CN107190006A - 一种靶向IGF‑IR基因的sgRNA及其应用 - Google Patents

一种靶向IGF‑IR基因的sgRNA及其应用 Download PDF

Info

Publication number
CN107190006A
CN107190006A CN201710552226.6A CN201710552226A CN107190006A CN 107190006 A CN107190006 A CN 107190006A CN 201710552226 A CN201710552226 A CN 201710552226A CN 107190006 A CN107190006 A CN 107190006A
Authority
CN
China
Prior art keywords
cell
igf
sgrna
liver cancer
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710552226.6A
Other languages
English (en)
Inventor
董志珍
姚敏
王理
姚登福
郑文杰
蔡胤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affiliated Hospital of Nantong University
Original Assignee
Affiliated Hospital of Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affiliated Hospital of Nantong University filed Critical Affiliated Hospital of Nantong University
Priority to CN201710552226.6A priority Critical patent/CN107190006A/zh
Publication of CN107190006A publication Critical patent/CN107190006A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/65Insulin-like growth factors (Somatomedins), e.g. IGF-1, IGF-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Abstract

本发明涉及基因工程技术领域,公开了一种靶向IGF‑IR基因的sgRNA,所述sgRNA的核苷酸序列如SEQ ID NO:2所示。本发明应用Crispr/cas9‑sgRNA慢病毒载体系统,在细胞水平上成功对人肝癌细胞IGF‑IR基因进行敲除或修饰,使肝癌细胞IGF‑IR基因转录水平明显下降,使肝癌细胞的增殖、侵袭、迁移能力下降,为肝癌治疗提供有效新方法,具有临床应用前景。

Description

一种靶向IGF-IR基因的sgRNA及其应用
技术领域
本发明涉及基因工程技术领域,特别涉及一种靶向IGF-IR基因的sgRNA及其应用。
背景技术
新近研究发现IGF信号通路中关键信号分子IGF-IR,具有癌胚性,与肝癌进展间存在密切关系,但其基因转录或活化干预是否影响生物学功能与治疗价值尚不清楚。IGF家族(IGFs)由IGF-I、IGF-II、IGF-IR、IGF-IIR以及6种结合蛋白组成。IGFs与胰岛素有相似的分子结构,它的功能包括促进细胞增殖、分化和各种类型细胞的生存以及保持细胞的各种功能,其在体内生长调控中发挥重要作用。IGF-II的主要功能是产生生长因子,它在许多生长发育过程中起关键作用,并且在生长发育过程中以及成年后都广泛表达。愈来愈多的证据表明IGF-I和II及其酪氨酸激酶受体,参与HCC发生与发展。联合靶向IGF-IR和mTOR通路作为一种新型治疗方法,将最大限度的发挥抗肿瘤作用,且防止耐药机制早期发展。
介于IGF-IR在肝癌形成、恶性转化及侵袭转移过程中都扮演着重要角色,阻断该信号通路,有望使癌细胞生长受抑、诱导癌细胞发生凋亡或增加对放、化疗敏感性,表明酪氨酸激酶受体IGF-IR已成为小分子酪氨酸激酶抑制剂、抗体药物设计及核酸干预的重要靶点。
新近一项CRISPR/Cas9基因敲除新技术,突破物种限制可敲除任何基因。CRISPRRNA是原核生物中的调控RNA,用以抵御病毒和质粒的入侵,在II型CRISPR系统中,其形成的复合物首先特异识别基因组序列,然后Cas9核酸内切酶切断目的基因双链。Cas9以序列特异性方式绑定和切割DNA能力非常强大,近年被广泛应用于各种基因组的研究包括HBV基因。尚未见定向剪接肝癌IGF-IR基因的报道。
发明内容
本发明的目的在于提供一种特异靶向IGF-IR基因的sgRNA导向序列。该sgRNA导向序列可以用于敲除肝癌细胞中IGF-IR基因,使其转录水平明显下降,使肝癌HepG2细胞的生物学特性发生明显改变,表现为癌细胞的增殖、侵袭、迁移能力下降。
为了解决上述技术问题,本发明的技术方案如下:
本发明提供了一种靶向IGF-IR基因的sgRNA,所述sgRNA的核苷酸序列如SEQ IDNO:2所示,能识别人肝癌细胞染色体上IGF-IR基因,和与Cas9核酸酶结合的骨架RNA片段。
本发明另一个目的在于提供由编码所述靶向IGF-IR基因的sgRNA的DNA分子。
本发明第三个目的是提供上述sgRNA在特异识别和靶向修饰人肝癌细胞IGF-IR基因中的应用。所述人肝癌细胞IGF-IR基因,其基因组序列是NCBI NM000875中的区域。
本发明第四个目的是提供上述sgRNA在构建人肝癌细胞IGF-IR基因突变库中的应用。所述人肝癌细胞IGF-IR基因,其基因组序列是NCBI NM000875中的区域。
现有技术相比,本发明具有以下优点:
本发明提供了一种特异靶向识别IGF-IR基因的sgRNA,并提供了该sgRNA的编码DNA片段,应用Crispr/cas9-sgRNA慢病毒载体系统,在细胞水平上成功对人肝癌细胞IGF-IR基因进行敲除或修饰,使肝癌细胞IGF-IR基因转录水平明显下降,使肝癌细胞的增殖、侵袭、迁移能力下降,为肝癌治疗提供有效新方法,具有临床应用前景。
附图说明
图1为嘌呤霉素筛选经cas9病毒感染的细胞。
图2为二次感染带荧光的sgRNA病毒,其中,A:普通光镜图;B:同一视野荧光显微镜图;A&B1-3为sgRNA(+)病毒感染组,A&B4为sgRNA(-)病毒感染组。
图3为二次感染带荧光的sgRNA病毒感染效率直方图;sgRNA1-3为sgRNA(+)病毒感染组。
图4为蛋白水平验证IGF-IR基因敲除效率Western blotting图。
图5为蛋白水平验证IGF-IR基因敲除效率Quantity One(Bio-Rad)软件定量条带灰度强度,*:P<0.05。
图6为敲除IGF-IR基因抑制肝癌细胞增殖活性影响的线性图,其中,*P<0.01,**P>0.05。
图7为敲除IGF-IR基因抑制肝癌细胞增殖活性影响的直方图,其中,*P<0.01,**P>0.05。
图8为肝癌HepG2细胞Transwell小室侵袭试验显微镜图,其中:A空白组;B阴性对照组;C sgRNA2感染组穿膜细胞数明显减少,*P<0.01。
图9为肝癌HepG2细胞Transwell小室侵袭试验直方图,sgRNA2感染组穿膜细胞数明显减少,*P<0.01。
图10为划痕试验法检测IGF-IR在肝癌细胞迁移中的作用显微镜图;其中,A1&A2:空白组,B1&B2:阴性对照,C1&C2:sgRNA2干预组。
图11为肝癌HepG2细胞Transwell小室纵向迁移试验显微镜图,其中:A空白组;B阴性对照组;C sgRNA2感染组显示抑制纵向迁移能力,*P<0.01。
图12为肝癌HepG2细胞Transwell小室纵向迁移试验直方图,sgRNA2感染组穿膜细胞数明显减少,*P<0.01。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例对本发明进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
如无特殊说明,本发明以下实施例中选自以下材料,但并非是对本发明技术方案的限定。
1)人肝癌细胞株
人肝癌HepG2细胞株购自中科院上海细胞所,设三组:空白组(untreated组)、阴性组(LV-neg组)和感染组(LV-sgRNA-IGF-IR组,干扰-1,干扰-2和干扰-3)进行研究。
2)细胞培养相关试剂
DMEM培养基购自南京凯基生物科技有限公司;胎牛血清购自以色列BI公司;0.25%胰蛋白酶溶液购自美国Invitrogen公司;磷酸盐缓冲盐水(Phosphate bufferedsaline,PBS)购自coring有限公司;二甲基亚砜(Dimethyl suLfoxide,DMSO)购自美国Sigma公司。
3)慢病毒感染相关试剂
LV-sgRNA-IGF-IR(PCA00469,PCA00470,PCA00471),阴性对照病毒Sg-RNA-CON244,LV-cas9-Puro(7768-1),polybrene感染增强剂,Enis培养液等购自上海吉凯公司;嘌呤霉素购自北京索莱宝公司。
4)蛋白分析相关试剂
RIPA裂解液(强),苯甲基磺酰氟(PMSF),BCA蛋白浓度测定试剂盒,十二烷基磺酸钠-聚丙烯酰胺凝胶(SDS-PAGE)蛋白上样缓冲液等购自北京索莱宝公司;鼠抗人IGF-IR抗体、β-actin鼠抗人抗体及辣根过氧化物酶标记的羊抗鼠IgG抗体均购自美国Abcam公司;预染蛋白Marker购自美国Thermo公司旗下Fermentas公司;PVDF膜,Immobilon ECL发光液购自美国Millipore公司。
5)细胞增殖相关试剂
Cell Counting Kit-8assay(CCK-8)试剂盒购自日本同仁化学研究所。
6)其他试剂
免疫组化试剂盒,一抗稀释液购自丹麦Dako公司。甘氨酸、Tris购自美国Bio-Rad公司;甲醇、三氯醋酸和醋酸等均为国产分析纯以上级产品。
实施例1
(1)HepG2细胞株复苏
采用迅速融化的方式,将人肝癌HepG2细胞株的冻存管从-80℃冰箱取出后,立即放入37℃恒温水浴锅中快速震荡解冻,持续1min。在超净台先用乙醇消毒,后开启。用吸管将HepG2细胞悬液吸至放有九倍体积的完全培养液(简称完培,含有10%胎牛血清的DMEM)的离心管内,混匀后用离心机低速离心(1000rpm×5min),弃去上清液,然后加入5mL完全培养液,并吹打混匀后吸入培养瓶中,置于37℃、5%CO2且饱和湿度的培养箱中培养,第二天观察细胞生长情况,并且更换培养液。
(2)HepG2细胞株培养
当细胞融合度大于80%时,弃去原培养液,用PBS洗涤两次,再加入2ml的胰蛋白酶消化液,将培养瓶放置显微镜下观察细胞形态变化,观察到细胞形态变圆、胞质回缩以及细胞间隙增大时弃去胰酶,加入完全培养基吹打重悬细胞,然后将吹打后的细胞悬液分装到三个培养瓶中,继续培养。
(3)HepG2细胞株冻存
遵循“慢冻速融”的原则,取生长状态良好的对数生长期细胞,于冻存前一天进行换液。常规消化收集细胞,加入冻存液(10%DMSO+20%胎牛血清+70%dulbecco'smodified eagle medium,DMEM),并调整,最终冻存液中细胞浓度为5~10×106/mL,再分装到无菌的冻存管内。管壁标签上注明细胞的名称、代数和日期,后用封口膜封口。将封好的冻存管先置于4℃冰箱30min,再置于-20℃冰箱90min,最后置于-80℃冰箱长期保存。
(4)细胞计数和细胞活力检测
先用乙醇消毒计数板,然后常规消化收集细胞,并制备单细胞悬液,用枪头取吹打好的细胞悬液10μL滴入计数板上盖玻片一侧,待细胞悬液完全铺开后,在显微镜下计数。细胞计数的方法:用10×物镜观察计数板四个角的大方格中的细胞数,细胞数=(4大格细胞数之和/4)×104/mL时,台盼蓝可穿透发生损伤或死亡的细胞的变性细胞膜,并且可以与解体的DNA结合使其着色,但是活细胞却能阻止台盼蓝进入细胞内,从而鉴别死细胞和活细胞。计算细胞活力=活细胞总数/(活细胞总数+死细胞总数)×100%。当细胞活力达95%以上可以进行慢病毒感染实验。
实施例2
Crispr/cas9-sgRNA双载体慢病毒构建、感染及筛选
(1)针对IGF-IR基因的慢病毒构建
根据人IGF-IR序列(NCBI:NM000875),以Crispr/cas9-sgRNA技术原理,设计3条sgRNA序列:
SgRNA-1:5’-TCAGTACGCCGTTTACGTCA-3;(干扰-1)
SgRNA-2:5’-TGTTTCCGAAATTTACCGCA-3’;(干扰-2)
SgRNA-3:5’-GGCTCTCTCCCCGTTGTTCC-3’;(干扰-3)
并构建质粒载体Lenti-CAS9-puro和Lenti-sgRNA-EGFP。
(2)目的细胞慢病毒感染与筛选
将未感染慢病毒的肝癌HepG2细胞接种于6孔板中达到70~80%融合度,在细胞贴壁后,在6孔板中分别加入1μg/mL、2μg/mL、2.5μg/mL、3μg/mL的嘌呤霉素(puromycin)药物,48h后观察细胞形态,来进行致死最低浓度的筛选,从而得出药物处理48h后HepG2细胞全部死亡的最低药物浓度。
用胰酶将对数生长期的HepG2细胞进行消化,加入完培制成细胞悬液。再将HepG2细胞悬液(细胞数约为5×104)接种于6孔板中,置于37℃5%CO2培养箱中培养,当细胞融合度达到30%时,进行换液,然后根据预实验所得的感染条件和细胞感染复数(multiplicityof infectio,MOI=10),用枪头吸入适宜量Cas9病毒,加入到6孔板中。12h后在显微镜下观察细胞状态:如果细胞状态良好,继续培养24h后更换培养基;如果细胞状态差,出现细胞毒性作用,则立即更换培养基。在48h后,加入嘌呤霉素药物筛选48h,从而得到表达Cas9稳定的混合克隆。立即观察筛选后的细胞状态,保证细胞状态良好。HepG2细胞感染cas9-puro病毒48h后加入嘌呤霉素进行筛选,嘌呤霉素经空细胞致死最低浓度筛选之后浓度定为2μg/ml。48h后在光学显微镜下观察,结果如图1,A:感染cas9病毒,B:加入嘌呤霉素48h后;C&D:对照组。A&B组感染cas9病毒的细胞经嘌呤霉素筛选后存活,C&D组未感染的细胞经嘌呤霉素筛选后死亡。
继续培养感染成功的细胞,常规消化后,制成细胞悬液,并且铺板,按照吉凯生物公司慢病毒感染细胞步骤感染表达sgRNA的慢病毒。3天后在荧光显微镜下观察慢病毒感染的细胞的荧光效率,荧光效率在80%左右的细胞开始进行后续实验。
收集存活细胞在扩大培养后行二次感染sgRNA-EGFP病毒,感染48h后在倒置荧光显微镜下观察,成功转染的细胞带绿色荧光(图2A&B),随机选取五个视野细胞计算感染效率(n=5),结果分别为91%,90%,88%和86%(图3)。
实施例3
CCK-8法检测细胞增殖
按照CCK-8试剂盒提供的说明书操作步骤,设空白对照组,阴性对照组,实验组,取生长状态良好的对数生长期细胞,加入胰蛋白酶进行消化,制备成细胞悬液,再接种于96孔板(n=3),每孔约100μL,将96孔板置于培养箱中进行预培养(37℃,5%CO2的条件下),于既定时间点取出并换液,每孔加入10μL的CCK-8试剂,继续在培养箱中孵育1-4h后在酶标仪检测A450值。
成功感染慢病毒的细胞收集后提取蛋白进行Western检测分析蛋白水平的基因敲除效率(图4,图5),sgRNA2靶点对应的细胞IGF-IR蛋白表达量明显降低,与其余四组细胞相比差异具有统计学意义(*P<0.05);半定量分析HepG2、sgRNA-neg、sgRNA1和sgRNA3的IGF-IR灰度强度比值分别为1.22±0.13,1.14±1.23,1.01±0.94,0.99±0.82,而sgRNA2比值为0.43±0.79。
实施例4
Transwell迁移检测细胞侵袭能力
第一步准备基质胶:将冻存的BD matrigel置于4度过夜,使其变为液态。
第二步取用24孔Bordend小室,孔径为8μm。用DMEM冲洗小室,再用50mg/LMartrigel 1:8稀释液包被Bordend小室底部膜的上室面,室温风干。
第三步分别加入200μL浓度为l×109/mL各组(空白组、阴性组、sgRNA-2组-干扰-2)的细胞悬液至于上室.上室液为含10g/L BSA无血清DMEM培养基。24孔板下室加入每孔500μL含10%胎牛血清完全培养液。
第四步置于培养箱中培养24h后取出小室.用吸管吸入PBS进行淋洗,再用棉签轻轻擦拭去微孔膜内层的细胞,加入95%酒精固定5min后用4g/L结晶紫染色。
第五步在倒置显微镜下计数移至微孔膜下层的细胞,随机计数五个视野/样本(n=3)。
细胞侵袭试验显示,与阴性组(160±21)相比,sgRNA2感染组(50±12)穿膜细胞数明显减少,差异具有统计学意义(t=4.682,P<0.01),空白组(210±16)与阴性组(160±21)相比,未见明显差异(t=2.082,P=0.264),说明敲除IGF-IR能明显抑制肝癌细胞的侵袭能力(图8,图9)。
实施例5
Transwell迁移检测细胞横向迁移能力
划痕愈合:将空白对照组、阴性对照组、sgRNA-2组的细胞用胰酶消化后,制成细胞悬液,以每孔8×105个细胞接种于6孔板中;当细胞达到90%融合时,弃去培养基并用PBS洗涤3次,用枪头在培养板底部进行等宽划痕;用PBS冲洗净刮落细胞后,用吸管加入适量无血清培养基继续培养,48h时置于倒置显微镜下,观察细胞的迁移情况并拍照,采用Picpic图像分析软件测量划痕两侧细胞的迁移数目。每组设3个复孔(n=3)。
采用划痕实验法测试敲除IGF-IR对细胞横向迁移能力的影响,经倒置相差显微镜计数(图10),划痕24h后,C2细胞迁移数明显减少,P<0.01。显示C2:sgRNA2感染组细胞迁移数(292±28)与阴性组(564士15)间差异显著(t=14.831,P<0.01),空白对照(580±14)与阴性对照组(564士15)间未见明显差异(t=1.351,P=0.102)。
实施例6
Transwell迁移检测细胞纵向迁移能力
胰酶消化三组(空白对照组、阴性对照组、sgRNA-2组)的细胞,每孔下室加入500μL10%胎牛血清的培养基,Transwell上室(上室滤膜无Matrigel包被)分别加入200μL浓度为l×109/mL各组(空白对照组、阴性对照组、sgRNA-2组)的细胞悬液.上室液为含10g/L BSA无血清培养基,置于培养箱中培养24h后取出小室。用吸管吸入PBS进行淋洗,再用棉签轻轻擦拭去微孔膜内层的细胞,加入95%酒精固定5min后用4g/L结晶紫染色,在倒置显微镜下计数移至微孔膜下层的细胞,随机计数五个视野/样本,并取平均值(n=3)。
细胞迁移(图11,图12)显示,sgRNA2感染组的肝癌HepG2细胞接种上室24h后,穿膜细胞数均明显减少,肝癌HepG2细胞空白组、阴性对照组和sgRNA2感染组穿膜细胞数,分别为176±12、155±24和59±19个,感染组与阴性组相比,差异具有统计学意义(t=5.432,P<0.01),空白组与阴性组相比,未见明显差异(t=1.355,P=1.006),敲除IGF-IR能明显抑制HepG2细胞纵向迁移能力。
本发明首次以CRISPR/Cas9双载体慢病毒构建、成功转染肝癌细胞并筛选出有效序列。肝癌HepG2细胞中IGF-IR基因被CRISPR/Cas9-sgRNA靶向敲除后,癌细胞增殖受抑,以划痕愈合、迁移运动及侵袭试验证明肝癌细胞侵袭、迁移等生物学行为发生变化,提示IGF-IR基因可望成为肝癌基因治疗一个有效靶目标。
综上所述,临床上多数肝癌在确诊时已属中、晚期,已不能进行手术切除,放疗或化疗有其局限性,并且预后较差。HCC组织IGF-IR表达明显高于癌旁,癌组织IGF-IR表达与HCC患者生存期密切相关;肝细胞恶性转化过程中IGF-IR介导的信号转导通路异常激活,以酪氨酸激酶抑制剂、单克隆抗体、microRNA干扰靶向IGF-IR已成为肝癌治疗的热点。然而对IGF-IR通路作用机制认识有待深入研究,敲除IGF-IR可抑制癌细胞增殖、侵袭、迁移,但研发以IGF-IR为靶点既安全又有效的基础和临床试验,与手术、介入、化疗或放疗等相结合,将会为肝癌治疗提供有效新方法,具有临床应用前景。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
SEQUENCE LISTING
<110> 南通大学附属医院;南通大学
<120> 一种靶向IGF-IR基因的sgRNA及其应用
<130> GW2017I1303
<160> 3
<170> PatentIn version 3.5
<210> 1
<211> 20
<212> RNA
<213> 人工序列
<400> 1
tcagtacgcc gtttacgtca 20
<210> 2
<211> 20
<212> RNA
<213> 人工序列
<400> 2
tgtttccgaa atttaccgca 20
<210> 3
<211> 20
<212> RNA
<213> 人工序列
<400> 3
ggctctctcc ccgttgttcc 20

Claims (4)

1.一种靶向IGF-IR基因的sgRNA,其特征在于,所述sgRNA的核苷酸序列如SEQ ID NO:2所示。
2.编码权利要求1所述sgRNA的DNA。
3.权利要求1所述的sgRNA在特异识别和靶向修饰人肝癌细胞IGF-IR基因中的应用。
4.权利要求1所述的sgRNA在构建人肝癌细胞IGF-IR基因突变库中的应用。
CN201710552226.6A 2017-07-07 2017-07-07 一种靶向IGF‑IR基因的sgRNA及其应用 Pending CN107190006A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710552226.6A CN107190006A (zh) 2017-07-07 2017-07-07 一种靶向IGF‑IR基因的sgRNA及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710552226.6A CN107190006A (zh) 2017-07-07 2017-07-07 一种靶向IGF‑IR基因的sgRNA及其应用

Publications (1)

Publication Number Publication Date
CN107190006A true CN107190006A (zh) 2017-09-22

Family

ID=59883481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710552226.6A Pending CN107190006A (zh) 2017-07-07 2017-07-07 一种靶向IGF‑IR基因的sgRNA及其应用

Country Status (1)

Country Link
CN (1) CN107190006A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
CN109593724A (zh) * 2018-12-24 2019-04-09 徐州医科大学 一种增强携带car基因慢病毒感染人t细胞效率的新方法
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
CN113061609A (zh) * 2021-03-24 2021-07-02 中国农业科学院北京畜牧兽医研究所 一特异识别猪IGF2R位点的sgRNA及其编码DNA和应用
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPHIR SHALEM ET AL.: "Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells", 《SCIENCE》 *
别彩群等: "RNAi介导的IGF1R基因沉默对肝癌细胞生长、迁移与侵袭的影响", 《中国病理生理杂志》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN109593724A (zh) * 2018-12-24 2019-04-09 徐州医科大学 一种增强携带car基因慢病毒感染人t细胞效率的新方法
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN113061609A (zh) * 2021-03-24 2021-07-02 中国农业科学院北京畜牧兽医研究所 一特异识别猪IGF2R位点的sgRNA及其编码DNA和应用

Similar Documents

Publication Publication Date Title
CN107190006A (zh) 一种靶向IGF‑IR基因的sgRNA及其应用
Blenkinsop et al. The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye
WO2017141926A1 (en) Human functional corneal endothelial cell and application thereof
Argüeso et al. Assessing mucin expression and function in human ocular surface epithelia in vivo and in vitro
Tache et al. Inducible nitric oxide synthase expression (iNOS) in chronic viral hepatitis and its correlation with liver fibrosis
CN107603946A (zh) 黄芪多糖在防护辐射A549细胞产生旁效应对BMSCs损伤中的应用
CN109971819A (zh) 个体化的粒细胞抗癌活性检测
Im et al. Fortifying the angiogenic efficacy of adipose derived stem cell spheroids using spheroid compaction
Săndulescu et al. Immunohistochemical study of stellate cells in patients with chronic viral hepatitis C genotype 1
CN106834486A (zh) 骨肉瘤分子诊疗标志物及其应用
Shigeta et al. Suppression of fibroblast and bacterial adhesion by MPC coating on acrylic intraocular lenses
CN111440800A (zh) 靶向Galectin-3基因的miRNA-128-3p及其抗胰腺癌的用途
JP2022502047A (ja) ヒト網膜前駆細胞の単離および培養の方法
CN109364249A (zh) 以manf为靶点的物质在制备治疗肝内胆管癌产品中的应用
CN107174657A (zh) 制备靶向胶质瘤和胶质瘤干细胞的抗原组合物的方法以及含有该抗原组合物的疫苗
CN111926015B (zh) 寡核苷酸、病毒载体及其应用和RNAi药物制剂
CN106075626B (zh) 一种艾滋病血液净化治疗仪
Xu et al. Amiloride, a urokinase-type plasminogen activator receptor (uTPA) inhibitor, reduces proteinurea in podocytes
CN114752626A (zh) 一种可逆性永生化ⅱ型肺泡上皮细胞及其构建与应用
CN105936888B (zh) 人扁桃体上皮细胞的分离培养与鉴定方法
CN107828789A (zh) 肺癌靶向治疗的抑制剂及其应用和kap1作为药物靶标在筛选抗肺癌的药物中的应用
CN106267416A (zh) 艾滋病治疗仪
Hasan et al. Ex vivo expansion of primary cells from limb tissue of Pleurodeles waltl
CN109295101A (zh) 过表达miR-125a-5p慢性病毒载体构建方法及其应用
CN105327335A (zh) Creg蛋白的医药用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170922

WD01 Invention patent application deemed withdrawn after publication