CN106834347A - 一种山羊cdk2基因敲除载体及其构建方法 - Google Patents

一种山羊cdk2基因敲除载体及其构建方法 Download PDF

Info

Publication number
CN106834347A
CN106834347A CN201611222742.4A CN201611222742A CN106834347A CN 106834347 A CN106834347 A CN 106834347A CN 201611222742 A CN201611222742 A CN 201611222742A CN 106834347 A CN106834347 A CN 106834347A
Authority
CN
China
Prior art keywords
cdk2
sgrna
goat
gene knockout
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611222742.4A
Other languages
English (en)
Inventor
惠文巧
陈�胜
汤继顺
班谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Animal Husbandry and Veterinary Medicine of Anhui Academy of Agricultural Sciences
Original Assignee
Institute of Animal Husbandry and Veterinary Medicine of Anhui Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Animal Husbandry and Veterinary Medicine of Anhui Academy of Agricultural Sciences filed Critical Institute of Animal Husbandry and Veterinary Medicine of Anhui Academy of Agricultural Sciences
Priority to CN201611222742.4A priority Critical patent/CN106834347A/zh
Publication of CN106834347A publication Critical patent/CN106834347A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开一种山羊CDK2基因敲除载体及其构建方法,采用CRISPR/cas9系统,首先设计CDK2基因的sgRNA片段,合成sgRNA核苷酸序列,构建同时表达sgRNA和Cas9D10A的质粒PYSY‑sgRNA,连接并转化至大肠杆菌DH5α感受态细胞,最后对转化子进行验证;酶切和测序鉴定证明CDK2基因敲除载体构建正确。本发明采用CRISPR/Cas9构建的载体,为后续获得山羊CDK2基因缺失型细胞系,研究支原体肺炎感染引发的细胞凋亡分子分子机制提供理论依据。

Description

一种山羊CDK2基因敲除载体及其构建方法
技术领域
本发明属于基因工程技术领域,尤其涉及一种山羊CDK2基因敲除载体及其构建方法。
背景技术
CDKs的驱动才能完成细胞周期蛋白依赖性蛋白激酶-2(Cyclin-dependentkinases 2,CDK 2)是CDK的家族成员之一。CDK2的生物学功能主要是参与细胞周期调控,可分别由细胞周期蛋白E(cyclin E)和细胞周期蛋白A(cyclin A)在细胞周期的不同时段激活,从而促进一系列细胞周期相关基因的转录,启动DNA复制和诱发有丝分裂的双重作用。
CRISPR/Cas9系统是细菌在噬菌体长期的选择压力下进化出来的一种有效抵御外源DNA入侵的免疫机制之一。在菌体内,CRISPR簇在其前导区的调控下转录成precrRNA,并在tracrRNA和Cas9参与下加工成成熟的crRNA,引导crRNA/tracrRNA/Cas9复合体识别结合外源DNA特定序列,剪切DNA双链,从而沉默外源基因的表达。CRISPR/Cas9系统被开发成了一种新型的基因打靶系统。相对于较早的RNAi、ZFN和TALEN系统,这种新型打靶系统具有操作简单、成本低、效率高、可同时沉默任意数量基因等优点。目前,该项技术已经应用于细菌、斑马鱼、小鼠、大鼠、家蚕以及哺乳动物和人类细胞系等,且都表现出较强的基因组编辑活性。Hu等(2014)应用该技术对山羊成纤维细胞中NUP155基因进行了敲除,发现23个单细胞克隆中有5个发生了NUP155基因突变。Wang等(2015)采用CRISPR/Cas9技术对山羊MSTN和FGF5基因进行了敲除。以上研究提示该技术可以成功用于山羊基因敲除。
目前采用ZFNs或TALENs进行基因敲除,对每个基因位点编辑都需要设计和组装两个核酸酶,构建技术难度较大、构建组装时间较长。另外,传统基因敲 除,主要是应用基因重组原理通过插入突变和靶向技术使目的基因功能丧失。
发明内容
本发明的目的在于提供一种山羊CDK2基因敲除载体及其构建方法,旨在解决目前采用ZFNs或TALENs进行基因敲除,对每个基因位点编辑都需要设计和组装两个核酸酶,因而构建技术难度较大、构建组装时间较长;而且传统基因敲除,主要是应用基因重组原理通过插入突变和靶向技术使目的基因功能丧失的问题。
本发明是这样实现的,
一种山羊CDK2基因敲除载体,该山羊CDK2基因敲除载体的sgRNA核苷酸序列为:
CDK2-gRNA-Lg1:TTCTCCCGTCAACTTGTTTTTGG;
CDK2-gRNA-Rg1:GGCGCTTAAAAAAATCCGCCTGG。
一种表达山羊CDK2基因敲除载体的sgRNA核苷酸的质粒PYSY-sgRNA,
该质粒PYSY-sgRNA为:
pYSY-CMV-Cas9n-U6-CDK2-gRNA-L2-SV40-Neo质粒和
pYSY-CMV-Cas9n-U6-CDK2-gRNA-R2-EF1a-eGFP质粒。
一种山羊CDK2基因敲除载体的构建方法,该山羊CDK2基因敲除载体的构建方法包括:
采用CRISPR/cas9系统,首先设计CDK2基因的sgRNA片段,合成sgRNA核苷酸序列;
构建同时表达sgRNA和Cas9D10A的质粒PYSY-sgRNA,连接并转化至大肠杆菌DH5α感受态细胞;
最后对转化子进行验证。
该山羊CDK2基因敲除载体的构建方法具体包括:
引物退火:将1ul 100uM的F-Oligo、1ul的100uM R-Oligo、8ul YSY oligo 退火缓冲液混合于PCR管内,在PCR仪中以每分钟1.5℃逐渐从95℃降至22℃;
连接:0.5ul退火产物,1ul YSY线性化三合一CRISPR/Cas9n质粒,1ul T4连接酶,2ul 5*T4Buffer,5.5ul Milli Q;
转化:室温15min后用pfu≥108的大肠杆菌DH5a感受态细胞进行转化;
转化子验证:转化涂板后挑取单克隆进行10ul体系菌液PCR验证;
经PCR初步鉴定,符合预期片段大小后进行测序;
菌液37℃过夜培养,无内毒素质粒大提试剂盒提取质粒,并采用微量紫外分光光度计测定质粒浓度。
进一步,所述转化涂板后挑取单克隆进行10ul体系菌液PCR验证,具体包括:挑取单克隆0.5ul菌液,0.5ul YSY验证正向引物,0.5ul R-Oligo,5ulMastermix,3.5ulMilliQ;PCR反应条件为:
1):95℃预变性2mim;
2):94℃变性30s;
3):56℃退火30s;
4):72℃延伸30s;步骤2)到步骤4)运行35个循环;
5):72℃再延伸10min;
6):4℃保存PCR反应条件为:
1):95℃预变性2mim;
2):94℃变性30s;
3):56℃退火30s;
4):72℃延伸30s;步骤2)到步骤4)运行35个循环;
5):72℃再延伸10min;
6):4℃保存。
CRISPR/Cas9系统,是新开发的一种新型的基因打靶系统,利用细菌或古生菌中存在的的CRISPR簇,在其前导区的调控下转录成precrRNA,并在tracrRNA和Cas9参与下加工成成熟的crRNA,cRNA和tracrRNA二者结合形 成的复合物成为,sgRNA与Cas9核酸内切酶结合,并引导其识别结合外源DNA特定序列,剪切DNA双链,从而沉默外源基因的表达。
本发明采用CRISPR/Cas9系统构建TLR4基因敲除载体,方法简单快捷,只需针对该基因敲除位点设计一个长约20bp左右的sgRNA,然后连接通用的Cas9基因即可,而采用ZFNs或TALENs进行基因敲除,对每个基因位点编辑都需要设计和组装两个核酸酶,构建技术难度较大、构建组装时间较长。因此,与传统的ZFNs、TALENs等基因敲除技术比较而言,采用CRISPR/Cas9构建基因敲除载体更为简单快捷,便于进一步推广和应用于后续实验。
另外,传统基因敲除,主要是应用基因重组原理通过插入突变和靶向技术使目的基因功能丧失,与ZFN和TALEN这两种人工核酸酶相比,CRISPR/Cas9系统中的Cas9作为切口酶,具有单链切割活性,可以在特定位置制造单链切口,这样基本不会引起非同源末端连接,从而高效地介导外源基因的定点敲入,或对基因组进行点突变,大大降低了非同源末端连接所带来的风险。
本发明构建的载体利用RNA导向的CRISPR-Cas9系统形成双切口,在未影响靶向切割效率的前提下大大降低了脱靶效应,提高基因敲除效率。
附图说明
图1是本发明实施例提供的山羊CDK2基因敲除载体构建方法流程图;
图2是本发明实施例提供的PCR验证克隆电泳图片示例一;
图中:Marker:Trans 2K Plus DNA Marker,从下到上依次为100bp,250bp,500bo,750bp,1000bp,3000bp,5000bp;2:阴性对照;3-6:CKD2-gRNA-Rg1克隆。
图3是本发明实施例提供的PCR验证克隆电泳图片示例二;
图中:Marker:Trans 2K Plus DNA Marker,从下到上依次为100bp,250bp,500bo,750bp,1000bp,3000bp,5000bp;2:阴性对照;3-6:CKD2-gRNA-Lg1克隆。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作进一步描述。
本发明提供的一种山羊CDK2基因敲除载体,该山羊CDK2基因敲除载体的sgRNA核苷酸序列为:
SEQ ID NO1:CDK2-gRNA-Lg1:TTCTCCCGTCAACTTGTTTTTGG;
SEQ ID NO2:CDK2-gRNA-Rg1:GGCGCTTAAAAAAATCCGCCTGG。
一种表达sgRNA核苷酸的质粒PYSY-sgRNA,
该质粒PYSY-sgRNA为:
pYSY-CMV-Cas9n-U6-CDK2-gRNA-L2-SV40-Neo质粒和
pYSY-CMV-Cas9n-U6-CDK2-gRNA-R2-EF1a-eGFP质粒。
如图1所示:本发明实施例提供的山羊CDK2基因敲除载体的构建方法,该山羊CDK2基因敲除载体的构建方法包括:
S101:采用CRISPR/cas9系统,首先设计CDK2基因的sgRNA片段,合成sgRNA核苷酸序列;
S102:构建同时表达sgRNA和Cas9D10A的质粒PYSY-sgRNA,连接并转化至大肠杆菌DH5α感受态细胞;
S103:最后对转化子进行验证。
该山羊CDK2基因敲除载体的构建方法具体包括:
引物退火:将1ul 100uM的F-Oligo、1ul的100uM R-Oligo、8ul YSY oligo退火缓冲液混合于PCR管内,在PCR仪中以每分钟1.5℃逐渐从95℃降至22℃;
连接:0.5ul退火产物,1ul YSY线性化三合一CRISPR/Cas9n质粒,1ul T4连接酶,2ul 5*T4Buffer,5.5ul Milli Q;
转化:室温15min后用pfu≥108的大肠杆菌DH5a感受态细胞进行转化;
转化子验证:转化涂板后挑取单克隆进行10ul体系菌液PCR验证:;
经PCR初步鉴定,符合预期片段大小后进行测序;
菌液37℃过夜培养,无内毒素质粒大提试剂盒提取质粒,并采用微量紫外分光光度计测定质粒浓度。
进一步,所述转化涂板后挑取单克隆进行10ul体系菌液PCR验证,具体包括:挑取单克隆0.5ul菌液,0.5ul YSY验证正向引物,0.5ul R-Oligo,5ulMastermix,3.5ulMilliQ;PCR反应条件为:
1):95℃预变性2mim;
2):94℃变性30s;
3):56℃退火30s;
4):72℃延伸30s;步骤2)到步骤4)运行35个循环;
5):72℃再延伸10min;
6):4℃保存。
下面结合试验方法对本发明的应用原理作进一步描述
1材料和方法
1.1材料
Trans2K Plus DNA Marker购自全式金生物技术有限公司,CRISPR/Cas9n质粒购自南京尧舜禹公司,大肠杆菌DH5a感受态细胞、T4连接酶、无内毒素质粒大提试剂盒均购自天根生化有限公司。阳离子脂质体2000(Invitrogen)。PCR引物由上海铂尚生物技术有限公司合成。
1.2方法
1.2.1 sgRNA靶点确定和引物设计
根据山羊CDK2基因(GenBank:EF035041.1),找到CDS序列并分析其结构,根据该基因结构确定敲除位点,选择外显子序列输入到软件中,得到gRNA序列。
1.2.2 CRISPR/Cas9基因敲除载体的构建
引物退火:1ul F-Oligo(100uM),1ul R-Oligo(100uM),8ul YSY oligo退火缓冲液,以上溶液混合于PCR管内,在PCR仪中以每分钟1.5℃逐渐从95℃降至22℃。
连接:0.5ul退火产物,1ul YSY线性化三合一CRISPR/Cas9n质粒,1ul T4连接酶,2ul 5*T4Buffer,5.5ul Milli Q。
转化:室温15min后用大肠杆菌DH5a感受态细胞(pfu≥108)进行转化。
转化子验证:转化涂板后挑取单克隆进行10ul体系菌液PCR验证。
0.5ul菌液,0.5ul YSY验证正向引物,0.5ul R-Oligo,5ul Mastermix,3.5ulMilliQ;
PCR反应条件:Seg1:95℃预变性2mim;Seg2:94℃变性30s;Seg3:56℃退火30s;Seg4:72℃延伸30s;Seg2to Seg4运行35个循环;Seg5:72℃再延伸10min;Seg6:4℃保存。
经PCR初步鉴定为阳性克隆送至南京金斯瑞生物科技有限公司进行测序。
菌液37℃过夜培养,无内毒素质粒大提试剂盒提取质粒,并采用微量紫外分光光度计测定质粒浓度。
2.结果
2.1基因基本信息
CDS序列:
ATGGAGAACTTCCAAAAAGTGGAAAAGATCGGAGAGGGCACGTACGGAGTTGTGTACAAAGCCAAAAACAAGTTGACGGGAGAAGTGGTGGCGCTTAAAAAAATCCGCCTGGACACTGAGACAGAGGGTGTACCCAGTACTGCCATACGAGAGATCTCTCTGCTTAAGGAGCTTAATCACCCTAATATTGTCAAGCTGCTGGATGTCATTCACACAGAAAACAAGCTCTACCTTGTTTTTGAGTTTCTGCACCAGGATCTCAAGAAATTCATGGATGCCTCTGCACTCACTGGCATTCCTCTTCCGCTCATAAAGAGCTACTTGTTCCAGCTGCTCCAGGGCCTAGCTTTCTGCCACTCTCATCGGGTCCTGCACCGAGACCTTAAACCTCAGAATCTGCTTATCAACGCAGATGGGTCCATCAAGCTAGCAGACTTCGGACTAGCCAGAGCTTTTGGGGTCCCTGTTCGTACTTATACCCACGAGGTGGTGACTCTGTGGTACCGAGCACCGGAAATCCTTCTGGGCTGCAAATACTACTCCACAGCAGTGGACATATGGAGCCTCGGTTGCATCTTTGCTGAGATGGTGACCCGCCGGGCCCTATTCCCCGGAGATTCTGAGATCGACCAACTCTTCCGGATCTTTCGGACCCTGGGAACCCCAGATGAGGTGGTTTGGCCAGGAGTTACTTCTATGCCTGATTATAAGCCAAGTTTCCCCAAGTGGGCCAGGCAGGATTTTAGCAAAGTGGTGCCTCCCCTGGATGAAGATGGACGGAGCTTGTTATCGCAAATGCTGCACTACGACCCTAACAAGCGGATTTCAGCCAAGGCAGCTTTGGCTCACCCCTTCTTCCAAGATGTGACCAAGCCAGTACCTCACCTTCGACTCTGA;
蛋白质序列:
MENFQKVEKIGEGTYGVVYKAKNKLTGEVVALKKIRLDTETEGVPSTAIREISLLKELNHPNIVKLLDVIHTENKLYLVFEFLHQDLKKFMDASALTGIPLPLIKSYLFQLLQGLAFCHSHRVLHRDLKPQNLLINADGSIKLADFGLARAFGVPVRTYTHEVVTLWYRAPEILLGCKYYSTAVDIWSLGCIFAEMVTRRALFPGDSEIDQLFRIFRTLGTPDEVVWPGVTSMPDYKPSFPKWARQDFSKVVPPLDEDGRSLLSQMLHYDPNKRISAKAALAHPFFQDVTKPVPHLRL。
2.2 sgRNA设计
在U6启动子驱动下设计的sgRNA转录本RNA序列分别为:
CDK2-gRNA-Lg1:TTCTCCCGTCAACTTGTTTTTGG;
CDK2-gRNA-Rg1:GGCGCTTAAAAAAATCCGCCTGG。
2.3 PCR验证阳性克隆电泳图片如图2、3所示。
2.4送检测序结果
将之前验证正确的阳性克隆菌液送至金斯瑞生物技术有限公司测序,测序部分序列比对结果具体如下:
2.4.1 pYSY-CMV-Cas9n-U6-CDK2gRNA-L2-SV40-Neo:
通过对比,其同源性达到100%。
2.4.2 pYSY-CMV-Cas9n-U6-CDK2-gRNA-R2-EF1a-Egfp:
其同源性达到100%。因此,通过以上序列比对,可确定目标质粒构建成功。
2.5山羊CDK2基因的敲除质粒对提取及浓度测定:
pYSY-CMV-Cas9n-U6-CDK2-gRNA-L2-SV40-Neo质粒:4ug浓度:251ng/ul
pYSY-CMV-Cas9n-U6-CDK2-gRNA-R2-EF1a-eGFP质粒:4ug浓度:221ng/ul
下面结合原理分析对本发明进一步说明。
CRISPR/Cas9系统,是新开发的一种新型的基因打靶系统,利用细菌或古生菌中存在的的CRISPR簇,在其前导区的调控下转录成precrRNA,并在tracrRNA和Cas9参与下加工成成熟的crRNA,cRNA和tracrRNA二者结合形成的复合物成为,sgRNA与Cas9核酸内切酶结合,并引导其识别结合外源DNA特定序列,剪切DNA双链,从而沉默外源基因的表达。
本发明采用CRISPR/Cas9系统构建TLR4基因敲除载体,方法简单快捷,只需针对该基因敲除位点设计一个长约20bp左右的sgRNA,然后连接通用的Cas9基因即可,而采用ZFNs或TALENs进行基因敲除,对每个基因位点编辑都需要设计和组装两个核酸酶,构建技术难度较大、构建组装时间较长。因此,与传统的ZFNs、TALENs等基因敲除技术比较而言,采用CRISPR/Cas9构建基因敲除载体更为简单快捷,便于进一步推广和应用于后续实验。
另外,传统基因敲除,主要是应用基因重组原理通过插入突变和靶向技术使目的基因功能丧失,与ZFN和TALEN这两种人工核酸酶相比,CRISPR/Cas9系统中的Cas9作为切口酶,具有单链切割活性,可以在特定位置制造单链切口,这样基本不会引起非同源末端连接,从而高效地介导外源基因的定点敲入,或对基因组进行点突变,大大降低了非同源末端连接所带来的风险。
本发明构建的载体,利用RNA导向的CRISPR-Cas9系统形成双切口,在未影响靶向切割效率的前提下大大降低了脱靶效应,提高基因敲除效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
<110>安徽省农业科学院畜牧兽医研究所
<120> 一种山羊CDK2基因敲除载体及其构建方法
<160> 2
<210> 1
<211>23
<212> RNA
<213>人工序列
<400> 核苷酸序列
TTCTCCCGTCAACTTGTTTTTGG
<210> 2
<211>23
<212> RNA
<213>人工序列
<400> 核苷酸序列
GGCGCTTAAAAAAATCCGCCTGG

Claims (5)

1.一种山羊CDK2基因敲除载体,其特征在于,该山羊CDK2基因敲除载体的sgRNA核苷酸序列为:SEQ ID NO1和SEQ ID NO2。
2.一种表达权利要求1所述山羊CDK2基因敲除载体的sgRNA核苷酸的质粒PYSY-sgRNA,其特征在于,
该质粒PYSY-sgRNA为:
pYSY-CMV-Cas9n-U6-CDK2-gRNA-L2-SV40-Neo质粒和
pYSY-CMV-Cas9n-U6-CDK2-gRNA-R2-EF1a-eGFP质粒。
3.一种如权利要求1所述的山羊CDK2基因敲除载体的构建方法,其特征在于,该山羊CDK2基因敲除载体的构建方法包括:
采用CRISPR/cas9系统,首先设计CDK2基因的sgRNA片段,合成sgRNA核苷酸序列;
构建同时表达sgRNA和Cas9D10A的质粒PYSY-sgRNA,连接并转化至大肠杆菌DH5α感受态细胞;
最后对转化子进行验证。
4.如权利要求3所述的山羊TLR4基因敲除载体的构建方法,其特征在于,该山羊CDK2基因敲除载体的构建方法具体包括:
引物退火:将1ul 100uM的F-Oligo、1ul的100uM R-Oligo、8ul YSY oligo退火缓冲液混合于PCR管内,在PCR仪中以每分钟1.5℃逐渐从95℃降至22℃;
连接:0.5ul退火产物,1ul YSY线性化三合一CRISPR/Cas9n质粒,1ul T4连接酶,2ul5*T4Buffer,5.5ul Milli Q;
转化:室温15min后用pfu≥108的大肠杆菌DH5a感受态细胞进行转化;
转化子验证:转化涂板后挑取单克隆进行10ul体系菌液PCR验证;
经PCR初步鉴定,符合预期片段大小后进行测序;
菌液37℃过夜培养,无内毒素质粒大提试剂盒提取质粒,并采用微量紫外分光光度计测定质粒浓度。
5.如权利要求4所述的山羊TLR4基因敲除载体的构建方法,其特征在于,所述转化涂板后挑取单克隆进行10ul体系菌液PCR验证,具体包括:挑取单克隆0.5ul菌液,0.5ul YSY验证正向引物,0.5ul R-Oligo,5ul Mastermix,3.5ul MilliQ;PCR反应条件为:
1):95℃预变性2mim;
2):94℃变性30s;
3):56℃退火30s;
4):72℃延伸30s;步骤2)到步骤4)运行35个循环;
5):72℃再延伸10min;
6):4℃保存。
CN201611222742.4A 2016-12-27 2016-12-27 一种山羊cdk2基因敲除载体及其构建方法 Pending CN106834347A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611222742.4A CN106834347A (zh) 2016-12-27 2016-12-27 一种山羊cdk2基因敲除载体及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611222742.4A CN106834347A (zh) 2016-12-27 2016-12-27 一种山羊cdk2基因敲除载体及其构建方法

Publications (1)

Publication Number Publication Date
CN106834347A true CN106834347A (zh) 2017-06-13

Family

ID=59135736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611222742.4A Pending CN106834347A (zh) 2016-12-27 2016-12-27 一种山羊cdk2基因敲除载体及其构建方法

Country Status (1)

Country Link
CN (1) CN106834347A (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107760652A (zh) * 2017-09-29 2018-03-06 华南理工大学 CRISPR/CAS9介导药物转运体靶向性敲除的caco‑2细胞模型及其方法
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
CN110878321A (zh) * 2018-09-06 2020-03-13 上海科技大学 一种用于肺炎克雷伯菌基因编辑的表达载体
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12084663B2 (en) 2022-11-14 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
CN107760652A (zh) * 2017-09-29 2018-03-06 华南理工大学 CRISPR/CAS9介导药物转运体靶向性敲除的caco‑2细胞模型及其方法
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN110878321B (zh) * 2018-09-06 2023-08-22 上海科技大学 一种用于肺炎克雷伯菌基因编辑的表达载体
CN110878321A (zh) * 2018-09-06 2020-03-13 上海科技大学 一种用于肺炎克雷伯菌基因编辑的表达载体
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12084663B2 (en) 2022-11-14 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing

Similar Documents

Publication Publication Date Title
CN106834347A (zh) 一种山羊cdk2基因敲除载体及其构建方法
CN106755097A (zh) 一种山羊tlr4基因敲除载体及其构建方法
CN107474129B (zh) 特异性增强crispr-cas系统基因编辑效率的方法
CN104805099B (zh) 一种安全编码Cas9蛋白的核酸分子及其表达载体
CN116042611A (zh) 编辑rna的方法和组合物
CN109136248B (zh) 多靶点编辑载体及其构建方法和应用
Maraia The subset of mouse B1 (Alu-equivalent) sequences expressed as small processed cytoplasmic transcripts
CN108165581B (zh) 采用单链核苷酸片段体外修复hba2基因突变的方法
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
JP7244885B2 (ja) 機能的なIncRNAをスクリーニングおよび同定するための方法
US20230051396A1 (en) Class ii, type ii crispr systems
WO2019227640A1 (zh) 利用碱基编辑修复fbn1t7498c突变的试剂和方法
EP4159853A1 (en) Genome editing system and method
US20230416710A1 (en) Engineered and chimeric nucleases
WO2021178432A9 (en) Rna-guided genome recombineering at kilobase scale
CN106636201A (zh) 一种mc1r基因载体及其构建方法
Karagyaur et al. Practical recommendations for improving efficiency and accuracy of the CRISPR/Cas9 genome editing system
WO2020093025A1 (en) Methods for knock-out of a target sequence through introduction of a premature stop codon
CN104212778A (zh) 基于TALEN和pMD18载体的定点突变系统及应用
CN116716298A (zh) 一种引导编辑系统和目的基因序列的定点修饰方法
WO2023016021A1 (zh) 一种碱基编辑工具及其构建方法
WO2022247629A1 (zh) 非同源双链寡聚核苷酸片段在基因敲除系统中的应用
WO2022206352A1 (zh) 一种引导编辑工具、融合rna及其用途
CN111088253A (zh) 针对hbb-28地中海贫血基因的crispr单碱基供体修复体系
WO2023060539A1 (en) Compositions and methods for detecting target cleavage sites of crispr/cas nucleases and dna translocation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613