CN110684767B - 一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用 - Google Patents

一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用 Download PDF

Info

Publication number
CN110684767B
CN110684767B CN201910878579.4A CN201910878579A CN110684767B CN 110684767 B CN110684767 B CN 110684767B CN 201910878579 A CN201910878579 A CN 201910878579A CN 110684767 B CN110684767 B CN 110684767B
Authority
CN
China
Prior art keywords
amh
sequence
grna
target site
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910878579.4A
Other languages
English (en)
Other versions
CN110684767A (zh
Inventor
卢建国
李石竹
方文宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201910878579.4A priority Critical patent/CN110684767B/zh
Publication of CN110684767A publication Critical patent/CN110684767A/zh
Application granted granted Critical
Publication of CN110684767B publication Critical patent/CN110684767B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种在黄颡鱼中双gRNA位点敲除amh基因的方法,包括以下步骤:(1)靶位点1设计在黄颡鱼amh基因第一外显子上,靶位点2设计在第四外显子上;(2)根据步骤(1)的靶位点序列设计引物检测亲鱼中靶位点的准确性,用amh E1 F和amh E1 R扩增靶位点1及附近序列,用amh E4 F和amh E4 R扩增靶位点2及附近序列;(3)以pUC19‑gRNA‑scaffold质粒为模板,用amh E1 gRNA F和gRNA R进行gRNA1片段的PCR扩增,用amh E4 gRNA F和gRNA R进行gRNA2片段的PCR扩增;以上述PCR产物为模板,体外转录并纯化获得gRNA;(4)以pXT7‑hCas9线性化质粒为模板,体外转录合成Cas9 mRNA;(5)将Cas9 mRNA和两个gRNA显微注射到黄颡鱼一细胞期胚胎中;(6)检测突变类型,计算基因编辑率。本发明还公开了上述方法的应用。

Description

一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用
技术领域
本发明涉及生物技术、遗传育种领域,尤其是一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用。
背景技术
黄颡鱼(Pelteobagrus fulvidraco)隶属硬骨鱼纲(Osteichthyes)、鲶形目(Siluriformes)、鲿科(Bagridae)、黄颡鱼属(Pelteobagrus),是我国重要的淡水经济养殖鱼类之一。由于黄颡鱼雄鱼生长速度是雌鱼的2-3倍。近年来国内兴起全雄黄颡鱼养殖,但是随着黄颡鱼养殖业的快速发展,一些问题相继出现,例如,用于生产全雄苗的YY超雄鱼供应紧张,价格昂贵;另外由于近亲繁殖现象严重,导致黄颡鱼种质退化、生长速度降低、抗病抗逆性降低等。这严重制约了黄颡鱼养殖业的可持续发展,因此迫切的需要对黄颡鱼现有的种质进行提纯复壮,选育出遗传性状优良的纯系超雄鱼和全雌鱼。
理解黄颡鱼性别决定和分化以及生殖调控机制是进行人工性别控制育种的基础。Amh(anti-Mullerian hormone)即抗缪勒氏管激素,是一种β-转化生长因子(TGF-β)超家族的糖蛋白激素,广泛存在于脊椎动物和无脊椎动物的性腺中,具有调节生殖细胞发育和分化的作用。在哺乳动物中,抗缪勒氏管激素刺激中肾管分化成附睾、输精管和精囊;在雌性中由于缺乏抗缪勒氏管激素的表达,缪勒管分化成输卵管、子宫和阴道上缘。尽管在大部分硬骨鱼类中缪勒氏管已经退化或没有缪勒氏管,但amh基因仍在硬骨鱼性腺发育中起着重要的作用。在斑马鱼、罗非鱼和虹鳟等鱼类性腺分化过程中,amh基因呈现性别二态性表达,在精巢中的表达量显著高于卵巢中的表达量。
基因编辑技术是生命科学领域的一项重要技术手段,它通过对特定目的基因的基因组序列进行编辑,加速了基因功能的研究、疾病的研究与治疗以及药物的开发等。目前常用的基因编辑技术主要包括锌指核酸酶(Zinc-finger nuclease,ZFN)技术、转录激活因子样效应物核酸酶(transcription activator-like effector nuclease,TALEN)技术和基于规律成簇的间隔短回文重复(clustered regularly interspaced short palindromicrepeats,CRISPR)系统核酸酶技术。前两种技术对DNA序列的识别依赖于其中的DNA结合蛋白模块,设计相对繁琐易错、费时且价格昂贵。CRISPR技术通过引导RNA(gRNA)介导对DNA的识别,设计简单、高效且价格低廉,在多个物种中得到广泛应用。
黄颡鱼amh基因全长4660bp,包含7个外显子和6个内含子,如何选择合适的靶点,使整个基因失去功能并且出现易于筛选的表型是成功获得突变体的关键。传统的单一靶点敲除,打靶效率较低,DNA自主修复不确定性高容易造成无义突变,而且几个碱基的缺失不容易鉴定,往往需要花费大量的资金进行测序鉴定。
发明内容
针对上述不足,本发明的目的之一在于提供一种在黄颡鱼中双gRNA位点敲除amh基因的方法,以获得编辑效率高且易于筛选的突变体,用于研究amh基因对黄颡鱼性别决定和分化的作用,以及解决通过基因组编辑培育黄颡鱼新种质的问题。
为实现上述目的,本发明提供的技术方案是:一种在黄颡鱼中双gRNA位点敲除amh基因的方法,包括以下步骤:
(1)靶位点1设计在黄颡鱼amh基因第一外显子上,靶位点2设计在第四外显子上;
(2)根据步骤(1)的靶位点序列设计引物检测亲鱼中靶位点的准确性,用amh E1 F和amh E1 R扩增靶位点1及附近序列,用amh E4 F和amh E4 R扩增靶位点2及附近序列;
(3)以pUC19-gRNA-scaffold质粒为模板,用amh E1 gRNA F和gRNA R进行gRNA1片段的PCR扩增,用amh E4 gRNA F和gRNA R进行gRNA2片段的PCR扩增;以上述PCR产物为模板,体外转录并纯化获得gRNA;
(4)以pXT7-hCas9线性化质粒为模板,体外转录合成Cas9 mRNA;
(5)将Cas9 mRNA和两个gRNA显微注射到黄颡鱼一细胞期胚胎中;
(6)检测突变类型,计算基因编辑率。
步骤(1)中所述靶位点1序列为SEQ ID NO.1所示的序列;所述靶位点2序列为SEQID NO.2所示的序列。
步骤(2)中所述引物amh E1 F的序列为SEQ ID NO.3所示的序列;所述引物amh E1R的序列为SEQ ID NO.4所示的序列;所述引物amh E4 F的序列为SEQ ID NO.5所示的序列;所述引物amh E4 R的序列为SEQ ID NO.6所示的序列。
步骤(3)中所述引物amh E1 gRNA F的序列为SEQ ID NO.7所示的序列;所述引物amh E4 gRNA F的序列为SEQ ID NO.8所示的序列;所述引物gRNA R的序列为SEQ ID NO.9所示的序列。
步骤(3)所述gRNA纯化方法为LiCl沉淀法,具体步骤为:向gRNA体外转录体系中加1ul 0.5M的EDTA终止反应后,加2.5ul 4M的LiCl和75ul预冷的无水乙醇进行沉淀,离心,收集沉淀物;再加1mL预冷的75%乙醇清洗沉淀物,离心,收集沉淀物,去除乙醇;加50ulNuclease-free水溶解gRNA沉淀后,Nanodrop检测浓度,并于-80℃保存。
所述沉淀具体为-20℃沉淀16h或-80℃沉淀2h。
所述离心温度为4℃,离心时间为15min。
所述步骤(5)具体为:将浓度为600ng/ul的Cas9 mRNA和浓度均为120ng/ul的两种gRNA按2:1:1的体积混合均匀,显微注射到黄颡鱼一细胞期胚胎中,注射剂量为1nL。
所述步骤(6)具体为:收集出膜的小鱼苗20尾,提取基因组DNA后;PCR扩增靶位点及附近序列,PCR产物一部分直接送去Sanger测序,根据测序峰图初步检测基因编辑的效果;将剩下的PCR产物回收纯化,连接PMD-18T载体,挑选阳性单克隆送去Sanger测序,根据测序结果确定具体的突变类型,预测氨基酸序列的变化;用amh E1 F和amh E4 R这对引物PCR扩增突变体和野生型基因组,琼脂糖凝胶电泳检测是否发生长片段缺失突变;计算基因编辑效率。
所述的基因编辑效率计算公式为:基因编辑效率=1-(1-a)*(1-b),其中a为靶位点1的突变率,b为靶位点2的突变率。
本发明的目的之二在于提供上述在黄颡鱼中双gRNA位点敲除amh基因的方法应用于研究amh基因对黄颡鱼性别决定和分化的作用以及黄颡鱼优质亲本的分子模块育种。
本发明与现有技术相比,具有以下优点:
1、本发明针对黄颡鱼第一外显子和第四外显子设计了两个gRNA靶位点,敲除效率明显提高。
2、本发明产生了1100bp左右的长片段缺失的突变型,该突变型只需PCR和琼脂糖凝胶电泳即可确定是否敲除成功,大大降低了后续的鉴定成本。
3、本发明为黄颡鱼amh基因功能研究提供了突变体模型,为黄颡鱼新种质创制提供了一种新的方法;建立了黄颡鱼显微注射体系,为黄颡鱼基因组编辑育种提供了有效的技术手段。
附图说明
图1为黄颡鱼amh基因靶位点的结构图;
图2为野生型黄颡鱼和突变体中amh基因靶位点附近测序峰图;
图3为突变类型统计及可能造成的氨基酸序列变化;
图4为长片段缺失突变PCR检测结果。
具体实施方式
下面结合具体实施例对本发明的权利要求做进一步的限定和说明,但不构成对本发明权利要求的任何限定。
实验试剂:此次实施例中所用的引物均为广州天一辉远公司合成,所涉及到的Sanger测序均送去广州天一辉远公司测序;pXT7-hCas9质粒和pUC19-gRNA scaffold质粒来源于文献:Chang N,Sun C,Gao L,et al.Genome editing with RNA-guided Cas9nuclease in zebrafish embryos.Cell research,2013,23(4):465.组织DNA提取试剂盒Tissue DNA Kit和胶回收试剂盒Gel Extraction Kit购自Omega公司;用于PCR扩增的Premix Taq购自武汉擎科生物公司;PCR产物回收试剂盒PCR Cleanup Kit购自Axygen公司;XbaI内切酶和PMD-18T载体购自Takara公司;gRNA体外转录试剂盒Transcript Aid T7High Yield Transcription Kit购自Thermo公司;Cas9 mRNA体外转录试剂盒mMESSAGEmMACHINE T7 Kit购自Invitrogen公司。
黄颡鱼amh基因全长序列见SEQ ID NO.10。
实施例1
步骤(1)靶位点设计:
在NCBI上查询黄颡鱼amh基因的基因组DNA序列及其mRNA序列,黄颡鱼amh基因全长4660bp,包含7个外显子和6个内含子。针对第一外显子和第四外显子各设计一个靶位点,靶位点序列如表1所示,靶位点的结构图如图1所示。将靶点序列在NCBI网站上通过Blast比对,验证靶位点的特异性。
靶位点选择原则:
A.靶位点包含20个碱基,其中5’端应为GG,这是由于本发明所用的gRNA体外转录采用了T7启动子,T7启动子要求转录起始位点的前两位为GG,并且第三位最好为G或A。
B.紧邻靶位点3’端的3个碱基构成PAM区,要求序列为NGG(N为任意碱基)。
C.靶位点尽量选在基因CDS的前2/3区域并且在ATG之后,但是不要在最后一个外显子上,最好能破坏重要的结构域。
D.靶位点也可选在外显子和内含子交界处,以破坏基因的剪接。
表1.黄颡鱼amh基因靶位点序列
Figure BDA0002205144100000051
步骤(2)靶位点的确认:
a、对用于人工繁殖的亲鱼,剪尾鳍,提取基因组DNA,采用Omega公司的Tissue DNAKit。
b、设计检测引物,原则为:正向引物和反向引物都距离靶位点大于100bp;PCR产物为单一条带且最好不超过500bp。PCR反应体系如表2所示,PCR反应条件如表3所示,引物序列如表4所示,其中,amh E1 F和amh E1 R用于扩增靶位点1(第一外显子上)及附近序列,amh E4 F和amh E4 R用于扩增靶位点2(第四外显子上)及附近序列。
表2.PCR反应体系:
2x PCR mix 25ul
正向引物 1ul
反向引物 1ul
基因组DNA 1ul
灭菌水 22ul
总体积 50ul
表3.PCR反应条件:
Figure BDA0002205144100000061
表4.实验所用引物信息
Figure BDA0002205144100000062
Figure BDA0002205144100000071
步骤(3)合成gRNA:
a、设计并合成gRNA引物,以pUC19-gRNA-scaffold质粒为模板,进行PCR扩增,PCR反应体系如表5所示,PCR反应条件如表6所示。引物序列如表4所示,其中,amh E1 gRNA F和gRNA R用于gRNA1的扩增,amh E4 gRNA F和gRNA R用于gRNA2的扩增。正向引物前17位碱基序列是T7启动子,18-37位碱基序列是gRNA靶序列,38-57位碱基序列是pUC19-gRNA-scaffold质粒上游骨架序列,反向引物序列为pUC19-gRNA-scaffold质粒下游骨架序列。
b、电泳检测PCR产物后,进行切胶回收,使用Omega公司的Gel Extraction Kit。
c、RNA-free的条件下,使用Thermo公司的Transcript Aid T7 High YieldTranscription Kit体外转录gRNA。
d、通过LiCl沉淀法纯化gRNA。步骤如下:
(1)向上一步的体外转录体系中加1ul 0.5M的EDTA终止反应。
(2)加2.5ul 4M的LiCl和75ul预冷的无水乙醇,放于-20℃沉淀过夜或-80℃沉淀2小时。
(3)4℃,12000g,离心15分钟。
(4)弃上清,加1mL预冷的75%乙醇洗沉淀。4℃,10000g,离心5分钟。
(5)弃上清,将离心管放于通风橱中使乙醇挥发干净。
(6)加50ul Nuclease-free水溶解gRNA沉淀。
(7)Nanodrop检测浓度,并于-80℃保存。
表5.PCR反应体系
Figure BDA0002205144100000072
Figure BDA0002205144100000081
表6.PCR反应条件
Figure BDA0002205144100000082
步骤(4)合成Cas9 mRNA:
a、用XbaI内切酶酶切质粒pXT7-hCas9,37℃孵育5小时,然后取酶切之后的质粒和未酶切的质粒各1ul,琼脂糖凝胶电泳检测酶切反应是否彻底,若两者迁移速率完全不同则说明质粒已经完全线性化。酶切反应体系如表7所示。
b、使用Axygen公司的PCR Cleanup Kit纯化酶切产物,获得线性化的pXT7-hCas9质粒。
c、RNA-free的条件下,使用Invitrogen公司的mMESSAGE mMACHINE T7 Kit体外转录及回收Cas9 mRNA。
表7.酶切反应体系
10x反应Buffer 5ul
BSA 5ul
XbaI 2ul
pXT7-hCas9质粒 30ul
灭菌水 8ul
总体积 50ul
步骤(5)黄颡鱼胚胎的显微注射:
按照300ng/μl、30ng/μl和30ng/μl的最终浓度混合Cas9 mRNA和两种gRNA(amhgRNA1和amh gRNA2)。将混合物约1nL显微注射到黄颡鱼一细胞期的胚胎中。
黄颡鱼的人工繁殖方法:
第一步,人工催产。黄颡鱼人工催产一般分两针注射催产激素,针距10-12小时,激素用医用生理盐水溶解后注射。第一针催熟:每公斤雌鱼注射促黄体生成素释放激素类似物(LHRH-A2)15-20ug;第二针催产:每公斤雌鱼注射LHRH-A2 15ug,地欧酮(DOM)10mg和人绒毛膜促性腺激素(HCG)800国际单位。雄鱼只注射第二针,剂量为雌鱼的1/3到1/2。亲鱼催产水温最好控制在28℃-29℃之间,催产的效应时间一般为15-30小时。
第二步,人工授精。准备好干净无水的玻璃培养皿,左手抓住雌鱼,擦干鱼身上的水和黏液,右手大拇指轻轻挤压雌鱼腹部,将鱼卵从生殖孔挤出到培养皿中;杀雄鱼取出精巢,用干净的剪刀剪碎,加2mL生理盐水稀释,收集到干净的EP管中避光4℃保存;向装有鱼卵的培养皿中加入50ul精液,用干净的羽毛搅拌30秒,使精液和鱼卵充分接触后,在装有干净饱气水的玻璃皿中铺开。五分钟后,受精卵黏在玻璃皿上,用饱气水清洗几次。二十分钟后胚胎发育到一胞期,开始显微注射,胚胎发育到二胞期停止注射,期间约有30分钟可进行显微注射。
步骤(6)检测突变类型,计算基因编辑率:
a、受精卵置于28℃水体中孵化,受精后72小时左右出膜,收集出膜的小鱼苗20尾,提取基因组DNA,采用Omega公司的Tissue DNA Kit。
b、对上述基因组DNA,用amh E1 F和amh E1 R、amh E4 F和amh E4 R这两对引物分别进行PCR扩增。PCR反应体系如表8所示,PCR反应条件如表9所示。
表8.PCR反应体系
2x PCR mix 25ul
正向引物 1ul
反向引物 1ul
基因组DNA 1ul
灭菌水 22ul
总体积 50ul
表9.PCR反应条件
Figure BDA0002205144100000101
c、PCR产物经过琼脂糖凝胶电泳检测后,一部分直接送去Sanger测序,初步检测基因编辑的效果。如图2所示,测序峰图在靶位点之后出现套峰,说明发生了插入或缺失突变,初步证明基因编辑有效。
d、将剩下的PCR产物回收纯化,采用Axygen公司的PCR Cleanup Kit。纯化的产物与PMD-18T载体4℃连接过夜(连接体系如表10所示),然后转化到感受态细胞中,涂平板,挑取单克隆后,PCR检测阳性克隆,挑选20个阳性克隆送去Sanger测序,突变类型统计及可能造成的氨基酸序列变化如图3所示。
具体转化步骤为:将连接产物与50ul感受态细胞混合,置于冰上20分钟使其充分混匀;42℃水浴热激90秒后,迅速置于冰上;加800ul预冷的无抗性LB培养基,37℃摇床孵育50分钟;4000g离心2分钟,弃掉多余的上清,留100ul左右的上清,重悬沉淀;在氨苄抗性的平板上均匀涂布菌液,37℃培养16个小时。
表10.连接体系
Solution I 5ul
PMD-18T载体 0.5ul
纯化的DNA 4.5ul
总体积 10ul
e、用amh E1 F和amh E4 R这对引物PCR扩增步骤(6)a中的基因组,琼脂糖凝胶电泳检测,如图4所示,突变体检测到400bp左右的目的条带,而野生型检测不到,说明可能发生了长片段缺失突变。将该PCR产物回收纯化,送去Sanger测序,将测序结果与amh基因组序列比对分析发现两个靶位点之间包括内含子在内的1100bp左右的基因组序列发生了缺失。
f、计算基因编辑效率,计算公式为:基因编辑效率=1-(1-a)*(1-b),其中a为靶位点1的突变率31.6%,b为靶位点2的突变率29.4%,因此采用本发明敲除黄颡鱼amh基因,其编辑效率为51.7%。
序列表
<110> 中山大学
<120> 一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggacgagacg cggacagaga 20
<210> 2
<211> 20
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 2
ggaattcgga gtaatagctt 20
<210> 3
<211> 24
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctgtgaagtt attttggcag cctg 24
<210> 4
<211> 24
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 4
cctccagtca caagtctgaa tatc 24
<210> 5
<211> 24
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 5
cctaacaacc aggtcatcat catc 24
<210> 6
<211> 24
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 6
aggacgtgat ggcctgaaat ttag 24
<210> 7
<211> 57
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 7
taatacgact cactatagga cgagacgcgg acagagagtt ttagagctag aaatagc 57
<210> 8
<211> 57
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 8
taatacgact cactatagga attcggagta atagcttgtt ttagagctag aaatagc 57
<210> 9
<211> 20
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 9
aaaagcaccg actcggtgcc 20
<210> 10
<211> 4660
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 10
cagaatgaaa tttggctcgg tgatggagga tcgtctcggt tggtgttcac cgctcgagcc 60
accaataaga ctaagtcgga taatgttttt taataactcc acagcgctgt gacatagaaa 120
cacgattctg ctctgattcc gtgggtgagg acaagttcag tgtatgtggt ggtgattatc 180
cggcagtgta tcagttatat taaatctacc actatgagag aaaaaagtgt ttagattttt 240
tttttttttt taatgttcca cgttttatct ataacatgca aatgactttg agtagacgac 300
aagcaggcgg tgagacacgt cagaaaccgt attagactca acttcacatg tgaagctcca 360
gaacataagg aatcagaagt cttatttaaa gtccacctct agggggcgct ttgatttaca 420
ccttgaaaga ctgctgatga ataacatggg agcttctgga caccgggaca tgattctact 480
ttctcttcgt tccctgaaaa gtcatccgaa tgccaacaaa tttgtgattt ctcgaacagg 540
acgtcggtta tttcaggctt taagtagatt tttgttttat ttttatttta aatgcaatgt 600
caccgaacag gaattctttg acaccaaaaa tctctaattt tgccaaaaaa aacaccaaaa 660
atctgtttcc acaatccatg acctgatatt aacaaagaag ctttgtgttt atttcaaaga 720
agtgaggaag tgaaaatctc agcaaacaac ataaaaagca cctctcagta agtttaatac 780
agttggatcg tttgggggaa acgatgcgaa acggatggat gtgatgcaca aataaaaaga 840
tctctttatt agtatttttt tggactgccc taatcagtgt tgtcagcgtt tgatttaaag 900
cccccggagt cggcacagta atccgttgtc tgtctgactg gctttatctc tctggggtaa 960
gcttttatat cgtgtctcca cattcaccac cgtctgcttc aacccccttc ataaaacaaa 1020
aggcactcgt taaaatccct ccattcaagg acatggtact gtgaagttat tttggcagcc 1080
tgtttctgtc aggaatgcag aagttgtgta taaagctggt ttccgttggt gaacttctca 1140
caaacggaga cctgacacgc tcgtgactga gaggaaatgg gtgcgaagat gtgcttttgg 1200
atgttgttgc ttctgccagt aacggtggtc acagggccac tggacgagac gcggacagag 1260
acggagcgta accaacacga ggacttcatc agagtccagt cgctgtcagg tcagtcacct 1320
ccaaagtcat gttttcttta gataaaatct aacagcccaa aaaaaaaaca aactaaccct 1380
gtctgatatt cagacttgtg actggaggta atattgtgca gtatttctag caatcacacc 1440
aaaacccacc atttggcaaa cgctcttatt catttaatct ccttttatgc aagtgagtaa 1500
tagagggtgt aaggaccctt tctcagggtt gatgaacctt ctgatcagta gtccaacacc 1560
ttaaccacta cgctaccaca tcctctactg tgcacctgtt tacaggacaa aacagaagtg 1620
aaagggaagg ccaagtgccc tctgaaggac cagacgcttc tgcaccccgg cgtcttttga 1680
aggacgttcc atgtgtcgtc gaaggtgtcc atcatcaccc tgaagctctg cacgagatcc 1740
tccttgcttt gcaaaacgtc tggagtaagg acggtgaggc gaaggagcgg gaattcggtc 1800
ggtttggatt ttgttcacat gacgatggtg tgagatattc ccagttttca tcactgatga 1860
aggagaataa aagcccagaa tatacacaca gcgaaaaagg taccagagac ctaactcagt 1920
gcttctggaa tgtacagatc aggtcaaaga cataaaatat atgatctctc tctctctctc 1980
tctctctctc tctctctctc tctctctctc tctctctctc attattctat tttttaaaga 2040
acatttggat gctgaaaaag acgggacttt cacaatgacc ctacacttcg ccaagcctgc 2100
gacgtgttcc gaacaaacca caacggcttc catcatgctc ctgtttttca ttgacttctg 2160
caacacagag gagatgaaga tccagttcag cagtcaagac cttcagccta acaaccaggt 2220
catcatcatc atcatcgtca tcatgcctta acgtgaacca aataaacatt gaaacaaggt 2280
tttatttatt tttctcttgt gttgtgtcag acagcgtgtg tctctcaggc aacacgcttc 2340
ctggttctta caggaattcg gagtaatagc ttcggtcatg agaatataaa actgaggatg 2400
gacgttcagc aagatggtgg tgatgtcaga tttctctaca ttttctgcac ataattattg 2460
tgactagctc ttttcattac gatcaatgta tgtaattgtt tgtttttagg gaagaaatta 2520
ggtttgtcta aatttcaggc catcacgtcc tggaggaaga gcaggtccga gagtccagtg 2580
attcttctgt ttcccaagaa atctgtcagt gaaaatgtac ctcagtcaaa tgggtatgtt 2640
tataactacg ccacgtcacg cgtcacagct aggaagtaga tattttgcat ccctttcttt 2700
caggcatttc tgtcaactga ccctgatgct gacttctgac ctcttccaga acatttctct 2760
tcttgtgtga actacagaag ttcttaaatg aagtgtcacc tcaaggaaat cctctcctac 2820
aggacgaagt caggaccatc agccccaatg ttcttcgctc tctccctcct ttaactcttg 2880
gcgtgtcctc aagcgagtct cttcttcgtg agctggtcaa ttcttcagga ccaactgtgt 2940
tcttcttccc ccaaagcgcc agactgagga ctcaccgggt ggagctggca ctgaagccgt 3000
cgttgcgctc ggtgctaaaa ttaaaactcg acgagacttt agcccaagcg cggatggagg 3060
aattcggacg tggcgcgatg gataagctcg aggttctcag cgttcttagt acgctttctg 3120
ttgatggaga agatctagaa acaggtaatc agtttctttt tagtatatgt cgggttttta 3180
aaaaaaacaa aacgtctgtg gacagtcgtt aagaccaaac tttctcatgt ccacaggttt 3240
ggaggagcaa cgtgaggtcc aatacagagc gctcttactg ctgaaggctt tacaggctgt 3300
gctgggtgct tgggcggtgg aaagggcaca gagggcagcg cgagacagcc aggacggccc 3360
tacaagggtc actcagtgtc accttgagag tttcaccgtg tctctggaga aatacctgct 3420
ggagcctgct acggccaaca ttaacaactg cgaaggagcg tgcggcttcc ctctgaacaa 3480
cgggaacaac cacgccatcc tgctgaacag tcacctccaa agtggacaac ctctgaagcg 3540
cgggatctgc tgcgtgcccg tggcgtatga cgacctgtgt gtgattgagc tgaacagcga 3600
ctccaccacc atttcttaca agaccgacat gatagccaag gagtgtggat gtcgttgata 3660
acagccctct ctctcacaca cagacacaca gacacacaca cacacacaca cacacacaca 3720
cacacacaca cacacacaca cacacacaca cacgttatag agcgttctca cacggtacct 3780
ttaatttcat ttgttgttca cacgttaacg ctctccatag aaacacaacg tagtacaata 3840
tgatccttat tttttgaaag aaataaaaac tttaaaccca gtttccagtt gaaatgacaa 3900
atatttccac agtgacctgg agctatatat taccacacgt gtatgttatt atttattcat 3960
ttactttctt gttgtttgct tcatcgacag gggcggttct agggtttcat ctttaggggg 4020
ttttagccct cagtgagaat ttaaaacaag aagagttctg tattatatat tatatgacaa 4080
ctctggtaat aagaatagtg acatttcact gcttttggtt gccgtctttg cgtctttccg 4140
acgattaacg ttataaataa acgcctctag ctctgactgc gcgtgcacgc tgcgcgtacc 4200
tgtgcttttc cgttcaaata aagcagacag ctgaagacgc acttttgaaa cacacgcatg 4260
taaaagcaag gtaaagaaaa aatcgctctt ggatcaaact gaaaaataat tttatttccc 4320
atcgacgcca tgtcctgcat tttaacgtaa tttttattgt ttatttatga aagtggctga 4380
ggtagggtgg ctgagattac agacaggggg ctgaagccac cctaaaaaag gcctggaacc 4440
gcccctgttc atcgatatta atatttttaa aaaagtattt tttgctctct gaagtgaacg 4500
acgatcatgt ggaagtcgac aaaacagata atgacgcatg aactagccaa gattacgatt 4560
ttaaccattt ataaacattt tatgttcaaa ttaactcaca tccctgcttg tgcatgcaaa 4620
tattaaagtc aaatatatgc aataaacagc aacacatttt 4660

Claims (9)

1.一种在黄颡鱼中双gRNA位点敲除amh基因的方法,其特征在于,包括以下步骤:
(1)靶位点1设计在黄颡鱼amh基因第一外显子上,靶位点2设计在第四外显子上,所述靶位点1序列为SEQ ID NO.1所示的序列;所述靶位点2序列为SEQ ID NO.2所示的序列;
(2)根据步骤(1)的靶位点序列设计引物检测亲鱼中靶位点的准确性,用amh E1 F和amh E1 R扩增靶位点1及附近序列,用amh E4 F和amh E4 R扩增靶位点2及附近序列;
(3)以pUC19-gRNA-scaffold质粒为模板,用amh E1 gRNAF和gRNAR进行gRNA1片段的PCR扩增,用amh E4 gRNAF和gRNAR进行gRNA2片段的PCR扩增;以上述PCR产物为模板,体外转录并纯化获得gRNA;
(4)以pXT7-hCas9线性化质粒为模板,体外转录合成Cas9 mRNA;
(5)将Cas9 mRNA和两个gRNA显微注射到黄颡鱼一细胞期胚胎中;
(6)检测突变类型,计算基因编辑率。
2.根据权利要求1所述方法,其特征在于,步骤(2)中所述引物amh E1 F的序列为SEQID NO.3所示的序列;所述引物amh E1 R的序列为SEQ ID NO.4所示的序列;所述引物amhE4 F的序列为SEQ ID NO.5所示的序列;所述引物amh E4 R的序列为SEQ ID NO.6所示的序列。
3.根据权利要求1所述方法,其特征在于,步骤(3)中所述引物amh E1 gRNAF的序列为SEQ ID NO.7所示的序列;所述引物amh E4 gRNAF的序列为SEQ ID NO.8所示的序列;所述引物gRNAR的序列为SEQ ID NO.9所示的序列。
4.根据权利要求1所述方法,其特征在于,步骤(3)所述gRNA纯化方法为LiCl沉淀法,具体步骤为:向gRNA体外转录体系中加1ul 0.5M的EDTA终止反应后,加2.5ul 4M的LiCl和75ul预冷的无水乙醇进行沉淀,离心,收集沉淀物;再加1mL预冷的75%乙醇清洗沉淀物,离心,收集沉淀物,去除乙醇;加50ul Nuclease-free水溶解gRNA沉淀后,Nanodrop检测浓度,并于-80℃保存。
5.根据权利要求4所述方法,其特征在于,所述沉淀具体为-20℃沉淀16h或-80℃沉淀2h。
6.根据权利要求1所述方法,其特征在于,所述步骤(5)具体为:将浓度为600ng/ul的Cas9 mRNA和浓度均为120ng/ul的两种gRNA按2:1:1的体积混合均匀,显微注射到黄颡鱼一细胞期胚胎中,注射剂量为1nL。
7.根据权利要求1所述的方法,其特征在于,所述步骤(6)具体为:收集出膜的小鱼苗20尾,提取基因组DNA后;PCR扩增靶位点及附近序列,PCR产物一部分直接送去Sanger测序,根据测序峰图初步检测基因编辑的效果;将剩下的PCR产物回收纯化,连接PMD-18T载体,挑选阳性单克隆送去Sanger测序,根据测序结果确定具体的突变类型,预测氨基酸序列的变化;用amh E1 F和amh E4 R这对引物PCR扩增突变体和野生型基因组,琼脂糖凝胶电泳检测是否发生长片段缺失突变;计算基因编辑效率。
8.根据权利要求7所述的方法,其特征在于,所述的基因编辑效率计算公式为:基因编辑效率=1-(1-a)*(1-b),其中a为靶位点1的突变率,b为靶位点2的突变率。
9.一种如权利要求1所述在黄颡鱼中双gRNA位点敲除amh基因的方法应用于研究amh基因对黄颡鱼性别决定和分化的作用以及黄颡鱼优质亲本的分子模块育种。
CN201910878579.4A 2019-09-18 2019-09-18 一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用 Expired - Fee Related CN110684767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910878579.4A CN110684767B (zh) 2019-09-18 2019-09-18 一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910878579.4A CN110684767B (zh) 2019-09-18 2019-09-18 一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用

Publications (2)

Publication Number Publication Date
CN110684767A CN110684767A (zh) 2020-01-14
CN110684767B true CN110684767B (zh) 2022-03-11

Family

ID=69109308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910878579.4A Expired - Fee Related CN110684767B (zh) 2019-09-18 2019-09-18 一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用

Country Status (1)

Country Link
CN (1) CN110684767B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897362A (zh) * 2021-08-31 2022-01-07 浙江赛微思生物科技有限公司 一种scn1lab基因敲除斑马鱼癫痫模型及其构建方法和应用
CN113897399A (zh) * 2021-08-31 2022-01-07 浙江赛微思生物科技有限公司 一种scn1lab基因敲除斑马鱼癫痫模型及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944817A (zh) * 2020-08-27 2020-11-17 中国水产科学研究院淡水渔业研究中心 一套抑制amh基因表达的反义rna及促进罗非鱼雄鱼性腺退化和提高增重的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944817A (zh) * 2020-08-27 2020-11-17 中国水产科学研究院淡水渔业研究中心 一套抑制amh基因表达的反义rna及促进罗非鱼雄鱼性腺退化和提高增重的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Amhy_Amh及其受体AmhrⅡ对尼罗罗非鱼雄性性别的决定作用;赵九娥;《中国优秀博硕士学位论文全文数据库(硕士) 农业科技辑》;20151215(第12期);D052-4 *
CRISPR_Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia;Dongneng Jiang;《Developmental Biology》;20171231;第63-73页 *
TGF-β家族成员在罗非鱼性别决定中的作用研究;李明辉;《2015中国遗传学会大会论文摘要汇编》;20151231;第153页 *
黄颡鱼GnRHR基因的克隆和表达及CRISPR/Cas9构建GnRHR基因敲除突变体;李石竹;《大连海洋大学学报》;20210630;第383-392页 *
黄颡鱼Pelteobagrus fulvidraco AMH基因的克隆鉴定及表达;王乐;《水产学杂志》;20190630;第9-16页 *
黄颡鱼性别相关基因的鉴定和表达分析及miR-34a调控斑马鱼精子活力的功能研究;谢彬月;《中国优秀博硕士学位论文全文数据库(硕士) 农业科技辑》;20180315(第03期);D052-5 *

Also Published As

Publication number Publication date
CN110684767A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN108660161B (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
CN108707629A (zh) 斑马鱼notch1b基因突变体的制备方法
CN105073981A (zh) 动物中性成熟的控制
CN110684767B (zh) 一种在黄颡鱼中双gRNA位点敲除amh基因的方法及应用
CN110643636B (zh) 一种团头鲂MSTNa&amp;b基因敲除方法与应用
CN111808887B (zh) 一种制备与自然突变比利时蓝牛类似的双肌臀肉牛的方法
KR20230006827A (ko) Cd163의 표적 불활화를 통한 돼지 종의 건강 개선 방법
CN114438132A (zh) 尼罗罗非鱼mstnb纯合敲除系的建立方法及以此获得的快速生长品系
CN110066805A (zh) 基因敲除选育adgrf3b基因缺失型斑马鱼的方法
CN110452929B (zh) 一种非嵌合基因编辑猪胚胎模型的构建方法
CN110923229B (zh) 一种在黄颡鱼中双gRNA位点敲除dmrt1基因的CRISPR/Cas9系统及应用
CN114480497B (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN116103342A (zh) 基于CRISPR-Cas9系统和PB转座子系统的羊早期胚胎发育的谱系示踪方法
CN115029352A (zh) 一种基因敲除选育adgrg1基因缺失型斑马鱼的方法
CN115943930B (zh) 一种无肌间刺银鲫的创制方法
CN112342249A (zh) Uox基因敲除小鼠模型及其构建方法
CN110438159A (zh) 一种引发肌原纤维肌病的基因突变小鼠模型的构建方法
CN110643605B (zh) 一种团头鲂MSTNa&amp;b基因敲除的gRNA及其模板
CN111849977B (zh) 一种精子载体制备转基因动物的方法以及一种制备矮小型转基因鸡的sgRNA和制备方法
CN112779254B (zh) 基于hdr基因编辑方法培育短尾绵羊用核酸分子、试剂盒及方法和应用
CN117737122B (zh) 雌鱼育性控制的方法及应用
CN117070516A (zh) 一种sgRNA组合及其应用、斑马鱼Adcyap1b基因突变体模型及其构建方法
US20230134819A1 (en) Modified salmon which produce sterile offspring
CN117327697A (zh) 靶向Tekt4基因的核酸组合物、弱畸形精子症动物模型的构建方法及应用
US20120233717A1 (en) Method for preparing a transgenic animal of simultaneous multiple-gene expression

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220311