CN106957855B - 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法 - Google Patents

使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法 Download PDF

Info

Publication number
CN106957855B
CN106957855B CN201710082775.1A CN201710082775A CN106957855B CN 106957855 B CN106957855 B CN 106957855B CN 201710082775 A CN201710082775 A CN 201710082775A CN 106957855 B CN106957855 B CN 106957855B
Authority
CN
China
Prior art keywords
rice
crispr
gene
seq
cas9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710082775.1A
Other languages
English (en)
Other versions
CN106957855A (zh
Inventor
储黄伟
曹黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI AGRICULTURAL TECHNOLOGY SEED & GERMCHIT Co.,Ltd.
Shanghai Academy of Agricultural Sciences
Original Assignee
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Agricultural Sciences filed Critical Shanghai Academy of Agricultural Sciences
Priority to CN201710082775.1A priority Critical patent/CN106957855B/zh
Publication of CN106957855A publication Critical patent/CN106957855A/zh
Application granted granted Critical
Publication of CN106957855B publication Critical patent/CN106957855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
    • C12Y114/11012Gibberellin-44 dioxygenase (1.14.11.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Abstract

本发明公开了一种使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法,根据CRISPR/Cas9的设计原则,在水稻SD1基因编码区确定CRISPR/Cas9系统编辑的靶位点,根据靶位点的序列设计引物,构建CRISPR/Cas9载体,用农杆菌介导的方法转化水稻愈伤组织,通过筛选鉴定,最后获得SD1突变的不含转基因DNA片段的矮杆水稻品系。该方法应用于矮杆水稻品种的选育,可以免去杂交选育的工作,大大缩短矮杆品种选育的周期。

Description

使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法
技术领域
本发明属于植物分子生物学与生物技术领域,具体涉及一种基于CRIPSR/Cas9基因组编辑技术靶向敲除水稻矮杆基因SD1的方法。
背景技术
水稻原产于中国,是世界主要粮食作物之一。中国水稻播种面占全国粮食作物的1/4,而产量则占一半以上,为我国重要粮食作物。
人类在大约一万年前开始驯化水稻时,就选择出了一个与高产有关的重要基因。这个基因叫做半矮秆基因SD1,它使水稻长得较矮,从而能结出更多谷粒,并且抗倒伏的能力更强。围绕这个基因进行的水稻矮化育种,是20世纪中期全球第一次绿色革命的关键内容。
SD1参与赤霉素的生物合成,编码由389个氨基酸组成的GA20氧化酶(GA20ox)。GA20ox是赤霉素合成途径中的关键酶,催化GA53转换为GA20。SD1基因的突变引起的GA20ox活性的下降,会使水稻植株矮化。
CRISPR/CAS9系统是近年来发展起来的一种基因组DNA编辑技术,它的原理是利用一段靶基因序列特异的sgRNA,引导Cas9核酸内切酶,对靶基因的DNA进行切割、编辑。CRISPR/Cas9技术已经被证明可以非常有效的在第一代转基因水稻中编辑靶基因序列,并且编辑后的序列可以稳定的遗传。CRISPR/Cas9系统与ZFNs(锌指核酸酶)和TALENs(转录激活因子样效应物核酸酶)等基因编辑技术相比,具有设计和构建简单、突变效率高、多靶点同时编辑等优点。
过去,水稻矮化育种主要通过诱变获得矮化水稻品种,或者通过杂交的方法将矮杆基因导入到其它的水稻品种中,这两个方法获得矮杆水稻株系的周期较长、工作量大、成本高。通过CRISPR/Cas9基因编辑系统直接对水稻的SD1基因进行定点突变,创制水稻矮杆株系,可以大大的缩短矮杆育种的周期。
发明内容
本发明针对现有技术的不足,提供一种基于CRISPR/Cas9系统的水稻SD1基因定点敲除的方法,及利用该方法在不同水稻品种中创制矮杆水稻株系的应用。本发明利用SD1基因编码的GA20氧化酶是赤霉素合成途径中的关键酶的特点及CRISPR/Cas9系统基因组定点编辑功能,定点突变SD1基因的核苷酸序列,改变SD1基因编码的GA20氧化酶活性,从而得到矮杆的水稻株系。
使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法,其特征在于,包括如下步骤:
a)选择SD1基因编码区第108至127核酸序列作为CRISPR/Cas9系统的靶序列(SEQID NO.1):AGGATGGAGCCCAAGATCC;
根据靶序列设计两条单核苷酸引物:
SD1-F1(SEQ ID NO.2):TGTGTGAGGATGGAGCCCAAGATCC
SD1-R1(SEQ ID NO.3):AAACGGATCTTGGGCTCCATCCTCA;
b)将单核苷酸引物SD1-F1和SD1-R1混合,通过退火反应形成二聚体结构,然后与载体片段BGK03进行连接,构建得到含有水稻SD1基因靶序列的质粒BGK03-SD1;
c)用含有BGK03-SD1质粒的根癌农杆菌EHA105侵染水稻的愈伤组织,通过潮霉素筛选,再生获得转基因水稻植株;
d)利用如SEQ ID NO.4和SEQ ID NO.5所示的水稻SD1基因的特异引物,扩增基因组片段进行测序,筛选突变植株;
SEQ ID NO.4:GGGTCATTGATTCGACCATC
SEQ ID NO.5:GTGCTCGGACACCTGGAAGAAC。
进一步地,所述水稻品种为申繁17、申繁24、申9B或申武1B。
CRISPR/Cas9系统采用的靶序列为SD1编码序列中包括5’-GN(19)NGG-3’的核酸序列,其中N为A、T、G、C中的任意一个碱基。靶序列(SEQ ID NO.1):AGGATGGAGCCCAAGATCC在水稻的基因组中是唯一的。
本发明根据CRISPR/Cas9的设计原则,在水稻SD1基因编码区确定CRISPR/Cas9系统编辑的靶位点,根据靶位点的序列设计引物,构建CRISPR/Cas9载体,用农杆菌介导的方法转化水稻愈伤组织,通过筛选鉴定,最后获得SD1突变的不含转基因DNA片段的矮杆水稻品系。该方法应用于矮杆水稻品种的选育,可以免去杂交选育的工作,大大缩短矮杆品种选育的周期。
附图说明
图1是突变植株SD1测序图。
图2是潮霉素基因PCR检测电泳图。其中“M”是DL2000分子标记,“+”是质粒阳性对照,1-6是选取的部分T1代转基因株系。
图3是水稻野生型与SD1基因敲除突变植株的主茎高度对比图。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步详细说明。
实施例1
水稻SD1基因的编码区序列如SEQ ID NO.6所示。
本实施例CRISPR/Cas9编辑靶序列长度为20bp,位于SD1编码区的第108至127碱基位,编辑的靶序列为SEQ ID NO.1:AGGATGGAGCCCAAGATCC。
根据靶序列合成两条单核苷酸引物:
SD1-F1(SEQ ID NO.2):TGTGTGAGGATGGAGCCCAAGATCC
SD1-R1(SEQ ID NO.3):AAACGGATCTTGGGCTCCATCCTCA;
通过退火反应使得引物SD1-F1和SD1-R1形成二聚体结构,然后与BGK03载体片段进行连接,构建成含有水稻SD1基因靶序列的质粒BGK03-SD1。
用电激法将BGK03-SD1质粒转化如农杆菌EHA105,将含有BGK03-SD1质粒的农杆菌EHA105在含有Kan(50μg/μl)的LB平板上划线,获得单菌落。挑单菌落接种到3ml含利福平(25mg/L)和Kan(50mg/L)的LB液体培养基中28℃摇菌培养过夜;第二天将菌液按1:20的比例接种于含利福平(25mg/L)、Kan(50mg/L)和乙酰丁香酮(20mg/L)的AB液体培养基中,28℃,200rpm摇菌培养大约4h。离心收集农杆菌,加等体积含乙酰丁香酮(20mg/L)的AAM液体培养基重悬,即可用于转化水稻的受体材料。
本实施例以粳稻3系杂交稻的恢复系申繁17和申繁24,保持系申9B和申武1B为受体材料进行农杆菌转化。每个品种去成熟的种子1000粒左右,去壳后用75%的乙醇浸泡1分钟,倒掉75%乙醇后用30%安替福民溶液消毒30分钟,用无菌水洗6次,用灭菌纱布吸干水分后将种子种到含2,4D(2mg/L)的NB培养基上26℃避光培养2周。将诱导出的愈伤组织切下,放入新的含2,4D(2mg/L)的NB培养基上,26℃培养7天。挑取状态较好的愈伤组织,于备好的农杆菌菌液中浸泡8min,期间不时摇晃。吸出或倒掉菌液,将愈伤组织用无菌滤纸吸干,接种于共培养中(含100μM乙酰丁香酮)28℃暗培养72h。取出愈伤组织,转入含有25mg/L潮霉素的筛选培养基上培养,2周后转入含有50mg/L潮霉素的筛选培养基上继续筛选。2周后将愈伤转入预分化培养基上培养1周后,再转入分化培养基光照培养,分化成苗后将小苗用1/2MS培养基生根壮苗获得T0代植株,移入田间种植。
取T0代植株叶片提取DNA,根据SD1基因的序列设计引物扩增,对PCR产物进行测序,确定靶序列发生突变的植株,所用引物序列为:
SD1-F5(SEQ ID NO.4):GGGTCATTGATTCGACCATC
SD1-R3(SEQ ID NO.5):GTGCTCGGACACCTGGAAGAAC。
突变植株SD1测序图如图1所示。
将T0代检测到有突变的植株收种,然后种植T1代。采集T1代植株的叶片提取DNA,用引物SD1-F5和SD1-R3扩增测序,确定靶序列突变类型为纯合突变或杂合突变;同时根据潮霉素基因序列设计引物,检测潮霉素基因序列的存在,以此确定外源T-DNA片段是否存在。选择靶序列突变为纯合突变同时潮霉素检测为阴性的植株进行收种。所用的潮霉素基因检测引物序列为:
HptF(SEQ ID NO.11):CGTTATGTTTATCGGCACTTTG
HptR(SEQ ID NO.12):TTGGCGACCTCGTATTGG。
图2是潮霉素基因PCR检测电泳图。其中“M”是DL2000分子标记,“+”是质粒阳性对照,1-6是选取的部分T1代转基因株系。
表1是水稻野生型与SD1基因敲除突变植株的主茎高度记录表,图3是水稻野生型与SD1基因敲除突变植株的主茎高度对比图。
Figure BDA0001226403000000041
从表1和附图3可以看出,水稻突变体主茎明显缩短。
本发明通过本发明根据CRISPR/Cas9的设计原则,在水稻SD1基因编码区确定CRISPR/Cas9系统编辑的靶位点,根据靶位点的序列设计引物,构建CRISPR/Cas9载体,用农杆菌介导的方法转化水稻愈伤组织,通过筛选鉴定,最后获得SD1突变的不含转基因DNA片段的矮杆水稻品系。该方法应用于矮杆水稻品种的选育,可以免去杂交选育的工作,大大缩短矮杆品种选育的周期。
SEQUENCE LISTING
<110> 上海市农业科学院
<120> 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法
<130>
<160> 12
<170> PatentIn version 3.3
<210> 1
<211> 19
<212> DNA
<213> SD1基因编码区108-127核酸序列
<400> 1
aggatggagc ccaagatcc 19
<210> 2
<211> 25
<212> DNA
<213> 人工序列
<400> 2
tgtgtgagga tggagcccaa gatcc 25
<210> 3
<211> 25
<212> DNA
<213> 人工序列
<400> 3
aaacggatct tgggctccat cctca 25
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<400> 4
gggtcattga ttcgaccatc 20
<210> 5
<211> 22
<212> DNA
<213> 人工序列
<400> 5
gtgctcggac acctggaaga ac 22
<210> 6
<211> 1170
<212> DNA
<213> 水稻SD1基因编码区
<400> 6
atggtggccg agcaccccac gccaccacag ccgcaccaac caccgcccat ggactccacc 60
gccggctctg gcattgccgc cccggcggcg gcggcggtgt gcgacctgag gatggagccc 120
aagatcccgg agccattcgt gtggccgaac ggcgacgcga ggccggcgtc ggcggcggag 180
ctggacatgc ccgtggtcga cgtgggcgtg ctccgcgacg gcgacgccga ggggctgcgc 240
cgcgccgcgg cgcaggtggc cgccgcgtgc gccacgcacg ggttcttcca ggtgtccgag 300
cacggcgtcg acgccgctct ggcgcgcgcc gcgctcgacg gcgccagcga cttcttccgc 360
ctcccgctcg ccgagaagcg ccgcgcgcgc cgcgtcccgg gcaccgtgtc cggctacacc 420
agcgcccacg ccgaccgctt cgcctccaag ctcccatgga aggagaccct ctccttcggc 480
ttccacgacc gcgccgccgc ccccgtcgtc gccgactact tctccagcac cctcggcccc 540
gacttcgcgc caatggggag ggtgtaccag aagtactgcg aggagatgaa ggagctgtcg 600
ctgacgatca tggaactcct ggagctgagc ctgggcgtgg agcgaggcta ctacagggag 660
ttcttcgcgg acagcagctc aatcatgcgg tgcaactact acccgccatg cccggagccg 720
gagcggacgc tcggcacggg cccgcactgc gaccccaccg ccctcaccat cctcctccag 780
gacgacgtcg gcggcctcga ggtcctcgtc gacggcgaat ggcgccccgt cagccccgtc 840
cccggcgcca tggtcatcaa catcggcgac accttcatgg cgctgtcgaa cgggaggtat 900
aagagctgcc tgcacagggc ggtggtgaac cagcggcggg agcggcggtc gctggcgttc 960
ttcctgtgcc cgcgggagga cagggtggtg cggccgccgc cgagcgccgc cacgccgcag 1020
cactacccgg acttcacctg ggccgacctc atgcgcttca cgcagcgcca ctaccgcgcc 1080
gacacccgca cgctcgacgc cttcacgcgc tggctcgcgc cgccggccgc cgacgccgcc 1140
gcgacggcgc aggtcgaggc ggccagctga 1170
<210> 7
<211> 1145
<212> DNA
<213> 申繁17突变植株SD1基因突变序列
<400> 7
atggtggccg agcaccccac gccaccacag ccgcaccaac caccgcccat ggactccacc 60
gccggctctg gcattgccgc cccggcggcg gcggcggtgt gcgacctgag gatggatggc 120
cgaacggcga cgcgaggccg gcgtcggcgg cggagctgga catgcccgtg gtcgacgtgg 180
gcgtgctccg cgacggcgac gccgaggggc tgcgccgcgc cgcggcgcag gtggccgccg 240
cgtgcgccac gcacgggttc ttccaggtgt ccgagcacgg cgtcgacgcc gctctggcgc 300
gcgccgcgct cgacggcgcc agcgacttct tccgcctccc gctcgccgag aagcgccgcg 360
cgcgccgcgt cccgggcacc gtgtccggct acaccagcgc ccacgccgac cgcttcgcct 420
ccaagctccc atggaaggag accctctcct tcggcttcca cgaccgcgcc gccgcccccg 480
tcgtcgccga ctacttctcc agcaccctcg gccccgactt cgcgccaatg gggagggtgt 540
accagaagta ctgcgaggag atgaaggagc tgtcgctgac gatcatggaa ctcctggagc 600
tgagcctggg cgtggagcga ggctactaca gggagttctt cgcggacagc agctcaatca 660
tgcggtgcaa ctactacccg ccatgcccgg agccggagcg gacgctcggc acgggcccgc 720
actgcgaccc caccgccctc accatcctcc tccaggacga cgtcggcggc ctcgaggtcc 780
tcgtcgacgg cgaatggcgc cccgtcagcc ccgtccccgg cgccatggtc atcaacatcg 840
gcgacacctt catggcgctg tcgaacggga ggtataagag ctgcctgcac agggcggtgg 900
tgaaccagcg gcgggagcgg cggtcgctgg cgttcttcct gtgcccgcgg gaggacaggg 960
tggtgcggcc gccgccgagc gccgccacgc cgcagcacta cccggacttc acctgggccg 1020
acctcatgcg cttcacgcag cgccactacc gcgccgacac ccgcacgctc gacgccttca 1080
cgcgctggct cgcgccgccg gccgccgacg ccgccgcgac ggcgcaggtc gaggcggcca 1140
gctga 1145
<210> 8
<211> 1171
<212> DNA
<213> 申繁24突变植株SD1基因突变序列
<400> 8
atggtggccg agcaccccac gccaccacag ccgcaccaac caccgcccat ggactccacc 60
gccggctctg gcattgccgc cccggcggcg gcggcggtgt gcgacctgag gatggagccc 120
aagaatcccg gagccattcg tgtggccgaa cggcgacgcg aggccggcgt cggcggcgga 180
gctggacatg cccgtggtcg acgtgggcgt gctccgcgac ggcgacgccg aggggctgcg 240
ccgcgccgcg gcgcaggtgg ccgccgcgtg cgccacgcac gggttcttcc aggtgtccga 300
gcacggcgtc gacgccgctc tggcgcgcgc cgcgctcgac ggcgccagcg acttcttccg 360
cctcccgctc gccgagaagc gccgcgcgcg ccgcgtcccg ggcaccgtgt ccggctacac 420
cagcgcccac gccgaccgct tcgcctccaa gctcccatgg aaggagaccc tctccttcgg 480
cttccacgac cgcgccgccg cccccgtcgt cgccgactac ttctccagca ccctcggccc 540
cgacttcgcg ccaatgggga gggtgtacca gaagtactgc gaggagatga aggagctgtc 600
gctgacgatc atggaactcc tggagctgag cctgggcgtg gagcgaggct actacaggga 660
gttcttcgcg gacagcagct caatcatgcg gtgcaactac tacccgccat gcccggagcc 720
ggagcggacg ctcggcacgg gcccgcactg cgaccccacc gccctcacca tcctcctcca 780
ggacgacgtc ggcggcctcg aggtcctcgt cgacggcgaa tggcgccccg tcagccccgt 840
ccccggcgcc atggtcatca acatcggcga caccttcatg gcgctgtcga acgggaggta 900
taagagctgc ctgcacaggg cggtggtgaa ccagcggcgg gagcggcggt cgctggcgtt 960
cttcctgtgc ccgcgggagg acagggtggt gcggccgccg ccgagcgccg ccacgccgca 1020
gcactacccg gacttcacct gggccgacct catgcgcttc acgcagcgcc actaccgcgc 1080
cgacacccgc acgctcgacg ccttcacgcg ctggctcgcg ccgccggccg ccgacgccgc 1140
cgcgacggcg caggtcgagg cggccagctg a 1171
<210> 9
<211> 1171
<212> DNA
<213> 申9B突变植株SD1基因突变序列
<400> 9
atggtggccg agcaccccac gccaccacag ccgcaccaac caccgcccat ggactccacc 60
gccggctctg gcattgccgc cccggcggcg gcggcggtgt gcgacctgag gatggagccc 120
aagaatcccg gagccattcg tgtggccgaa cggcgacgcg aggccggcgt cggcggcgga 180
gctggacatg cccgtggtcg acgtgggcgt gctccgcgac ggcgacgccg aggggctgcg 240
ccgcgccgcg gcgcaggtgg ccgccgcgtg cgccacgcac gggttcttcc aggtgtccga 300
gcacggcgtc gacgccgctc tggcgcgcgc cgcgctcgac ggcgccagcg acttcttccg 360
cctcccgctc gccgagaagc gccgcgcgcg ccgcgtcccg ggcaccgtgt ccggctacac 420
cagcgcccac gccgaccgct tcgcctccaa gctcccatgg aaggagaccc tctccttcgg 480
cttccacgac cgcgccgccg cccccgtcgt cgccgactac ttctccagca ccctcggccc 540
cgacttcgcg ccaatgggga gggtgtacca gaagtactgc gaggagatga aggagctgtc 600
gctgacgatc atggaactcc tggagctgag cctgggcgtg gagcgaggct actacaggga 660
gttcttcgcg gacagcagct caatcatgcg gtgcaactac tacccgccat gcccggagcc 720
ggagcggacg ctcggcacgg gcccgcactg cgaccccacc gccctcacca tcctcctcca 780
ggacgacgtc ggcggcctcg aggtcctcgt cgacggcgaa tggcgccccg tcagccccgt 840
ccccggcgcc atggtcatca acatcggcga caccttcatg gcgctgtcga acgggaggta 900
taagagctgc ctgcacaggg cggtggtgaa ccagcggcgg gagcggcggt cgctggcgtt 960
cttcctgtgc ccgcgggagg acagggtggt gcggccgccg ccgagcgccg ccacgccgca 1020
gcactacccg gacttcacct gggccgacct catgcgcttc acgcagcgcc actaccgcgc 1080
cgacacccgc acgctcgacg ccttcacgcg ctggctcgcg ccgccggccg ccgacgccgc 1140
cgcgacggcg caggtcgagg cggccagctg a 1171
<210> 10
<211> 1168
<212> DNA
<213> 申武1B突变植株SD1基因突变序列
<400> 10
atggtggccg agcaccccac gccaccacag ccgcaccaac caccgcccat ggactccacc 60
gccggctctg gcattgccgc cccggcggcg gcggcggtgt gcgacctgag gatggagccc 120
aatcccggag ccattcgtgt ggccgaacgg cgacgcgagg ccggcgtcgg cggcggagct 180
ggacatgccc gtggtcgacg tgggcgtgct ccgcgacggc gacgccgagg ggctgcgccg 240
cgccgcggcg caggtggccg ccgcgtgcgc cacgcacggg ttcttccagg tgtccgagca 300
cggcgtcgac gccgctctgg cgcgcgccgc gctcgacggc gccagcgact tcttccgcct 360
cccgctcgcc gagaagcgcc gcgcgcgccg cgtcccgggc accgtgtccg gctacaccag 420
cgcccacgcc gaccgcttcg cctccaagct cccatggaag gagaccctct ccttcggctt 480
ccacgaccgc gccgccgccc ccgtcgtcgc cgactacttc tccagcaccc tcggccccga 540
cttcgcgcca atggggaggg tgtaccagaa gtactgcgag gagatgaagg agctgtcgct 600
gacgatcatg gaactcctgg agctgagcct gggcgtggag cgaggctact acagggagtt 660
cttcgcggac agcagctcaa tcatgcggtg caactactac ccgccatgcc cggagccgga 720
gcggacgctc ggcacgggcc cgcactgcga ccccaccgcc ctcaccatcc tcctccagga 780
cgacgtcggc ggcctcgagg tcctcgtcga cggcgaatgg cgccccgtca gccccgtccc 840
cggcgccatg gtcatcaaca tcggcgacac cttcatggcg ctgtcgaacg ggaggtataa 900
gagctgcctg cacagggcgg tggtgaacca gcggcgggag cggcggtcgc tggcgttctt 960
cctgtgcccg cgggaggaca gggtggtgcg gccgccgccg agcgccgcca cgccgcagca 1020
ctacccggac ttcacctggg ccgacctcat gcgcttcacg cagcgccact accgcgccga 1080
cacccgcacg ctcgacgcct tcacgcgctg gctcgcgccg ccggccgccg acgccgccgc 1140
gacggcgcag gtcgaggcgg ccagctga 1168
<210> 11
<211> 22
<212> DNA
<213> 人工序列
<400> 11
cgttatgttt atcggcactt tg 22
<210> 12
<211> 18
<212> DNA
<213> 人工序列
<400> 12
ttggcgacct cgtattgg 18

Claims (2)

1.使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法,其特征在于,包括如下步骤:
a)选择SD1基因编码区第108至127核酸序列作为CRISPR/Cas9系统的靶序列(SEQ IDNO.1): AGGATGGAGCCCAAGATCC;
根据靶序列设计两条单核苷酸引物:
SD1-F1(SEQ ID NO.2):TGTGTGAGGATGGAGCCCAAGATCC
SD1-R1(SEQ ID NO.3):AAACGGATCTTGGGCTCCATCCTCA;
b)将单核苷酸引物SD1-F1和SD1-R1混合,通过退火反应形成二聚体结构,然后与载体片段BGK03进行连接,构建得到含有水稻SD1基因靶序列的质粒BGK03-SD1;
c)用含有BGK03-SD1质粒的根癌农杆菌EHA105侵染水稻的愈伤组织,通过潮霉素筛选,再生获得转基因水稻植株;
d)利用如SEQ ID NO.4和SEQ ID NO.5所示的水稻SD1基因的特异引物,扩增基因组片段进行测序,筛选突变植株;
SEQ ID NO.4:GGGTCATTGATTCGACCATC
SEQ ID NO.5:GTGCTCGGACACCTGGAAGAAC。
2.根据权利要求1所述的方法,其特征在于,所述水稻品种为申繁17、申繁24、申9B或申武1B。
CN201710082775.1A 2017-02-16 2017-02-16 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法 Active CN106957855B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710082775.1A CN106957855B (zh) 2017-02-16 2017-02-16 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710082775.1A CN106957855B (zh) 2017-02-16 2017-02-16 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法

Publications (2)

Publication Number Publication Date
CN106957855A CN106957855A (zh) 2017-07-18
CN106957855B true CN106957855B (zh) 2020-04-17

Family

ID=59481550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710082775.1A Active CN106957855B (zh) 2017-02-16 2017-02-16 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法

Country Status (1)

Country Link
CN (1) CN106957855B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
AU2015298571B2 (en) 2014-07-30 2020-09-03 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
IL258821B (en) 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
CN109804066A (zh) 2016-08-09 2019-05-24 哈佛大学的校长及成员们 可编程cas9-重组酶融合蛋白及其用途
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR102622411B1 (ko) 2016-10-14 2024-01-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
GB2575930A (en) 2017-03-23 2020-01-29 Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
EP3676376A2 (en) 2017-08-30 2020-07-08 President and Fellows of Harvard College High efficiency base editors comprising gam
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
CN109338001B (zh) * 2018-11-01 2021-05-14 浙江省农业科学院 一种鉴定水稻半矮秆基因sd1等位基因的分子标记及矮源基因鉴定方法
CN109486829B (zh) * 2018-11-01 2020-11-03 浙江省农业科学院 一种水稻半矮秆基因sd1等位基因及其鉴定方法
WO2020191249A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
CN111440819B (zh) * 2020-04-03 2023-06-13 保山华大智慧农业科技股份有限公司 多基因敲除突变体在旱稻育种中的应用
CN111304241B (zh) * 2020-04-03 2023-08-01 保山华大智慧农业科技股份有限公司 一种多基因编辑提高旱稻产量的方法
MX2022014008A (es) 2020-05-08 2023-02-09 Broad Inst Inc Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo.
CN113265422B (zh) * 2021-05-24 2023-05-26 扬州大学 靶向敲除水稻粒型调控基因slg7的方法、水稻粒型调控基因slg7突变体及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000260A (ja) * 2001-06-19 2003-01-07 Honda Motor Co Ltd 植物の半矮性化に関与するsd1遺伝子、並びにその利用
CN106086062A (zh) * 2016-04-19 2016-11-09 上海市农业科学院 一种获得番茄基因组定点敲除突变体的方法

Also Published As

Publication number Publication date
CN106957855A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
CN106957855B (zh) 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法
WO2020007331A1 (zh) 一种利用CRISPR/Cas9系统对紫花苜蓿基因定点突变的方法
CN108728486A (zh) 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用
AU2019297209B2 (en) Method of obtaining multi-leaf alfalfa material by means of MsPALM1 artificial site-directed mutant
CN107338265B (zh) 一种基因编辑系统及应用其对植物基因组进行编辑的方法
CN113801891B (zh) 甜菜BvCENH3基因单倍体诱导系的构建方法与应用
CN110699379A (zh) 一种农杆菌介导的以高粱成熟胚为外植体诱导愈伤组织的遗传转化方法
CN112322631B (zh) 一种抗草甘膦转基因大豆的培育方法
US11365423B2 (en) Method of obtaining multileaflet Medicago sativa materials by means of MsPALM1 artificial site-directed mutants
CN107058317B (zh) 一种花粉特异性启动子及其应用
CN113265403A (zh) 大豆Dt1基因编辑位点及其应用
CN106480084B (zh) OsLAC13和miR397a/b在培育高结实率或高产水稻中的应用
CN110878302B (zh) 利用CRISPR/Cas9系统敲除甘蓝型油菜Bna.TT8基因的方法和应用
CN109852634B (zh) 一种培育高结瘤固氮转基因植物的方法
CN108165578B (zh) 一种同时针对芥蓝同一基因家族多个成员突变体的高效制备方法
CN114350673B (zh) 一种调控种子活力的水稻kob1基因及其调控方法
CN110951742B (zh) 一种不产生dna双链断裂的实现植物基因替换的方法
CN114438056A (zh) CasF2蛋白、CRISPR/Cas基因编辑系统及其在植物基因编辑中的应用
JP3755876B2 (ja) 選択マーカーを含まない組換え植物の作出方法、ならびに該方法により作出される組換え植物
CN112063651A (zh) 一种利用CRISPR/Cas9定向编辑结球甘蓝基因的方法及应用
CN113136388B (zh) 水稻OsMAPKKK5基因在改良水稻的株高和粒型方面的应用
CN116769799B (zh) 一种提高豆科作物产量的大豆突变基因及其应用
CN114591984B (zh) OsAP79基因诱导水稻抗褐飞虱的应用
Otani et al. Genetic transformation of sweet potato (Ipomoea batatas (L.) Lam.) by Agrobacterium tumefaciens
CN113151352B (zh) 一种八倍体油菜转基因方法以及在基因编辑中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201110

Address after: 201106 Shanghai city Minhang District North Zhai Road No. 2901

Patentee after: Shanghai Academy of Agricultural Sciences

Patentee after: SHANGHAI AGRICULTURAL TECHNOLOGY SEED & GERMCHIT Co.,Ltd.

Address before: 201403, No. 1000, Qi Lu, Shanghai, Fengxian District

Patentee before: Shanghai Academy of Agricultural Sciences

TR01 Transfer of patent right