CN106434651B - 根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用 - Google Patents

根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用 Download PDF

Info

Publication number
CN106434651B
CN106434651B CN201610571206.9A CN201610571206A CN106434651B CN 106434651 B CN106434651 B CN 106434651B CN 201610571206 A CN201610571206 A CN 201610571206A CN 106434651 B CN106434651 B CN 106434651B
Authority
CN
China
Prior art keywords
gene
sugarcane smut
promoter
agrobacterium tumefaciens
sugarcane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610571206.9A
Other languages
English (en)
Other versions
CN106434651A (zh
Inventor
陈保善
卢姗
吕哲
姚颜萍
沈笑瑞
蔡晓薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201610571206.9A priority Critical patent/CN106434651B/zh
Publication of CN106434651A publication Critical patent/CN106434651A/zh
Application granted granted Critical
Publication of CN106434651B publication Critical patent/CN106434651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种根癌农杆菌和CRISPR‑Cas9介导的基因定点插入失活方法,使用甘蔗鞭黑穗菌内源snRNA启动子(甘蔗鞭黑穗菌u6基因启动子)驱动sgRNA表达盒,将CRISPR‑Cas9系统与根癌农杆菌T‑质粒整合,构建以潮霉素为抗性筛选标记的根癌农杆菌介导的甘蔗鞭黑穗菌基因定点插入载体失活系统;将目标基因的特异识别序列克隆入sgRNA表达盒,用于转化甘蔗鞭黑穗菌担孢子,从而将载体系统的可跳动DNA片段准确插入甘蔗鞭黑穗菌目标基因靶标序列,达到破坏基因功能的目的。本发明为研究甘蔗鞭黑穗菌的功能基因组学提供了重要工具,该系统具有高效性和准确性,方便在甘蔗鞭黑穗菌中进行基因功能的研究。

Description

根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及 其应用
技术领域
本发明属于微生物基因工程领域中用于真菌基因敲除的分子工具及实验体系,尤其涉及一种根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用。
背景技术
甘蔗鞭黑穗菌(Sporisorium scitamineum)是甘蔗黑穗病的病原菌,属担子菌亚门黑粉菌属。由其引起的甘蔗黑穗病是一个全球性病害,对我国甘蔗生产造成巨大危害。甘蔗鞭黑穗菌生命周期有三个不同的阶段:类酵母菌单倍体,双核菌丝和二倍体冬孢子。
基因失活技术是通过改变生物的遗传基因,令特定的基因序列发生改变,导致基因失活并丧失功能,进而推测出该基因生物学功能的一种遗传工程技术。常用的基因失活技术是通过DNA转化,将构建的打靶载体导入靶细胞后,通过载体DNA序列与靶细胞内染色体上同源DNA序列间的重组,将载体DNA定点整合入靶细胞基因组上某一确定的位点,或与靶细胞基因组上某一确定片段置换,从而改变细胞遗传特性。
根癌农杆菌(Agrobacterium tumefaciens)是一种革兰氏阴性土壤杆菌,在自然条件下,它能够在植物的受伤部位侵染植物细胞,将其染色体外遗传物质Ti质粒段DNA(T-DNA)大多以单拷贝形式随机整合进植物的基因组中。许多研究表明根癌农杆菌不仅可以转化植物而且可以转化细菌、动物和真菌。因此,通过这一原理,利用农杆菌介导将外源DNA片段转化至靶细胞中已成为研究植物、真菌甚至动物功能基因的一种常用反向遗传学技术。
CRISPR/Cas是一种新兴的基因定点编辑技术,在该系统中通过形成具有引导作用的sgRNA(single guide RNA)引导核酸酶Cas9蛋白在靶位点切割双链DNA,再通过非同源末端连接进行DNA双链断裂修复,在此修复过程中可进行序列编辑或小片段缺失而造成基因序列的改变从而起到对基因的编辑或敲除。
迄今为止,在甘蔗鞭黑穗菌中尚无法通过转化原生质体的方法进行有效的遗传操作,只能依赖农杆菌介导的转化导入外源DNA片段,而农杆菌介导的外源DNA片段转化具有随机性,无法对特定位点进行精确插入。因此,有必要开发一套适用于甘蔗鞭黑穗菌的高效基因定点插入技术,为进一步研究甘蔗鞭黑穗菌的基因功能及其致病机制提供便利。
发明内容
本发明要解决的技术问题是提供一种根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用。
为解决上述技术问题,本发明采用以下技术方案:甘蔗鞭黑穗菌u6基因启动子,具有序列表SEQ.ID.No.17的碱基序列。
上述甘蔗鞭黑穗菌u6基因启动子用于在甘蔗鞭黑穗菌中转录出载体上位于U6启动子下游sgRNA序列。
上述甘蔗鞭黑穗菌u6基因启动子在CRISPR-Cas9基因失活及编辑系统中的应用。
根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法,使用甘蔗鞭黑穗菌内源snRNA启动子驱动sgRNA表达盒,将CRISPR-Cas9系统与根癌农杆菌T-质粒整合,构建以潮霉素为抗性筛选标记的根癌农杆菌介导的甘蔗鞭黑穗菌基因定点插入载体失活系统;将目标基因的特异识别序列克隆入sgRNA表达盒,用于转化甘蔗鞭黑穗菌担孢子,从而将载体系统的可跳动DNA片段准确插入甘蔗鞭黑穗菌目标基因靶标序列。
根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法,通过将甘蔗鞭黑穗菌内源U6基因启动子与所插入位点靶标序列以及sgRNA序列经Overlapping PCR融合后,经In-fusion技术重组至带有由甘蔗鞭黑穗菌内源gapd基因启动子驱动的Cas9基因及潮霉素抗性基因的双元载体中;再由携带该双元载体的根癌农杆菌介导转化甘蔗鞭黑穗菌从而达到对甘蔗鞭黑穗菌基因组的定点插入;甘蔗鞭黑穗菌u6基因启动子具有序列表SEQ.ID.No.17的碱基序列。
根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法在甘蔗鞭黑穗菌JG35野生型菌株中对mfa2、prf或g827基因进行基因失活中的应用。
发明人研究了甘蔗鞭黑穗菌基因失活技术,计划依靠靶向序列引导及农杆菌介导,在甘蔗鞭黑穗菌基因组中定点插入外源片段高效地进行基因敲除,构建目标基因的敲除突变株。为此,发明人建立了一种根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法,使用甘蔗鞭黑穗菌内源snRNA启动子驱动sgRNA表达盒,将CRISPR-Cas9系统与根癌农杆菌T-质粒整合,构建以潮霉素为抗性筛选标记的根癌农杆菌介导的甘蔗鞭黑穗菌基因定点插入载体失活系统;将目标基因的特异识别序列克隆入sgRNA表达盒,用于转化甘蔗鞭黑穗菌担孢子,从而将载体系统的可跳动DNA片段准确插入甘蔗鞭黑穗菌目标基因靶标序列,达到破坏基因功能的目的。通过在甘蔗鞭黑穗菌基因组中进行实验,发明人发现了具有功能的甘蔗鞭黑穗菌u6基因启动子,其可在甘蔗鞭黑穗菌中转录出载体上位于U6启动子下游sgRNA序列,用于在上述基因定点插入失活方法中执行基本的转录功能。
通过本发明在甘蔗鞭黑穗菌JG35野生型菌株中分别对mfa2(mfa2cds,SEQ.ID.No.21;MFA2,SEQ.ID.No.22)、prf(prf cds,SEQ.ID.No.23;PRF,SEQ.ID.No.24)和g827(g827cds,SEQ.ID.No.25;G827,SEQ.ID.No.26)等3个基因进行基因失活,分别构建三个基因的敲除突变株。在敲除mfa2基因时,对随机挑选的具有潮霉素抗性的46个转化子进行PCR鉴定,其中发生外源片段定点插入的转化子为18个,外源片段定点插入率为39%,即靶基因失活率为39%。在敲除prf基因时,对随机挑选的具有潮霉素抗性的23个转化子进行PCR鉴定,其中发生外源片段定点插入的转化子为5个,外源片段定点插入率为21.7%,即靶基因失活率为21.7%。在敲除g827基因时,对随机挑选的具有潮霉素抗性的23个转化子进行PCR鉴定,其中发生外源片段定点插入的转化子为3个,外源片段定点插入率为13%,即靶基因失活率为13%。实验表明,通过根癌农杆菌介导的CRISPR-Cas9定点插入技术可在甘蔗鞭黑穗菌中对目标基因进行定点插入而达到基因失活的目的,进而对基因功能进行研究;而且基因失活效率显著高于目前常用的同源双交换基因打靶的效率。由农杆菌T-DNA/CRISPR/Cas9组合介导的定点插入的这一现象在其他物种中尚无报道。本发明高效基因失活系统的建立,为研究甘蔗鞭黑穗菌的功能基因组学提供了重要工具,该系统具有高效性和准确性,方便在甘蔗鞭黑穗菌中进行基因功能的研究。
以甘蔗鞭黑穗菌编码信息素基因mfa2为例,本发明利用农杆菌介导的CRISPR-Cas9定点插入技术在mfa2基因中定点插入整合有CRISPR-Cas9的T-DNA序列,破坏了mfa2基因,从而导致该基因功能的缺失(图4)。甘蔗鞭黑穗菌mfa2基因编码信息素,信息素在单倍体菌株配合过程中具有重要的作用。正负交配型的野生型甘蔗鞭黑穗菌JG35和JG36未配合是呈酵母状(图6B),两者可以通过配合在平板上形成白色绒毛状菌落(图6C),而被外源片段插入后的mfa2基因功能丧失从而导致转化子无法与野生型JG36菌株配对形成白色绒毛状菌落(图6A)。本发明通过设计引物对转化子进行筛选鉴定(图5),可明确外源片段插入的方向(图7)由于甘蔗鞭黑穗菌无法通过原生质体转化的方法导入外源基因片段,且传统的由农杆菌介导的转化均是随机插入。因此,本发明通过整合农杆菌T-DNA/CRISPR/Cas9能够实现在甘蔗鞭黑穗菌中定点插入外源DNA片段,为研究甘蔗鞭黑穗菌的功能基因组学提供了重要工具。
附图说明
图1是pLS-HCas9质粒图谱。
图2是pSgRNA-SsU6质粒图谱。
图3是pSgRNA-SsU6质粒和pLS-HCas-mfa2质粒的电泳图,图中:A)pSgRNA-SsU6质粒构建,M:GeneRuler 1Kb plus;1:线性pSgRNA Vector;2:SsPu6:;3:pSgRNA-SsU6;B)pLS-HCas-mfa2质粒构建,M:GeneRuler 1Kb plus;1:线性pLS-HCas9vector;SspU6-mfa2-sgRNA;3:pLS-HCas9-mfa2。
图4是pLS-HCas9-mfa2定点插入甘蔗鞭黑穗菌mfa2基因的示意图。
图5是定点插入的PCR鉴定方法示意图。
图6是农杆菌介导的CRISPR-Cas9定点插入失活甘蔗鞭黑穗菌mfa2基因结果图。
图7是转化子的PCR验证图,图中:A)以转化子基因组DNA为模板,M:GeneRuler 1Kbplus;1-17:转化子;B)以转化子基因组DNA为模板,M:GeneRuler 1Kb plus;1-17:转化子。
图8是mfa2、prf和g827敲除突变株的PCR产物测序结果示意图。
具体实施方式
本发明根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法是通过将甘蔗鞭黑穗菌内源U6基因启动子(Ss PU6,SEQ.ID.No.17的碱基序列;Ss U6RNA,SEQ.ID.No.18的碱基序列)与所插入位点靶标序列以及sgRNA序列经Overlapping PCR融合后,经In-fusion技术重组至带有由甘蔗鞭黑穗菌内源gapd基因启动子驱动的Cas9基因及潮霉素抗性基因的双元载体中;再由携带该双元载体的根癌农杆菌介导转化甘蔗鞭黑穗菌从而达到对甘蔗鞭黑穗菌基因组的定点插入。
为进一步阐明上述发明构思,以甘蔗鞭黑穗菌信息素基因mfa2为例进行说明。下述实施例中的实验方法,如无特别说明,均为常规方法;所用实验材料和试剂,如无特别说明,均可通过商业途径获得。实施例中的甘蔗鞭黑穗菌野生型菌株和农杆菌菌株AGL1从广西大学获得。
一、具体试验操作步骤
1.U6启动子驱动的携带目标基因靶标的sgRNA的获得
以pSgRNA-SsU6(SEQ.ID.No.19)质粒为模板,在一个反应中使用4种引物:U-F(5’-ctccgttttacctgtggaatcg-3’,SEQ.ID.No.1)和gR-R(5’-cggaggaaaattccatccac-3’,SEQ.ID.No.2)各0.2μM,SsU6Tmfa2-(5’-ggacggaggcagcaacagtcgagggtaaaatctgattgtatg-3’,SEQ.ID.No.3)和gRTmfa2+(5’-actgttgctgcctccgtccgttttagagctagaaat-3’,SEQ.ID.No.4)各0.1μM。用高保真DNA聚合酶进行PCR扩增,PCR扩增程序:98℃预变性2min,98℃变性10sec,60℃退火15sec,72℃延伸20sec,进行30个循环;最后72℃延伸5min。
2.将上步PCR产物稀释10倍后取2微升为模板,使用引物对:U-Fs BamHI in(5’-ctatgttactagaggatcccggaatgatctacaaagcgttcttc-3’,SEQ.ID.No.5)和gR-R HindIII in(5’-taaccatggtaccaagcttattccatccactccaagctcttg-3’,SEQ.ID.No.6),用高保真DNA聚合酶进行PCR扩增,PCR扩增程序:98℃预变性2min,98℃变性10sec,60℃退火15sec,72℃延伸20sec,进行30个循环;最后72℃延伸5min。电泳检测:取5μl扩增产物,加入1μl的6×Loading buffer混匀,点样于0.8%的琼脂糖凝胶(含0.05μL/mL Goldview)上样孔中,用0.5×TAE缓冲液在3-5V/cm电压条件下电泳30min,于凝胶成像系统下观察分析。PCR反应液组成(50μL体系)如下:
Figure BDA0001053518810000051
3.采用胶回收试剂盒对第2步PCR产物进行胶回收纯化。
4.采用限制性内切酶BamHI和HindIII酶切双元载体pLS-HCas9(SEQ.ID.No.20),采用片段纯化试剂盒对酶切产物进行纯化回收。酶切反应液组成(100μL体系)如下:
Figure BDA0001053518810000052
5.采用In-fusion方法对回收的sgRNA表达盒片段与纯化的线性双元载体pLS-HCas9进行连接,反应体系如下:
5×In-fusion 1μl
回收sgRNA表达盒片段 1μl
纯化pLS-HCas9载体 3μl
50℃反应30分钟,立即置于冰上。
6.反应产物转化DH5α感受态细胞:在超净台内将第6步所得连接产物加入感受态细胞中,冰上孵育30min后,于42℃热击45秒后立即置于冰上冷却2分钟。在超净台内向EP管中加入1ml无菌SOC液体培养基,将EP管置于37℃摇床,200rpm摇动1小时后,将菌体涂布到含壮观霉素终浓度为100μg/ml的LA平板中,置于37℃倒置培养过夜。
7.通过菌落PCR对转化子进行筛选。采用引物对L1F(5’-gcatgacgttatttatgaggtggg-3’,SEQ.ID.No.7)和L1R(5’-gttatctagctggcgaaagggg-3’,SEQ.ID.No.8),以转化子为模板进行PCR扩增后,取1μl产物进行电泳检测,扩增出716bp大小的转化子为阳性转化子。对PCR产物进行电泳检测后将阳性转化子进行测序确保无碱基突变。PCR反应液组成(20μL体系):
Figure BDA0001053518810000061
8.提取序列完全正确的转化子质粒DNA。
9.农杆菌感受态的制备:配制10%(W/V)的甘油,常规灭菌后置于4℃冰箱保存待用。在含利福平50μg/mL的LB培养基平板上划线活化根癌农杆菌菌株AGL1,置于28℃培养,2天后长出单菌落,用无菌接种环将单菌落接种至含有5mL LB液体培养基(利福平终浓度为50μg/mL)的50mL离心管中,28℃、200rpm振荡培养2天。按1%的比例转接至无菌三角瓶中,置于28℃、200rpm振荡培养4-6h至OD6000.4-0.5左右,冰上冷却10min使细胞停止生长后,于4℃、4000rpm离心收集菌体,用预冷的10%甘油轻轻地重新悬浮菌体,冰上放置5min后,4℃、4000rpm再次离心,弃上清,重复甘油悬浮、离心一次,最后用1-2mL预冷的10%甘油轻轻地重新悬浮菌体沉淀,分装至无菌1.5mL EP管中,每管50μL,置于-80℃保存备用。
10.电脉冲法转化根癌农杆菌:将上述甘油法制得的根癌农杆菌感受态细胞在冰上融化后,加入1-2μL质粒DNA,将加好DNA的农杆菌用微量移液器的吸头轻混匀后加入到无菌脉冲杯中,将脉冲杯置于电脉冲仪上,电脉冲仪设定为2.5kV,电击5ms后迅速将1mL的SOC培养基加入脉冲杯中,混匀,转入2mL的无菌离心管中,置于28℃、200rpm摇床培养1小时后,涂布到含有75μg/mL壮观霉素和50μg/mL利福平的LB选择性培养基平板上,置于28℃恒温培养箱倒置培养2天。
11.阳性农杆菌转化子的筛选:采用引物对L1F(5’-gcatgacgttatttatgaggtggg-3’)和L1R(5’-gttatctagctggcgaaagggg-3’),以农杆菌转化子为模板进行PCR扩增后,取3μl产物进行电泳检测,扩增出716bp大小的转化子为阳性转化子。
PCR反应液组成(20μL体系):
Figure BDA0001053518810000071
12.农杆菌的诱导培养
基本培养基(minimal media,MM):2.05g K2HPO4,1.45g KH2PO4,0.5g NH4NO3,0.01g CaCl2,2g Glucose,0.3g(NH4)SO4,0.001g FeSO4,5ml Z-buffer(每种成分各0.01%ZnSO4·7H2O,CuSO4·5H2O,H3BO3,MnSO4·H2O和Na2MoO4·2H2O),加双蒸水定容至1000mL,pH6.7-7.0。
诱导培养基(induce media,IM):7.808g MES(2-(N-吗啡啉)乙磺酸),1gGlucose,1.45g KH2PO4,0.5g NH4NO3,0.01g CaCl2,0.6g MgSO4·7H2O,0.3g NaCl,0.5g(NH4)SO4,5ml Z-buffer,调pH值到5.6,双蒸水定容至1000mL。固体IM培养基则加入2%的琼脂。高温灭菌后备用。
将活化后的携带双元载体pLS-HCas9-mfa2的根瘤农杆菌AGL1接种到含有75μg/mL壮观霉素和50μg/mL利福平的MM培养基中,28℃、200rpm培养至OD600为0.8-1.2。用IM培养基将培养物稀释至OD600为0.15,加入200μM的AS,于28℃、200rpm且避光的条件下继续培养至OD600为0.5左右即可用于共培养。
13.甘蔗鞭黑粉菌的准备
YEPS培养基:酵母提取物10g,蛋白胨20g,蔗糖20g,双蒸水定容至1000mL,固体YEPS培养基则加入2%的琼脂,高温灭菌后备用。将甘蔗鞭黑粉菌野生型单倍体菌株从-80℃冰箱中取出,在YEPS平板上划线活化,挑取菌体至YEPS液体培养基中28℃、200rpm培养过夜,用YEPS将培养物稀释至OD600为0.15后继续培养10-12h至OD600为1.0左右即可用于共培养。
14.根癌农杆菌与甘蔗鞭黑粉菌的共培养
将于IM诱导培养至OD600为0.5的AGL1菌液与等体积的OD600为1.0的甘蔗鞭黑粉菌野生型单倍体菌株培养液混合,将混合好的菌液均匀涂布在预先铺好混合纤维素微孔滤膜(孔径为0.45μm)的IM培养基平板(含有200μM的AS)上,在28℃下避光共培养48-72h后,将滤膜转移至含300μg/mL头孢噻肟钠和200μg/mL潮霉素的YEPS选择性平板上,于28℃倒置培养8-12天以获得转化子。
15.甘蔗鞭黑穗菌阳性转化子的筛选:将滤膜上的转化子转接至含300μg/mL头孢噻肟钠和200μg/mL潮霉素的YEPS选择性平板上,于28℃倒置培养1-2天后,挑取能正常生长的转化子进行菌落PCR预处理。
16.向PCR管中加入20μl Mithy Prep for DNA,用无菌枪头挑取适量菌体加入裂解液中并混匀,95℃处理10分钟后,12000rpm离心3分钟。
17.取上步上清2μ1作为PCR模板。分别用3对引物进行扩增:
1)mfa2C1F(5’-tgcctgaattgctccgcttgtc-3’,SEQ.ID.No.9)和mfa2C1R(5’-tggctctgtttctcacgagatcacg-3’,SEQ.ID.No.10),
2)HygRO1(5’-tgtatggagcagcagacgcgctac-3’,SEQ.ID.No.11)和mfa2C1R(5’-tggctctgtttctcacgagatcacg-3’),
3)HygRO1和mfa2C1F(5’-tgcctgaattgctccgcttgtc-3’),
对PCR产物进行电泳检测。筛选第一轮无法扩增同时第二轮扩增出大小约为1000bp的转化子,或第一轮无法扩增同时第3轮扩增出大小约为100bp的转化子。
PCR反应液组成(20μL体系):
Figure BDA0001053518810000081
18.将扩增出的1000bp的片段进行测序鉴定后则确定目标基因敲除成功。
二、试验结果
如图1至图8。其中,
图3A为pSgRNA-SsU6质粒构建,使用引物SsPu6Fin(5’-atcggcagcaaaggatacgatcgtcccgacgatgctc-3’,SEQ.ID.No.12)和SsPu6Rin(5’-tcttcagaggtctctcgagggtaaaatctgattgtatgag-3’,SEQ.ID.No.13)扩增SsPu6,使用引物pSgRNA-F(5’-agagacctctgaagataacatac,SEQ.ID.No.14)和pSgRNA-R(5’-tcctttgctgccgattccacag-3’,SEQ.ID.No.15)扩增pSgRNA Vector。
图3B为pLS-HCas-mfa2质粒构建,使用引物U-Fs BamHI in(5’-ctatgttactagaggatcccggaatgatctacaaagcgttcttc-3’)和gR-R HindIII in(5’-taaccatggtaccaagcttattccatccactccaagctcttg-3’)扩增SspU6-mfa2-sgRNA。
图4显示,pLS-HCas9与基因mfa2(SEQ.ID.No.21)靶标序列的sgRNA表达盒连接后构建成pLS-HCas9-mfa2双元载体,该双元载体转化甘蔗鞭黑穗菌后,在菌株体内表达Cas9核酸酶,并由sgRNA引导Cas9核酸酶在与靶标序列互补的DNA上切割双链DNA,双元载体中的T-DNA片段则插入该DNA缺口,并通过非同源末端连接进行修复。最终导致T-DNA片段插入mfa2基因中造成mfa2基因功能的缺失。
图5显示,双元载体中的T-DNA片段可以正向或反向两种方式插入基因组中,均可以造成目标基因失活。在转化完成后需对转化子进行鉴定。通过裂解液处理转化子后,离心取上清作为模板可直接进行PCR验证。未发生外源片段插入的转化子和野生型菌株可由mfa2C1F(5’-tgcctgaattgctccgcttgtc-3’)和mfa2C1R(5’-tggctctgtttctcacgagatcacg-3’)为引扩增出1168bp大小片段,而发生外源片段定点插入的转化子则无法扩增;外源片段正向定点插入的转化子可由引物HygRO1(5’-tgtatggagcagcagacgcgctaC-3’)和mfa2C1R(5’-tggctctgtttctcacgagatcacg-3’)扩增约1000bp大小片段,可由引物CasRO1(5’-ggataccgaccttccgcttcttc-3’,SEQ.ID.No.16)和mfa2C1F(5’-tgcctgaattgctccgcttgtc-3’)扩增约1000bp大小片段,而未发生外源片段定点插入的转化子和野生型菌株则无法扩增;外源片段反向定点插入的转化子可由引物HygRO1(5’-tgtatggagcagcagacgcgctaC-3’)和mfa2C1F(5’-tgcctgaattgctccgcttgtc-3’)扩增约1000bp大小片段,可由引物CasRO1(5’-ggataccgaccttccgcttcttc-3’)和mfa2C1R(5’-tggctctgtttctcacgagatcacg-3’)扩增约1000bp大小片段,而未发生外源片段定点插入的转化子和野生型菌株则无法扩增。
图6为农杆菌介导的CRISPR-Cas9定点插入失活甘蔗鞭黑穗菌mfa2基因结果图,A)部分转化子丧失与异性菌株G36配合的能力;B)野生型甘蔗鞭黑穗菌JG35菌株呈酵母状;C)野生型甘蔗鞭黑穗菌菌株JG35与JG36在培养基上配合可形成白色绒毛状菌落。由甘蔗鞭黑穗菌mfa2基因编码的信息素与甘蔗鞭黑穗菌的有性配合密切相关,破坏甘蔗鞭黑穗菌mfa2基因后,突变体Δmfa2不能与野生型JG36菌株配合,不能形成白色绒毛状菌落。
图7转化子的PCR验证中,A)以转化子基因组DNA为模板,引物mfa2C1F(5’-tgcctgaattgctccgcttgtc-3’)和HygRO1(5’-tgtatggagcagcagacgcgctaC-3’)扩增,外源片段正向插入的转化子扩增出约1kb大小的片段,野生型菌株JG35和外源片段反向插入的转化子则无法扩增出该条带。B)以转化子基因组DNA为模板,引物mfa2C1R(5’-tggctctgtttctcacgagatcacg-3’)和HygRO1(5’-tgtatggagcagcagacgcgctaC-3’)扩增,外源片段反向插入的转化子扩增出约1kb大小的片段,野生型菌株JG35和外源片段正向插入的转化子则无法扩增出该条带。
图8是mfa2、prf和g827突变株的验证PCR产物测序结果示意图,红色部分序列为目标基因的靶标序列,灰色背景的序列为外源片段序列(序列过长,中间用黑色圆点表示)。A)3个Δmfa2突变株的PCR产物测序结果表明外源片段准确插入到mfa2基因的靶标区域内。B)4个Δprf突变株的PCR产物测序结果表明外源片段准确插入到prf基因的靶标区域内。C)2个Δg827突变株的PCR产物测序结果表明外源片段准确插入到g827基因的靶标区域内。
Figure IDA0001053518890000011
Figure IDA0001053518890000021
Figure IDA0001053518890000031
Figure IDA0001053518890000041
Figure IDA0001053518890000051
Figure IDA0001053518890000061
Figure IDA0001053518890000071
Figure IDA0001053518890000081
Figure IDA0001053518890000091
Figure IDA0001053518890000101
Figure IDA0001053518890000111
Figure IDA0001053518890000121
Figure IDA0001053518890000131
Figure IDA0001053518890000141
Figure IDA0001053518890000151
Figure IDA0001053518890000161
Figure IDA0001053518890000171
Figure IDA0001053518890000181
Figure IDA0001053518890000191
Figure IDA0001053518890000201
Figure IDA0001053518890000211
Figure IDA0001053518890000221

Claims (4)

1.甘蔗鞭黑穗菌u6基因启动子用于在甘蔗鞭黑穗菌中转录出载体上位于U6启动子下游sgRNA序列,其特征在于:所述甘蔗鞭黑穗菌u6基因启动子为序列表SEQ.ID.No.17的碱基序列。
2.甘蔗鞭黑穗菌u6基因启动子用于甘蔗鞭黑穗菌体的CRISPR-Cas9基因失活及编辑系统,其特征在于:所述甘蔗鞭黑穗菌u6基因启动子为序列表SEQ.ID.No.17的碱基序列。。
3.一种根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法,其特征在于:通过将甘蔗鞭黑穗菌内源U6基因启动子与所插入位点靶标序列以及sgRNA序列经OverlappingPCR融合后,经In-fusion技术重组至带有由甘蔗鞭黑穗菌内源gapd基因启动子驱动的Cas9基因及潮霉素抗性基因的双元载体中;再由携带该双元载体的根癌农杆菌介导转化甘蔗鞭黑穗菌从而达到对甘蔗鞭黑穗菌基因组的定点插入;所述甘蔗鞭黑穗菌u6基因启动子为序列表SEQ.ID.No.17的碱基序列。
4.权利要求3所述根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法在甘蔗鞭黑穗菌JG35野生型菌株中对mfa2、prf或g827基因进行基因失活中的应用。
CN201610571206.9A 2016-07-19 2016-07-19 根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用 Active CN106434651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610571206.9A CN106434651B (zh) 2016-07-19 2016-07-19 根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610571206.9A CN106434651B (zh) 2016-07-19 2016-07-19 根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用

Publications (2)

Publication Number Publication Date
CN106434651A CN106434651A (zh) 2017-02-22
CN106434651B true CN106434651B (zh) 2021-05-18

Family

ID=58184570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610571206.9A Active CN106434651B (zh) 2016-07-19 2016-07-19 根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用

Country Status (1)

Country Link
CN (1) CN106434651B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613852A3 (en) 2011-07-22 2020-04-22 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US20150166985A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting von willebrand factor point mutations
EP4079847A1 (en) 2014-07-30 2022-10-26 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
JP7067793B2 (ja) 2015-10-23 2022-05-16 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸塩基編集因子およびその使用
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
CN107043778B (zh) * 2017-03-14 2021-08-17 广西大学 真菌基因定点插入突变的近原位回补方法
IL306092A (en) 2017-03-23 2023-11-01 Harvard College Nucleic base editors that include nucleic acid programmable DNA binding proteins
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
CN111801345A (zh) 2017-07-28 2020-10-20 哈佛大学的校长及成员们 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
JP2021500036A (ja) 2017-10-16 2021-01-07 ザ ブロード インスティテュート, インコーポレーテッドThe Broad Institute, Inc. アデノシン塩基編集因子の使用
CN108384797B (zh) * 2018-02-08 2019-02-26 南京农业大学 一种无痕迹木霉真菌基因编辑方法
AU2020242032A1 (en) 2019-03-19 2021-10-07 Massachusetts Institute Of Technology Methods and compositions for editing nucleotide sequences
CN111019946B (zh) * 2019-12-23 2020-12-11 华南农业大学 一种短小型小核rna启动子及其构建方法和在基因组编辑中的应用
BR112022022603A2 (pt) 2020-05-08 2023-01-17 Broad Inst Inc Métodos e composições para edição simultânea de ambas as fitas de sequência alvo de nucleotídeos de fita dupla
CN112481259B (zh) * 2020-11-24 2022-09-16 南昌大学 两种甘薯U6基因启动子IbU6的克隆与应用
CN116769800A (zh) * 2023-06-15 2023-09-19 广西大学 甘蔗鞭黑粉菌SsglcP基因及其在甘蔗黑穗病抗病育种中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system;Liu et al;《Cell Discovery》;20150512;1-11 *
Guldener.LK056652.1.《Genbank》.2016, *
LK056652.1;Guldener;《Genbank》;20160308 *
Tailor-Made CRISPR/Cas System for Highly Efficient Targeted Gene Replacement in the Rice Blast Fungus;Takayuki et al;《Biotechnology and Bioengineering》;20151231;摘要,第2544页左栏第3段-第2548页右栏第2段 *

Also Published As

Publication number Publication date
CN106434651A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106434651B (zh) 根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用
CN113728098A (zh) 具有ruvc结构域的酶
CN103981215A (zh) 一种用于基因工程的骨干质粒载体及应用
WO2021100640A1 (ja) 改変シアノバクテリア、改変シアノバクテリアの製造方法、及び、タンパク質の製造方法
CN111748562B (zh) 一种水稻纹枯病菌Atg 22蛋白编码基因及其靶标片段Rsatg22和应用
CN111041029B (zh) 一种强启动子及其在产维生素b12菌株中的应用
KR20240053585A (ko) 카고 뉴클레오티드 서열을 전이시키기 위한 시스템 및 방법
CN113604472B (zh) 一种应用于里氏木霉的CRISPR/Cas基因编辑系统
EP2383337B1 (en) Novel promoter for use in transformation of algae
CN110607300B (zh) 一种强启动子及其质粒载体和应用
CN113166741A (zh) Dna文库的多重确定性组装
Kaya et al. Transformation of Nicotiana tabacum with dehE gene
AU2022335499A1 (en) Enzymes with ruvc domains
CN112553090B (zh) 一株高产sorbicillinoids的里氏木霉工程菌及其构建方法与应用
CN114410608A (zh) 一种高效表达及纯化Cas9蛋白的方法和应用
CN111334523A (zh) 一种大尺度dna的体内多轮迭代组装方法
CN112831517B (zh) 由番茄红素基因介导的改造的克隆载体及其应用
JP6979484B2 (ja) 2,3−ブタンジオール生産用の組換え微生物および2,3−ブタンジオールの生産方法
CN108611283B (zh) 一种获得嗜热属真菌阳性转化子的方法
US20240110167A1 (en) Enzymes with ruvc domains
WO2022186216A1 (ja) 改変シアノバクテリア、改変シアノバクテリアの製造方法、及び、タンパク質の製造方法
WO2024024427A1 (ja) シアノバクテリアの外膜剥離の判定方法、シアノバクテリアの外膜剥離の判定装置、及び、プログラム
KR101175725B1 (ko) 신규한 그람 양성균 박테리아 발현 시스템
Mani et al. Agrobacterium-mediated transformation and gus gene expression in Amaranthuscaudatus
CN106987601B (zh) 红曲菌聚酮合酶基因pks1的重组载体构建及其在重组米曲霉中的表达

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant