CN108588128A - 一种高效率大豆CRISPR/Cas9系统的构建方法及应用 - Google Patents

一种高效率大豆CRISPR/Cas9系统的构建方法及应用 Download PDF

Info

Publication number
CN108588128A
CN108588128A CN201810384372.7A CN201810384372A CN108588128A CN 108588128 A CN108588128 A CN 108588128A CN 201810384372 A CN201810384372 A CN 201810384372A CN 108588128 A CN108588128 A CN 108588128A
Authority
CN
China
Prior art keywords
soybean
crispr
cas9
sgrna
spcas9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810384372.7A
Other languages
English (en)
Inventor
王东
唐雅君
贺热情
朱友林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201810384372.7A priority Critical patent/CN108588128A/zh
Publication of CN108588128A publication Critical patent/CN108588128A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Abstract

本发明公开了一种高效率大豆CRISPR/Cas9系统的构建方法及应用,将Staphylococcus aureus Cas9蛋白进行拆分表达,为了提高对大豆基因组的编辑效率及广谱性,构建了大豆SaCas9编辑系统。本发明将一个低效率的编辑系统转变为高效率编辑系统,不仅拓展了编辑大豆基因组的应用广度,也为今后解决农作物基因组编辑效率的问题上提供新思路。

Description

一种高效率大豆CRISPR/Cas9系统的构建方法及应用
技术领域
本发明涉及基因工程技术领域,尤其涉及一种高效率大豆CRISPR/Cas9系统的构建方法及应用。
背景技术
CRISPR/Cas9是细菌和古细菌在长期演化过程中形成的一种适应性免疫防御,可用来对抗入侵的病毒及外源DNA。CRISPR/Cas9系统通过将入侵噬菌体和质粒DNA的片段整合到CRISPR中,并利用相应的CRISPR RNAs(crRNAs)来指导同源序列的降解,从而提供免疫性。
这个发现纯属偶然,起初也没有引起包括发现者本身太大的重视,甚至这种特征序列都没有一个名字,直到2002年,在通过计算机操作发现很多原核生物(真细菌和古细菌),都有类似被21-37bp的回文重复序列间隔开的非重复序列后,才正式有了这个顾名思义的名字CRISPR,成簇的、规律间隔的、短回文、重复序列(clustered regularlyinterspaced short palindromic repeats,CRISPR),并且除了这样的特征序列外,其附近还有一段CRISPR-associated基因,也就是我们后来说的发挥剪切作用和整合外源片段作用的一系列Cas蛋白,CRISPR系统中最重要的3大元件—spacer,repeats,cas等。目前,已经在48%的真细菌和95%的古细菌中发现了CRISPR系统,可以算得上是普遍存在了。
CRISPR/Cas9系统不但丰富了我们对于细菌、古细菌生理机制的认知,更重要的是这种体系的改造利用能带来席卷整个分子生物学领域,更新现有操作模式的一场技术革命。同时,它也为我们打开了一扇窗,从CRISPR的角度重新认识整个微生物世界自我和相互间的调控网络、调控机制,原核及真核细胞间的异同和联系,甚至协同进化的证据。
现在使用的CRISPR/cas 9系统是由最简单的type II CRISPR改造而来的DNA定点剪切工具,该系统由单链的guide RNA和有核酸内切酶活性的Cas 9蛋白构成。通过cas9蛋白形成DNA双链的断裂,而细胞通过NHEJ的修复会造成INDEL效应(insertion anddeletion),进而造成基因的移码突变而达到基因敲除的目的。此外,还可以通过同源重组等方式达到对基因精确编辑的目的。其实,在此之前已经发展了多种基因的编辑工具,如:ZFN,TALEN等,并且也已经得到广泛应用。CRISPR可谓是2013年生物界的焦点,这项技术相对与ZFN,TALEN等基因编辑技术可以说是既简便又经济,一般的实验室都可以构建自己的平台。
大豆(Glycine max(Linn.)Merr.)是世界重要的粮油兼用作物,也是人类优质蛋白的主要来源。既是我国主要农作物之一,也是我国进口量最大的农产品。大豆是关系国计民生的重要性物资,又是最具经济效益的作物,其延长的产业链和价值链具有很大发展潜力,在农产品贸易领域扮演举足轻重的角色。大豆是人类不可或缺的高蛋白食品、健康植物油及重要保健品的原料。其籽粒含有丰富的蛋白质及脂肪,两者约占干重的60%。大豆是蛋白质含量最高的主要作物,蛋白质一般含量40%,高者达50%。大豆含油量一般18%,高者24%,为世界提供了30%的脂肪和60%的植物蛋白质。
目前运用于大豆基因组编辑的工具甚少,远远满足不了我们对多类型位点且高效率编辑的需求。据已报导的数据显示,2015年SpCas9已经被运用于大豆子叶瞬时转化和稳定遗传转化体系中,但是编辑效率还有待进一步优化。而2016年Cpf1也被运用于大豆原生质体中,但是未在稳定遗传转化体系中验证其编辑效率。因此,开发更高效率更多选择更广运用的CRISPR/Cas9体系,并将其运用于大豆基因组编辑迫在眉睫。
发明内容
鉴于上述现有技术中存在的缺陷,本发明的目的是提出一种高效率大豆CRISPR/Cas9系统的构建方法及应用。
为了实现上述目的,本发明采用了如下技术方案:
一种高效率大豆CRISPR/Cas9系统的构建方法,包括以下步骤:
步骤1)人工合成大豆特异的U6启动子序列、Staphylococcus aureus Cas9序列和Streptococcus pyogenes Cas9序列;
步骤2)将扩增目的片段GmU6,sgRNA,35S,N-SpCas9,C-SpCas9,Bar片段构建于实验室改造的pCAMBIA1300骨架载体上,获得以下载体骨架:
GmU6::sgRNA-35S::SpCas9-35S::Bar
GmU6::sgRNA-35S::SaCas9-35S::Bar
GmU6::sgRNA-35S::N-SpCas9-35S::C-SpCas9-35S::Bar
GmU6::sgRNA-35S::N-SaCas9-35S::C-SaCas9-35S::Bar;
步骤3)从SoyBase中选择3个大豆基因以及2个大豆gma-miRNA,根据选定的基因以及miRNA设计靶位点序列,合成两段带有BsaI酶切后形成的粘性末端互补序列的引物,长度为19bp-21bp;
步骤4)将sgRNA靶位点引物退火后形成的带有粘性末端的核心序列,组装于步骤2)所构建的载体;
步骤5)获得完整的大豆CRISPR/Cas9编辑载体。
一种根据上述的高效率大豆CRISPR/Cas9系统在大豆基因组修饰中的应用。包括以下步骤:
(1)将上述获得的大豆CRISPR/Cas9编辑载体转化K599农杆菌;
(2)侵染大豆子叶,培养获得瞬时转化的大豆根毛;
(3)运用CTAB法提取大豆根毛DNA,测序检测编辑效率。
本发明的突出效果为:
本发明的一种高效率大豆CRISPR/Cas9系统的构建方法及应用,将Staphylococcus aureus Cas9蛋白进行拆分表达,为了提高对大豆基因组的编辑效率及广谱性,构建了大豆SaCas9编辑系统。由于植物体内可能存在着对CRISPR/Cas9编辑系统的免疫作用,完整的SaCas9蛋白编辑效率远远低于蛋白编辑效率,而且完整的SaCas9蛋白系统对于大豆可能有毒害作用,相对于系统,完整SaCas9系统的大豆瞬转根毛生长周期长,根毛生长均较短,状态不佳。本发明将一个低效率的编辑系统转变为高效率编辑系统,不仅拓展了编辑大豆基因组的应用广度,也为今后解决农作物基因组编辑效率的问题上提供新思路。
附图说明
图1为本发明实施例1的SaCas9瞬转大豆根毛生长情况;
图2A为本发明实施例1中构建的载体结构;
图2B为本发明实施例1中splitSaCas9编辑gma-miR156b的突变类型;
图2C为本发明实施例1中splitSaCas9编辑Glyma02g47021的突变类型及编辑效率;
图2D为本发明实施例1中splitSaCas9编辑Glyma14g基因的突变类型及编辑效率。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1:
本实施例所用试剂和材料的来源:
1)pCAMBIA1300载体为实验所有;
2)引物合成及测序均委托北京擎科新业生物技术有限公司;
3)大豆品种为YC03-3;
4)构建载体所用试剂为Vazyme ClonExpress无缝克隆试剂盒,NEB T4ligase,TIANAprep Mini Plasmid Kit II质粒提取试剂盒,TaKaRa MiniBest DNA FragmentPurification Kit,NEB BsaI酶等。
一.大豆CRISPR/Cas9编辑载体的构建
1、挑取pCAMBIA1300质粒单菌落,接种于50ml含卡那抗生素的液体LB培养基中,置于摇床37℃,220rpm/r培养过夜;
2、离心收集菌体,用TIANAprep Mini Plasmid Kit II质粒提取试剂盒提取质粒;
3、选择合适的酶切位点,酶切pCAMBIA1300质粒,于37℃1h后用TaKaRa MiniBestDNA Fragment Purification Kit试剂盒回收线性质粒片段,备用;
4、扩增目的片段GmU6,sgRNA,35S,N-SpCas9,C-SpCas9,Bar片段,随后用VazymeClonExpress无缝克隆试剂盒进行重组连接,构建以下4类载体,如图2A所示:
GmU6::sgRNA-35S::SpCas9-35S::Bar
GmU6::sgRNA-35S::SaCas9-35S::Bar
GmU6::sgRNA-35S::N-SpCas9-35S::C-SpCas9-35S::Bar
GmU6::sgRNA-35S::N-SaCas9-35S::C-SaCas9-35S::Bar
获得载体后分别转化大肠杆菌Top10,37℃培养箱培养过夜,第二天挑取阳性单克隆测序;
5、用NEB BsaI酶切所构建好的质粒,于37℃酶切1h,用TaKaRa MiniBest DNAFragment Purification Kit纯化回收片段;
6、从SoyBase中选取3个与固氮相关的大豆基因Glyma14G146700、Glyma12G221500、Glyma01g198100以及大豆gma-miR156b、gma-miR156c为编辑对象,设计靶点引物(Spcas9选择NGG上游20bp的序列为靶点,Sacas9选择NNGAGT上游21bp的序列为靶点),将sgRNA靶位引物退火后形成的带有粘性末端的核心序序列,用T4链接酶,16℃连接过夜,组装于步骤5所构建的载体(根据载体连接相应的靶点序列),所用引物如表1:
表1
7、将获得的目的载体转化大肠杆菌Top10菌株,于37℃培养箱培养过夜,第二天挑取阳性单克隆测序,质粒保存于-20℃备用,从而获得完整的大豆CRISPR/Cas9编辑载体。
二.大豆基因组编辑效率的检测
1、将表2中所构建的大豆编辑载体分别转化K599农杆菌,质粒按1:50加入K599农杆菌中,置于液氮中1min,37℃冰浴5min,42℃热激5min,最后置于冰上3min后加入新鲜的无抗性LB液体培养基,28℃,220rpm/r培养3h;
表2
2、用大豆子叶发根法检测该Sacas9体系的活性:
试验采用Cho等人发表的高效率大豆根毛转化程序(Cho,H.J.,S.K.Farrand,G.R.Noel and J.M.Widholm(2000)."High-efficiency induction of soybean hairyroots and propagation of the soybean cyst nematode."Planta 210(2):195-204.),并按照应珊和王秀荣等人(应珊,何晓薇,王秀荣and寿惠霞(2008)."影响农杆菌介导的大豆转化效率的因素研究."分子植物育種6(1):32-40.)根据国内条件和实验经验进行进一步优化。
(1)种子消毒:种子采用干燥表面消毒
将成熟的大豆种子单层排列在培养皿中,将装有培养皿的干燥器放到通风橱中,并将所有的培养皿打开,中间放置一个250mL的烧杯。在烧杯中加入100mL的次氯酸钠,然后沿着杯壁缓缓加入4.2mL12mol/L HCl,立即盖上干燥器的盖子,静置过夜(13-14hr)后,盖上培养皿并将其放到超净工作台中,再将培养皿打开大约30min以便除去过多的氯气;
(2)萌发:
将10-12颗消毒后的种子种脐朝下放置在装有萌发培养基(B5盐类+B5维生素+2%蔗糖+0.3%phytagel,pH 5.8)的120×25mm培养皿中。将培养皿放置在光照培养箱中28℃光照培养4-6天,直到子叶竖起,种皮大部分脱落(28℃,18hr光照,光强140moles/m2/sec);
(3)摇菌:
种子萌发的当天,取-80℃甘油贮存、含有质粒载体的发根农杆菌菌株K599划线于含有相应抗生素的YEP固体平板上,28℃,暗培养2天。2天后,挑取单克隆,置于含有相应抗生素的YEP液体3mL中,28℃,250rpm培养过夜,备用;
(4)侵染和共培养:
用解剖刀从根系上切下发芽的种子,切口在离子叶节大约0.5cm的下胚轴区域。沿着子叶下胚轴垂直剖开种子,并去除子叶上胚轴(幼芽)及轴上的茎/芽。然后用解剖刀蘸取菌液,在子叶节附近制造7-8个切口,将切好的外植体放在装有无菌水润湿的双层滤纸的培养皿中,封上保鲜膜,25℃光照培养5天,然后转到含抑菌剂羧苄青霉素和筛选剂除草剂的发根诱导培养基(MS盐类+B5维生素+3%蔗糖+0.3%phytagel+500mg/L羧卞青霉素+5mg/L除草剂,pH5.8)上25℃暗培养;
(5)继代:
在发根培养基上约10-15天后可见毛状根产生,可将其切下继代到新的发根诱导培养基上,3-4代后不再加抑菌剂,可用于各种分析;
(6)取下大豆发状根,用CTAB法提取大豆发状根基因组DNA;
(7)先用抗性基因Bar.F/R检测转基因率,随后用相应基因的特异引物扩增,回收PCR产物测序,分别统计Spcas9和Sacas9体系对目的基因的编辑情况。
三.汇总并分析数据
通过统计结果可以说明:
(1)splitSpCas9系统可运用于大豆基因组编辑,且编辑效率与SpCas9系统相近(如下表3所示)
表3
(2)大豆的根毛系统中没有检测到SaCas9系统介导的基因编辑,且瞬转大豆的根毛长势较差,周期较长,SaCas9系统可能对于大豆根毛的生长具有一定的毒性或者抑制作用(如图1所示,数据结果见下表4),
表4
(3)splitSaCas9系统可应用于大豆基因组编辑,且效率较高(如下表5、图2C和图2D所示),
表5
检测结果显示,突变类型多样,可造成缺失、增加、替换等多种突变类型,并且可获得纯合突变类型(如图2B所示),另外杂合突变类型达75%(24/32);
(4)SpCas9系统与SaCas9系统应用于大豆基因组的编辑,从NGG识别位点扩展到NNGRRT识别位点,丰富了CRISPR/Cas系统在大豆基因组中的编辑范围,同时也为在今后解决农作物基因组编辑效率的问题上提供新思路。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种高效率大豆CRISPR/Cas9系统的构建方法,其特征在于包括以下步骤:
步骤1)人工合成大豆特异的U6启动子序列、Staphylococcus aureus Cas9序列和Streptococcus pyogenes Cas9序列;
步骤2)将扩增目的片段GmU6,sgRNA,35S,N-SpCas9,C-SpCas9,Bar片段构建于实验室改造的pCAMBIA1300骨架载体上,获得以下载体骨架:
GmU6::sgRNA-35S::SpCas9-35S::Bar
GmU6::sgRNA-35S::SaCas9-35S::Bar
GmU6::sgRNA-35S::N-SpCas9-35S::C-SpCas9-35S::Bar
GmU6::sgRNA-35S::N-SaCas9-35S::C-SaCas9-35S::Bar;
步骤3)从SoyBase中选择3个大豆基因以及2个大豆gma-miRNA,根据选定的基因以及miRNA设计靶位点序列,合成两段带有BsaI酶切后形成的粘性末端互补序列的引物,长度为19bp-21bp;
步骤4)将sgRNA靶位点引物退火后形成的带有粘性末端的核心序列,组装于步骤2)所构建的载体;
步骤5)获得完整的大豆CRISPR/Cas9编辑载体。
2.一种根据权利要求1所述的高效率大豆CRISPR/Cas9系统在大豆基因组修饰中的应用。
3.根据权利要求2所述的高效率大豆CRISPR/Cas9系统在大豆基因组修饰中的应用方法,其特征在于包括以下步骤:
(1)将权利要求1中获得的大豆CRISPR/Cas9编辑载体转化K599农杆菌;
(2)侵染大豆子叶,培养获得瞬时转化的大豆根毛;
(3)运用CTAB法提取大豆根毛DNA,测序检测编辑效率。
CN201810384372.7A 2018-04-26 2018-04-26 一种高效率大豆CRISPR/Cas9系统的构建方法及应用 Pending CN108588128A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810384372.7A CN108588128A (zh) 2018-04-26 2018-04-26 一种高效率大豆CRISPR/Cas9系统的构建方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810384372.7A CN108588128A (zh) 2018-04-26 2018-04-26 一种高效率大豆CRISPR/Cas9系统的构建方法及应用

Publications (1)

Publication Number Publication Date
CN108588128A true CN108588128A (zh) 2018-09-28

Family

ID=63609614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810384372.7A Pending CN108588128A (zh) 2018-04-26 2018-04-26 一种高效率大豆CRISPR/Cas9系统的构建方法及应用

Country Status (1)

Country Link
CN (1) CN108588128A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
CN110878305A (zh) * 2019-12-09 2020-03-13 安徽省农业科学院水稻研究所 一种高效的宽窗口单碱基编辑基因及其应用和育种方法
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
CN111019967A (zh) * 2019-11-27 2020-04-17 南京农业大学 GmU3-19g-1和GmU6-16g-1启动子在大豆多基因编辑系统中的应用
CN111254159A (zh) * 2018-11-30 2020-06-09 东北农业大学 一种大豆GmST1基因突变体植株及其制备方法
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112481259A (zh) * 2020-11-24 2021-03-12 南昌大学 两种甘薯U6基因启动子IbU6的克隆与应用
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN112553246A (zh) * 2020-12-08 2021-03-26 安徽省农业科学院水稻研究所 一种基于CRISPR-SaCas9系统的高效基因组编辑载体及其应用
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104450774A (zh) * 2014-12-04 2015-03-25 中国农业科学院作物科学研究所 一种大豆CRISPR/Cas9体系的构建及其在大豆基因修饰中的应用
WO2015089427A1 (en) * 2013-12-12 2015-06-18 The Broad Institute Inc. Crispr-cas systems and methods for altering expression of gene products, structural information and inducible modular cas enzymes
WO2017027423A1 (en) * 2015-08-07 2017-02-16 Caribou Biosciences, Inc. Engineered crispr-cas9 compositions and methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015089427A1 (en) * 2013-12-12 2015-06-18 The Broad Institute Inc. Crispr-cas systems and methods for altering expression of gene products, structural information and inducible modular cas enzymes
CN104450774A (zh) * 2014-12-04 2015-03-25 中国农业科学院作物科学研究所 一种大豆CRISPR/Cas9体系的构建及其在大豆基因修饰中的应用
WO2017027423A1 (en) * 2015-08-07 2017-02-16 Caribou Biosciences, Inc. Engineered crispr-cas9 compositions and methods of use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAROLIN SCHMELAS等: "Split Cas9, Not Hairs Advancing the Therapeutic Index of CRISPR Technology", 《BIOTECHNOLOGY JOURNAL》 *
HIDETAKA KAYA等: "A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants", 《PLANT CELL PHYSIOL》 *
蔡宇鹏: "CRISPR/Cas9介导的大豆基因组定点编辑研究", 《中国优秀博硕士学位论文全文数据库(硕士)农业科技辑》 *
谭茜等: "CRISPR/Cas9在豆科植物毛根转化中的应用及共生基因的编辑", 《华中农业大学学报》 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN111254159A (zh) * 2018-11-30 2020-06-09 东北农业大学 一种大豆GmST1基因突变体植株及其制备方法
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN111019967A (zh) * 2019-11-27 2020-04-17 南京农业大学 GmU3-19g-1和GmU6-16g-1启动子在大豆多基因编辑系统中的应用
CN110878305A (zh) * 2019-12-09 2020-03-13 安徽省农业科学院水稻研究所 一种高效的宽窗口单碱基编辑基因及其应用和育种方法
CN110878305B (zh) * 2019-12-09 2022-04-12 安徽省农业科学院水稻研究所 一种宽窗口单碱基编辑基因及其应用和育种方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112481259B (zh) * 2020-11-24 2022-09-16 南昌大学 两种甘薯U6基因启动子IbU6的克隆与应用
CN112481259A (zh) * 2020-11-24 2021-03-12 南昌大学 两种甘薯U6基因启动子IbU6的克隆与应用
CN112553246A (zh) * 2020-12-08 2021-03-26 安徽省农业科学院水稻研究所 一种基于CRISPR-SaCas9系统的高效基因组编辑载体及其应用

Similar Documents

Publication Publication Date Title
CN108588128A (zh) 一种高效率大豆CRISPR/Cas9系统的构建方法及应用
WO2019120310A1 (en) Base editing system and method based on cpf1 protein
US11820990B2 (en) Method for base editing in plants
CN106222193B (zh) 一种重组载体及无转基因基因编辑植株的筛选方法
CN106811479B (zh) 利用CRISPR/Cas9系统定点修饰ALS基因获得抗除草剂水稻的系统及其应用
CN108866092A (zh) 抗除草剂基因的产生及其用途
Chaudhuri et al. Classification of CRISPR/Cas system and its application in tomato breeding
CN109943585B (zh) 一种利用植物杂种优势的方法
US20210269816A1 (en) Method of Obtaining Multileaflet Medicago Sativa Materials by Means of MsPALM1 Artificial Site-Directed Mutants
CN109234310A (zh) 快速获得无转基因基因编辑植株的重组载体及使用方法
CN108026540A (zh) 抗白粉病的小麦植物
CN110408652A (zh) 一种基于CRISPR/Cas9系统对新疆野苹果基因多靶点定点突变的方法
CN107142271A (zh) 在基因打靶中具有高突变效率的PL‑LbCpf1‑RR基因及其应用
CN107099544A (zh) 在水稻基因打靶中识别特异位点的PL‑LbCpf1‑RVR基因及其应用
US20210171973A1 (en) Method of Obtaining Multileaflet Medicago Sativa Materials by Means of MsPALM1 Artificial Site-Directed Mutants
Juma et al. CRISPR/Cas genome editing: A frontier for transforming precision cassava breeding
CN106868036A (zh) 一种定点突变创制玉米紧凑株型种质的方法及其应用
Naveed et al. The role of CRISPR/Cas9 for genetic advancement of soybean: a review
CN103409445A (zh) 抗草甘膦基因mtp-smg2-epsps及其在培育抗草甘膦玉米中的应用
CN105969796B (zh) 一种利用TALENs技术定点突变GW2基因创制水稻高产材料的方法
US20230183724A1 (en) Methods and compositions for multiplexed editing of plant cell genomes
CN106676131A (zh) 一种产生苜蓿基因组编辑纯合植株的方法
CN113930441A (zh) 一种获得转基因或基因编辑植物体的方法
CN113106120A (zh) 针叶树植物基因编辑载体、构建方法、及其应用
Chopy et al. Genome editing by CRISPR-Cas9 technology in Petunia hybrida

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180928

RJ01 Rejection of invention patent application after publication