CN108823249A - CRISPR/Cas9构建notch1a突变体斑马鱼的方法 - Google Patents

CRISPR/Cas9构建notch1a突变体斑马鱼的方法 Download PDF

Info

Publication number
CN108823249A
CN108823249A CN201810527941.9A CN201810527941A CN108823249A CN 108823249 A CN108823249 A CN 108823249A CN 201810527941 A CN201810527941 A CN 201810527941A CN 108823249 A CN108823249 A CN 108823249A
Authority
CN
China
Prior art keywords
zebra fish
notchla
notch1a
mutant
grna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810527941.9A
Other languages
English (en)
Inventor
张庆华
季策
董雪红
张秋月
岳倩文
李伟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Shanghai Ocean University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201810527941.9A priority Critical patent/CN108823249A/zh
Publication of CN108823249A publication Critical patent/CN108823249A/zh
Priority to US16/422,975 priority patent/US11317610B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/48Nerve growth factor [NGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1706Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了涉及一种CRISPR/Cas9构建notch1a突变体斑马鱼的方法;包括如下步骤:确定notch1a基因敲除的靶点位置;以pUC19‑gRNA scaffold质粒为模板,使用引物T7‑notch1a‑sfd、tracr rev进行PCR扩增;PCR产物纯化、体外转录获得gRNA;将gRNA与Cas9mRNA导入斑马鱼胚胎中,培养获得稳定遗传的notch1a突变体。本发明利用CRISPR/Cas9技术,通过选择一段独特的打靶区,使得斑马鱼中的notch1a被敲除,又不“误伤”其他基因,形成notch1a基因敲除的斑马鱼;另外,本发明还公开了notch1a基因缺失斑马鱼突变体的表型,对于研究Notch信号通路中Notch1a受体的作用意义重大。

Description

CRISPR/Cas9构建notch1a突变体斑马鱼的方法
技术领域
本发明涉及一种斑马鱼突变体,具体涉及一种通过CRISPR/Cas9技术制备notch1a突变体斑马鱼的方法及突变体表型的确定。
背景技术
Notch信号通路被认为是在早期发育过程中以及多种细胞的功能行使中扮演着重要角色的通路。其主要作用包括细胞的增殖、分化以及干细胞的更新等。Notch受体高度保守,其功能的行使依赖于出现在邻近细胞上的特异性配体。在机体的发育过程、肿瘤细胞的形成及增殖过程和遗传病的调控方面Notch信号通路都发挥着重要作用。在神经系统中,Notch信号通路也具有广泛的调控作用,影响神经干细胞的分化及数量,同时还可以调节多种细胞的形成。
CRISPR/Cas(Clustered Regularly Interspersed Short PalindromicRepeats,CRISPR/CRISPR-associated genes,Cas gene)系统是一种微生物的后天免疫系统,它利用向导RNA核酸酶对外源基因进行切割。CRISPR/Cas有三种类型:I型、II型和III型,其中II型只需要一个Cas9核酸内切酶切割DNA双链,即CRISPR/Cas9系统。该系统由Cas9核酸酶连同两种非编码性RNA,即CRISPR RNA(crRNA)和反式激活crRNA(trans-activatingcrRNA)共同组成。相比于其它的基因编辑技术,如ZFNs和TALENs,CRISPR/Cas9系统具有容易合成,打靶效率高和同时编辑多个基因的优势。CRISPR/Cas9系统的高效性不但确保了在体细胞内对基因进行突变,同时也能造成生殖细胞的突变,从而将突变基因传递到下一代。由于斑马鱼发育快,该系统对基因读码框序列破坏的高效性使得我们可以在短时间内建立稳定的可遗传的突变斑马鱼品系,这将有利于推动基因功能的研究。
申请人发现在斑马鱼中Notch1a与哺乳动物中NOTCH1具有较高的相似性。利用基因敲除的突变体可以有效的研究Notch通路的相关功能。目前关于小鼠中Notch1突变体的研究不足,并且小鼠模型的构建及维护费用昂贵。而在斑马鱼上使用morpholino敲降notch1a并不能得到体节及节间血管紊乱的表型。
斑马鱼notch1a基因位于21号染色体上,有3个转录本,其中最长的一个转录本mRNA全长7474bp,编码2438个氨基酸,含有33个外显子和32个内含子。如何选择一个有功能的靶点,使整个基因失去功能而且出现易于筛选的表型是十分困难的,犹如大海捞针。良好的打靶区的选择对于突变体的制备至关重要。并且,成功构建notch1a的突变体,并以此为模型研究早期发育中Notch通路的功能是十分必要的。
发明内容
本发明的目的在于提供一种利用CRISPR/Cas9构建notch1a突变体斑马鱼的方法及突变体表型的确定。本发明利用CRISPR/Cas9技术选取第16个外显子上特异的打靶位点构建了notch1a的突变体。随机突变的结果共得到4种突变类型,分别为在靶点附近缺失4bp、10bp、19bp和31bp。对突变的序列进行氨基酸翻译发现均会形成蛋白翻译的提前终止,缺失4bp突变体会在947位氨基酸处出现翻译终止;缺失10bp突变体会在945位氨基酸处出现翻译终止;缺失19bp突变体会在942位氨基酸处出现翻译终止;缺失31bp突变体会在938位氨基酸处出现翻译终止。突变体会出现体节和节间血管紊乱的表型,而且这4种不同的突变体出现一致的表型特征。
本发明的目的是通过以下技术方案来实现的:
本发明涉及一种斑马鱼notch1a基因突变体的制备方法,所述方法包括如下步骤:
S1、确定notch1a敲除的靶点在斑马鱼notch1a的基因序列的第16个外显子上;
S2、根据步骤S1确定的靶点序列设计扩增引物;
S3、以pUC19-gRNA scaffold质粒为模板,使用引物T7-notch1a-sfd、tracr rev进行PCR扩增;
S4、对步骤S3的PCR产物进行体外转录,纯化获得gRNA;
S5、以pXT7-hCas9质粒为模板,体外转录合成Cas9 mRNA;
S6、将gRNA与Cas9 mRNA导入斑马鱼一细胞期胚胎中;
S7、培养获得稳定遗传的斑马鱼notch1a突变体。
优选的,步骤S1中,所述靶点序列为GGAGTGTGTGAAAACCTGCG(SEQ ID NO.1)。
优选的,步骤S2中,所述扩增引物为notch1a F:CGTGTGAGGTGGACATTA(SEQ IDNO.4);notch1a R:CATTAGTTAAGTGAGGTGTGAG(SEQ ID NO.5)。
优选的,步骤S3中,所述引物T7-notch1a-sfd的序列为TAATACGACTCACTATAGGAGTGTGTGAAAACCTGCGGTTTTAGAGCTAGAAATAGC(SEQ ID NO.2)。
优选的,步骤S3中,所述引物tracr rev的序列为AAAAAAAGCACCGACTCGGTGCCAC(SEQ ID NO.3)。
优选的,步骤S4中,所述gRNA的序列为T7启动子+靶位点+pUC19-gRNA固定序列,是使用T7-notch1a-sfd和tracr rev引物对,以pMD19-gRNA scaffold质粒为模板,使用高保真酶High-Fidelity PCR Master Mix with HF Buffer,电泳、切胶回收获得。
优选的,步骤S5中,所述Cas9 mRNA是通过包括如下步骤的方法制备而得:
A1、pXT7-hCas9质粒线性化,用XbaI内切酶酶切质粒pXT7-hcas9;
A2、酶切产物纯化,用DNA Clean&Contentrator TM-5kit纯化试剂盒对上述酶切产物进行纯化;
A3、体外转录Cas9 mRNA,用mMESSAGE mMACHINE T7 ULTRA kit体外转录试剂盒对Cas9 mRNA进行体外转录;
A4、对得到的产物进行加尾后用Nanodrop 2000C测浓度,并-80℃保存备用。
优选的,步骤S6中,将gRNA与Cas9 mRNA导入斑马鱼,具体为:将gRNA与Cas9 mRNA混合,显微注射到斑马鱼一细胞期胚胎中;其中,gRNA终浓度为100ng/μL,Cas9 mRNA终浓度为400ng/μL。
优选的,步骤S7具体包括如下步骤:
B1、对导入gRNA与Cas9 mRNA的斑马鱼进行notch1a敲除检测,确定notch1a F0靶点突变效率;
B2、将notch1a F0成鱼与野生型斑马鱼外交,得到F1胚胎;经基因型鉴定获得notch1a F1突变体斑马鱼;
B3、将相同突变的notch1a F1突变体斑马鱼内交,获得notch1a F2突变体斑马鱼;
B4、鉴定为F2中notch1a敲除的纯合子具有纯合致死的现象,F2中notch1a基因敲除的杂合子即所述稳定遗传的斑马鱼notch1a突变体。
优选的,步骤B1中,notch1a敲除检测采用的引物序列为notch1a F:CGTGTGAGGTGGACATTA(SEQ ID NO.4);notch1a R:CATTAGTTAAGTGAGGTGTGAG(SEQ IDNO.5)。
与现有技术相比,本发明具有如下有益效果:
1、利用CRISPR/Cas9技术及一段特异的打靶位点,首次在斑马鱼中敲除notch1a。
2、notch1a突变可稳定遗传,方便深入研究notch1a的基因功能。
3、notch1a突变体具有明显体节紊乱及节间血管紊乱表型。
附图说明
图1为notch1a F0敲除检测示意图;其中,a为notch1a F0斑马鱼胚胎PCR产物,b为T7E1内切酶酶切鉴定结果,c为PCR产物测序结果;
图2为notch1a F1突变类型统计;
图3为notch1a F2缺失31bp纯合突变体表型鉴定;
图4为notch1a F2四种不同突变类型纯合突变体的表型鉴定;
图5为notch1a突变体节间血管紊乱表型。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
实施例
1材料及设备
1.1实验用鱼
本实验中所用的斑马鱼均为AB品系,购置于中国科学院上海生命科学研究院生物化学与细胞生物学研究所斑马鱼平台。
1.2质粒
pXT7-hCas9质粒,pUC19-gRNA scaffold质粒来源于文献:Chang N,Sun C,Gao L,Zhu D,Xu X,Zhu X,Xiong JW,Xi JJ.Genome editing with RNA-guided Cas9 nucleasein zebrafish embryos,CellRes,2013,23(4):465-472。
1.3主要试剂
DNA Clean&Contentrator-5(ZYMO RESEARCH,D4004),普通DNA纯化试剂盒(TIANGEN,DP204-03),T7in vitro Transcription Kit(Ambion,AM1314),乙醇(无水乙醇)(国药集团化学试剂有限公司,10009218),GenCrisprNLS-Cas9-NLS(金斯瑞,Z03389-25),Premix TaqTM(Ex TaqTM Version 2.0plus dye)(TAKARA,RR902),DNA MarkerI(TIANGEN,MD101-02),T7endonuclease 1(NEW ENGLANDInc.,M0302L),快速质粒小提试剂盒(TIANGEN,DP105),DH5a感受态细胞(天根生化科技有限公司,CB101-03),LBBroth(上海生工,D915KA6602),LB Broth agar(上海生工,D911KA6566),pMDTM19-TVectorCloning Kit(TAKARA,6013)。
1.4主要仪器
PCR仪(品牌:BIO-RAD,型号:c1000TouchTMThermal Cycler),离心机(品牌:Eppendorf,型号:Centrifuge 5424),震荡混匀仪(品牌:VORTEX-GENIE,型号:G560E),分光光度计(品牌:Thermo Scientific,型号:Nanodrop 2000C),电泳仪(品牌:BIO-RAD,型号:PowerPac Basic),照胶仪(品牌:BIO-RAD,型号:Gel Doc EZ Imager),电子天平(品牌:METTLER TOLEDO,型号:AL104),玻璃毛细管(品牌:WPI,型号:TW100F-4),纯水仪(品牌:Millipore,型号:Milli-Q Direct 8),垂直拉针仪(品牌:NARISHIGE,型号:PC-10),恒温摇床(品牌:Innova,型号:40R),磨针器(品牌:NARISHIGE,型号:EG-400),显微操作仪(品牌:Warner Instruments,型号:PL1-100A Plus),恒温水浴锅(品牌:精宏,型号:H1401438,DK-8D),4℃冰箱(品牌:Haier,型号:HYC-610),-40℃低温冰箱(品牌:Haier,型号:DW-40L508),-80℃超低温冰箱(品牌:Panasonic,型号:MDF-U53V),高压蒸汽灭菌锅(品牌:SANYO,型号:MLS-3780)。
2实验方法
2.1gRNA合成
(1)靶点设计
a、查找序列:在Ensemb1数据库查找并下载斑马鱼notch1a的基因序列。
b、靶点设计:利用http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx网站在notch1a第16个外显子序列上设计靶点,如表1,具体靶点序列为:GGAGTGTGTGAAAACCTGCG(SEQ ID NO.1)。
表1 notch1a基因靶位点序列
c、靶点特异性检测:在NCBI网站将设计的靶点序列通过Blast比对,验证靶位点特异性。
d、亲本检测:对用于基因敲除的野生型斑马鱼进行剪尾提取基因组DNA,PCR扩增靶点及附近序列。
e、酶切检测:用T7E1内切酶酶切检测用于基因敲除的野生型斑马鱼靶点附近序列。
f、测序鉴定:将PCR产物测序,峰图及序列比对,使用该区域序列一致的野生型斑马鱼作为亲本。
(2)设计检测引物:引物距离靶点两侧大于100bp,并且上游引物到靶点的距离与下游引物到靶点的距离相差大于100bp,扩增片段约500bp(表2)。
表2实验所用引物信息
gRNA产物合成:以pUC19-gRNA scaffold质粒为模板,使用引物T7-notch1a-sfd、tracr rev和2×EasyTaq PCR Super Mix(+dye)扩增片段并用试剂盒纯化。(4)体外转录:
表3反应体系
Nuclease-free Water to 20μL
DNA Template 1μg
10×Transcription Buffer 2μL
10mM ATP 1μL
10mM CTP 1μL
10mM GTP 1μL
10mM UTP 1μL
T7Enzyme Mix 2μL
(最后添加10×Transcription Buffer和T7Enzyme mix)
混匀并短暂离心后,37℃孵育80min;之后向体系中加入1μL TURBO DNase并混匀,短暂离心后37℃孵育15min。
(5)纯化gRNA:
a、向20μL体外转录体系中加入2.5μL 4M的LiCl和100μL无水乙醇,混匀并短暂离心后放于-80℃冰箱至少1h。
b、从冰箱取出后,4℃,12000rmp,离心15min。弃上清后用70%乙醇清洗沉淀。4℃,8000rmp,离心5min。弃上清后将离心管放于通风橱中使乙醇挥发干净。
c、加入10μL DEPC水溶解gRNA沉淀。
d、用Nanodrop 2000C检测浓度。
2.2显微注射
将gRNA与Cas9 mRNA混合,利用显微注射仪注射到斑马鱼一细胞期胚胎中。混合注射终浓度:gRNA为100ng/μL,Cas9 mRNA为400ng/μL。
2.3T7E1酶切检测敲除效率
a、提取胚胎基因组
每组5枚胚胎,加35μL的50mM NaOH,95℃孵育20min,中间取出振荡。之后加3.5μL1M Tris·HCl(pH≈8.0),振荡混匀后离心。
b、PCR扩增目的片段
使用表里中notchla F(SEQ ID NO.4)与notch1a R(SEQ ID NO.5)引物扩增目的片段。
c、T7E1内切酶酶切检测
表4 T7E1酶切体系
H2O to 10μL
PCR产物 5μL
Buffer 1.1μL
95℃孵育5min,冷却至室温,加0.25μL T7E1酶,37℃孵育45min。
d、电泳检测及敲除效率检测
电泳后利用凝胶电泳成像仪对电泳的琼脂糖凝胶成像,并计算敲除效率。
2.4notch1a F2纯合突变体斑马鱼表型检测
对notch1a F2斑马鱼胚胎进行拍照观察,并统计出现表型胚胎数量。
2.5不同突变类型表型统计
对不同缺失类型的斑马鱼F2胚胎进行表型统计与基因型鉴定。
3实验结果
3.1notch1a突变体的构建
3.1.1notch1a F0基因敲除检测结果
结果显示notchla基因敲除成功,利用Image Lab 5.1软件计算敲除效率达到40%以上。测序峰图显示在20bp靶点处出现套峰,证明敲除成功(图1)。
3.1.2notchlaF1突变体斑马鱼检测
对F1斑马鱼进行基因型检测,共得到4种突变类型,分别为在靶点附近缺失4bp、10bp、19bp和31bp。对突变的序列进行氨基酸翻译发现均会形成翻译的提前终止(图2)。notch1a可编码2438个氨基酸,缺失4bp突变体会在947位氨基酸处出现翻译终止;缺失10bp突变体会在945位氨基酸处出现翻译终止;缺失19bp突变体会在942位氨基酸处出现翻译终止;缺失31bp突变体会在938位氨基酸处出现翻译终止。
3.1.3notch1a F2突变体斑马鱼检测
对F2斑马鱼进行统计发现notch1a突变纯合致死,具体死亡时间为10-13dpf(表5)。
表5 notch1a纯合子死亡统计
大小 总数 死亡数 比例
10dpf 116 23 19.8%
11dpf 116 33 28.4%
12dpf 116 45 38.8%
13dpf 116 15 13.0%
3.1.4notch1a F2突变体表型鉴定
表型鉴定结果显示,notch1a突变纯合子在第5-7个体节之后会出现体节边界紊乱的表型(图3)。并且对不同突变类型纯合子进行鉴定发现,四种不同突变类型纯合子出现相一致表型(图4);并且notch1a突变纯合子还具有节间血管生长紊乱的表型(图5)。
序列表
<110> 上海海洋大学
<120> CRISPR/Cas9构建notch1a突变体斑马鱼的方法
<130> 2018
<141> 2018-05-28
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> Danio rerio
<400> 1
ggagtgtgtg aaaacctgcg 20
<210> 2
<211> 57
<212> DNA
<213> Artificial sequence
<220>

Claims (8)

1.一种斑马鱼notchla突变体的制备方法,其特征在于,所述方法包括如下步骤:
S1、确定notchla基因敲除的靶点在斑马鱼notchla的基因序列的第16个外显子上;
S2、根据步骤S1确定的靶点序列设计扩增引物;
S3、以pUC19-gRNA scaffold质粒为模板,使用引物T7-notchla-sfd、tracr rev进行PCR扩增;
S4、对步骤S3的PCR产物进行体外转录,纯化获得gRNA;
S5、以pXT7-hCas9质粒为模板,体外转录合成Cas9 mRNA;
S6、将gRNA与Cas9 mRNA导入斑马鱼一细胞期胚胎中;
S7、培养获得稳定遗传的斑马鱼notchla突变体。
2.根据权利要求1所述的斑马鱼notchla突变体的制备方法,其特征在于,步骤S2中,所述靶点序列为SEQ ID NO.1所示的序列。
3.根据权利要求1所述的斑马鱼notchla突变体的制备方法,其特征在于,步骤S3中,所述引物T7-notchla-sfd的序列为SEQ ID NO.2所示的序列。
4.根据权利要求1所述的斑马鱼notchla突变体的制备方法,其特征在于,步骤S3中,所述引物tracr rev的序列为SEQ ID NO.3所示的序列。
5.根据权利要求1所述的斑马鱼notchla突变体的制备方法,其特征在于,步骤S5中,所述Cas9 mRNA是通过包括如下步骤的方法制备而得:
A1、pXT7-hCas9质粒线性化,用XbaI内切酶酶切质粒pXT7-hCas9;
A2、酶切产物纯化,用DNA Clean&Contentrator TM-5 kit纯化试剂盒对酶切产物进行纯化;
A3、体外转录Cas9 mRNA,用mMESSAGE mMACHINE T7 ULTRA kit体外转录试剂盒对Cas9mRNA进行体外转录;
A4、对得到的产物进行加尾后用Nanodrop 2000C测浓度并-80℃保存备用。
6.根据权利要求1所述的斑马鱼notchla突变体的制备方法,其特征在于,步骤S6中,将gRNA与Cas9 mRNA导入斑马鱼,具体为:将gRNA与Cas9 mRNA混合,显微注射到斑马鱼一细胞期胚胎中;其中,gRNA终浓度为100ng/μL,Cas9 mRNA终浓度为400ng/μL。
7.根据权利要求1所述的斑马鱼notchla突变体的制备方法,其特征在于,步骤S7具体包括如下步骤:
B1、对导入gRNA与Cas9 mRNA的斑马鱼进行notchla敲除检测,确定notchla F0靶点突变效率;
B2、将notchla F0成鱼与野生型斑马鱼外交,得到F1胚胎;经基因型鉴定获得notchlaF1突变体斑马鱼;
B3、将相同突变的notchla F1突变体斑马鱼内交,获得notchla F2突变体斑马鱼;
B4、鉴定为F2中notchla敲除的纯合子具有纯合致死的现象,F2中notchla敲除的杂合子即所述稳定遗传的斑马鱼notchla突变体。
8.根据权利要求7所述的斑马鱼notchla突变体的制备方法,其特征在于,步骤B1中,notchla敲除检测采用的引物序列为如SEQ ID NO.4和SEQ ID NO.5所示的序列。
CN201810527941.9A 2018-05-28 2018-05-28 CRISPR/Cas9构建notch1a突变体斑马鱼的方法 Pending CN108823249A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810527941.9A CN108823249A (zh) 2018-05-28 2018-05-28 CRISPR/Cas9构建notch1a突变体斑马鱼的方法
US16/422,975 US11317610B2 (en) 2018-05-28 2019-05-25 Method of constructing zebrafish notch1a mutants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810527941.9A CN108823249A (zh) 2018-05-28 2018-05-28 CRISPR/Cas9构建notch1a突变体斑马鱼的方法

Publications (1)

Publication Number Publication Date
CN108823249A true CN108823249A (zh) 2018-11-16

Family

ID=64145924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810527941.9A Pending CN108823249A (zh) 2018-05-28 2018-05-28 CRISPR/Cas9构建notch1a突变体斑马鱼的方法

Country Status (2)

Country Link
US (1) US11317610B2 (zh)
CN (1) CN108823249A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
CN110511934A (zh) * 2019-08-30 2019-11-29 山西大学 利用CRISPR/Cas9技术构建斑马鱼asap1a基因敲除突变体的方法
CN110541002A (zh) * 2019-08-30 2019-12-06 山西大学 一种利用CRISPR/Cas9技术构建斑马鱼asap1b基因敲除突变体的方法
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817734A (zh) * 2021-07-14 2021-12-21 浙江赛微思生物科技有限公司 一种hectd4基因敲除斑马鱼癫痫模型及其构建方法和应用
CN114480497B (zh) * 2022-02-28 2023-09-15 湖南师范大学 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN115074390A (zh) * 2022-06-30 2022-09-20 上海海洋大学 高效构建基因组大片段删除突变体的方法和应用
CN115044620B (zh) * 2022-06-30 2024-01-05 上海海洋大学 微卫星重复序列敲除突变体的构建方法和应用
CN116602268B (zh) * 2023-02-24 2024-01-05 中国医学科学院皮肤病医院(中国医学科学院皮肤病研究所) 基因敲除突变体斑马鱼在制备色素减少动物模型中的应用
CN116790603B (zh) * 2023-08-18 2023-10-31 成都中科奥格生物科技有限公司 一种sgRNA、CRISPR/Cas9载体及其构建方法和用途
CN117587013B (zh) * 2023-11-27 2024-06-14 湖南师范大学 一种血管发育异常的斑马鱼模型的构建方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985982B (zh) 2015-02-12 2019-10-15 中国科学院上海生命科学研究院 改造斑马鱼基因组的构建物及改造方法
CN109679953B (zh) 2018-12-28 2022-08-16 广州赛业百沐生物科技有限公司 利用CRISPR-Cas9系统制得基因点突变动物模型胚胎的靶序列组、载体和方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D.E.LANCEFIELD: "LINKAGE RELATIONS OF THE SEX-LINKED CHARACTERS IN DROSOPHILA OBSCURAl", 《GENETICS》 *
NANNAN CHANG 等: "Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos", 《CELL RESEARCH》 *
W.J.WELSHONS: "GENETIC BASIS FOR TWO TYPES OF RECESSIVE LETHALITY AT THE NOTCH LOCUS OF DROSOPHILA1", 《GENETICS》 *
董雪红: "副溶血弧菌诱导的Notch分子参与天然免疫应答作用的初步研究", 《中国优秀博硕士学位论文全文数据库(硕士)农业科技辑》 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110541002A (zh) * 2019-08-30 2019-12-06 山西大学 一种利用CRISPR/Cas9技术构建斑马鱼asap1b基因敲除突变体的方法
CN110511934A (zh) * 2019-08-30 2019-11-29 山西大学 利用CRISPR/Cas9技术构建斑马鱼asap1a基因敲除突变体的方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Also Published As

Publication number Publication date
US11317610B2 (en) 2022-05-03
US20190357507A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
CN108823249A (zh) CRISPR/Cas9构建notch1a突变体斑马鱼的方法
CN108707629A (zh) 斑马鱼notch1b基因突变体的制备方法
Sakurai et al. A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice
Song et al. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system
Zuo et al. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs
Ma et al. Heritable multiplex genetic engineering in rats using CRISPR/Cas9
CN108707628A (zh) 斑马鱼notch2基因突变体的制备方法
Zhang et al. Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos
Zhou et al. Programmable base editing of the sheep genome revealed no genome-wide off-target mutations
CN108359712A (zh) 一种快速高效筛选SgRNA靶向DNA序列的方法
CN107988268A (zh) 一种基因敲除选育tcf25基因缺失型斑马鱼的方法
CN105594664A (zh) 一种stat1a基因缺失型斑马鱼
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN110551759A (zh) 一种提高转基因细胞重组效率的组合物及方法
Le et al. Effects of electroporation treatment using different concentrations of Cas9 protein with gRNA targeting Myostatin (MSTN) genes on the development and gene editing of porcine zygotes
CN108048486A (zh) 一种基因敲除选育fhl1b基因缺失型斑马鱼的方法
CN108753834A (zh) ddx27基因缺失斑马鱼突变体的制备方法
CN109868283A (zh) 一种评估CRISPR/Cas9基因编辑效率或脱靶频率的方法
US20210198699A1 (en) Kit for reparing fbn1t7498c mutation, combination for making and repairing mutation, and method of repairing thereof
CN109266687A (zh) 一种基因敲除选育tnni3k基因缺失型斑马鱼的方法
WO2022148078A1 (zh) 对动物受精卵进行电转染基因编辑的方法及其应用
WO2017133653A1 (zh) Ldl受体基因敲除的基因工程仓鼠
Zhao et al. An optimized base editor with efficient C-to-T base editing in zebrafish
Pristyazhnyuk et al. Time origin and structural analysis of the induced CRISPR/cas9 megabase-sized deletions and duplications involving the Cntn6 gene in mice
CN110066805A (zh) 基因敲除选育adgrf3b基因缺失型斑马鱼的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181116

RJ01 Rejection of invention patent application after publication