CN114085840A - Camta2基因缺失型斑马鱼的构建方法 - Google Patents

Camta2基因缺失型斑马鱼的构建方法 Download PDF

Info

Publication number
CN114085840A
CN114085840A CN202111257929.9A CN202111257929A CN114085840A CN 114085840 A CN114085840 A CN 114085840A CN 202111257929 A CN202111257929 A CN 202111257929A CN 114085840 A CN114085840 A CN 114085840A
Authority
CN
China
Prior art keywords
seq
target site
camta2
gene
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111257929.9A
Other languages
English (en)
Inventor
谢立
龚克
谢婷
罗勇
郭慧
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Xiangya Hospital of Central South University
Original Assignee
Second Xiangya Hospital of Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Xiangya Hospital of Central South University filed Critical Second Xiangya Hospital of Central South University
Priority to CN202111257929.9A priority Critical patent/CN114085840A/zh
Publication of CN114085840A publication Critical patent/CN114085840A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及基因工程技术领域,尤其涉及CAMTA2基因缺失型斑马鱼的构建方法。通过CRISPR/Cas9基因编辑技术,在斑马鱼的CAMTA2基因上设计合适的打靶位点,从而提高了基因编辑的效率,降低了脱靶效应。构建获得的斑马鱼模型中CAMTA2基因表达发生改变,心脏发育受到影响。

Description

CAMTA2基因缺失型斑马鱼的构建方法
技术领域
本发明涉及基因工程技术领域,尤其涉及CAMTA2基因缺失型斑马鱼的构建方法。
背景技术
右心室肥厚导致的右心衰竭仍然是先天性心脏病患儿发病率和死亡率的主要原因。先天性肺动脉高压、法洛氏四联症和大动脉转位(解剖右室为功能左室)是造成该人群右心室肥厚的主要原因。从右室肥厚到右心室衰竭的转变经历了一个重构阶段,其特征是心肌细胞的结构和功能变化,这是右室特有的。在整个重构过程中,代谢向有氧糖酵解转变,线粒体功能障碍导致能量供应不足,而兴奋-收缩耦合损伤和异常胶原沉积分别导致收缩功能障碍和纤维化。转录因子(如HIF1α、FOXO1、cMyc)激活的改变和活性氧产生过度均介导了最终导致右心衰竭的心室重构。分子生物学技术的最新进展表明,在右心室重构过程中出现了诸如基因、miRNAs和血浆蛋白等生物标志物的失调。
哺乳动物基因组中有两个CAMTA基因,分别为CAMTA1和CAMTA2,这两个基因优先表达于心脏和大脑。其中,CAMTA1在胚胎心脏中强烈表达,而,CAMTA2在胚胎心脏中的表达水平远低于出生后心脏。研究表明,CAMTA2在体外和转基因小鼠心肌细胞中的过度表达导致心肌肥大。并且,CAMTA2突变小鼠没有明显的心脏表型,当这些小鼠受到各种肥厚应激时(包括主动脉紧束、血管紧张素Ⅱ慢性输注等方式),它们的肥厚反应能力严重受损,说明CAMTA2基因的敲除导致小鼠对多种引起心肌肥厚刺激的反应减弱。Song K等人得出结论,CAMTA2不仅足以诱导心肌肥厚,而且对体内不同刺激产生最大的肥厚反应是必要的。另有研究表明,CAMTA2在心肌肥厚信号通路中的作用:CAMTA2在细胞质和细胞核之间循环,刺激Nkx2-5和其他尚未确定的转录因子的活性。CAMTA2被Ⅱ类HDACs抑制。PKC/PKD信号的激活导致Ⅱ类HDACs的磷酸化,从而为14-3-3蛋白质及其核出口建立了对接点,解除了对CAMTA2的抑制,从而促进心脏生长。
目前,CAMTA2在心肌肥大发生发展中的作用尚未完全探明。CAMTA2功能域包括CG-1,TAD,TIG,ANK等。CG-1结构域是CAMTA2与Nkx2-5结合所必需的,是NKx2-5依赖性启动子转录激活所必需的,也是诱导心脏生长所必需的,包含核出口序列。TIG结构域是刺激ANF启动子所必需的,但可与TAD(transcription activation domain,转录激活域)分离,其作用为稳定CAMTA2与nkx2-5结合的作用。CAMTA2的锚定蛋白重复区与Ⅱ类HDACs相结合,并负性调节TAD的活性。camta2的转录活性需要CG-1、TAD和TIG域与c端NLS的结合活性。而ANK结构域与HDAC相互作用可抑制CAMTA2的转录活性。这种相互作用的结构决定因素可能类似于那些介导Ⅱ类HDACs与其它包含转录激活因子的锚定蛋白重复区的联系的决定因素。而CAMTA2在心肌肥大发生发展过程中的更多作用机制,仍待进一步研究。
斑马鱼与人类心脏发育过程中的基因、信号通路有高度同源性,且CAMTA2基因进化上较为保守,研究发现CAMTA2在斑马鱼胚胎早期表达量特别高。而且,与其他动物模型相比,斑马鱼具有个体小、易于饲养、发育快、繁殖能力强、体外受精、胚胎体外发育且透明等优点。因此,构建CAMTA2基因缺失斑马鱼的模型,对CAMTA2基因功能以及作用机制的研究存在重要意义。
基因打靶技术起源于20世纪80年代末,是一种通过对基因组进行定点修饰来研究基因功能的重要方法手段,也可用于治疗人类的各种遗传性疾病。该技术主要是利用缺失突变、基因灭活、染色体大片段删除以及外源基因导入等方式来改变生物的遗传信息,并且在生殖系中稳定遗传后表达突变性状,从而研究生物体内特定基因在生长发育过程中的作用,所以这类技术手段已成为现代分子生物学研究热点。传统的基因打靶技术是建立在胚胎干细胞(ESC)和同源重组技术的基础之上,故打靶技术效率极低。2013年初,一种全新的人工核酸内切酶clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated(Cas)9,能更高效且更精确地在生物体基因组中沉默特定基因,且制作简单、成本低,且可同时对靶基因上多个位点进行剪切,沉默任意数目的单个基因,但同时该技术存在一定的缺陷,其脱靶率相对较高。如何利用CRISPR-Cas9系统构建CAMTA2基因缺失的斑马鱼,仍待进一步研究。
发明内容
有鉴于此,本发明要解决的技术问题在于提供CAMTA2基因缺失型斑马鱼的构建方法。本发明找到了合适的打靶位点,通过CRISPR/Cas9基因编辑技术,选育出CAMTA2基因缺失型斑马鱼
本发明提供了斑马鱼CAMTA2基因的靶位点,其包括如下位点中至少一种:
靶位点1,其具有如SEQ ID NO:1所示的核酸序列;
靶位点2,其具有如SEQ ID NO:2所示的核酸序列;
靶位点3,其具有如SEQ ID NO:3所示的核酸序列;
靶位点4,其具有如SEQ ID NO:4所示的核酸序列。
本发明所述的四个靶位点,分别位于CAMTA2基因的不同功能域。具体的:
靶位点1靶向CG-1功能域,靶位点序列为:5’-aaacactccagcagcttattggg-3’,其还包括RC序列,具体为3’-cccaataagctgctggagtgttt-5’(SEQ ID NO:14)。
靶位点2靶向TAD功能域,靶位点序列为:5’-ggagtgtttgcctccaaccccgg-3’。
靶位点3靶向TID功能域,靶位点序列为:5’-tacccaaagagagactgcgctgg-3’。
靶位点4靶向ANK功能域,靶位点序列为:5’-ttccagcgcagtctctctttggg-3’,其还包括RC序列,具体为3’-cccaaagagagactgcgctggaa-5’(SEQ ID NO:15)。
本发明在前期进行了大量实验,结果表明将靶位点设置在这样四个结构域,更有利于基因的敲除。并且,本发明中具体靶点片段的选择更合理,从而进一步降低脱靶效应。
本发明还提供了扩增靶位点1的引物对,其包括如SEQ ID NO:5、SEQ ID NO:6所示的核酸序列的两条引物。
扩增靶位点2的引物对,其包括如SEQ ID NO:5、SEQ ID NO:7所示的核酸序列的两条引物。
扩增靶位点3的引物对,其包括如SEQ ID NO:5、SEQ ID NO:8所示的核酸序列的两条引物。
扩增靶位点4的引物对,其包括如SEQ ID NO:5、SEQ ID NO:9所示的核酸序列的两条引物。
本发明还提供了靶向所述靶位点的sgRNA:
本发明中,靶向靶位点1的sgRNA1具有如SEQ ID NO:10所示的核酸序列。一些实施例中,所述靶向靶位点1的sgRNA1的核酸序列为gaaacacuccagcagcuuauuguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuuuu。
本发明中,靶向靶位点2的sgRNA2,其具有如SEQ ID NO:11所示的核酸序列,一些实施例中,所述靶向靶位点2的sgRNA2的核酸序列为ggaguguuugccuccaacccguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuuuu。
本发明中,靶向靶位点3的sgRNA3,其具有如SEQ ID NO:12所示的核酸序列。一些实施例中,所述靶向靶位点3的sgRNA3的核酸序列为guacccaaagagagacugcgcguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuuuu。
本发明中,靶向靶位点4的sgRNA4,其具有如SEQ ID NO:13所示的核酸序列。一些实施例中,所述靶向靶位点4的sgRNA4的核酸序列为guuccagcgcagucucucuuuguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuuuu。
本发明还提供了重组载体,其包括骨架载体和所述的sgRNA片段。
本发明还提供了敲除斑马鱼CAMTA2基因的试剂,其包括:Cas9蛋白和本发明所述的sgRNA。
本发明所述的试剂中,其包括水和200ng/L Cas9蛋白、60~80ng/L sgRNA1、60~80ng/L sgRNA2、60~80ng/L sgRNA3和60~80ng/L sgRNA4。
本发明还提供了CAMTA2基因缺失型斑马鱼的构建方法,其以本发明所述的试剂,敲除斑马鱼受精卵中的CAMTA2基因。
本发明实施例中,所述斑马鱼受精卵为受精0.5h内的斑马鱼受精卵。
本发明实施例中,所述试剂的用量为每个斑马鱼受精卵1nL试剂。
本发明所述的方法中,还包括筛选的步骤,所述筛选采用PCR和测序。
通过CRISPR/Cas9基因编辑技术,在斑马鱼的CAMTA2基因上设计合适的打靶位点,从而提高了基因编辑的效率,降低了脱靶效应。构建获得的斑马鱼模型中CAMTA2基因表达发生改变,心脏发育受到影响。
附图说明
图1示体外合成制备的sgRNA质量电泳鉴定结果图:自左向右第1泳道为DNAMarker:从下向上依次为100bp、250bp、500bp、750bp、1000bp、1500bp、2000bp、3000bp、5000bp;泳道第2~5为camta2-sgRNA1~camta2-sgRNA4;
图2示转化子PCR验证之电泳结果图:自左向右第1泳道为DNAMarker:从下向上依次为100bp、250bp、500bp、750bp、1000bp、1500bp、2000bp、3000bp、5000bp;约680bp条带的克隆为阳性克隆,因此,第1、3~18、20~28、30~32号克隆为拟阳性克隆;
图3示均发生Indel(insert and deletion)突变;
图4示均发生Indel突变代表性测序峰图;
图5中框自左向右依次表示Guide#4、Guide#3、Guide#1序列处;
图6中框内表示Guide#2序列处;
图7示候选F1基因组DNA片段PCR扩增产物电泳结果图:自左向右第17泳道为DNAMarker:从下向上依次为100bp、250bp、500bp、750bp、1000bp、1500bp、2000bp、3000bp、5000bp;
图8示3号突变体PCR筛选阳性克隆电泳结果图:每行自左向右第17泳道均为DNAMarker(Trans 2K Plus DNA Marker):从下向上依次为100bp、250bp、500bp、750bp、1000bp、1500bp、2000bp、3000bp、5000bp;偶数泳道为验证体系一电泳结果,奇数泳道为验证体系二电泳结果,每相邻两个泳道为一个验证组,即第1、2泳道对应1号菌,第3、4泳道对应2号菌;第3和12号克隆为拟阳性克隆;
图9示4号突变体PCR筛选阳性克隆电泳结果图;每行自左向右第17泳道均为DNAMarker(Trans 2K Plus DNA Marker):从下向上依次为100bp、250bp、500bp、750bp、1000bp、1500bp、2000bp、3000bp、5000bp;奇数泳道为验证体系二电泳结果,偶数泳道为验证体系一电泳结果,每相邻两个泳道为一个验证组,即第1、2泳道对应1号菌,第3、4泳道对应2号菌,第6、9和19号克隆为拟阳性克隆;
图10示5号突变体PCR筛选阳性克隆电泳结果图;每行自左向右第17泳道均为DNAMarker(Trans 2K Plus DNA Marker):从下向上依次为100bp、250bp、500bp、750bp、1000bp、1500bp、2000bp、3000bp、5000bp;奇数泳道为验证体系二电泳结果,偶数泳道为验证体系一电泳结果,每相邻两个泳道为一个验证组,即第1、2泳道对应1号菌,第3、4泳道对应2号菌,第8和14号克隆为拟阳性克隆;
图11示突变体3;
图12示突变体4;
图13示突变体5;
图14示为预测的突变等位基因编码的蛋白结构示意图;
图15示步骤一引物PCR产物电泳结果图:左图:自左向右第13泳道为DNA Marker:从下向上依次为100bp、200bp、300bp、400bp、500bp、600bp、700bp;第2、3、7、12、14、15、16、18、20、22、27为纯合子;9、10、17、19、23、24、26为野生型;1、4、5、6、8、11、21、25为杂合子;共获得26个杂交品系荧光鱼;其中纯合子11条、野生型7条、杂合子8条;
图16:A.野生型斑马鱼受精后36小时胚胎,红色箭头所指为心房;B.camta2-/-基因敲除斑马鱼受精后36小时胚胎,红色箭头所指为心房(75×,Leica DFC 7000T)。
具体实施方式
本发明提供了CAMTA2基因缺失型斑马鱼的构建方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
通过CRISPR/Cas9基因编辑技术,在斑马鱼的CAMTA2基因上设计合适的打靶位点,在体外合成的特异性sgRNA和Cas9蛋白,显微共注射进入斑马鱼一细胞内,胚胎培养50h后,通过选取胚胎进行基因型分析,鉴定所设打靶位点的有效性。本发明能更高效且更精确地在生物体基因组中突变特定基因,且制作简单、成本低,且可同时对靶基因上多个位点进行剪切,突变任意数目的单个基因。且干扰掉CAMTA2基因,并且通过遗传学手段研究其功能,有助于进一步揭示心脏发育的整个过程以及调控这些过程的分子机制,在医学上心脏疾病病理的理解和新的治疗方案的研发中具有十分重要的意义。本发明采用的试材皆为普通市售品,皆可于市场购得。下面结合实施例,进一步阐述本发明:
实施例1:
1)设计CRISPR/Cas9基因敲除靶位点和检测引物在NCBI上查询斑马鱼camta2基因的基因组DNA序列及其功能结构域,根据Crispr/Cas9基因编辑原理,在网站上设计一对camta2基因的靶位点。靶位点的选择必须严格遵循以下标准:5’-GG-18bp-NGG-3’。其中5’端的GG二核苷酸是T7启动子的一部分,靶位点的设计可以不受此限制,但必须保证靶位点的3’端以NGG结尾。靶位点的选择原则为:必须确保在靶点位置进行碱基插入或缺失可以影响camta2整个结构域,进而改变该基因的表达。
靶位点序列:
靶位点1:5’-AAACACTCCAGCAGCTTATTGGG-3’
RC:3’-CCCAATAAGCTGCTGGAGTGTTT-5’
靶位点2:5’-GGAGTGTTTGCCTCCAACCCCGG-3’
靶位点3:5’-TACCCAAAGAGAGACTGCGCTGG-3’
靶位点4:5’-TTCCAGCGCAGTCTCTCTTTGGG-3’
RC:3’-CCCAAAGAGAGACTGCGCTGGAA-5’
F1(靶位点1正向引物):
TAATACGACTCACTATAGAAACACTCCAGCAGCTTATTgttttagagctagaaatac
F2(靶位点2正向引物):
TAATACGACTCACTATAGGAGTGTTTGCCTCCAACCCgttttagagctagaaatac
F3(靶位点3正向引物):
TAATACGACTCACTATAGTACCCAAAGAGAGACTGCGCgttttagagctagaaatac
F4(靶位点4正向引物):
TAATACGACTCACTATAGTTCCAGCGCAGTCTCTCTTTgttttagagctagaaatacR
(共用反向引物):AAAAAAAGCACCGACTCGGTGCCAC
注:下划线前大写字母为T7启动子部分,下划线部分为CRISPR序列(camta2基因组DNA匹配的靶位点序列),小写字母为sgRNA骨架模板部分序列。
PCR检测引物:
F2 TTGTATGTTGTGTGTGATGCAG
R2 TGGAGACACCAAAGGCTGAT
(RC:ATCAGCCTTTGGTGTCTCCA)
再以纯化回收的PCR产物作为模板,利用T7 RNA聚合酶进行体外转录,合成特异性gRNA1、gRNA2、gRNA3、gRNA4,再纯化后保存。
gRNA浓度测定:
sgRNA-1:572ng/μL
sgRNA-2:550ng/μl
sgRNA-3:659ng/μl
sgRNA-4:561ng/μl
sgRNA序列:
sgRNA1:
GAAACACUCCAGCAGCUUAUUGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU
sgRNA2:
GGAGUGUUUGCCUCCAACCCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU
sgRNA3:
GUACCCAAAGAGAGACUGCGCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU
sgRNA4:
GUUCCAGCGCAGUCUCUCUUUGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUUU
体外合成制备的sgRNA电泳图如图1。
2)gRNA活性验证
将PCR扩增产物重组入pGEM-T Easy载体,再进行重组子转化(连接产物用大肠杆菌感受态细胞转化,涂布于含氨苄(50μg/ml)的LB板),再挑选48个克隆,以此为PCR模板,T7、SP6为引物。(图2)
选10个拟阳性克隆进行测序,获得9个克隆测序结果,测序引物为T7。经对9个阳性转化子测序结果进行对比,发现8个发生突变,如图3~4:图中,只给出突变序列中gRNA识别序列,识别序列外的个别碱基不同可能源于SNP或PCR扩增引入的突变。
(1)T7方向插入克隆5个,比对的部分序列片段截图如图3,结果显示,均发生Indel(insert and deletion)突变。
(2)SP6方向插入克隆4个。如图4:均发生Indel突变代表性测序峰图:
图5:框自左向右依次表示Guide#4、Guide#3、Guide#1序列处。
Guide#1:AAACACTCCAGCAGCTTATTGGG(AAACACTTATTGGG)
Guide#3:TACCCAAAGAGAGACTGCGCTGG
RC:CCAGCGCAGTCTCTCTTTGGGTA(CCAGCGCAGTCTTGGGCA)
Guide#4:TTCCAGCGCAGTCTCTCTTTGGG(TTCCAGCGCAGTCTTGGG)
图6:框内表示Guide#2序列处
Guide#2:GGAGTGTTTGCCTCCAACCCCGG RC:
CCGGGGTTGGAGGCAAACACTCC(CCGGGGAGGCAAACACTCC)
综合以上实验结果,可以确认所述的sgRNA1-sgRNA4均可有效引导Cas9靶向切割目标基因。
3)构建gRNA表达载体以及gRNA体外合成
A,特异性gRNA骨架PCR
反应体系:
Figure BDA0003324475250000101
上述正向引物F为T7启动子+20bp+gRNA的上游序列,反向引物R为gRNA
的下游序列。将上述所有试剂混匀后放入PCR仪器中进行扩增。
PCR反应条件:
95℃3min,30(95℃30s,56℃30s,72℃30s),72℃10min,4℃。
上述正向引物F为T7启动子+20bp+gRNA的上游序列,反向引物R为gRNA
的下游序列。将上述所有试剂混匀后放入PCR仪器中进行扩增。
PCR反应条件:
95℃3min,30(95℃30s,56℃30s,72℃30s),72℃10min,4℃。
B,gRNA体外转录模板的纯化
将上述PCR产物利用无核酸酶污染的PCR clean up(Axygen)试剂盒收集。回收溶剂为无核酸酶污染的超纯水,回收体积均为15μl。分别取1μl进行琼脂糖凝胶(2%)电泳。选择较亮的DNA条带,并以此DNA为模板进行体外转录,进而合成特异性gRNA。
C,gRNA体外转录
将上述纯化后的模板用T7 RNA聚合酶进行体外转录。使用RNA体外转录试剂盒(MAXIscript SP6/T7,Ambion,USA)
Figure BDA0003324475250000102
Figure BDA0003324475250000111
将上述所有反应物按顺序依次加入1.5ml RNase-Free的EP管中轻弹混匀离心后,置于37℃水浴锅中1h。加入DNase I(Ambion,USA)1μl,置于37℃水浴锅中15min,达到去除模板的目的。然后加入30μl DEPC水扩大体积至50μl,同时加入5μl无核酸酶3M醋酸钠(pH5.2)和3倍体积的无水乙醇,-80℃沉淀过夜。再在4℃离心机上离心,转速:12,000rpm,离心时间:20min,去除上清后,将沉淀在通风橱晾干,然后以15μl无核酸酶超纯水重悬后将其储存于-80℃冰箱中备用。取1μl该样品进行琼脂糖凝胶电泳(浓度:2%),目的是检测转录结果,如果转录产物的大小与预期结果相符,就说明gRNA转录成功。
4)斑马鱼受精卵的显微注射
按常规方法收取斑马鱼受精卵。将上述gRNA1、gRNA2、gRNA3、gRNA4
(终浓度均在60~80ng/l)和Cas9蛋白(终浓度为200ng/l)混合后,显微注射入斑马鱼受精卵中,其注射量为1nl每胚胎。
5)Sanger测序检测靶位点的有效性
对斑马鱼胚胎进行显微注射之后,挑选部分发育正常的早期胚胎,检测其camta2基因是否存在突变;
A,提取斑马鱼基因组
待注射胚胎发育至24hpf时,取5枚胚胎,按照下述方法提取基因组DNA,具体步骤如下:
向装有胚胎的Ep管中加入100μL细胞裂解液,1μL蛋白酶K,放置于55℃水浴锅中裂解过夜;
裂解完成后,放在振荡器上充分震荡,加入等体积预先冷却的异丙醇于Ep管中,充分颠倒混匀,于4℃条件下,12000rpm离心10min,倒掉上清液;
加入75%乙醇500μL,于4℃条件下,12000rpm离心5min,弃上清液,室温风干8-10min;
加入10μL去离子水,充分吹打混匀,琼脂糖凝胶电泳检测提取效率;
B,PCR扩增目的序列
提取基因组DNA后,根据CRISPR靶位点上下游约100-250bp的基因组区域,利用PrimerPremier 5.0软件设计引物序列以扩增出目的DNA片段;
PCR反应体系:
Figure BDA0003324475250000121
PCR反应条件:
震荡混匀之后,4℃离心,于PCR仪上进行扩增反应;95℃3min,30(95℃30s,56℃30s,72℃1min),72℃10min,4℃。
用1.8%琼脂糖凝胶电泳检测PCR产物;
送部分纯化之后的目的DNA片段进行Sanger测序,由测序的峰图来初步获得插入或缺失的信息;
注射两个月之后,进行剪尾鉴定,同上鉴定步骤;
6)目的序列的TA克隆
对PCR初步鉴定有突变可能的目的序列再进行Sanger测序,若测序峰图有双峰,并且测序结果显示有插入或缺失现象的目的序列,接下来进行TA克隆之后挑取单克隆作进一步检测;
7)菌液的Sanger测序
将菌液PCR结果显示条带大小符合预期结果的菌液送往测序,根据测序之后给出的峰图和序列,在NCBI上与标准目的序列进行对比,根据比对结果,分析出每个单克隆的突变类型;
8)斑马鱼突变体筛选
(1)目标基因组片段扩增
ttgtatgttgtgtgtgatgcagAGAGCAGCGTTCAGATGAAAGTGTTTTTGCCCAATAAGCTGCTGGAGTGTTTGCCTCCAACCCCGGCTTTACCCAAAGAGAGACTGCGCTGGAACACAAACGAGgttcacacacacacactcacatctgatcacgttttacactttcacttctacttcagttttttgcaatcctgttgtcaatattatactgcatatttcatatttaaagggcacctattttaccccctttccaagatgtaagatcagcctttggtgtctcca
小写下划线字母为PCR扩增引物序列,大写下划线字母NGG(RC:CCN)为PAM序列
PCR扩增引物:
F2 TTGTATGTTGTGTGTGATGCAG
R2 TGGAGACACCAAAGGCTGAT
(RC:ATCAGCCTTTGGTGTCTCCA)
PCR产物电泳结果(琼脂糖凝胶浓度为:2%,电泳时间为30分钟)
图7示候选F1基因组DNA片段PCR扩增产物电泳结果图。
3、4、5号斑马鱼为候选F1突变体(图1)。
(2)上述斑马鱼行单克隆
①PCR验证体系1(10μl)
Figure BDA0003324475250000131
②PCR验证体系2(10μl)
Figure BDA0003324475250000132
PCR反应条件:
95℃3min,35×(95℃30s,56℃30s,72℃1min 10s),72℃10min;图8~10,分别示3、4、5号突变体PCR筛选阳性克隆电泳结果图。
(3)测序确定基因型
①突变体3(图11)
共测序2个阳性重组子,其中3-3为突变等位基因,3-12为野生型等位基因。
②突变体4(图12)
共测序2个阳性重组子,其中4-6为突变等位基因,4-19为野生型等位基因。
③突变体5(图13)
共测序2个阳性重组子,其中5-8为突变等位基因,5-14为野生型等位基因。
8)获得可遗传的斑马鱼突变体的F1代通过前面一系列筛选确定了斑马鱼突变体F0代,紧接着将F0代突变体分别与野生型斑马鱼杂交得到F1代胚胎,置于28℃培养,在初期观察F1代的存活率。受精两天后,每个突变体F1代分别取10个胚胎进行突变遗传性鉴定。将每个胚胎单独提取基因组,然后PCR扩增出285bp的靶位点附近区域,观察PCR扩增是否会出现小带,如果此突变可以遗传到F1代,则PCR扩增会出现小于285的小带。如果从F1代胚胎中检测到存在突变,则将斑马鱼突变体的F1代养大至2-3个月。再分别对每条F1代斑马鱼成鱼进行剪尾,筛选F1代突变体(具体方法如前面所述),(图14~15)。
已筛选到的突变体的F1代的camta2基因部分碱基缺失造成整个基因的移码突变,改变了斑马鱼camta2基因的表达,从而影响斑马鱼的心脏的发育.(图16)。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 中南大学湘雅二医院
<120> CAMTA2基因缺失型斑马鱼的构建方法
<130> MP21032278
<160> 15
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
aaacactcca gcagcttatt ggg 23
<210> 2
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ggagtgtttg cctccaaccc cgg 23
<210> 3
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
tacccaaaga gagactgcgc tgg 23
<210> 4
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ttccagcgca gtctctcttt ggg 23
<210> 5
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
aaaaaaagca ccgactcggt gccac 25
<210> 6
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
taatacgact cactatagaa acactccagc agcttattgt tttagagcta gaaatac 57
<210> 7
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
taatacgact cactatagga gtgtttgcct ccaacccgtt ttagagctag aaatac 56
<210> 8
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
taatacgact cactatagta cccaaagaga gactgcgcgt tttagagcta gaaatac 57
<210> 9
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
taatacgact cactatagtt ccagcgcagt ctctctttgt tttagagcta gaaatacr 58
<210> 10
<211> 104
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 10
gaaacacucc agcagcuuau uguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60
ccguuaucaa cuugaaaaag uggcaccgag ucggugcuuu uuuu 104
<210> 11
<211> 103
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 11
ggaguguuug ccuccaaccc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu uuu 103
<210> 12
<211> 104
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 12
guacccaaag agagacugcg cguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60
ccguuaucaa cuugaaaaag uggcaccgag ucggugcuuu uuuu 104
<210> 13
<211> 104
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 13
guuccagcgc agucucucuu uguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60
ccguuaucaa cuugaaaaag uggcaccgag ucggugcuuu uuuu 104
<210> 14
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
cccaataagc tgctggagtg ttt 23
<210> 15
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
cccaaagaga gactgcgctg gaa 23

Claims (10)

1.斑马鱼CAMTA2基因的靶位点,其包括如下位点中至少一种:
靶位点1,其具有如SEQ ID NO:1所示的核酸序列;
靶位点2,其具有如SEQ ID NO:2所示的核酸序列;
靶位点3,其具有如SEQ ID NO:3所示的核酸序列;
靶位点4,其具有如SEQ ID NO:4所示的核酸序列。
2.权利要求1所述靶位点的扩增引物,其包括:
扩增靶位点1的引物对,其包括如SEQ ID NO:5、SEQ ID NO:6所示的核酸序列的两条引物;
扩增靶位点2的引物对,其包括如SEQ ID NO:5、SEQ ID NO:7所示的核酸序列的两条引物;
扩增靶位点3的引物对,其包括如SEQ ID NO:5、SEQ ID NO:8所示的核酸序列的两条引物;
扩增靶位点4的引物对,其包括如SEQ ID NO:5、SEQ ID NO:9所示的核酸序列的两条引物。
3.靶向权利要求1所述靶位点的sgRNA,其包括:
靶向靶位点1的sgRNA1,其具有如SEQ ID NO:10所示的核酸序列;
靶向靶位点2的sgRNA2,其具有如SEQ ID NO:11所示的核酸序列;
靶向靶位点3的sgRNA3,其具有如SEQ ID NO:12所示的核酸序列;
靶向靶位点4的sgRNA4,其具有如SEQ ID NO:13所示的核酸序列。
4.重组载体,其包括骨架载体和权利要求3所述的sgRNA片段。
5.敲除斑马鱼CAMTA2基因的试剂,其包括:Cas9蛋白和权利要求3所述的sgRNA。
6.根据权利要求5所述的试剂,其特征在于,其包括水和200ng/L Cas9蛋白、60~80ng/LsgRNA1、60~80ng/LsgRNA2、60~80ng/LsgRNA3和60~80ng/L sgRNA4。
7.CAMTA2基因缺失型斑马鱼的构建方法,其特征在于,以权利要求5或6所述的试剂,敲除斑马鱼受精卵中的CAMTA2基因。
8.根据权利要求7所述的构建方法,其特征在于,所述斑马鱼受精卵为受精0.5h内的斑马鱼受精卵。
9.根据权利要求7或8所述的构建方法,其特征在于,所述试剂的用量为每个斑马鱼受精卵1nL试剂。
10.根据权利要求7或8所述的构建方法,其特征在于,还包括筛选的步骤,所述筛选采用PCR和测序。
CN202111257929.9A 2021-10-27 2021-10-27 Camta2基因缺失型斑马鱼的构建方法 Pending CN114085840A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111257929.9A CN114085840A (zh) 2021-10-27 2021-10-27 Camta2基因缺失型斑马鱼的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111257929.9A CN114085840A (zh) 2021-10-27 2021-10-27 Camta2基因缺失型斑马鱼的构建方法

Publications (1)

Publication Number Publication Date
CN114085840A true CN114085840A (zh) 2022-02-25

Family

ID=80297937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111257929.9A Pending CN114085840A (zh) 2021-10-27 2021-10-27 Camta2基因缺失型斑马鱼的构建方法

Country Status (1)

Country Link
CN (1) CN114085840A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261360A (zh) * 2022-08-02 2022-11-01 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 一种gata6基因敲除斑马鱼模型的构建方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN111154758A (zh) * 2020-01-17 2020-05-15 中南大学湘雅二医院 敲除斑马鱼slc26a4基因的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN111154758A (zh) * 2020-01-17 2020-05-15 中南大学湘雅二医院 敲除斑马鱼slc26a4基因的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG, WEI-HUA等: "A functional variant in the coding region of CAMTA2 is associated with left ventricular hypertrophy by affecting the activation of Nkx2.5-dependent transcription", JOURNAL OF HYPERTENSION, vol. 34, no. 5, pages 942 - 949 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261360A (zh) * 2022-08-02 2022-11-01 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 一种gata6基因敲除斑马鱼模型的构建方法

Similar Documents

Publication Publication Date Title
CN105647969B (zh) 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN107858373B (zh) 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法
WO2018177351A1 (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
JP6354100B2 (ja) Cas9 mRNAを哺乳動物の受精卵にエレクトロポレーションにより導入する方法
CN109628454B (zh) 斑马鱼糖原贮积症gys1和gys2基因突变体的构建方法
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN110684777B (zh) 一段分离的核苷酸序列在肌间刺减少的斑马鱼构建中的应用
CN112226465B (zh) 一段分离的核苷酸序列在无矿化肌间骨斑马鱼构建中的应用
CN111154758A (zh) 敲除斑马鱼slc26a4基因的方法
CN114085840A (zh) Camta2基因缺失型斑马鱼的构建方法
CN113817734A (zh) 一种hectd4基因敲除斑马鱼癫痫模型及其构建方法和应用
CN110066805A (zh) 基因敲除选育adgrf3b基因缺失型斑马鱼的方法
CN113678789A (zh) Mir-379/410基因簇敲除的小鼠模型及其构建方法
CN111778278A (zh) 一种Slfn4缺失的动脉粥样硬化模型小鼠的构建方法及其应用
CN114480497B (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN110894511A (zh) 一种基因编辑选育ppm1g基因突变型斑马鱼的方法
CN114410629B (zh) 巨核细胞条件性敲除tymp基因小鼠模型的构建方法及其应用
CN113558011B (zh) 基于γ-分泌酶激活蛋白基因的干燥综合征动物模型的建立方法
CN115029352A (zh) 一种基因敲除选育adgrg1基因缺失型斑马鱼的方法
CN115261360A (zh) 一种gata6基因敲除斑马鱼模型的构建方法
CN116536327A (zh) 一种小麦黄花叶病感病基因TaEIF4E及其应用
CN109694885B (zh) 基于CRISPR/Cas9技术制备PI3Kγ全身敲除模式小鼠方法及其应用和试剂盒
CN110438159B (zh) 一种引发肌原纤维肌病的基因突变小鼠模型的构建方法
Koga Transposition mechanisms and biothechnology applications of the medaka fish tol2 transposable element
CN113774128B (zh) Gja8基因突变位点在制备诊断白内障疾病的制品中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination