CN105210981B - 建立可应用于人类疾病研究的雪貂模型的方法及其应用 - Google Patents

建立可应用于人类疾病研究的雪貂模型的方法及其应用 Download PDF

Info

Publication number
CN105210981B
CN105210981B CN201510587647.3A CN201510587647A CN105210981B CN 105210981 B CN105210981 B CN 105210981B CN 201510587647 A CN201510587647 A CN 201510587647A CN 105210981 B CN105210981 B CN 105210981B
Authority
CN
China
Prior art keywords
ferret
fsh
hcg
units
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510587647.3A
Other languages
English (en)
Other versions
CN105210981A (zh
Inventor
王晓群
高绍荣
吴倩
寇朝辉
尹崇海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Biophysics of CAS
Original Assignee
Institute of Biophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Biophysics of CAS filed Critical Institute of Biophysics of CAS
Priority to CN201510587647.3A priority Critical patent/CN105210981B/zh
Publication of CN105210981A publication Critical patent/CN105210981A/zh
Application granted granted Critical
Publication of CN105210981B publication Critical patent/CN105210981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/02Breeding vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies

Abstract

本发明涉及一种建立可应用于疾病研究的雪貂模型的方法及其应用,属于生物学领域,具体涉及一种雪貂促排卵技术和一种雪貂体外受精技术,以及基于上述方面的利用CRISPR/Cas9的技术建立雪貂模型的方法,所述方法可应用于人类疾病研究。

Description

建立可应用于人类疾病研究的雪貂模型的方法及其应用
技术领域
本发明属于生物学领域,具体涉及一种雪貂促排卵技术和一种雪貂体外受精技术,以及基于上述方面的利用CRISPR/Cas9的技术建立雪貂模型的方法,所述方法可应用于系统研究人类疾病。
背景技术
大脑是人类控制认知、记忆、情感和活动的功能器官,某些与大脑发育相关基因的缺失或突变直接导致神经疾病的发生。高等哺乳动物的大脑皮层具有沟和回的结构,这一结构大大的增加了大脑皮层的表面积,研究表明这与高级认知等大脑功能密切相关。
雪貂作为新型实验动物,已经被广泛的应用于呼吸道疾病等的研究,但是并没有在神经系统发育中普遍应用。虽然雪貂不属于灵长类动物,但是它与平滑脑的小鼠相比,雪貂的大脑具有沟和回的结构,并且是有社会性的动物,因此,应用雪貂作为模式动物,研究直接大脑发育型疾病以及精神类疾病的发病机理和临床治疗等,具有很大的现实意义。此外,雪貂还具有体形小、易饲养、繁殖周期短、一胎多崽的优点,是研究神经系统疾病发病机理的首选模式动物。
雪貂之所以没有被神经科学研究广泛应用,其中主要原因是转基因动物无法实现。随着CRISPR/Cas9技术的发展,转基因动物制备变得相对简便[1,2]。
CRISPR/Cas9这一编辑基因的技术已经广泛应用于各种物种,包括小鼠、大鼠、猴等。以小鼠为例,主要实验过程如图1所示,将一个或者多个sgRNA(单向导RNA)和Cas9mRNA注射到受精卵里,sgRNA介导Cas9核酸酶在小鼠受精卵的特定基因组位点上进行切割、修复,导致基因被改变。
由于雪貂作为实验动物并没有被广泛应用,鲜有关于转基因雪貂的报道。雪貂作为实验动物的驯化和饲养条件要求比较严苛,而且生殖周期等 生理习性并没有非常详尽的研究资料,目前已经报道的唯一一例转基因雪貂,是通过病毒结合核移植的方法获得的[3,4],主要方法过程如图2所示。正常的雪貂体细胞经过定向基因修饰变为改变遗传学特性的修饰后体细胞,然后在成熟的雪貂卵母细胞中通过显微操作的方法用修饰后的体细胞的细胞核替换卵母细胞的细胞核。核移植后的卵母细胞经过发育,胚胎的基因就可以得到相应的改变。
然而,一方面,CRISPR/Cas9作为新兴的技术,从未应用于雪貂这种模式动物;另一方面,病毒结合体细胞核移植的方法比较复杂,操作性不高,效率低下,只有1-3%,而且使转基因动物有可能带上病毒的风险,此外,目前已经报道的雪貂的超排方案是针对Marshall Ferret的,用于Angora Ferret超排效率非常低,卵子不成熟,且无法做到雪貂的体外受精,无法满足高效制备转基因雪貂的要求。
发明内容
本发明针对现有技术中建立可应用于人类疾病研究的雪貂模型的方法的不足,一方面提供一种雪貂促排卵技术和一种雪貂体外受精技术,另一方面,在上述基础上,利用CRISPR/Cas9的技术,以3种基因(这三个基因都与神经系统疾病相关,一个是平滑脑症、一个是头小畸形症、一个是精神分裂症)为例,建立可应用于神经系统疾病研究的雪貂模型的方法,并将其用于相关疾病的致病机理研究,相关药物的筛选和安全性评价,以及临床手术治疗研究的模式动物。
本发明首次应用PMSG,FSH和HCG联合超排卵方法结合体外受精技术,使得转基因雪貂的制备工作可以在尽量少的耗损实验动物的基础上顺利开展。在取得的雪貂受精卵中,本发明首次应用CRISPR/Cas9技术,对受精卵的特定的与神经系统疾病直接相关的基因,包括Dcx,Aspm,Disc1进行编辑,从而最终导致这三个基因突变,无法正常行使该基因的生物学功能,获得类似于人类由于这三个基因突变而导致的神经系统疾病。
具体而言,本发明包括以下方面:
1.一种促进雪貂排卵的方法,所述方法使用PMSG(Pregnant Mare SerumGonadotropin)、FSH(FollitropinAlfa)和HCG(Human Chorionic Gonadotropin)联合进行。
2.根据第1项所述的方法,所述方法包括以下步骤:
1)给母貂腹腔注射PMSG,优选注射200-300单位,更优选300单位;
2)24-48小时后,肌肉注射第一针FSH,此后连续注射8-10天FSH,每次的FSH注射量优选为5-10单位,更优选为10单位;
3)如果外阴肿胀,颜色由红变白则腹腔注射HCG,HCG的注射量优选为200-300单位,更优选为300单位;
4)取卵,取卵时间优选在HCG注射后40-48小时,更优选为HCG注射后48小时。
3.根据第2项所述的方法,第1)步和第2)步之间间隔48小时。
4.根据第2项所述的方法,FSH的注射为每天两次,间隔12小时。
5.一种雪貂体外授精方法,所述方法包括:
1)取卵:手术取得雪貂的输卵管,用预热的HCZB培养液经输卵管伞口冲出卵丘卵母细胞复合体,用透明质酸酶消化成无卵丘细胞的单个卵母细胞,放入38.5℃,5%CO2预平衡3小时的IVF培养滴中备用;
2)体外受精:将公貂经附睾尾取出精液马上放入步骤1)中获得的含有卵母细胞的IVF培养滴中,共孵育,完成体外受精。
6.根据第5项所述的方法,所述共孵育时间为3-4小时。
7.根据第5项所述的方法,所述HCZB培养液的组成为:81.62mM氯化钠,4.83mM氯化钾,1.18mM磷酸二氢钾,1.18mM硫酸镁,5mM碳酸氢钠,1.7mM二水合氯化钙,31.3mM乳酸钠,0.27mM丙酮酸钠,20mMHepes,1mM谷氨酰胺,0.1mM EDTA 2Na,5.5mM葡萄糖,0.007%PVA,1N盐酸。
8.一种建立雪貂模型的方法,所述方法包括以下步骤:
1)针对目的基因设计sgRNA单向导RNA序列,并体外转录CAS9 mRNA和sgRNA序列;
2)根据1-4任一项所述的方法促雪貂排卵;
3)根据5-7任一项所述的方法进行雪貂体外受精;
4)将步骤1)获得的Cas9 mRNA和目的基因的sgRNA显微注射入受精卵;
5)将步骤4)获得的受精卵移植入受体进行妊娠;
6)鉴定子代转基因雪貂。
9.根据第8项所述的方法,所述目的基因选自Aspm,Dcx,Disc1。
10.根据第8或9项所述的方法用于相关人类疾病研究及针对人类疾病的药物筛选和/或安全性评价方面的用途。
本发明首次使用PMSG,FSH和HCG联合促排卵,排卵稳定高效,达到25-35枚/只。而现有技术中仅有的可参考的超排方案是使用PMSG和HCG联合超排方案,效率低,卵不成熟。此外,本发明首次使用雪貂的体外受精而不需要体外获能。另外本发明首次应用CRISPR/Cas9技术制备的转基因雪貂,相比之前唯一一例应用病毒结合体细胞核移植的方法,效率提高很多,可以达到80%左右,并且没有病毒危害性。本发明的模型可以例如模拟人由于Dcx基因突变或者Aspm基因突变引起的神经疾病,成为最为合适的疾病模式动物。而之前已有的Dcx突变小鼠模型,因小鼠的大脑没有沟回,故不能复制人的疾病表型。
附图说明
图1.应用CRISPR/Cas9技术制备转基因小鼠示意图。
图2.通过基因编辑体细胞核结合核移植的方法改变胚胎基因组的示意图。图3.sgRNA的设计,其中对于每个基因设计了2个sgRNA,其中灰色带下划线的GGT/GGA/GGG/GGC序列为Protospacer-adjacent motif(PAM),其余灰色不带下划线的为基因干扰靶序列。
图4.三个不同品系的转基因雪貂经过T7EN1酶切鉴定,可以被酶切的是基因突变雪貂,被星号标出。
图5.三个不同品系的转基因雪貂经过测序分析具体的基因突变位点。与野生型比较,删除的碱基用点表示,增加的碱基用小写字母标注。同时,括号内表示缺失了或者增加了几个碱基,以及这种类型的结果在20个检测中所占数量。
图6.Dcx转基因雪貂的大脑结构改变。转基因雪貂大脑皮层变薄、沟回变少、脑室变大。
图7.Aspm转基因雪貂的大脑结构改变。转基因雪貂大脑变小、沟回变浅。
具体实施方式
实施例1.CRISPR/Cas9靶向修饰基因载体构建和体外转录
1)sgRNA转录载体的构建:针对雪貂Aspm(GenBank Accession No:XM_004756200),Dcx(GenBank Accession No:XM_004769082),Disc1(GenBank Accession No:XM_013047589)三个基因,设计了特异的sgRNA序列(图3),具体序列参见表1。
表1
每2条单链核酸序列(表2)退火形成双链DNA,双链DNA连接到px330(Addgene,42230)载体中。
表2.sgRNA克隆引物序列
2)Cas9和sgRNA体外转录:利用表3中的引物将T7转录子通过PCR方法加入到Cas9和sgRNA的转录起始位点,Cas9序列和参考文献[2]中一致,PCR产物经过回收净化,用mMESSAGEmMACHINE T7ULTRA试剂盒(Life Technologies)进行体外转录。转录产生的Cas9mRNA和sgRNA用MEGAclear试剂盒(Life Technologies)纯化并测量浓度。
表3.连接T7转录子引物
实施例2.雪貂促排卵
选择2-3岁,体重1.5-2KG,3周左右未发情经产母貂,腹腔注射300单位PMSG(Pregnant Mare Serum Gonadotropin)(宁波三生药业),48小时后肌肉注射第一针FSH(FollitropinAlfa)(Merck Serono)10单位,此后连续注射10天,每天两次,间隔12小时,每次10单位,在注射FSH后持续观察雪貂发情情况,如果发情,则腹腔注射300单位HCG(HumanChorionic Gonadotropin)(Merck Serono)。注射HCG 48小时后取卵。本方法排卵稳定高效,达到25-35枚/只,在Angora Ferret中应用,比之前文献报道的促排卵方法(无成熟的卵母细胞)提高效率约100%,并且均为成熟的卵母细胞。
我们还使用其它PMSG、FSH和HCG浓度(如200、250单位的PMSG,5、8单位的FSH,200、250单位的HCG),以及FSH注射前的其它间隔时间(如24、36小时)、HCG注射和取卵间的其它间隔时间(如40、44小时), 均获得了与上述相似的促排卵效果。
实施例3.雪貂体外授精
1)取卵:手术取得雪貂的输卵管,用预热的HCZB培养液(81.62mM氯化钠,4.83mM氯化钾,1.18mM磷酸二氢钾,1.18mM硫酸镁,5mM碳酸氢钠,1.7mM二水合氯化钙,31.3mM乳酸钠,0.27mM丙酮酸钠,20mMHepes,1mM谷氨酰胺,0.1mM EDTA 2Na,5.5mM葡萄糖,0.007%PVA,1N盐酸)经输卵管伞口冲出卵丘卵母细胞复合体,用透明质酸酶消化成无卵丘细胞的单个卵母细胞,放入38.5℃,5%CO2预平衡3小时的IVF培养滴(Life Technologies)中备用。
2)体外受精:选择3-4岁,体重2-4KG的健康公貂,经附睾尾取出精液马上放入含有卵母细胞的IVF培养滴中,共孵育3-4小时,完成体外受精。
实施例4.雪貂受精卵显微注射
1)体外受精的受精卵:在授精3-4小时后,将卵母细胞自IVF培养基中取出,移入显微操作的液滴中,用Piezo(Narishige)将混合好的Cas9mRNA(100ng/μl)和目的基因的sgRNAs(50ng/μl)显微注射入卵细胞质内,每枚注射量相当于一个原核的体积。注射结束后室温恢复15分钟,移入38.5°C,5%CO2预平衡好的CZB培养液(81.62mM氯化钠,4.83mM氯化钾,1.18mM磷酸二氢钾,1.18mM硫酸镁,25mM碳酸氢钠,0.1mM EDTA 2Na,5.5mM葡萄糖,31.3mM乳酸钠,1.7mM二水合氯化钙,0.27mM丙酮酸钠,1mM谷氨酰胺,5g/l牛血清白蛋白)液滴中备用。
2)正常受精的受精卵:取正常合笼40-48小时后的母貂,手术取得输卵管,经输卵管伞口冲出受精卵,移入显微操作液滴中,用Piezo将混合好的Cas9mRNA(100ng/μl)和sgRNAs(50ng/μl)显微注射入卵细胞质内,每枚注射量相当于一个原核的体积。注射结束后室温恢复15分钟,移入38.5℃,5%CO2预平衡好的CZB培养液液滴中备用。
实施例5.受精卵移植入受体
将自然发情且与结扎公貂合笼24小时的母貂麻醉,使其侧卧于手术台上,在其左侧卵巢上方开2-3厘米的口,把卵巢拉到体外,经输卵管伞口移入显微注射过的胚胎15-18枚。并且观察卵巢是否已经排卵,若有明显未排的卵泡,则用1ML注射器将卵泡挑破。然后将卵巢恢复原位,手术缝合伤口。并注射20-30单位LH(LuteinizingHormone)(宁波三生药业)辅助着床。在胚胎移植后21天可用手检查母貂是否已经妊娠。
实施例6.转基因雪貂的鉴定
手术后母貂单独饲养,在胚胎移植后21天可用手检查母貂是否已经妊娠。母貂自然分娩,出生2周后,小貂进行编号并取尾部组织并对小貂的基因型进行鉴定。组织经速冻研磨裂解,提取基因组后,对于干扰的目的基因进行PCR扩增。PCR扩增引物见表4,PCR扩增产物经过T7EN1限制性内切酶(NEB)处理后,经过凝胶电泳分离,如果小貂基因被改变,可以在凝胶电泳图中看到一系列低分子量的条带。应用本方法,可以鉴定出目的基因被改变的小貂,用星号标示(图4)。此外,将确定为转基因雪貂的目的基因用上述方法和引物(表4),进行PCR片段扩增,PCR产物克隆到pMD-19T载体(Takara)中并进行测序,获得被改变后基因组的序列(图5)。与野生型比较,Dcx基因在不同的小貂中被删除4-98个碱基,或者增加1-2个碱基。即使在同一只小貂里,Dcx基因也有不同的编辑方式。Aspm基因在不同的小貂里缺失了2-15个碱基。我们仅获得了一只Disc1转基因小貂,Disc1基因增加了1个碱基或者缺失了3个碱基。
表4.转基因雪貂基因型鉴定PCR引物
实施例7.转基因雪貂的相关表型分析
由于Dcx基因与人类大脑沟回的产生密切相关,因此,应用小动物磁共振成像设备(Siemens),对于14周大的幼年雪貂进行脑结构的成像分析。发现在Dcx基因被突变后的幼年雪貂的大脑呈现了沟回明显缺失和脑腔变大的表型(图6)。此外,Aspm基因与人脑小畸形症直接相关,经过小动物磁共振成像技术检测,幼年雪貂在Aspm基因突变后,也呈现了脑体积减小和沟回变浅的表型(图7)。
参考文献
1.Cell.2013Sep 12;154(6):1370-9.One-step generation of mice carryingreporter and conditional alleles by CRISPR/Cas-mediated genomeengineering.Yang H,Wang H,Shivalila CS,Cheng AW,Shi L,Jaenisch R.
2.Cell.2013May 9;153(4):910-8.One-step generation of mice carryingmutations in multiple genes by CRISPR/Cas-mediated genome engineering.Wang H,Yang H,Shivalila CS,Dawlaty MM,Cheng AW,Zhang F,Jaenisch R.3.J ClinInvest.2008Apr;118(4):1578-83.Adeno-associated virus-targeted disruption ofthe CFTR gene in cloned ferrets.Sun X,Yan Z,Yi Y,Li Z,Lei D,Rogers CS,Chen J,Zhang Y,Welsh MJ,Leno GH,Engelhardt JF.
4.Dev Biol.2006May 15;293(2):439-48.Cloned ferrets produced bysomatic cell nuclear transfer.Li Z,Sun X,Chen J,Liu X,Wisely SM,Zhou Q,RenardJP,Leno GH,Engelhardt JF.
5.ReprodBiolEndocrinol.2003Nov 7;1:83.Progress toward generating aferret model of cystic fibrosis by somatic cell nuclear transfer.Li Z,Engelhardt JF。

Claims (6)

1.一种促进雪貂排卵的方法,所述方法使用PMSG(Pregnant Mare SerumGonadotropin)、FSH和HCG(Human Chorionic Gonadotropin)联合进行,所述方法包括以下步骤:
1)给母貂腹腔注射PMSG,注射200-300单位;
2)24-48小时后,肌肉注射第一针FSH,此后连续注射8-10天FSH,每次的FSH注射量为5-10单位;
3)如果外阴肿胀,颜色由红变白则腹腔注射HCG,HCG的注射量为200-300单位;
4)取卵,取卵时间在HCG注射后40-48小时。
2.根据权利要求1所述的方法,其中在第1)步中注射300单位的PMSG。
3.根据权利要求1所述的方法,其中在第2)步中每次的FSH注射量为10单位。
4.根据权利要求1所述的方法,其中在第3)步中HCG的注射量为300单位。
5.根据权利要求1所述的方法,其中在第4)步中取卵时间在HCG注射后48小时。
6.根据权利要求1所述的方法,FSH的注射为每天两次,间隔12小时。
CN201510587647.3A 2015-09-15 2015-09-15 建立可应用于人类疾病研究的雪貂模型的方法及其应用 Active CN105210981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510587647.3A CN105210981B (zh) 2015-09-15 2015-09-15 建立可应用于人类疾病研究的雪貂模型的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510587647.3A CN105210981B (zh) 2015-09-15 2015-09-15 建立可应用于人类疾病研究的雪貂模型的方法及其应用

Publications (2)

Publication Number Publication Date
CN105210981A CN105210981A (zh) 2016-01-06
CN105210981B true CN105210981B (zh) 2018-09-28

Family

ID=54980604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510587647.3A Active CN105210981B (zh) 2015-09-15 2015-09-15 建立可应用于人类疾病研究的雪貂模型的方法及其应用

Country Status (1)

Country Link
CN (1) CN105210981B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
AU2015298571B2 (en) 2014-07-30 2020-09-03 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
IL258821B (en) 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
CN109804066A (zh) 2016-08-09 2019-05-24 哈佛大学的校长及成员们 可编程cas9-重组酶融合蛋白及其用途
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR102622411B1 (ko) 2016-10-14 2024-01-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
GB2575930A (en) 2017-03-23 2020-01-29 Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
EP3676376A2 (en) 2017-08-30 2020-07-08 President and Fellows of Harvard College High efficiency base editors comprising gam
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
CN109777828A (zh) * 2018-12-28 2019-05-21 江苏集萃药康生物科技有限公司 一种基于IVF与CRISPR/Cas9基因编辑技术的基因改造动物模型制备方法
WO2020191249A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
CN111011295A (zh) * 2019-11-25 2020-04-17 芜湖职业技术学院 一种提高北极狐繁殖的方法
MX2022014008A (es) 2020-05-08 2023-02-09 Broad Inst Inc Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo.
CN112715475B (zh) * 2020-12-28 2023-11-24 无锡珊瑚礁生物科技有限公司 一种提高雪貂产仔率的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ500844A (en) * 2000-05-05 2003-06-30 Agres Ltd Nucleotide sequences (mutated GDF-9B polypeptides) involved in increasing and decreasing mammalian ovulation rate
CN1838880B (zh) * 2003-08-22 2010-06-23 杰克逊实验室 用于维持近交动物品系遗传稳定性的方法
US20080299077A1 (en) * 2007-06-01 2008-12-04 Nevada Cancer Institute Isolation and growth of stem cells from hemangiomas
CN103348012B (zh) * 2010-11-27 2016-06-08 朱坚 一种人源化的转基因动物
CN103478071B (zh) * 2013-06-28 2016-06-01 四川农业大学 一种诱导糖尿病模型的建立方法
CN103740639A (zh) * 2013-09-02 2014-04-23 北京大学人民医院 构建人源化Ph染色体阳性急性淋巴细胞白血病小鼠模型的方法
CN103566353A (zh) * 2013-11-06 2014-02-12 刘志刚 一种构建哮喘动物模型的方法
CN104560944A (zh) * 2014-12-24 2015-04-29 张华� 一种hla-dqbi完全基因剔除实验小鼠模型的建立方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
动物超数排卵技术研究进展;王新蕾等;《实验动物与比较医学》;20070430;第27卷(第4期);第280-284页 *

Also Published As

Publication number Publication date
CN105210981A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
CN105210981B (zh) 建立可应用于人类疾病研究的雪貂模型的方法及其应用
CN108660161B (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
Modzelewski et al. Efficient mouse genome engineering by CRISPR-EZ technology
Takahashi et al. Birth of healthy offspring following ICSI in in vitro-matured common marmoset (Callithrix jacchus) oocytes
Zou et al. Production of cloned goats from enucleated oocytes injected with cumulus cell nuclei or fused with cumulus cells
Yao et al. Generation of knock-in cynomolgus monkey via CRISPR/Cas9 editing
CN105132427A (zh) 一种以RNA介导的特异性敲除双基因获得基因编辑绵羊的方法及其专用sgRNA
CN109706184B (zh) 自闭症模型犬的建立方法
EP3381278A1 (en) Method for preparing a canine model of atherosclerosis
CN113088521A (zh) 一种基于CRISPR/Cas9技术的Ahnak2基因敲除动物模型的构建方法
Gil et al. Developmental competence of porcine genome‐edited zygotes
CN110862988B (zh) 一种sgRNA及其构建的CREBRF点突变型巴马香猪和应用
CN110684767B (zh) 一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用
Mukai et al. Impacts of oocyte/zygote timing for in vitro fertilization and gene editing in the dog
CN110129320A (zh) 一种获得基因编辑绵羊的方法及其专用sgRNA和Oligo DNA
CN105132426A (zh) 一种以RNA介导的特异性敲除FGF5基因获得基因编辑绵羊的方法及其专用sgRNA
Pan et al. Cloned pigs derived from somatic cell nuclear transfer embryos cultured in vitro at low oxygen tension
CN111500580B (zh) 一种基因编辑方法
CN114868707B (zh) 一种代谢性脑病和心律失常疾病的斑马鱼模型及其应用
CN109777828A (zh) 一种基于IVF与CRISPR/Cas9基因编辑技术的基因改造动物模型制备方法
Briski et al. Comparison of ICSI, IVF, and in vivo derived embryos to produce CRISPR-Cas9 gene-edited pigs for xenotransplantation
CN111518839B (zh) 一种等位特异性位点编辑方法
EP1252818A1 (en) Method of transferring mutant mitochondrial dna into genital cells
CN112342249A (zh) Uox基因敲除小鼠模型及其构建方法
Bou et al. A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant