CN106086008B - 烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用 - Google Patents
烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用 Download PDFInfo
- Publication number
- CN106086008B CN106086008B CN201610405985.5A CN201610405985A CN106086008B CN 106086008 B CN106086008 B CN 106086008B CN 201610405985 A CN201610405985 A CN 201610405985A CN 106086008 B CN106086008 B CN 106086008B
- Authority
- CN
- China
- Prior art keywords
- bemisia tabaci
- crispr
- hidden kind
- cas9 system
- med
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/89—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43563—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Insects & Arthropods (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及基因工程领域,具体涉及烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用。优化烟粉虱MED隐种TRP基因序列的sgRNA的靶标位点的合成引物克服脱靶效应,能从核基因水平抑制目的基因表达,从而达到持久稳定的效果,成持久稳定的突变型。
Description
技术领域
本发明涉及基因工程领域,具体涉及烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用。
背景技术
烟粉虱Bemisia tabaci(Gennadius)属半翅目(Hemiptera)粉虱科(Aleyrodidae),小粉虱属Bemisia,属于世界性的入侵害虫。其中烟粉虱MED隐种自2003年首次在中国云南昆明发现,至今为止,已几乎遍布全国各省,并逐渐取代烟粉虱MEAM1隐种,成为危害我国农作物的主要烟粉虱隐种。MED隐种对温度具有较强的抵抗力是其能扩散为全世界重要害虫并在我国逐渐取代其它隐种的关键因素之一,是其入侵并成功扩张的重要机制之一。MED隐种具有很强的温度耐受能力,使其在炎热的季节能猖獗危害;而在寒冷季节,逐渐扩大的保护地为其提供了越冬场所,使得其累积大量虫口数以致暴发。昆虫能根据环境温度的变化而进行体内生理性的适应性调整,其中怎样感知外界温度并将其传递至体内的温度感知环节起关键作用。
CRISPR/Cas(clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins)系统全名为常间回文重复序列丛集/常间回文重复序列丛集关联蛋白系统,是细菌和古细菌在长期演化过程中形成的一种适应性免疫防御,可用来对抗入侵的病毒及外源DNA。其工作原理是crRNA(CRISPR-derived RNA)通过碱基配对与tracrRNA(trans-activating RNA)结合形成tracrRNA/crRNA复合物,进而引导核酸酶Cas9蛋白在与crRNA配对的序列靶位点剪切双链DNA。通过人工设计这两种RNA,可以改造形成具有引导作用的sgRNA(singleguide RNA),以引导Cas9对RNA、DNA和蛋白的定点切割,Cas9能在任何dsDNA序列处带来任何融合蛋白及RNA,这为生物体的研究和改造带来巨大潜力。然而,CRISPR/Cas9系统存在脱靶效应的问题,限制其从核基因水平抑制目的基因表达的技术效果,难以达到持久稳定的效果。
发明内容
本发明的目的是克服上述技术问题,提供一种适合烟粉虱MED隐种TRP基因的CRISPR/cas9系统,进而利用该系统诱导烟粉虱的基因突变,获得稳定的突变型。本发明使用CRISPR/Cas9系统,从核基因水平抑制目的基因表达,为进一步利用诱导基因突变来实现害虫的生物防治提供理论基础。
根据本发明的烟粉虱MED隐种BtTRP基因的CRISPR/cas9系统,其中,烟粉虱MED隐种的TRP基因序列的sgRNA的靶标位点,sgRNA靶标位点的合成引物为:引物BtTRP-F:GAAATTAATACGACTCACTATAGGACCAGGAGAGAGGCAAACTCGTTTTAGAGCTAGAAATAGC;
引物sgRNA-R:AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC。
根据本发明的具体实施方式,本发明的烟粉虱MED隐种CRISPR/Cas9系统构建的方法包括以下步骤:
设计烟粉虱MED隐种BtTRP靶基因的sgRNA;
(1)使用Phusion聚合酶(New England Biolabs)和HF缓冲液,在PCR仪中进行体外合成sgRNA;
(2)以Cas9质粒(plasmid 42251,Addgene)为模板,使用mMESSAGE mMACHINESP6Kit(Ambion,USA)在体外合成Cas9-mRNA;
(3)使用Femtojet Express(Eppendorf),femtotip II针(Eppendorf)和InjectMan NI 2显微注射仪,进行靶基因的显微注射;
(4)将实验分为注射型组和野生型组,其中注射型组为向烟粉虱伪蛹注射靶基因的实验组,野生型组为不注射任何液体的对照组。
CRISPR/Cas9系统在BtTRP基因温度耐受性功能验证中的应用,包括高温胁迫处理统计击倒时间和低温胁迫处理统计恢复时间。试验表明本发明的本发明的烟粉虱MED隐种BtTRP基因的CRISPR/cas9系统克服了脱靶效应,能从核基因水平抑制目的基因表达,从而达到持久稳定的效果,成持久稳定的突变型。
附图说明
图1CRISPR/Cas9系统在验证烟粉虱MED隐种BtTRP基因耐热性功能中的应用:比较烟粉虱注射型和野生型耐热性表型值差异,即观察高温胁迫后击倒时间。所有数据均用SPSS 16.0统计软件进行数据统计分析,显著性检验水平为P<0.05。
图2CRISPR/Cas9系统在验证烟粉虱MED隐种BtTRP基因耐寒性功能中的应用:比较烟粉虱注射型和野生型耐寒性表型值差异,即观察低温胁迫后恢复时间。所有数据均用SPSS 16.0统计软件进行数据统计分析,显著性检验水平为P<0.05。
具体实施方式
实施例1:烟粉虱MED隐种CRISPR/Cas9系统的建立
1、sgRNA引物的设计:
设计烟粉虱MED隐种的TRP基因序列的sgRNA的靶标位点,sgRNA靶标位点的设计需要克服脱靶效应而反复优化,本发明的系列优化措施包括剔除与靶标序列最后12个碱基或NGG PAM片段吻合的片段。引物由上海生工生物工程技术服务有限公司合成。
引物BtTRP-F:GAAATTAATACGACTCACTATAGGACCAGGAGAGAGGCAAACTCGTTTTAGAGCTAGAAATAGC;
引物sgRNA-R:AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC。
2、sgRNA的合成:
(1)使用Phusion聚合酶(New England Biolabs)和HF缓冲液混合,进行30μL体系的无模板PCR反应,具体为:HF buffer 3.0μL、sgRNA-R 1.2μL、BtTRP-F 1.2μL、dNTP 0.6μL、Phusion Polymerase 0.6μL、灭菌ddH2O 23.4μL。
(2)反应条件为:98℃30s;98℃10s,60℃30s,72℃15s,35个循环;72℃10min,10℃∞。
(3)PCR扩增结果检测:PCR产物用1%的凝胶电泳检测,并送上海生工生物工程技术服务有限公司进行测序。
(4)sgRNA模板的纯化:利用TIANGEN的TIANquick Midi Purification Kit试剂盒将PCR产物进行纯化。
(5)sgRNA的合成:以上一步合成的DNA作为模板,用MEGAscript T7Kit试剂盒(Ambion)进行体外转录过程。
(6)酚氯仿萃取并用异丙醇沉淀纯化sgRNA,用ddH2O稀释到1μg/μL并放于-80℃冰箱保存备用。
3、Cas9mRNA的合成
(1)提取质粒(plasmid 42251,Addgene)DNA,利用AXYGEN plasmid miniprep kit试剂盒进行提取;
(2)质粒线性化:用PmeⅠ(New England Biolabs)对质粒进行线性化反应;
(3)乙醇沉淀纯化;
(4)体外转录合成Cas9mRNA:利用mMESSAGE mMACHINE T7Kit(Ambion)试剂盒进行转录合成;
(5)聚腺苷酸化反应;
4、显微注射
(1)注射试剂:在30μL体系中,将0.5μg sgRNA和10μg Cas9mRNA混合(大约摩尔比为2:1),溶于3μL 3M的醋酸钠溶液中(pH 5.2),并用3倍体积的无水乙醇沉淀浓缩(-20℃过夜沉淀)。12000rpm离心30min,加75%的乙醇,12000rpm离心5min,重复一次,注射前用11μL水重悬;
(2)注射方法:收集烟粉虱MED隐种红眼期伪蛹,排列并粘附在事先贴有透气双面胶的盖玻片表面上。使用Femtojet Express(Eppendorf),femtotip II针(Eppendorf)和InjectMan NI 2显微注射仪,从尾端注射,注射压强为1100hPa左右,注射时间为0.1s。
(3)培育方法:将盖玻片放置在琼脂培养基上,放入人工气候箱中使其完成发育。温度为26±1℃,相对湿度60-80%,光周期为16L:8D。
5、CRISPR/Cas9在BtTRP基因温度耐受性功能验证中的应用
现有技术已研究表明,TRP基因在烟粉虱MED隐种温度耐热性中起关键作用
(1)高温胁迫处理统计击倒时间:
用吸虫器收集初羽化烟粉虱成虫(<3h)(包括注射型和野生型成虫),放入PCR管,管口塞已消毒的脱脂棉团,每管1头成虫,分别编号。将装有烟粉虱的PCR管5个一组,同时插入漂浮板,将漂浮板置于由德国Huber温度控制器(CC-106A,Germany,HuberGmbH)控温的水浴槽内,温度提前设置为恒温45℃,保持液面与脱脂棉团下端齐平,使整个PCR管腔体都浸没水中。在PCR管置于水浴槽内1min后,开始计时,观察管内烟粉虱的活动状态,以烟粉虱失去对身体的控制能力,无法自主站立作为热击倒计时结束的标准,并将这段时间作为高温击倒时间TKD(heat knockdown time)。
(2)低温胁迫处理统计恢复时间:
用吸虫器收集初羽化烟粉虱成虫(<3h)(包括注射型和野生型成虫),放入PCR管,管口塞已消毒的脱脂棉团,每管1头成虫,分别编号。将装有烟粉虱的PCR管10个一组,同时插入塑料泡沫制成的漂浮板,将漂浮板置于由德国Huber温度控制器(CC-106A,Germany,HuberGmbH)控温的内置温控腔体内,腔体内温度提前设置恒温于-5℃,保持液面与脱脂棉团下端齐平,使整个PCR管腔体浸没水中,并将低温腔体盖严。在PCR管置于水浴槽内10min后,迅速将其取出,擦干管壁上的水,置于室温26℃环境下,开始计时。观察管内烟粉虱的活动状态,以烟粉虱逐渐恢复对身体的控制能力,能够自主站立作为冷击倒恢复计时的标准,将这段时间作为冷致昏恢复时间TRC(chillcoma recovery time)。
实验结果如图1、2所示。图1显示CRISPR/Cas9系统在验证烟粉虱MED隐种BtTRP基因耐热性功能中的应用,比较烟粉虱注射型和野生型耐热性表型值差异,即观察高温胁迫后击倒时间,注射型的打到时间显著低于野生型,所有数据均用SPSS16.0统计软件进行数据统计分析,显著性检验水平为P<0.05。图2显示CRISPR/Cas9系统在验证烟粉虱MED隐种BtTRP基因耐寒性功能中的应用:比较烟粉虱注射型和野生型耐寒性表型值差异,即观察低温胁迫后恢复时间,注射型的低温恢复时间显著高于野生型。所有数据均用SPSS 16.0统计软件进行数据统计分析,显著性检验水平为P<0.05。验证了BtTRP基因在烟粉虱温度耐受性中起了关键作用,说明本发明的CRISPR/Cas9系统能从核基因水平抑制目的基因表达,从而达到持久稳定的效果,成持久稳定的突变型。
Claims (2)
1.烟粉虱MED隐种TRP基因的CRISPR/cas9系统,其特征在于,烟粉虱MED隐种TRP基因序列的sgRNA靶标位点的合成引物为:
引物BtTRP-F:GAAATTAATACGACTCACTATAGGACCAGGAGAGAGGCAAACTCGTTTTAGAGCTAGAAATAGC;
引物sgRNA-R:AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC。
2.权利要求1所述烟粉虱MED隐种TRP基因的CRISPR/cas9系统在获得烟粉虱MED隐种TRP基因突变型方面的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610405985.5A CN106086008B (zh) | 2016-06-10 | 2016-06-10 | 烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610405985.5A CN106086008B (zh) | 2016-06-10 | 2016-06-10 | 烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106086008A CN106086008A (zh) | 2016-11-09 |
CN106086008B true CN106086008B (zh) | 2019-03-12 |
Family
ID=57228542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610405985.5A Active CN106086008B (zh) | 2016-06-10 | 2016-06-10 | 烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106086008B (zh) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2853829C (en) | 2011-07-22 | 2023-09-26 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9228207B2 (en) | 2013-09-06 | 2016-01-05 | President And Fellows Of Harvard College | Switchable gRNAs comprising aptamers |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
IL294014B2 (en) | 2015-10-23 | 2024-07-01 | Harvard College | Nucleobase editors and their uses |
IL308426A (en) | 2016-08-03 | 2024-01-01 | Harvard College | Adenosine nuclear base editors and their uses |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
SG11201903089RA (en) | 2016-10-14 | 2019-05-30 | Harvard College | Aav delivery of nucleobase editors |
WO2018119359A1 (en) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Editing of ccr5 receptor gene to protect against hiv infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
EP3592777A1 (en) | 2017-03-10 | 2020-01-15 | President and Fellows of Harvard College | Cytosine to guanine base editor |
JP7191388B2 (ja) | 2017-03-23 | 2022-12-19 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 核酸によってプログラム可能なdna結合蛋白質を含む核酸塩基編集因子 |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN108588082B (zh) * | 2017-05-27 | 2021-11-05 | 中国农业科学院植物保护研究所 | 烟粉虱MED隐种高温耐受相关基因BtDnmt3及其应用 |
CN111801345A (zh) | 2017-07-28 | 2020-10-20 | 哈佛大学的校长及成员们 | 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物 |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
CN111757937A (zh) | 2017-10-16 | 2020-10-09 | 布罗德研究所股份有限公司 | 腺苷碱基编辑器的用途 |
WO2020191243A1 (en) | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
CN111118172A (zh) * | 2020-01-06 | 2020-05-08 | 中国农业科学院植物保护研究所 | 烟粉虱AsiaII3隐种瞬时感受器离子通道基因的特异性探针及其应用 |
DE112021002672T5 (de) | 2020-05-08 | 2023-04-13 | President And Fellows Of Harvard College | Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103898121A (zh) * | 2014-04-16 | 2014-07-02 | 中国农业科学院植物保护研究所 | 烟粉虱MED隐种瞬时感受器离子通道基因MED BtTrp及其应用 |
CN104928292A (zh) * | 2015-05-26 | 2015-09-23 | 中国医学科学院血液病医院(血液学研究所) | 一种sgRNA的设计方法及构建的慢病毒载体、质粒 |
CN105492611A (zh) * | 2013-06-17 | 2016-04-13 | 布罗德研究所有限公司 | 用于序列操纵的优化的crispr-cas双切口酶系统、方法以及组合物 |
-
2016
- 2016-06-10 CN CN201610405985.5A patent/CN106086008B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105492611A (zh) * | 2013-06-17 | 2016-04-13 | 布罗德研究所有限公司 | 用于序列操纵的优化的crispr-cas双切口酶系统、方法以及组合物 |
CN103898121A (zh) * | 2014-04-16 | 2014-07-02 | 中国农业科学院植物保护研究所 | 烟粉虱MED隐种瞬时感受器离子通道基因MED BtTrp及其应用 |
CN104928292A (zh) * | 2015-05-26 | 2015-09-23 | 中国医学科学院血液病医院(血液学研究所) | 一种sgRNA的设计方法及构建的慢病毒载体、质粒 |
Non-Patent Citations (4)
Title |
---|
A quick guide to CRISPR sgRNA design tools;Vincent A Brazelton et al.;《GM Crops & Food》;20160108;266-276 * |
Chapter Seventeen Cas9-Based Genome Editing in Xenopus tropicalis;Takuya Nakayama et al.;《Methods Enzymol. 》;20150105;355-375 * |
Transient Receptor Potential Is Essential for High Temperature Tolerance in Invasive Bemisia tabaci Middle East Asia Minor 1 Cryptic Species;Zhi-Chuang Lu¨et al.;《PLoS ONE》;20140925;第9卷(第9期);e108428 * |
基因组编辑技术及其在昆虫遗传转化中的应用;吕志创 等;《生物安全学报》;20151231;第24卷(第2期);126-135 * |
Also Published As
Publication number | Publication date |
---|---|
CN106086008A (zh) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106086008B (zh) | 烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用 | |
Will et al. | The structural sheath protein of aphids is required for phloem feeding | |
CN106701830A (zh) | 一种敲除猪胚胎p66shc基因的方法 | |
AU2017313843A1 (en) | Plants and methods for increasing and decreasing synthesis of cannabinoids | |
CN111849979B (zh) | 一种靶向敲除RPSA基因的sgRNA及RPSA基因敲除细胞系的构建方法 | |
CN102392080B (zh) | 一种鉴定番茄黄化曲叶病毒抗性的方法 | |
CN102757942A (zh) | A型口蹄疫重组疫苗株及其制备方法和应用 | |
CN104178490A (zh) | 用于生物防控的禾谷孢囊线虫RNAi位点序列及其载体和应用 | |
CN109735562A (zh) | 一种经济植物有效根系转基因系统的构建方法 | |
CN102181473B (zh) | 一种植物根系相关功能基因研究模型的构建方法 | |
CN106868023A (zh) | 黄瓜CsERF004基因及其编码蛋白和应用 | |
CN106047936B (zh) | 一种获得稳定的烟粉虱MED隐种BtTRP基因突变系的方法 | |
CN101864445A (zh) | 携带分子标记的猪瘟病毒感染性cDNA载体的构建方法 | |
CN107828788A (zh) | 一种PRRSV感染相关的lncRNA及其siRNA在抑制病毒复制中的应用 | |
CN110016519A (zh) | 一种香蕉枯萎菌4号生理小种dcl基因缺失突变体及其小rna | |
CN101092634A (zh) | 一种培育抗黄瓜花叶病毒植物的方法 | |
CN102845476A (zh) | 利用双链rna干扰技术制备降低烟草烟碱合成的抑制剂的方法及其应用 | |
CN101956003A (zh) | 猪基因组中外源基因整合位点的检测方法 | |
CN101386860B (zh) | 一种构建脑心肌炎病毒感染性克隆的方法 | |
CN104497120B (zh) | 石斑鱼翻译控制肿瘤蛋白tctp及其编码基因在抗鱼类神经坏死病毒方面的应用 | |
CN105706916B (zh) | 植物系统性侵染病害药物的筛选方法 | |
CN103820490B (zh) | 一种使用病毒诱导的基因沉默系统培育雄性不育植株的方法 | |
CN112322785B (zh) | 一种快速检测蜱传黄病毒恩格耶病毒的方法 | |
CN102260706A (zh) | 一种农杆菌介导法获得转基因黄瓜植株的方法 | |
CN102899255A (zh) | 一种水稻纹枯病的接种方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |