CN108753783A - Sqstm1全基因敲除小鼠动物模型的构建方法和应用 - Google Patents

Sqstm1全基因敲除小鼠动物模型的构建方法和应用 Download PDF

Info

Publication number
CN108753783A
CN108753783A CN201810609211.3A CN201810609211A CN108753783A CN 108753783 A CN108753783 A CN 108753783A CN 201810609211 A CN201810609211 A CN 201810609211A CN 108753783 A CN108753783 A CN 108753783A
Authority
CN
China
Prior art keywords
mouse
sqstm1
gene
mice
sgrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810609211.3A
Other languages
English (en)
Inventor
李冬
吴军录
孙祖俊
权文强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tongji Hospital
Original Assignee
Shanghai Tongji Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tongji Hospital filed Critical Shanghai Tongji Hospital
Priority to CN201810609211.3A priority Critical patent/CN108753783A/zh
Publication of CN108753783A publication Critical patent/CN108753783A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

发明公开了一种Sqstm1全基因敲除小鼠动物模型的构建方法和应用,所述小鼠动物模型是敲除Sqstm1基因的小鼠。本发明基于CRISPR/Cas9基因敲除技术构建Sqstm1基因敲除小鼠模型,其构建方法包括如下步骤:步骤一、设计sgRNA和Cas9 RNA并体外转录成mRNA,将有活性的sgRNA和Cas9 RNA显微注射入小鼠受精卵中,获得Sqstm1基因敲除小鼠;步骤二、对Sqstm1基因敲除小鼠动物模型的鉴定。本发明基于CRISPR/Cas9基因敲除技术首次构建了Sqstm1基因敲除的小鼠动物模型,为研究Sqstm1与自噬、肿瘤等疾病的关系提供便捷、可靠、经济的动物模型。

Description

Sqstm1全基因敲除小鼠动物模型的构建方法和应用
技术领域
本发明涉及生物技术领域,具体地说,是一种Sqstm1全基因敲除小鼠动物模型的构建方法和应用。
背景技术
Sqstm1基因,全称Sequestosome 1,又称为p62;A170;DMRV基因等,该基因位于5号染色体q35,Sqstm1分子质量为62kD,以散在点状或者聚集形式存在于胞浆中,它由440个氨基酸编码而成,包含PBl域、TB域、UBA域、LIR域等功能域。这些功能域的存在,使Sqstm1成为多个信号通路核心,Sqstm1功能异常会导致多种信号通路的受阻、蛋白异常聚集进而诱发多种疾病的发生。
Sqstm1曾被认定为是酪氨酸磷酸化的独立配体,随着研究的深入,越来越多的证据表明Sqstm1在选择性自噬中具有重要的影响作用。Sqstm1参与自噬调节维持细胞内稳态以及信号转导。Sqstm1与自噬的关系具有双向性,一方面细胞内Sqstm1水平严格受自噬活性的调控,另一方面Sqstm1也能通过激活靶蛋白复合物信号通路负性调节细胞的自噬活性。最新的研究发现,Sqstm1的水平与多种肿瘤的进展密切相关,在肺癌、卵巢癌、乳腺癌、结肠癌、食管癌、肝癌等多种肿瘤中高表达,并且与肿瘤组织的恶性病理特征密切相关。但有关Sqstm1基因功能研究目前还缺乏转基因和(或)基因敲除动物模型。
规律成簇间隔短回文重复序列(CRISPR/Cas9)技术是基于对细菌和古细菌中的免疫系统改造而建立,通过导向RNA(sgRNA)介导核酸内切酶Cas9蛋白进行目标DNA序列识别并造成DNA双链断裂,促进以同源重组或非同源末端连接方式修复受损DNA,从而对目标位点实现基因的定点敲除、敲入以及基因修正等多种修饰。
由于其具有特异性高,分子构建简单,流程短的特点,近年来CRISPR/Cas9技术获得了快速发展。使用CRISPR/Cas9技术进行基因敲除需要两个关键因素,首先是有效的sgRNA引导序列,再就是Cas9蛋白的存在。与锌指核酸酶(ZFN)技术和类转录样效应因子核酸酶(TALEN)技术相比,因其靶向编辑目标基因的特异性、高效性和设计的简便性等诸多优点得到越来越广泛的应用,在细菌、哺乳动物细胞以及斑马鱼、小鼠、大鼠等都表现出很强的基因组编辑活性。因此本研究通过CRISPR/Cas9技术通过体外转录的方式,获得Cas9mRNA和sgRNA构建稳定敲除Sqstm1基因小鼠模型,为进一步研究Sqstm1与自噬、肿瘤等疾病的关系提供了良好的基础。
中国专利文献CN107043787A公开了一种基于CRISPR/Cas9获得MARF1定点突变小鼠模型的构建方法。中国专利文献CN104293831A公开了一种基于CRISPR/Cas9基因敲除技术建立高血压小鼠模型的方法。中国专利文献CN105950639A公开了一种金黄色葡萄球菌CRISPR/Cas9系统的制备方法及其在构建基因修饰小鼠模型中的应用。中国专利文献CN106172238A公开了一种利用Crispr/cas9基因敲除技术建立miR-124基因敲除小鼠动物模型的方法。但是关于Sqstm1基因敲除小鼠动物模型的构建方法目前还未见报道。
发明内容
本发明的第一个目的是针对现有技术中的不足,提供一种建立Sqstm1基因敲除小鼠模型的方法。
本发明的第二个目的是,提供一种建立Sqstm1基因敲除小鼠模型的方法的应用。
本发明的第三个目的是,提供一种敲除Sqstm1基因的细胞。
本发明的第四个目的是,提供一种基于CRISPR/Cas9基因敲除技术构建Sqstm1基因敲除小鼠模型的sgRNA。
本发明的第五个目的是,提供上述sgRNA的应用。
为实现上述第一个目的,本发明采取的技术方案是:
一种建立Sqstm1基因敲除小鼠模型的方法,基于CRISPR/Cas基因敲除技术建立Sqstm1基因敲除小鼠模型,所述方法包括如下步骤:
步骤一、确定Sqstm1小鼠待敲除基因的特异性靶位点sgRNA1,sgRNA2,sgRNA3,sgRNA4,并与Cas9核酸酶体外转录成mRNA;
步骤二、将有活性的sgRNA和Cas9RNA显微注射入小鼠受精卵中,获得Sqstm1基因敲除小鼠;
所述RNA1如SEQ ID NO:2所示,所述sgRNA 2如SEQ ID NO:3所示,所述sgRNA3如SEQ ID NO:4所示,所述sgRNA4如SEQ ID NO:5所示。
作为本发明的一个优选实施方案,所述的方法中步骤二为以下步骤:
(1)、小鼠促排卵和体外受精,培育受精卵;
(2)、将有活性的sgRNA和Cas9RNA显微注射到小鼠受精卵中;
(3)、受精卵体外培养、植入受体及靶向基因修饰动物的培育。
作为本发明的一个优选实施方案,所述方法包括以下步骤:
(1)、确定Sqstm1基因待敲除的靶点,并将sgRNA与Cas9核酸酶mRNA体外转录;
(2)、小鼠促排卵、体外受精,受精卵显微注射;
(3)、取注射后存活的受精卵移植到假孕母鼠体内,产出小鼠,即为F0代小鼠;
(4)、提取F0代小鼠尾部DNA,PCR扩增并将产物送测序;
(5)、将阳性小鼠与野生型异性小鼠交配获得F1代杂合子小鼠;
(6)、将F1代杂合子小鼠杂交获得F2代纯合子小鼠,即为小鼠动物模型。
作为本发明的一个优选实施方案,所述的方法还包括步骤三,步骤三为:鉴定Sqstm1基因敲除小鼠动物模型。
作为本发明的一个优选实施方案,所述步骤三具体为:
(1)、取注射后存活的受精卵移植到假孕母鼠体内,产出小鼠,即为F0代小鼠;
(2)、提取F0代小鼠尾部DNA,PCR扩增并将产物送测序;
(3)、将阳性小鼠与野生型异性小鼠交配获得F1代杂合子小鼠;
(4)、将F1代杂合子小鼠杂交获得F2代纯合子小鼠,即为小鼠动物模型。
为实现上述第二个目的,本发明采取的技术方案是:如上所述的方法在肿瘤研究中的应用。
为实现上述第三个目的,本发明采取的技术方案是:如上所述的方法获得的小鼠动物模型的敲除Sqstm1基因的细胞。
为实现上述第四个目的,本发明采取的技术方案是:一种基于CRISPR/Cas9基因敲除技术构建Sqstm1基因敲除小鼠模型的sgRNA,包括sgRNA1-4,所述sgRNA1如SEQ ID NO:2所示,所述sgRNA 2如SEQ ID NO:3所示,所述sgRNA3如SEQ ID NO:4所示,所述sgRNA4如SEQID NO:5所示。
为实现上述第五个目的,本发明采取的技术方案是:如上所述的sgRNA在建立基因缺陷小鼠中的应用。
本发明采用CRISPR/Cas9基因敲除技术,首次建立了Sqstm1基因敲除的小鼠动物模型。本发明为研究Sqstm1与自噬、肿瘤等疾病的关系提供便捷、可靠、经济的动物模型。
附图说明
图1为CRISPR/Cas9基因敲除小鼠模型建立示意图。
图2为CRISPR/Cas9基因敲除设计策略示意图。
图3为体外转录Cas9、sgRNA电泳结果。
图4为F1代1型小鼠基因敲除前后测序结果比对。
图5为F1代小鼠PCR鉴定电泳条带图。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
一、本实施类涉及一种基于CRISPR/Cas9基因敲除技术建立Sqstm1基因敲除小鼠模型的方法,其技术路线如图1所示。
二、确定敲除基因的基本信息
1.敲除基因名称(MGI号):Sqstm1(MGI:107931)
2.敲除基因MGI网址链接:http://www.informatics.jax.org/marker/MGI:107931
3.敲除基因名称(Ensembl):Sqstm1(ENSMUSG00000015837)
4.敲除基因Ensembl网址链接:
http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000015837;r=11:50199366-50210827;t=ENSMUST00000102774
5.敲除针对的转录本(Ensembl号):Sqstm1-202(ENSMUST00000102774.10)敲除针对的exon:exon3
三、为CRISPR/Cas9基因敲除设计策略示意图,如图2所示。
四、确认基因敲除位点上下游序列信息,如SEQ ID NO.1所示。
cctcctaagcggttgtccttagcaactaagttctggatggactctttgactctccctgcagAGAAGAAGGAGTGCCGGCGGGAACATCGCCCACCATGTGCTCAGGAGGCACCCCGAAACATGGTGCACCCCAATGTGATCTGTGATGGTTGCAACGGGCCTGTGGTGGGAACTCGCTATAAGTGCAGTGTGTGCCCAGACTACGACCTGTGCAGCGTGTGCGAGGGGAAGGGCCTGCACAGGGAACACAGCAAGCTCATCTTTCCCAACCCCTTTGGCCACCTCTCTGATgtgagccggggctctgccgtcctggggcgtggggggcatacagggtggtgggagctggaaaccctgacccctcactctcctcctgtcttgcttcctcctacccag
五、确定Sqstm1小鼠待敲除基因的特异性靶位点sgRNA1,sgRNA2,sgRNA3,sgRNA4,线性化及纯化DNA并与Cas9核酸酶体外转录成mRNA;纯化sgRNA至适合转基因注射的纯度。所述sgRNA1-4的序列如SEQ ID NO.2-5所示;体外转录Cas9、sgRNA电泳结果如图3所示。
SEQ ID NO.2:ATGGTGGGCGATGTTCCCGCCGG
SEQ ID NO.3:ACATCGCCCACCATGTGCTCAGG
SEQ ID NO.4:ACGCTGCACAGGTCGTAGTCTGG
SEQ ID NO.5:CGCTGCACAGGTCGTAGTCTGGG
六、将步骤五所述的sgRNA与Cas9核酸酶mRNA体外转录后,注射到受精卵中,取注射后存活的受精卵移植到假孕母鼠体内,胚胎移植的小鼠出生即为F0代小鼠。
七、待小鼠出生3周后剪尾提取DNA并进行PCR扩增,产物经T-vector连接,测序,阳性F0代阳性小鼠为:22号(突变后的基因组序列如SEQ ID NO.6)。
八、阳性F0代小鼠PCR鉴定方法:
1.引物信息:
Primer Sequence 5'‐‐>3' Primer Type
P1 CTTCCTTCCTGTGGGGCTTTC Forward
P2 CTCTGGGTAGGAGGAAGCA Reverse
2.反应体系:
Reaction Component Volume(μl)
ddH2O 8
PCR Buffer 10
Primer I(10pmol/μl) 0.5
Primer II(10pmol/μl) 0.5
Tail genomic DNA 1
Total 20
注:Phanta Max Master Mix(Vazyme,Code No:P515-03)
3.反应条件:
九、F1代小鼠获得及基因型鉴定
选取阳性的F0代小鼠22号与野生型C57BL/6J小鼠交配,获得的F1代杂合子小鼠,敲除类型:缺失157个碱基对/插入2个碱基对。鉴定方法同F0代小鼠鉴定。如下所示:
CTTGGGGTGGGTGTAGCGGGGCTGGGAGTTGTCAGAGGCACAGAGGTCCTGGCCTCCTAAGCGGTTGTCCTTAGCAACTAAGTTCTGGATGGACTCTTTGACTCTCCCTGCAGAGAAGAAG...(-157bp)+2bp(AA)...GGAAGGGCCTGCACAGGGAACACAGCAAGCTCATCTTTCCCAACCCCTTTGGCCACCTCTCTGATGTGAGCCGGGGCTCTGCCGTCCTGGGGCGTGGGGGGCATACAGGGTGGTGGGAGCTGGAAACCCTGA
十、基因敲除F1代小鼠基因型比较分析:
1.在该品系小鼠中,基因敲除前后目的基因编码蛋白变化如下所示:
WT:……DEELTMAMSYVKDDIFRIYIKEKKECRREHRPPCAQEAPRNMVHP
MT:……DEELTMAMSYVKDDIFRIYIKEKKKEGPAQGTQQAHLSQPLWPPL
目的基因蛋白读码框发生移码,提前终止,理论上将产生一个124个氨基酸的突变蛋白;因目的基因的蛋白翻译提前终止,极有可能引发Nonsense-mediated mRNA decay(NMD)效应,造成目的基因mRNA被降解,从而造成基因功能缺失。
2.敲除后测序结果如图4所示;
3.Sbjct为野生型基因组序列,Query为实际测序结果。
4.F1代杂合子小鼠鉴定的电泳结果如图5所示;
十一、将F1代杂合子小鼠杂交获得F2代纯合子小鼠,即为小鼠动物模型。
十二、F2代纯合子小鼠的鉴定:
1.鉴定引物为:
2.反应体系和反应条件同F0代小鼠鉴定。
3.结果分析:
野生型:P1和P2PCR获得单一的502bp片段;P3和P2可以获得296bp片段
杂合子:P1和P2PCR获得502bp和347bp两个片段;P3和P2可以获得296bp的片段。
纯合子:P1和P2PCR获得单一的347bp片段;P3和P2不能获得条带。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。
SEQUENCE LISTING
<110> 上海市同济医院
<120> Sqstm1全基因敲除小鼠动物模型的构建方法和应用
<130> /
<160> 6
<170> PatentIn version 3.3
<210> 1
<211> 396
<212> DNA
<213> 小鼠(Mus musculus)
<400> 1
cctcctaagc ggttgtcctt agcaactaag ttctggatgg actctttgac tctccctgca 60
gagaagaagg agtgccggcg ggaacatcgc ccaccatgtg ctcaggaggc accccgaaac 120
atggtgcacc ccaatgtgat ctgtgatggt tgcaacgggc ctgtggtggg aactcgctat 180
aagtgcagtg tgtgcccaga ctacgacctg tgcagcgtgt gcgaggggaa gggcctgcac 240
agggaacaca gcaagctcat ctttcccaac ccctttggcc acctctctga tgtgagccgg 300
ggctctgccg tcctggggcg tggggggcat acagggtggt gggagctgga aaccctgacc 360
cctcactctc ctcctgtctt gcttcctcct acccag 396
<210> 2
<211> 23
<212> DNA
<213> 人工序列
<400> 2
atggtgggcg atgttcccgc cgg 23
<210> 3
<211> 23
<212> DNA
<213> 人工序列
<400> 3
acatcgccca ccatgtgctc agg 23
<210> 4
<211> 23
<212> DNA
<213> 人工序列
<400> 4
acgctgcaca ggtcgtagtc tgg 23
<210> 5
<211> 23
<212> DNA
<213> 人工序列
<400> 5
cgctgcacag gtcgtagtct ggg 23
<210> 6
<211> 255
<212> DNA
<213> 小鼠(Mus musculus)
<400> 6
cttggggtgg gtgtagcggg gctgggagtt gtcagaggca cagaggtcct ggcctcctaa 60
gcggttgtcc ttagcaacta agttctggat ggactctttg actctccctg cagagaagaa 120
gaaggaaggg cctgcacagg gaacacagca agctcatctt tcccaacccc tttggccacc 180
tctctgatgt gagccggggc tctgccgtcc tggggcgtgg ggggcataca gggtggtggg 240
agctggaaac cctga 255

Claims (9)

1.一种建立Sqstm1基因敲除小鼠模型的方法,基于CRISPR/Cas9基因敲除技术建立Sqstm1基因敲除小鼠模型,其特征在于,所述方法包括如下步骤:
步骤一、确定Sqstm1小鼠待敲除基因的特异性靶位点sgRNA1,sgRNA2,sgRNA3,sgRNA4,并与Cas9核酸酶体外转录成mRNA;
步骤二、将有活性的sgRNA和Cas9RNA显微注射入小鼠受精卵中,获得Sqstm1基因敲除小鼠;
所述RNA1如SEQ ID NO:2所示,所述sgRNA 2如SEQ ID NO:3所示,所述sgRNA3如SEQ IDNO:4所示,所述sgRNA4如SEQ ID NO:5所示。
2.根据权利要求1所述建立Sqstm1基因敲除小鼠模型的方法,其特征在于,所述的方法中步骤二为以下步骤:
(1)、小鼠促排卵和体外受精,培育受精卵;
(2)、将有活性的sgRNA和Cas9RNA显微注射到小鼠受精卵中;
(3)、受精卵体外培养、植入受体及靶向基因修饰动物的培育。
3.根据权利要求1-2任一所述建立Sqstm1基因敲除小鼠模型的方法,其特征在于,所述方法包括以下步骤:
(1)、确定Sqstm1基因待敲除的靶点,并将sgRNA与Cas9核酸酶mRNA体外转录;
(2)、小鼠促排卵、体外受精,受精卵显微注射;
(3)、取注射后存活的受精卵移植到假孕母鼠体内,产出小鼠,即为F0代小鼠;
(4)、提取F0代小鼠尾部DNA,PCR扩增并将产物送测序;
(5)、将阳性小鼠与野生型异性小鼠交配获得F1代杂合子小鼠;
(6)、将F1代杂合子小鼠杂交获得F2代纯合子小鼠,即为小鼠动物模型。
4.根据权利要求1-2任一所述建立Sqstm1基因敲除小鼠模型的方法,其特征在于,所述的方法还包括步骤三,步骤三为:鉴定Sqstm1基因敲除小鼠动物模型。
5.根据权利要求4所述的方法,其特征在于,所述步骤三具体为:
(1)、取注射后存活的受精卵移植到假孕母鼠体内,产出小鼠,即为F0代小鼠;
(2)、提取F0代小鼠尾部DNA,PCR扩增并将产物送测序;
(3)、将阳性小鼠与野生型异性小鼠交配获得F1代杂合子小鼠;
(4)、将F1代杂合子小鼠杂交获得F2代纯合子小鼠,即为小鼠动物模型。
6.根据权利要求1-2任一所述的方法在肿瘤研究中的应用。
7.根据权利要求1-2任一所述的方法获得的小鼠动物模型的敲除Sqstm1基因的细胞。
8.一种基于CRISPR/Cas9基因敲除技术构建Sqstm1基因敲除小鼠模型的sgRNA,其特征在于,包括sgRNA1-4,所述sgRNA1如SEQ ID NO:2所示,所述sgRNA 2如SEQ ID NO:3所示,所述sgRNA3如SEQ ID NO:4所示,所述sgRNA4如SEQ ID NO:5所示。
9.权利要求8所述的sgRNA在建立基因缺陷小鼠中的应用。
CN201810609211.3A 2018-06-13 2018-06-13 Sqstm1全基因敲除小鼠动物模型的构建方法和应用 Pending CN108753783A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810609211.3A CN108753783A (zh) 2018-06-13 2018-06-13 Sqstm1全基因敲除小鼠动物模型的构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810609211.3A CN108753783A (zh) 2018-06-13 2018-06-13 Sqstm1全基因敲除小鼠动物模型的构建方法和应用

Publications (1)

Publication Number Publication Date
CN108753783A true CN108753783A (zh) 2018-11-06

Family

ID=64022604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810609211.3A Pending CN108753783A (zh) 2018-06-13 2018-06-13 Sqstm1全基因敲除小鼠动物模型的构建方法和应用

Country Status (1)

Country Link
CN (1) CN108753783A (zh)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
CN110547256A (zh) * 2019-09-05 2019-12-10 郑州大学第一附属医院 肾脏足细胞特异敲除lncRNA DLX6-os1转基因小鼠的培育方法
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
CN111321172A (zh) * 2019-12-27 2020-06-23 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 一种利用CRISPR-Cas9技术建立CDK13基因敲除动物模型的方法
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
CN111518837A (zh) * 2020-04-02 2020-08-11 广州欣意生物技术有限公司 一种敲除adrb3基因的小鼠及其应用
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
CN112011575A (zh) * 2020-07-30 2020-12-01 南京医科大学附属逸夫医院 一种Hspa12b基因敲除小鼠模型的构建方法
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN112779286A (zh) * 2020-12-31 2021-05-11 中国人民解放军东部战区总医院 一种Alport综合征小鼠模型的构建方法及其应用
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
CN113122581A (zh) * 2021-04-13 2021-07-16 上海长征医院 一种Hsf1基因敲除小鼠模型的建立及应用
CN113699152A (zh) * 2021-09-15 2021-11-26 南方医科大学皮肤病医院(广东省皮肤病医院、广东省皮肤性病防治中心、中国麻风防治研究中心) Slc35e2b基因敲除小鼠动物模型的构建方法和应用
CN113755498A (zh) * 2021-09-27 2021-12-07 赛业(苏州)生物科技有限公司 靶向小鼠Ube3a基因的gRNA及构建AS疾病小鼠模型的方法
CN113862305A (zh) * 2021-09-17 2021-12-31 首都医科大学附属北京友谊医院 Atp7b基因敲除小鼠模型的构建方法
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
CN113930427A (zh) * 2021-09-22 2022-01-14 赛业(苏州)生物科技有限公司 靶向小鼠CD274基因的gRNA及构建EAE疾病小鼠模型的方法
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110547256A (zh) * 2019-09-05 2019-12-10 郑州大学第一附属医院 肾脏足细胞特异敲除lncRNA DLX6-os1转基因小鼠的培育方法
CN110547256B (zh) * 2019-09-05 2021-09-21 郑州大学第一附属医院 肾脏足细胞特异敲除lncRNA DLX6-os1转基因小鼠的培育方法
CN111321172A (zh) * 2019-12-27 2020-06-23 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 一种利用CRISPR-Cas9技术建立CDK13基因敲除动物模型的方法
CN111518837A (zh) * 2020-04-02 2020-08-11 广州欣意生物技术有限公司 一种敲除adrb3基因的小鼠及其应用
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112011575A (zh) * 2020-07-30 2020-12-01 南京医科大学附属逸夫医院 一种Hspa12b基因敲除小鼠模型的构建方法
CN112779286A (zh) * 2020-12-31 2021-05-11 中国人民解放军东部战区总医院 一种Alport综合征小鼠模型的构建方法及其应用
CN113122581A (zh) * 2021-04-13 2021-07-16 上海长征医院 一种Hsf1基因敲除小鼠模型的建立及应用
CN113699152A (zh) * 2021-09-15 2021-11-26 南方医科大学皮肤病医院(广东省皮肤病医院、广东省皮肤性病防治中心、中国麻风防治研究中心) Slc35e2b基因敲除小鼠动物模型的构建方法和应用
CN113862305A (zh) * 2021-09-17 2021-12-31 首都医科大学附属北京友谊医院 Atp7b基因敲除小鼠模型的构建方法
CN113930427A (zh) * 2021-09-22 2022-01-14 赛业(苏州)生物科技有限公司 靶向小鼠CD274基因的gRNA及构建EAE疾病小鼠模型的方法
CN113755498A (zh) * 2021-09-27 2021-12-07 赛业(苏州)生物科技有限公司 靶向小鼠Ube3a基因的gRNA及构建AS疾病小鼠模型的方法
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN108753783A (zh) Sqstm1全基因敲除小鼠动物模型的构建方法和应用
CN107475300B (zh) Ifit3-eKO1基因敲除小鼠动物模型的构建方法和应用
CN106047930B (zh) 一种PS1基因条件性敲除flox大鼠的制备方法
WO2018219093A1 (zh) 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法
CN110551759B (zh) 一种提高转基因细胞重组效率的组合物及方法
CN110885858B (zh) Amy1基因敲除小鼠动物模型的构建方法及应用
CN109628454B (zh) 斑马鱼糖原贮积症gys1和gys2基因突变体的构建方法
JP6958917B2 (ja) 遺伝子ノックイン細胞の作製方法
CN110438160B (zh) 一种Cd2ap基因敲除动物的构建方法及应用
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN110684777B (zh) 一段分离的核苷酸序列在肌间刺减少的斑马鱼构建中的应用
CN112410341A (zh) 一种可诱导的中性粒细胞特异性剔除的小鼠模型构建方法
CN115058424A (zh) 一种irf2bpl基因敲除斑马鱼癫痫模型及其构建方法和应用
CN108300738B (zh) 一种nod遗传背景的中性粒细胞缺失的人源化小鼠模型的制备方法
CN113699152A (zh) Slc35e2b基因敲除小鼠动物模型的构建方法和应用
CN114480497B (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN111088290A (zh) 一种杜鹃素在基因编辑中的应用
CN114457114B (zh) 一种Fars2基因条件性敲除动物模型的构建方法
CN112980881B (zh) Arvcf基因敲除动物模型的构建方法及应用
CN116019063A (zh) 一种小鼠条件性诱导Hmox1基因敲除模型的构建方法及应用
CN109694885B (zh) 基于CRISPR/Cas9技术制备PI3Kγ全身敲除模式小鼠方法及其应用和试剂盒
CN114958908B (zh) 基于CRISPR/Cas9构建Ets2基因超级增强子敲除动物模型的方法及其应用
CN114592011B (zh) 一种ptdss2条件性基因敲除小鼠模型的构建方法
WO2024065376A1 (zh) 美臀基因新位点在绵羊育种中的应用
CHALOVA et al. Hereditary Determination of the Leukosis Virus Resistance of Cattle in Kuzbass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106