CN104531704B - 利用CRISPR-Cas9系统敲除动物FGF5基因的方法 - Google Patents

利用CRISPR-Cas9系统敲除动物FGF5基因的方法 Download PDF

Info

Publication number
CN104531704B
CN104531704B CN201410751079.1A CN201410751079A CN104531704B CN 104531704 B CN104531704 B CN 104531704B CN 201410751079 A CN201410751079 A CN 201410751079A CN 104531704 B CN104531704 B CN 104531704B
Authority
CN
China
Prior art keywords
sgrna
gene
cas9
fgf5
animal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410751079.1A
Other languages
English (en)
Other versions
CN104531704A (zh
Inventor
侯健
厉建伟
安晓荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201410751079.1A priority Critical patent/CN104531704B/zh
Publication of CN104531704A publication Critical patent/CN104531704A/zh
Application granted granted Critical
Publication of CN104531704B publication Critical patent/CN104531704B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种利用CRISPR‑Cas9系统敲除动物FGF5基因的方法。本发明首先获得针对FGF5第二外显子的sgRNA识别区的DNA序列,其碱基序列如SEQ ID NO.1所示;接着构建FGF5第二外显子的sgRNA表达结构,并将T7启动子插入sgRNA转录起始位点前,同时构建Cas9蛋白的体外转录载体,以T7启动子调控。利用Cas9和sgRNA的体外转录载体获得Cas9 mRNA和sgRNA,可用于生产敲除FGF5基因的动物。

Description

利用CRISPR-Cas9系统敲除动物FGF5基因的方法
技术领域
本发明属于动物基因工程和遗传修饰领域,具体地说,涉及一种利用CRISPR-Cas9表达系统敲除动物FGF5基因的方法。
背景技术
自上世纪80年代基因工程兴起以来,大量基因编辑技术出现以满足科研需要,其中的基因打靶技术是一种在高等动物中对基因进行定点精细修饰的技术。传统基因打靶技术依赖体内自发的同源重组(HR,homologous recombination),效率大约只有1/106。近年来为了解决同源重组效率低下的问题,人们通过人工构建的杂合分子对特定的DNA序列进行切割,以此来提高基因打靶的效率,其中以核酸内切酶为核心的人工复合分子最受关注。
FGF5基因是成纤维细胞生长因子家族的成员。FGF5基因突变型的小鼠和兔子据有被毛变长的表型,且与野生型相比较无其他性状的差异。研究已证明FGF5引起被毛变长是由于其影响毛囊周期性活动,通过使毛囊生长IV期延长,从而导致被毛较野生型更长。因而FGF5基因突变在产毛类动物上具有很大的实用价值,且并不会影响动物的其他性状及产品质量。在大型产毛类哺乳动物如绵羊、山羊等物种中进行传统的基因打靶,其效率很低,为此有必要寻找更好的基因打靶技术进行应用性生产。
CRISPR/Cas9系统包括一个具备DNA结合和切割的Cas9蛋白以及负责特异性识别DNA序列并引导Cas9蛋白特异性结合到目的DNA位点的sgRNA。在动物体内,Cas9蛋白与sgRNA首先结合成一个蛋白复合体,然后通过sgRNA的特异性识别作用,在基因组中识别到特定的目标DNA序列并一到蛋白复合体结合到DNA链上。然后通过Cas9的核酸内切酶活性在目标位点将DNA切开,形成一个DNA双链断裂(DSB)。通过诱导自体的DNA修复机制发挥作用,如同源重组或非同源末端连接(NHEJ,Non-homologous end joining),从而在该位点产生基因突变,从而到达基因打靶的目的。
与传统的同源重组介导的基因打靶相比较,利用CRISPR/Cas9系统对哺乳动物进行基因打靶具有操作简便,效率高,适用物种广泛等优点,尤其可以一次性的实现多基因打靶,这在动物遗传修饰及疾病模型研究中都有极其广阔的应用前景。
传统的基因打靶技术依赖生物体内自发的同源重组现象,因而效率很低,随着技术发展后来便出现了锌指核酸酶(ZFNs,zinc finger nucleases)和转录激活子样效应子介导核酸酶(TALENs,transcription activator-like effector nucleases)。这两种系统结构比较相似,每个蛋白分子都是由FolkI核酸内切酶结构域和DNA识别结构域两部分构成,通过每个蛋白分子中的特异性DNA识别域识别基因组中的特定目的序列,从而将FolkI内切酶定位至靶位点。由于FolkI核酸内切酶需要在DNA双链上形成二聚体形式才能发挥核酸内切酶的功能,因而ZFNs和TALENs在基因打靶时都需要两个分子分别定位在靶位点的两条DNA链上,才可以发挥核酸内切酶的作用,对DNA进行切割产生双链断裂(DSB).
虽然ZFNs和TALENs相比于传统的同源重组具有打靶效率高的优点,但是它们依然存在很多的缺陷,主要包括:1、ZFNs和TALENs的DNA切割结构域均为FolkI,它必须以二聚体形式发挥作用,因而对哺乳动物进行基因打靶时至少要采用两个DNA表达结构,这在细胞转染时会对转染效率有更高的要求;2、ZFNs的设计和生产相对复杂,成本较高,应用于大量的哺乳动物基因打靶时成本难以控制在可以承受的范围;3、ZFNs和TALENs的DNA识别规则和设计要求较为严格,可能出现靶基因序列中无法找到合适的ZFNs、TALENs识别区,从而无法应用其进行基因打靶的情况;4、针对不同基因或者不同物种的同一基因进行基因打靶时,都需要从新设计和构建新的ZFNs、TALENs表达质粒或mRNA,操作繁复;5、ZFNs和TALENs在进行多基因打靶时,受载体和mRNA分子大小的限制,很难获得较高的打靶效率。目前未见CRISPR-Cas9表达系统敲除动物FGF5基因的报道。
发明内容
本发明的目的是提供一种CRISPR-Cas9表达系统敲除动物FGF5基因的方法。
本发明的另一个目的是提供特异性靶向FGF5基因的sgRNA。
本发明首先比对了不同物种(人类,小鼠,猪,牛,绵羊,山羊)的FGF5基因序列,从中找到了一个相对保守的区域,在这个区域中进行sgRNA的设计并获得了一条sgRNA的序列信息。其中特异性靶向FGF5基因第二外显子的sgRNA,其DNA序列如SEQ ID NO.1所示。本发明提供了该特异性靶向FGF5基因第二外显子的sgRNA在敲除动物FGF5基因中的应用。
本发明还提供了含有上述sgRNA的DNA序列的载体。
在本发明的实施例中,提供的上述载体为pX330-F2。
具体地,pX330-F2的构建方法为:(1)设计并合成分别识别FGF5第二外显子的sgRNA识别区DNA序列,如SEQ ID NO.1所示;(2)合成后的sgRNA序列进行磷酸化后梯度降温退火,具体步骤为将合成的oligo DNA与10X T4Ligation Buffer和T4PNK以2:2:1的比例混合后再加入3倍体积的水补齐体系,然后37℃孵育30min,再95℃5min变性,之后在以5℃每分钟的速率降温至25℃完成反应以产生磷酸化粘性末端,同时BbsI酶切载体pX330产生粘性末端;(3)以T4连接酶将这两个片段与pX330进行连接,获得真核CRISPR-Cas9表达系统载体pX330-F2。
本发明还提供了体外转录载体pIVT-F2-T载体。
所述体外转录载体pIVT-F2-T的构建方法为:设计含有T7启动子的上游引物,序列如SEQ ID NO.2所示和与其匹配的下游引物,序列如SEQ ID NO.3所示,以载体pX330-F2为模板PCR扩增获得可以用于体外转录的IVT-F2片段,再以TA克隆的方式将该片段插入pMD18-T载体中,获得用于体外转录的载体pIVT-F2-T。
本发明提供了用于敲除动物FGF5基因的CRISPR-Cas9表达系统,含有特异性靶向FGF5基因第二外显子的sgRNA的表达载体和Cas9蛋白的体外转录载体。
本发明的实施例中,所述含有特异性靶向FGF5基因第二外显子的sgRNA的表达载体为pIVT-载体pX330-U6-Chimeric_BB-CBh-hSpCas9F2-T,Cas9蛋白的体外转录载体为pCas9-puro3。
其中,pCas9-puro3是通过以下方法构建得到的:(1)以内切酶AgeI和NotI酶切载体pX330-U6-Chimeric_BB-CBh-hSpCas9获得pX330载体中的Cas9表达区段;(2)以AgeI和NotI线性化载体pIRES-puro3;(3)将将步骤(1)的Cas9表达区段与步骤(2)的线性化载体pIRES-puro3进行连接获得终载体pCas9-puro3。
本发明提供了利用CRISPR-Cas9表达系统敲除动物FGF5基因的方法,包括以下步骤:
(1)构建特异性靶向FGF5基因第二外显子的sgRNA的表达载体;通过体外转录表达得到FGF5基因第二外显子sgRNA;
(2)构建Cas9蛋白的体外转录载体,得到Cas9mRNA;
(3)将步骤(1)的sgRNA和步骤(2)的Cas9mRNA纯化后,混合,注射入动物受精卵细胞质或细胞核中,经体外短时培养后移植入同种雌性动物输卵管中,或体外培养至囊胚期再移植到同种雌性动物子宫中,以生产敲除FGF5基因的动物。所述体外短时培养是指30min~48h的培养。
本发明方法中,步骤(1)特异性靶向FGF5基因第二外显子的sgRNA的表达载体为pIVT-F2-T载体。步骤(2)的Cas9蛋白的体外转录载体为pCas9-puro3。
步骤(1)和(2)转录产生的mRNA进行吸附柱纯化,将纯化后的mRNA利用分光光度计测定浓度。
步骤(3)中,sgRNA与Cas9mRNA混合后,二者的质量比为1:10~1:2。
优选地,二者混合后的质量比为1:7.5。
在本发明的一个实施例中,sgRNA浓度为70ng/μl,Cas9mRNA的浓度为775ng/μl,使混合后sgRNA和Cas9mRNA终浓度分别为20ng/μl和150ng/μl。
本发明还提供了上述方法在制备敲除FGF5基因的动物中的应用。
本发明利用CRISPR-Cas9系统进行哺乳动物基因打靶,其优点是:1、sgRNA特异性识别DNA序列中的NGG三个碱基对,识别规则简单且易分析,在靶基因中可以同时找到多个sgRNA识别位点,从而可以根据打靶要求进行选择,适用性广泛;2、相比于ZFNs和TALENs的复杂表达结构,CRISPR-Cas9系统中的Cas9表达结构是固定不变的,针对不同基因只需要将23bp的识别序列插入sgRNA表达结构中即可完成系统组建,操作简单,成本低,适用于大规模的哺乳动物基因打靶工作;3、利用CRISPR-Cas9系统继续细胞转染时,由于sgRNA表达结构很短,所以可以大大提高转染效率,也可以将Cas9和sgRNA表达结构整合到一个载体中,进一步提高转染效率,这都是ZFNs和TALENs很难做到的;4、针对同一家族的不同基因或不同物种的同一基因进行基因打靶时,可以选择基因中的保守区进行sgRNA设计,从而实现同一条sgRNA对多个基因的打靶或修饰,相比其他技术更加简便、高效;5、可以通过向哺乳动物中同时导入一个Cas9表达结构和多个sgRNA的方式轻松实现多基因同时打靶,无论从打靶效率还是操作简便程度上都是其他技术无法比拟的。
本发明通过构建特异性靶向FGF5基因第二外显子的sgRNA的表达载体和Cas9蛋白的体外转录载体,获得了靶向FGF5基因第二外显子的sgRNA和Cas9蛋白的mRNA,将其混合后注入动物受精卵细胞质或细胞核中,经体外短时培养或培养数天后移植到同种雌性动物输卵管或子宫中,能够生产得到敲除FGF5基因的动物,可提高基因打靶的效率和适应性。本发明的另一个突出优点在于,本发明提供的靶向FGF5基因第二外显子的sgRNA是对比人类,小鼠,猪,牛,绵羊,山羊等多个物种的保守序列获得的,因此本发明的sgRNA可通用于多个物种的FGF5基因敲除。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
以下实施例中涉及的试验材料和试剂:pX330-U6-Chimeric_BB-CBh-hSpCas9购自addgene,pMD18-T购自takara公司,pIRES-puro3购自Clontech公司。B6D2F1小鼠为C57BL/6和DBA/2小鼠杂交1代鼠,C57BL/6和DBA/2均购自北京维通利华实验动物技术有限公司。绵羊购自北京顺义金鑫现代农业发展有限公司。
以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中描述的具体方法进行,或者按照试剂盒和产品说明书进行。
实施例1针对FGF5基因的CRISPR-Cas9表达系统的构建
1、比对了不同物种(人类,小鼠,猪,牛,绵羊,山羊)的FGF5基因序列,从中找到了一个相对保守的区域,在这两个区域中进行sgRNA的设计并获得了一条sgRNA的序列信息。其中特异性靶向FGF5基因第二外显子的sgRNA,其DNA序列如SEQ ID NO.1所示。
2、pX330-F2的构建:(1)设计并合成识别FGF5第二外显子的sgRNA识别区DNA序列,如SEQ ID NO.1所示;(2)合成后的sgRNA序列进行磷酸化后梯度降温退火,具体步骤为将合成的oligoDNA与10X T4Ligation Buffer和T4PNK以2:2:1的比例混合后再加入3倍体积的水补齐体系,然后37℃孵育30min,再95℃,5min变性,之后在以5℃每分钟的速率降温至25℃完成反应以产生磷酸化粘性末端,同时BbsI酶切载体pX330产生粘性末端;(3)以T4连接酶分别将这两个片段与pX330进行连接,获得真核CRISPR-Cas9表达系统载体pX330-F2。
3、转录载体pIVT-F2-T的构建:设计含有T7启动子的上游引物,序列如SEQ IDNO.2所示和与其匹配的下游引物,序列如SEQ IDNO.3所示,以载体pX330-F2为模板PCR扩增获得可以用于体外转录的IVT-F2片段,再以TA克隆的方式将该片段插入pMD18-T载体中,获得用于体外转录的载体pIVT-F2-T。
4、转录载体pCas9-puro3是通过以下方法构建得到的:(1)以内切酶AgeI和NotI酶切载体pX330-U6-Chimeric_BB-CBh-hSpCas9获得pX330载体中的Cas9表达区段;(2)以AgeI和NotI线性化载体pIRES-puro3;(3)将步骤(1)的Cas9表达区段与步骤(2)的线性化载体pIRES-puro3进行连接获得终载体pCas9-puro3。
针对FGF5基因的CRISPR-Cas9表达系统即为:转录载体pIVT-F2-T和转录载体pCas9-puro3。
实施例2体外转录
利用构建的体外转录载体pIVT-F2-T和pCas9-puro3进行以T7启动子介导的体外转录,即以T7启动子作为体外转录的启动子,利用RNA聚合酶在体外实现从DNA到mRNA的转录过程,具体方法为:分别以SalI和NotI线性化载体pIVT-M2-T和pCas9-puro3,然后以线性化的体外转录载体为模板,加入T7转录酶、buffer以及rNTPs,37℃孵育6h,然后加入DNA酶37℃,15min消化去除模板DNA,再以酚仿抽提去除蛋白杂质后,乙醇沉淀获得转录后的mRNA,将转录产生的mRNA进行吸附柱纯化,具体方法为:向mRNA加入3.5倍体积的结合缓冲液和2.5倍体积的无水乙醇,混匀后加入吸附柱中,12000rpm离心10min,再以洗涤液洗涤吸附柱2次,最后用100μl的纯水溶解mRNA,将纯化后的mRNA利用分光光度计测定浓度,sgRNA浓度为70ng/μl,Cas9mRNA的浓度为775ng/μl。
实施例3利用针对FGF5基因的CRISPR-Cas9系统mRNA生产基因打靶小鼠
1、原核注射及胚胎移植
取B6D2F1小鼠的原核期受精卵,利用显微注射仪将预混好的Cas9mRNA/sgRNA混合物(Cas9mRNA终浓度为150ng/μl,sgRNA终浓度为20ng/μl),注射至小鼠受精卵细胞质或细胞核中。注射后的受精卵转移至培养液中短暂培养,然后移植至受体母鼠的输卵管中,生产基因打靶小鼠。
2、基因打靶小鼠的鉴定
代孕母鼠生产后,待仔鼠长至2周龄剪取1cm左右鼠尾,蛋白酶K,55℃消化后酚仿抽提提取鼠尾基因组。以鼠尾基因组为模板,分别设计针对FGF5第二外显子的引物,序列如Seq No.4~5进行扩增,对获得的PCR产物进行测序,如测序结果打靶位点附近出现双峰的情况,则可能为打靶成功。选择双峰的样品再次PCR,产物胶回收后TA克隆至T载体中,转化后挑取阳性克隆再次进行测序,如测序结果FGF5基因靶位点附近发生碱基插入或碱基缺失,导致阅读框移码突变,则可判断为FGF5基因敲除。
实施例4利用针对FGF5基因的CRISPR-Cas9系统mRNA进行绵羊胚胎基因打靶
1、原核注射及体外培养
从绵羊卵巢中采集卵子进行体外成熟,选取成熟的卵子进行体外受精后培养至原核期,在原核期利用显微注射仪将预混好的Cas9mRNA/sgRNA混合物(Cas9mRNA终浓度为150ng/μl,sgRNA终浓度为20ng/μl),注射至受精卵细胞核中。注射后的受精卵转移至培养液中继续培养。待注射后的受精卵培养至囊胚期后,取胚胎加裂解液进行裂解处理,以进行下一步的鉴定实验。
2、基因打靶结果的检测
以发育后的绵羊胚胎为模板进行PCR,引物针对FGF5的第二外显子,引物序列如Seq No.6~7,PCR产物进行测序,如测序结果打靶位点附近出现双峰的情况,则可能为打靶成功。选择双峰的样品再次PCR,产物胶回收后TA克隆至T载体中,转化后挑取阳性克隆再次进行测序,如测序结果中FGF5基因靶位点附近发生碱基插入或碱基缺失,导致阅读框移码突变,则可判断为基因敲除,即为基因打靶阳性结果。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (4)

1.利用CRISPR-Cas9表达系统敲除动物FGF5基因的方法,其特征在于,包括以下步骤:
(1)构建特异性靶向FGF5基因第二外显子的sgRNA的表达载体;通过体外转录表达得到FGF5基因第二外显子sgRNA,所述sgRNA的DNA序列如SEQ ID NO.1所示;
(2)构建Cas9蛋白的体外转录载体,得到Cas9mRNA;所述Cas9蛋白的体外转录载体的构建方法为:1)以内切酶AgeI和NotI酶切pX330-U6-Chimeric_BB-CBh-hSpCas9获得pX330载体中的Cas9表达区段;2)以AgeI和NotI线性化载体pIRES-puro3;3)将两端序列连接获得终载体pCas9-puro3
(3)将步骤(1)的sgRNA和步骤(2)的Cas9mRNA纯化后,混合,注射入动物受精卵细胞质或细胞核中,然后经体外短时培养后移植入同种雌性动物输卵管中,或体外培养至囊胚期移植到同种雌性动物子宫中,以生产敲除FGF5基因的动物;
所述动物为小鼠,猪,牛,绵羊,山羊。
2.如权利要求1所述的方法,其特征在于,在步骤(3)中,sgRNA与Cas9mRNA混合后,sgRNA和Cas9mRNA的质量比为1:10~1:2。
3.如权利要求2所述的方法,其特征在于,在步骤(3)中,sgRNA与Cas9mRNA混合后二者质量比为1:7.5。
4.权利要求1-3任一所述的方法在制备敲除FGF5基因的动物中的应用。
CN201410751079.1A 2014-12-09 2014-12-09 利用CRISPR-Cas9系统敲除动物FGF5基因的方法 Active CN104531704B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410751079.1A CN104531704B (zh) 2014-12-09 2014-12-09 利用CRISPR-Cas9系统敲除动物FGF5基因的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410751079.1A CN104531704B (zh) 2014-12-09 2014-12-09 利用CRISPR-Cas9系统敲除动物FGF5基因的方法

Publications (2)

Publication Number Publication Date
CN104531704A CN104531704A (zh) 2015-04-22
CN104531704B true CN104531704B (zh) 2019-05-21

Family

ID=52847330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410751079.1A Active CN104531704B (zh) 2014-12-09 2014-12-09 利用CRISPR-Cas9系统敲除动物FGF5基因的方法

Country Status (1)

Country Link
CN (1) CN104531704B (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613852A3 (en) 2011-07-22 2020-04-22 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
AU2014346559B2 (en) 2013-11-07 2020-07-09 Editas Medicine,Inc. CRISPR-related methods and compositions with governing gRNAs
US20150166982A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting pi3k point mutations
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
CN104975036B (zh) * 2015-06-12 2020-04-24 重庆高圣生物医药有限责任公司 一种高效建立转基因小鼠模型的辅助质粒及其构建方法
CN105039401B (zh) * 2015-06-23 2020-04-24 重庆高圣生物医药有限责任公司 一种高效构建人稳定表达细胞株的辅助质粒及其构建方法
CN105132426B (zh) * 2015-09-21 2018-01-09 新疆畜牧科学院生物技术研究所 一种以RNA介导的特异性敲除FGF5基因获得基因编辑绵羊的方法及其专用sgRNA
CN105132427B (zh) * 2015-09-21 2019-01-08 新疆畜牧科学院生物技术研究所 一种以RNA介导的特异性敲除双基因获得基因编辑绵羊的方法及其专用sgRNA
IL294014B1 (en) 2015-10-23 2024-03-01 Harvard College Nucleobase editors and their uses
CN105950541B (zh) * 2016-06-21 2019-07-19 中国医学科学院医学生物学研究所 一种hFGF21基因敲除人肝细胞株的构建方法
AU2017306676B2 (en) 2016-08-03 2024-02-22 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CA3033327A1 (en) 2016-08-09 2018-02-15 President And Fellows Of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CN106350540A (zh) * 2016-08-26 2017-01-25 苏州系统医学研究所 一种由慢病毒介导的高效可诱导型CRISPR/Cas9基因敲除载体及其应用
CN106957857A (zh) * 2016-09-23 2017-07-18 西北农林科技大学 一种利用CRISPR/Cas9系统共同敲除山羊MSTN和FGF5基因的方法
CN110214180A (zh) 2016-10-14 2019-09-06 哈佛大学的校长及成员们 核碱基编辑器的aav递送
CN106636212A (zh) * 2016-11-15 2017-05-10 西北农林科技大学 一种利用CRISPR/Cas9系统生产GDF9基因编辑山羊的方法
CN106399373B (zh) * 2016-11-18 2019-05-24 青岛市畜牧兽医研究所 一种Cas9表达载体
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
JP2020510439A (ja) 2017-03-10 2020-04-09 プレジデント アンド フェローズ オブ ハーバード カレッジ シトシンからグアニンへの塩基編集因子
KR20190130613A (ko) 2017-03-23 2019-11-22 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵산 프로그램가능한 dna 결합 단백질을 포함하는 핵염기 편집제
CN106987604B (zh) * 2017-03-29 2021-05-28 北京希诺谷生物科技有限公司 一种制备动脉粥样硬化疾病模型犬的方法
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
CN107245498B (zh) * 2017-06-30 2020-01-31 浙江大学 猪pCRTC3-sgRNA表达载体的构建方法及用途
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
CN109423499A (zh) * 2017-08-24 2019-03-05 中国科学院上海生命科学研究院 Mettl3敲除的精子发生障碍动物模型及其构建方法
CN109423501A (zh) * 2017-08-24 2019-03-05 中国科学院上海生命科学研究院 Mettl14敲除的精子发生障碍动物模型及其构建方法
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN109811008A (zh) * 2017-11-19 2019-05-28 内蒙古大学 CRISPR-Cas9系统介导的小鼠FGF5基因敲除的方法
WO2020000438A1 (zh) * 2018-06-29 2020-01-02 深圳市博奥康生物科技有限公司 一种应用CRISPR/Cas9系统对小鼠AILIM基因进行敲除的方法
CN109652421B (zh) * 2019-01-30 2022-07-12 中国农业大学 靶向编辑羊繁殖负调控基因NPFFR1的sgRNA及其编码DNA和应用
EP3942040A1 (en) 2019-03-19 2022-01-26 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
MX2022014008A (es) 2020-05-08 2023-02-09 Broad Inst Inc Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo.
CN111518812B (zh) * 2020-06-12 2023-06-27 新疆畜牧科学院生物技术研究所(新疆畜牧科学院中国-澳大利亚绵羊育种研究中心) 一种编辑绵羊FGF5基因实现选择性剪接的sgRNA、成套核酸分子和应用
CN112553207B (zh) * 2020-12-30 2023-05-16 新疆畜牧科学院生物技术研究所(新疆畜牧科学院中国-澳大利亚绵羊育种研究中心) 一种实现绵羊FGF5基因精准突变的sgRNA、试剂盒和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876698A (zh) * 2012-09-25 2013-01-16 新疆维吾尔自治区畜牧科学院中国-澳大利亚绵羊育种研究中心 抑制绵羊成纤维细胞生长因子5表达的试剂及其应用
CN103289974A (zh) * 2013-04-28 2013-09-11 新疆农垦科学院 绵羊fgf5基因定点敲除系统及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876698A (zh) * 2012-09-25 2013-01-16 新疆维吾尔自治区畜牧科学院中国-澳大利亚绵羊育种研究中心 抑制绵羊成纤维细胞生长因子5表达的试剂及其应用
CN103289974A (zh) * 2013-04-28 2013-09-11 新疆农垦科学院 绵羊fgf5基因定点敲除系统及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Myostatin蛋白功能性失活小鼠模型的建立与相关研究;厉建伟;《中国博士论文全文数据库》;20150715;D50-26
绵羊转基因技术体系构建及研究进展;刘明军 等;《中国农业科学》;20141030;第47卷(第21期);第4236页右栏第1段

Also Published As

Publication number Publication date
CN104531704A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN104531704B (zh) 利用CRISPR-Cas9系统敲除动物FGF5基因的方法
CN104531705A (zh) 利用CRISPR-Cas9系统敲除动物myostatin基因的方法
Gao et al. Establishment of porcine and human expanded potential stem cells
Zhou et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro
Vodička et al. The miniature pig as an animal model in biomedical research
Park et al. Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos
CN106957858A (zh) 一种利用CRISPR/Cas9系统共同敲除绵羊MSTN、ASIP、BCO2基因的方法
Lee et al. Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG
CN105039339A (zh) 一种以RNA介导的特异性敲除绵羊FecB基因的方法及其专用sgRNA
CN109679953A (zh) 利用CRISPR-Cas9系统制得基因点突变动物模型胚胎的靶序列组、载体和方法
Flasza et al. Reprogramming in inter-species embryonal carcinoma–somatic cell hybrids induces expression of pluripotency and differentiation markers
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
Chen et al. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys
CN109234278A (zh) 构建ApoC2基因敲除仓鼠模型的试剂盒和方法
Petit et al. EXOSC10/Rrp6 is essential for the eight-cell embryo/morula transition
CN109680011A (zh) 一种利用CRISPR/Cas9系统敲除绵羊BMPR1B基因的方法
Pramod et al. Transgenic expression of green fluorescent protein in caprine embryos produced through electroporation-aided sperm-mediated gene transfer
Shen et al. In vitro development of mouse fetal germ cells into mature oocytes
CN101613717B (zh) 用猪成纤维细胞生成诱导的多能性干细胞的方法
Wang et al. Dynamic replacement of H3. 3 affects nuclear reprogramming in early bovine SCNT embryos
Iwanami et al. Characteristics of rat round spermatids differentiated from spermatogonial cells during co-culture with Sertoli cells, assessed by flow cytometry, microinsemination and RT-PCR
Sembon et al. A simple method for producing tetraploid porcine parthenogenetic embryos
CN106636212A (zh) 一种利用CRISPR/Cas9系统生产GDF9基因编辑山羊的方法
CN103468639A (zh) 组蛋白去乙酰化酶抑制剂处理卵母细胞的方法及其应用
Liu et al. Germline traits of human hepatoblastoma cells associated with growth and metastasis

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant