构建方法及应用
CN111690689B (zh) 人源化ccr2基因改造动物模型的构建方法及其应用
JP2010029219A (ja) 動物モデルの開発のための方法
CN109943564B (zh) Amh基因定点敲入2A-Cre的杂合子小鼠模型构建方法及其应用
JP2010029219A5 (zh)
CN112662669A (zh) 一种Il21基因敲除小鼠模型及其构建方法、应用
CN110804629A (zh) PirB基因敲除小鼠动物模型及其构建方法
CN109929875B (zh) 一种lag3基因人源化动物模型的构建方法及其应用
CN113678789A (zh) Mir-379/410基因簇敲除的小鼠模型及其构建方法
CN107690279A (zh) 非人动物表现出上运动神经元功能和下运动神经元功能以及感知减弱
CN114480497B (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN114457114B (zh) 一种Fars2基因条件性敲除动物模型的构建方法
CN112626122B (zh) hKDR人源化小鼠模型及其建立方法和应用
CN109694885B (zh) 基于CRISPR/Cas9技术制备PI3Kγ全身敲除模式小鼠方法及其应用和试剂盒
CN114085840A (zh) Camta2基因缺失型斑马鱼的构建方法
CN110923229B (zh) 一种在黄颡鱼中双gRNA位点敲除dmrt1基因的CRISPR/Cas9系统及应用
CN113046389A (zh) 一种ccr2基因人源化的非人动物及其构建方法和应用
CN114410691B (zh) Slc35e1基因敲除小鼠动物模型的构建方法和应用
CN109868288A (zh) 用于果蝇CRISPR转基因的cas9转录模板DNA及质粒DNA和体外转录方法
CN113388639B (zh) 一种基因敲入选育斑马鱼vmhcEGFP-KI品系的方法
CN117467704B (zh) 构建apod条件敲入小鼠模型的方法
CN112899309B (zh) 心肌细胞特异性过表达Snhg5载体及以其构建转基因动物的方法
CN109090040B (zh) 一种Wnt10aflox/flox小鼠模型的构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No. 16766, Jingshi Road, Jinan, Shandong 250014

Patentee after: The First Affiliated Hospital of Shandong First Medical University

Address before: No. 16766, Jingshi Road, Lixia District, Jinan City, Shandong Province

Patentee before: QIFO MOUNTAIN HOSPTIAL OF SHANDONG PRVOVINCE

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221010

Address after: Keyuan Street, Shanghe Economic Development Zone, Shandong, 250000, Jinan, Shandong

Patentee after: SHANDONG KEYUAN PHARMACEUTICAL CO.,LTD.

Address before: No. 16766, Jingshi Road, Jinan, Shandong 250014

Patentee before: The First Affiliated Hospital of Shandong First Medical University