CN107446924B - 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用 - Google Patents

一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用 Download PDF

Info

Publication number
CN107446924B
CN107446924B CN201710702395.3A CN201710702395A CN107446924B CN 107446924 B CN107446924 B CN 107446924B CN 201710702395 A CN201710702395 A CN 201710702395A CN 107446924 B CN107446924 B CN 107446924B
Authority
CN
China
Prior art keywords
acpds
gene
kiwi fruit
crispr
kiwi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710702395.3A
Other languages
English (en)
Other versions
CN107446924A (zh
Inventor
汪祖鹏
刘义飞
黄宏文
李大卫
张琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Botanical Garden of CAS
Original Assignee
South China Botanical Garden of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Botanical Garden of CAS filed Critical South China Botanical Garden of CAS
Priority to CN201710702395.3A priority Critical patent/CN107446924B/zh
Publication of CN107446924A publication Critical patent/CN107446924A/zh
Application granted granted Critical
Publication of CN107446924B publication Critical patent/CN107446924B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于CRISPR‑Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用。本发明建立的基于CRISPR‑Cas9的猕猴桃基因AcPDS编辑载体能够快速简单地对猕猴桃基因进行高效的定点突变,弥补了猕猴桃中基因定点编辑技术的空白。实验结果证明:通过农杆菌介导的猕猴桃遗传转化,本发明的基于CRISPR‑Cas9的猕猴桃基因AcPDS编辑载体成功地对猕猴桃基因AcPDS的两个靶点进行了定点突变,同时引起了白化的表型。

Description

一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建 方法和应用
技术领域:
本发明属于基因工程技术领域,具体涉及一种基于CRISPR-Cas9的猕猴桃基因编辑载体及其构建方法和应用。
背景技术:
创建突变体是基因功能研究和作物遗传改良的最为关键的步骤。传统的诱导基因突变的方法包括随机诱变、T-DNA/转座子插入。近些年发展出来的位点特异性的核酸酶,包括锌指结构(ZFs)和转录激活因子样效应物核酸酶(TALENs)成功地诱导了定点突变,传统的诱变方式盲目性高、耗时耗力而且效率非常低。同时由于锌指核糖核酸酶(ZFN)和转录激活因子样效应物核酸酶(TALENs)都需要针对特定的基因重新设计对应的内切酶最后与FokI内切酶进行融合,这个构建过程非常繁琐同时费用非常高。相比较而言,最近建立的定点突变的体系CRISPR-Cas9设计简单、效率高、费用低、应用范围广,已经广泛应用于多个物种的定点突变。
CRISPR-Cas系统是来源于细菌和古细菌的获得性免疫系统,主要用于清除噬菌体等外源DNA。该系统主要包括两个成分crRNA和Cas蛋白,crRNA和Cas蛋白形成有功能的复合物,复合物识别靶标序列下游的PAM序列并切开特异的位点。目前CRISPR-Cas系统可以分为6大类,其中II型系统仅需要一个Cas9蛋白、crRNA和tracrRNA就可以发挥定点切割的功能。相关研究表明可以用一条人工合成的sgRNA来替代crRNA和tracrRNA,这样就进一步简化了该系统,同时成功将该系统用于植物的定点基因编辑。近几年,该系统已经成功被应用于拟南芥、水稻、烟草、高粱、玉米等,但是目前CRISPR-Cas9系统在猕猴桃上的研究与应用仍是一边空白。
猕猴桃营养丰富、富含维生素C、经济价值高,已逐渐成为一种重要的经济作物。为了更好的研究基因功能和遗传改良,需要准确的建立定点突变的基因突变株系,目前尚无关于猕猴桃的定点突变的系统,因此建立高效的针对猕猴桃的CRISPR/Cas9系统并将其应用于猕猴桃的基因编辑显得尤为重要。
发明内容:
本发明的目的在于克服现有技术中的缺陷,提供一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用。
本发明的第一个目的是提供一种靶向猕猴桃基因AcPDS的sgRNA表达盒,其特征在于,所述的sgRNA表达盒的核苷酸序列如SEQ ID NO.5所示。
本发明的第二个目的是提供一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体,其特征在于,包括载体pYLCRISPR/Cas9P-35S-N片段和通过无缝克隆插入到载体pYLCRISPR/Cas9P-35S-N的AscI酶切位点的上述的sgRNA表达盒。
本发明的第三个目的是提供一种含有上述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体的细菌。
所述的细菌优选为农杆菌EHA105。
本发明的第四个目的是提供一种猕猴桃基因AcPDS定点突变试剂盒,其特征在于,包含上述的靶向猕猴桃基因AcPDS的sgRNA表达盒或上述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体或上述的细菌。
本发明的第五个目的是提供一种含有上述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体的转化体。
本发明的第六个目的是提供一种上述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体的构建方法,其特征在于,包括以下步骤:
(1)以质粒pYLsgRNA-AtU6-1为模板,以引物U6-1-F和U6-1-C作为引物进行PCR扩增,得到含有两个BsaI酶切位点和AtU6-1启动子的片段一;
(2)以质粒pYLsgRNA-AtU6-1为模板,以引物GF和GR作为引物进行PCR扩增,得到含有两个BsaI酶切位点、gRNA scaffold和终止子的片段二;
(3)使用AscI限制性内切酶单酶切质粒pYLCRISPR/Cas9P-35S-N,回收后得到线性化的pYLCRISPR/Cas9P-35S-N;
(4)将步骤(1)得到的片段一和步骤(2)得到的片段二与线性化的pYLCRISPR/Cas9P-35S-N混合后进行同源重组反应,得到质粒pHLW-gRNA-Cas9-U6-1;
(5)根据猕猴桃基因AcPDS的序列,设计靶标序列对应的引物crispr-gRNA1-F和crispr-gRNA2-R;
(6)以质粒pYLsgRNA-AtU6-1为模板,以引物crispr-gRNA1-F和crispr-gRNA2-R作为引物进行PCR扩增,回收并纯化得到两端带有BsaI酶切位点、同时含有两个靶标序列的片段三;
(7)将步骤(6)得到的片段三和载体pHLW-gRNA-Cas9-U6-1混合,使用BsaI限制性内切酶和T4DNA连接酶进行循环酶切连接反应,得到基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体;
所述的步骤(1)、(2)和(6)中使用的引物序列如下:
U6-1-F:5’-GACCGGTAAGGCGCGAGAAATCTCAAAATTCCGGCAGAACAA-3’;
U6-1-C:5’-CGAGACCGGTCTCTAATCACTACTTCGTCTCTAACCATATAT-3’;
GF:5’-AGAGACCGGTCTCGGTTTCAGAGCTATGCTGGAAACAGC-3’;
GR:5’-AGCTCGAGAGGCGCGAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGAT-3’;
crispr-gRNA1-F:5’-GGTCTCTGATTCAGGTCTGTCCCATCAAGATGTTTTAGAGCTAGAAATAG-3’;
crispr-gRNA2-R:5’-GGTCTCTAAACCTAAGCCAGTATCAGACTCCAATCACTACTTCGTCTCTA-3’。
本发明的第七个目的是提供一种猕猴桃基因AcPDS定点突变的方法,包括以下步骤:将上述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体电转化农杆菌EHA105感受态细胞,筛选阳性克隆,然后侵染猕猴桃叶片,以侵染后的猕猴桃叶片为外植体进行植物组织培养,经抗性筛选,抗性愈伤组织分化再生,用PCR和TA克隆测序验证,确认获得转基因猕猴桃。
本发明的第八个目的是提供上述的靶向猕猴桃基因AcPDS的sgRNA表达盒或基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体或上述的细菌或上述的猕猴桃基因AcPDS定点突变试剂盒在猕猴桃基因AcPDS定点突变中的应用。
本发明的有益效果:本发明建立的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体能够快速简单地对猕猴桃基因进行高效的定点突变,弥补了猕猴桃中基因定点编辑技术的空白。实验结果证明:通过农杆菌介导的猕猴桃遗传转化,本发明的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体成功地对猕猴桃基因AcPDS的两个靶点进行了定点突变,同时引起了白化的表型。
附图说明:
图1是Cas9双元表达载体pHLW-gRNA-Cas9-U6-1和sgRNA中间载体pYLsgRNA-AtU6-1的示意图;
图2是通过T-DNA区域特异引物SP-DL/SP-R进行PCR检测转基因阳性;M为DNAmaker,1~10为实施例2步骤(8)的PCR产物;
图3是通过靶点特异的引物进行PCR并测序;图中的WT表示野生型;野生型的序列下方的两行核苷酸序列为阳性克隆测序的序列,与之对应的下部分是阳性克隆测序的峰图;
图4是构建的猕猴桃基因AcPDS编辑载体A1诱导突变的植株的表型,其中WT表示野生型,A1表示实施例2的突变植株的表型。
具体实施方式:
下面结合实施例对本发明的技术方案做进一步说明,但不应理解为对本发明的限制。
本发明生物材料的来源:
1、载体pYLCRISPR/Cas9P-35S-N、pYLsgRNA-AtU6-1(Ma,X.,Zhang,Q.,Zhu,Q.,Liu,W.,Chen,Y.,Qiu,R.(2015)A Robust CRISPR/Cas9System for Convenient,High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.Mol Plant,8,1274–1284),这两个载体由华南农业大学刘耀光教授赠送给本专利的申请人。
2、所有的引物均由专利申请人自行设计并委托上海生物生工有限公司合成(见表1和表2)。
3、所有使用的PCR聚合酶均购买自北京全式金有限公司。
4、所有使用的限制性内切酶和T4DNA连接酶均购买自New England Biolabs。
表1本发明中设计的引物
Figure BDA0001380681610000061
实施例1:
基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体的构建方法,具体步骤如下:
(1)挑取含有pYLCRISPR/Cas9P-35S-N、pYLsgRNA-AtU6-1质粒的单菌落,分别接种于含有50ng/mL Kan、50ng/mL Amp的50mL LB液体培养基中,37℃、200r/min恒温摇床过夜培养;
(2)离心收集菌体,使用碱裂解法提取pYLCRISPR/Cas9P-35S-N、pYLsgRNA-AtU6-1质粒,通过Nanodrop 2000测定质粒浓度。
(3)分别使用AscI、BamHI和HindIII对pYLCRISPR/Cas9P-35S-N、pYLsgRNA-AtU6-1质粒进行酶切验证,同时使用引物SP-DL/SP-R对pYLCRISPR/Cas9P-35S-N质粒进行PCR和测序验证;
(4)以质粒pYLsgRNA-AtU6-1为模板,以引物U6-1-F和U6-1-C作为引物进行PCR扩增,得到含有AtU6-1启动子的片段一(其核苷酸序列如SEQ ID NO.1所示);
(5)以质粒pYLsgRNA-AtU6-1为模板,使用引物GF和GR扩增得到含有两个BsaI酶切位点、gRNA scaffold和终止子的片段二(其核苷酸序列如SEQ ID NO.2所示);
(6)使用AscI限制性内切酶单酶切质粒pYLCRISPR/Cas9P-35S-N,并回收对应的片段,得到线性化的pYLCRISPR/Cas9P-35S-N;
(7)将步骤(4)得到的片段一和步骤(5)得到的片段二与步骤(6)得到的线性化的pYLCRISPR/Cas9P-35S-N按照摩尔比3:3:1进行混合,使用pEASY-Uni Seamless Cloningand Assembly Kit进行同源重组反应。取5μL反应产物转化大肠杆菌DH5α感受态细胞,并使用50ng/mL Kan的LB固体培养基进行过夜培养,挑取单菌落、摇菌、提取质粒,使用SP-DL/SP-R进行PCR扩增得到的产物送样测序,鉴定得到含有如SEQ ID NO.3所示的表达盒骨架的pYLCRISPR/Cas9P-35S-N(即将如SEQ ID NO.3所示的表达盒骨架无缝克隆到线性化的pYLCRISPR/Cas9P-35S-N中),命名为质粒pHLW-gRNA-Cas9-U6-1(见图1)。
同源重组反应时,片段一的3’端与片段二的5’端的同源序列(5’-AGAGACCGGTCTCG-3’)发生同源重组,片段一的5’端与线性化的pYLCRISPR/Cas9P-35S-N一端的同源序列(5’-GACCGGTAAGGCGCG-3’)发生同源重组,片段二的3’端与线性化的pYLCRISPR/Cas9P-35S-N另一端的同源序列(5’-CGCGCCTCTCGAGCT-3’)发生同源重组。
(8)根据猕猴桃基因AcPDS的序列,设计靶标序列1(gRNA1)、靶标序列2(gRNA2)及对应的引物crispr-gRNA1-F和crispr-gRNA2-R(见表1和表2)。
(9)以质粒pYLsgRNA-AtU6-1为模板,使用引物crispr-gRNA1-F和crispr-gRNA2-R进行PCR扩增,得到两端带有BsaI位点、同时含有靶标序列1和靶标序列2的片段三(其核苷酸序列如SEQ ID NO.4所示),回收纯化PCR产物;
(10)取70ng步骤(9)得到的PCR产物和100ng步骤(7)得到的载体pHLW-gRNA-Cas9-U6-1进行混合,使用BsaI限制性内切酶先进行酶切15分钟,然后加入T4DNA连接酶进行循环酶切连接反应(即将片段三插入到质粒pHLW-gRNA-Cas9-U6-1的BsaI酶切位点)。
(11)取5μL步骤(10)得到的反应产物与50μL大肠杆菌DH5α感受态细胞冰上孵育30分钟,42℃30秒,加入500μL LB液体培养基,37℃、200r/min培养1个小时,离心去掉400μL上清,将剩下的液体重悬菌体,并涂布与含有50ng/mL Kan的LB固体培养基上,37℃培养过夜。
(12)挑取单菌落,接种、摇菌、提取质粒,使用引物SP-DL/SP-R进行PCR和测序鉴定,得到载体pHLW-gRNA-Cas9-U6-1-PDS(即将如SEQ ID NO.5所示的靶向猕猴桃基因AcPDS的sgRNA表达盒无缝克隆到线性化的pYLCRISPR/Cas9P-35S-N中)。
表2猕猴桃的靶标序列及对应的引物
Figure BDA0001380681610000081
实施例2:
基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体对猕猴桃基因AcPDS进行定点突变,具体步骤如下:
(1)将实施例1构建的含有靶标序列1和靶标序列2的pHLW-gRNA-Cas9-U6-1-PDS载体,标号为A1。
(2)取5μL得到的载体A1,使用标准的电击转化法转化农杆菌株系EHA105感受态细胞,并进行筛选鉴定,然后挑取单菌落接种于含有50ng/mL利福平和50ng/mL Kan的LB液体培养基中28℃、180r/min摇菌过夜,次日上午取种子液按照1:100的比例加入新鲜的含有50ng/mL利福平和50ng/mL Kan的LB液体培养基中28℃、180r/min摇菌至OD600为0.6左右,离心去掉上清液,加入含有100μm/mL的乙酰丁香酮的液体MS培养基重悬菌体,作为后续实验的侵染液。
(3)取猕猴桃无菌叶片,将叶片切成0.5×0.5的叶盘,将切好的叶盘放入步骤(2)的侵染液中,低速振荡15min;
(4)侵染结束后,去掉侵染液,并用无菌水洗涤4次,然后用无菌滤纸除去残留的液体,并晾干叶盘;
(5)将步骤(4)中的叶盘接种到猕猴桃组织培养的愈伤诱导培养基(愈伤诱导培养基的配方为:每升含有TDZ 1mg、NAA 0.5mg、琼脂6g,余量为MS培养基)中进行共培养3天;
(6)取出步骤(5)中共培养结束后的叶盘并用无菌水洗涤4次,晾干;重新接入含有200mg/L特美汀的愈伤诱导培养基(愈伤诱导培养基的配方同步骤(5)的相同)中进行延迟培养2天;
(7)延迟培养结束后,取出叶盘,接种到含有200mg/L特美汀、75mg/L的G418的愈伤诱导培养基(愈伤诱导培养基的配方同步骤(5)的相同)中,每15天继代一次,一共继代4次;
(8)G418筛选结束后,将得到的抗性愈伤分成两部分一部分用于检测,一部分用于植株再生;用CTAB法提取抗性愈伤的DNA,然后用T-DNA区域特异引物SP-DL/SP-R进行PCR检测转基因阳性(图2)。接着用位点特异性的引物F1/R1进行PCR扩增,将PCR产物克隆到TA载体中,挑取阳性克隆送样测序(图3)。
(9)通过突变体鉴定,我们的结果证明我们所构建的基于CRISPR/Cas9的猕猴桃基因编辑体系可以成功地诱导定点突变,同时引起了白化的表型(图4)。
序列表
<110> 中国科学院华南植物园
<120> 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用
<160> 5
<210> 1
<211> pYLsgRNA-AtU6-1
<212> DNA
<213> 333
<400> 1
gaccggtaag gcgcgagaaa tctcaaaatt ccggcagaac aattttgaat ctcgatccgt 60
agaaacgaga cggtcattgt tttagttcca ccacgattat atttgaaatt tacgtgagtg 120
tgagtgagac ttgcataaga aaataaaatc tttagttggg aaaaaattca ataatataaa 180
tgggcttgag aaggaagcga gggataggcc tttttctaaa ataggcccat ttaagctatt 240
aacaatcttc aaaagtacca cagcgcttag gtaaagaaag cagctgagtt tatatatggt 300
tagagacgaa gtagtgatta gagaccggtc tcg 333
<210> 2
<211> pYLsgRNA-AtU6-1
<212> DNA
<213> 121
<400> 2
agagaccggt ctcggtttca gagctatgct ggaaacagca tagcaagttg aaataaggct 60
agtccgttat caacttgaaa aagtggcacc gagtcggtgc ttttttcgcg cctctcgagc 120
t 121
<210> 3
<211> pHLW-gRNA-Cas9-U6-1
<212> DNA
<213> 410
<400> 3
agaaatctca aaattccggc agaacaattt tgaatctcga tccgtagaaa cgagacggtc 60
attgttttag ttccaccacg attatatttg aaatttacgt gagtgtgagt gagacttgca 120
taagaaaata aaatctttag ttgggaaaaa attcaataat ataaatgggc ttgagaagga 180
agcgagggat aggccttttt ctaaaatagg cccatttaag ctattaacaa tcttcaaaag 240
taccacagcg cttaggtaaa gaaagcagct gagtttatat atggttagag acgaagtagt 300
gattagagac cggtctcggt ttcagagcta tgctggaaac agcatagcaa gttgaaataa 360
ggctagtccg ttatcaactt gaaaaagtgg caccgagtcg gtgctttttt 410
<210> 4
<211> pYLsgRNA-AtU6-1
<212> DNA
<213> 508
<400> 4
ggtctctgat tcaggtctgt cccatcaaga tgttttagag ctagaaatag caagttaaaa 60
taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt ttttcaagag 120
cttggagtgg atggaatttt cctccgtttt acctgtggaa tcggcagcaa aggagaaatc 180
tcaaaattcc ggcagaacaa ttttgaatct cgatccgtag aaacgagacg gtcattgttt 240
tagttccacc acgattatat ttgaaattta cgtgagtgtg agtgagactt gcataagaaa 300
ataaaatctt tagttgggaa aaaattcaat aatataaatg ggcttgagaa ggaagcgagg 360
gataggcctt tttctaaaat aggcccattt aagctattaa caatcttcaa aagtaccaca 420
gcgcttaggt aaagaaagca gctgagttta tatatggtta gagacgaagt agtgattgga 480
gtctgatact ggcttaggtt tagagacc 508
<210> 5
<211> pHLW-gRNA-Cas9-U6-1-PDS
<212> DNA
<213> 882
<400> 5
agaaatctca aaattccggc agaacaattt tgaatctcga tccgtagaaa cgagacggtc 60
attgttttag ttccaccacg attatatttg aaatttacgt gagtgtgagt gagacttgca 120
taagaaaata aaatctttag ttgggaaaaa attcaataat ataaatgggc ttgagaagga 180
agcgagggat aggccttttt ctaaaatagg cccatttaag ctattaacaa tcttcaaaag 240
taccacagcg cttaggtaaa gaaagcagct gagtttatat atggttagag acgaagtagt 300
gattcaggtc tgtcccatca agatgtttta gagctagaaa tagcaagtta aaataaggct 360
agtccgttat caacttgaaa aagtggcacc gagtcggtgc tttttttcaa gagcttggag 420
tggatggaat tttcctccgt tttacctgtg gaatcggcag caaaggagaa atctcaaaat 480
tccggcagaa caattttgaa tctcgatccg tagaaacgag acggtcattg ttttagttcc 540
accacgatta tatttgaaat ttacgtgagt gtgagtgaga cttgcataag aaaataaaat 600
ctttagttgg gaaaaaattc aataatataa atgggcttga gaaggaagcg agggataggc 660
ctttttctaa aataggccca tttaagctat taacaatctt caaaagtacc acagcgctta 720
ggtaaagaaa gcagctgagt ttatatatgg ttagagacga agtagtgatt ggagtctgat 780
actggcttag gtttcagagc tatgctggaa acagcatagc aagttgaaat aaggctagtc 840
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt tt 882

Claims (8)

1.一种靶向猕猴桃基因AcPDS的sgRNA表达盒,其特征在于,所述的sgRNA表达盒的核苷酸序列如SEQ ID NO.5所示。
2.一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体,其特征在于,包括载体pYLCRISPR/Cas9P-35S-N片段和通过无缝克隆插入到载体pYLCRISPR/Cas9P-35S-N的AscI酶切位点的权利要求1所述的sgRNA表达盒。
3.一种含有权利要求2所述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体的细菌。
4.根据权利要求3所述的细菌,其特征在于,所述的细菌为农杆菌EHA105。
5.一种猕猴桃基因AcPDS定点突变试剂盒,其特征在于,包含权利要求1所述的靶向猕猴桃基因AcPDS的sgRNA表达盒或权利要求2所述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体或权利要求3所述的细菌。
6.一种权利要求2所述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体的构建方法,其特征在于,包括以下步骤:
(1)以质粒pYLsgRNA-AtU6-1为模板,以引物U6-1-F和U6-1-C作为引物进行PCR扩增,得到含有两个BsaI酶切位点和AtU6-1启动子的片段一;
(2)以质粒pYLsgRNA-AtU6-1为模板,以引物GF和GR作为引物进行PCR扩增,得到含有两个BsaI酶切位点、gRNA scaffold和终止子的片段二;
(3)使用AscI单酶切质粒pYLCRISPR/Cas9P-35S-N,回收后得到线性化的pYLCRISPR/Cas9P-35S-N;
(4)将步骤(1)得到的片段一和步骤(2)得到的片段二与线性化的pYLCRISPR/Cas9P-35S-N混合后进行同源重组反应,得到质粒pHLW-gRNA-Cas9-U6-1;
(5)根据猕猴桃基因AcPDS的序列,设计靶标序列对应的引物crispr-gRNA1-F和crispr-gRNA2-R;
(6)以质粒pYLsgRNA-AtU6-1为模板,以引物crispr-gRNA1-F和crispr-gRNA2-R作为引物进行PCR扩增,回收并纯化得到两端带有BsaI酶切位点、同时含有两个靶标序列的片段三;
(7)将步骤(6)得到的片段三和载体pHLW-gRNA-Cas9-U6-1混合,使用BsaI限制性内切酶和T4 DNA连接酶进行循环酶切连接反应,得到基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体;
所述的步骤(1)、(2)和(6)中使用的引物序列如下:
U6-1-F:5’-GACCGGTAAGGCGCGAGAAATCTCAAAATTCCGGCAGAACAA-3’;
U6-1-C:5’-CGAGACCGGTCTCTAATCACTACTTCGTCTCTAACCATATAT-3’;
GF:5’-AGAGACCGGTCTCGGTTTCAGAGCTATGCTGGAAACAGC-3’;
GR:5’-AGCTCGAGAGGCGCGAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGAT-3’;
crispr-gRNA1-F:5’-GGTCTCTGATTCAGGTCTGTCCCATCAAGATGTTTTAGAGCTAGAAATAG-3’;
crispr-gRNA2-R:5’-GGTCTCTAAACCTAAGCCAGTATCAGACTCCAATCACTACTTCGTCTCTA-3’。
7.一种猕猴桃基因AcPDS定点突变的方法,其特征在于,包括以下步骤:将权利要求2所述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体电转化农杆菌EHA105感受态细胞,筛选阳性克隆,然后侵染猕猴桃叶片,以侵染后的猕猴桃叶片为外植体进行植物组织培养,经抗性筛选,抗性愈伤组织分化再生,用PCR和TA克隆测序验证,确认获得转基因猕猴桃。
8.权利要求1所述的靶向猕猴桃基因AcPDS的sgRNA表达盒或权利要求2所述的基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体或权利要求3所述的细菌或权利要求5所述的猕猴桃基因AcPDS定点突变试剂盒在猕猴桃基因AcPDS定点突变中的应用。
CN201710702395.3A 2017-08-16 2017-08-16 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用 Expired - Fee Related CN107446924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710702395.3A CN107446924B (zh) 2017-08-16 2017-08-16 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710702395.3A CN107446924B (zh) 2017-08-16 2017-08-16 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN107446924A CN107446924A (zh) 2017-12-08
CN107446924B true CN107446924B (zh) 2020-01-14

Family

ID=60492621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710702395.3A Expired - Fee Related CN107446924B (zh) 2017-08-16 2017-08-16 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN107446924B (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613852A3 (en) 2011-07-22 2020-04-22 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US20150166982A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting pi3k point mutations
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
IL294014B1 (en) 2015-10-23 2024-03-01 Harvard College Nucleobase editors and their uses
AU2017306676B2 (en) 2016-08-03 2024-02-22 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CA3033327A1 (en) 2016-08-09 2018-02-15 President And Fellows Of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CN110214180A (zh) 2016-10-14 2019-09-06 哈佛大学的校长及成员们 核碱基编辑器的aav递送
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
JP2020510439A (ja) 2017-03-10 2020-04-09 プレジデント アンド フェローズ オブ ハーバード カレッジ シトシンからグアニンへの塩基編集因子
KR20190130613A (ko) 2017-03-23 2019-11-22 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵산 프로그램가능한 dna 결합 단백질을 포함하는 핵염기 편집제
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
CN107603980B (zh) * 2017-08-16 2020-03-24 中国科学院华南植物园 一种基于PTG-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN108251450B (zh) * 2018-03-27 2021-10-08 中国农业科学院烟草研究所 原位过量表达载体pGV64及应用
CN109825532B (zh) * 2019-03-04 2019-12-10 中国科学院昆明植物研究所 CRISPR/Cas12a基因编辑系统在小立碗藓基因编辑中的应用
EP3942040A1 (en) 2019-03-19 2022-01-26 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
CN110257420A (zh) * 2019-06-14 2019-09-20 中国科学院武汉植物园 基于CasRx的植物基因沉默载体及其构建方法和应用
CN110408652A (zh) * 2019-08-08 2019-11-05 中国科学院新疆生态与地理研究所 一种基于CRISPR/Cas9系统对新疆野苹果基因多靶点定点突变的方法
MX2022014008A (es) 2020-05-08 2023-02-09 Broad Inst Inc Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo.
CN114150001A (zh) * 2021-11-05 2022-03-08 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) 一种用于弓形虫基因编辑的CRISPR/Cas9载体的构建方法
CN114438108B (zh) * 2022-02-25 2023-07-21 中国农业科学院郑州果树研究所 猕猴桃AaPG18基因及针对该转基因的单果验证方法
CN114875064B (zh) * 2022-06-22 2023-07-04 北京林业大学 杂交枫香基因编辑载体、其构建方法、及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052733A (zh) * 2015-07-15 2015-11-18 西南林业大学 用EMS诱导‘Hort 16A’后代优株变异及AFLP检测方法
CN105647962A (zh) * 2016-02-15 2016-06-08 浙江大学 运用CRISPR-Cas9系统敲除水稻MIRNA393b茎环序列的基因编辑方法
KR101640586B1 (ko) * 2015-06-02 2016-07-18 주식회사 바이오메딕 키위 유래 화분 또는 화분관 특이적 프로모터 및 이의 용도

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101640586B1 (ko) * 2015-06-02 2016-07-18 주식회사 바이오메딕 키위 유래 화분 또는 화분관 특이적 프로모터 및 이의 용도
CN105052733A (zh) * 2015-07-15 2015-11-18 西南林业大学 用EMS诱导‘Hort 16A’后代优株变异及AFLP检测方法
CN105647962A (zh) * 2016-02-15 2016-06-08 浙江大学 运用CRISPR-Cas9系统敲除水稻MIRNA393b茎环序列的基因编辑方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pollen effects on fruit attributes and seed properties in colchicine-induced autotetraploids of red-fleshed kiwifruit (Actinidia chinensis Planch.);Wu JinHu;《JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY 》;20151130;第90卷(第6期);第695-703页 *

Also Published As

Publication number Publication date
CN107446924A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN107446924B (zh) 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用
CN107603980B (zh) 一种基于PTG-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用
CN109652422B (zh) 高效的单碱基编辑系统OsSpCas9-eCDA及其应用
US11220693B2 (en) Method for converting monocot plant genome sequence in which nucleic acid base in targeted DNA sequence is specifically converted, and molecular complex used therein
JP2023018066A (ja) 植物ゲノムの部位特異的改変の実施に非遺伝物質を適用する方法
CN112126637B (zh) 腺苷脱氨酶及其相关生物材料与应用
AU2014227831A1 (en) Engineering plant genomes using CRISPR/Cas systems
JP7054283B2 (ja) ヌクレオチド標的認識を利用した標的配列特異的改変技術
CN110607320B (zh) 一种植物基因组定向碱基编辑骨架载体及其应用
JP2018537123A (ja) 改良された植物形質転換の方法および組成物
CA3037336A1 (en) Targeted genome optimization in plants
US20220315938A1 (en) AUGMENTED sgRNAS AND METHODS FOR THEIR USE TO ENHANCE SOMATIC AND GERMLINE PLANT GENOME ENGINEERING
CN112689678B (zh) 用于在植物体的基因组中无需插入复制子即可编辑基因组的基于病毒的复制子及其用途
JP2003509027A (ja) クリーンな合成ベクター、プラスミド、トランスジェニック植物、及びこれらを含む植物の部分、並びにこれらを得る方法
Sam et al. DESIGN AND TRANSFER OF OsSWEET14-EDITING T-DNA CONSTRUCT TO BAC THOM 7 RICE CULTIVAR.
CN116286742B (zh) CasD蛋白、CRISPR/CasD基因编辑系统及其在植物基因编辑中的应用
Nagaraj Genome engineering for thermo-sensitive genic male sterilty (TGMS) in rice using CRISPR/Cas9 editing system (Cyamopsis tetragonoloba L.)
US20160222395A1 (en) Agrobacterium-mediated genome modification without t-dna integration
CN115851784B (zh) 一种利用Lbcpf1变体构建的植物胞嘧啶碱基编辑系统及其应用
CN113832180B (zh) CRISPR/Cas13b介导的棉花RNA转录调控方法
Yan-ping et al. Detection of target sites of CRISPR/Cas9 system in soybean mediated by Agrobacterium rhizogenes.
CN118272430A (zh) 一种基于ilvC基因缺失的双营养缺陷型农杆菌的获得方法及应用
Harish et al. Genome engineering for thermo-sensitive genic male sterilty (TGMS) in rice using CRISPR/Cas9 editing system.
CN114657193A (zh) 一种提高博落回中血根碱含量的方法及应用
JPH01501598A (ja) 植物の形質転換

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200114