CN108728486A - 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用 - Google Patents

一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用 Download PDF

Info

Publication number
CN108728486A
CN108728486A CN201810637465.6A CN201810637465A CN108728486A CN 108728486 A CN108728486 A CN 108728486A CN 201810637465 A CN201810637465 A CN 201810637465A CN 108728486 A CN108728486 A CN 108728486A
Authority
CN
China
Prior art keywords
eggplant
cas9
culture mediums
crispr
grna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810637465.6A
Other languages
English (en)
Inventor
杨艳
庄勇
周晓慧
刘军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Academy of Agricultural Sciences
Original Assignee
Jiangsu Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Academy of Agricultural Sciences filed Critical Jiangsu Academy of Agricultural Sciences
Priority to CN201810637465.6A priority Critical patent/CN108728486A/zh
Publication of CN108728486A publication Critical patent/CN108728486A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

本发明涉及一种茄子CRISPR/Cas9基因敲除载体的构建和应用,属于生物技术领域。是以茄子WRKY26基因的基因组DNA序列为参照,设计靶位点gRNA;构建靶位点gRNA和Cas9蛋白的表达盒;再将gRNA和Cas9蛋白的表达盒插入到双元表达载体pCAMBIA1301。将重组质粒转入农杆菌EHA105菌株中,并由EHA105介导转化茄子子叶,获得遗传转化植株,经PCR和测序验证确定突变株系。本发明以茄子SmWRKY26基因为例,快速简单高效率地对茄子基因进行了地定点突变。

Description

一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用
技术领域
本发明涉及生物技术领域,具体涉及一种茄子CRISPR/Cas9基因编辑载体的构建方法和应用。
背景技术
茄子是重要的茄科蔬菜之一。随着茄子基因组数据的公开,针对茄子基因功能的研究和茄子现代分子育种得到了快速发展。例如,病毒诱导的基因沉默、RNAi、过量表达等基因功能研究手段以及分子标记育种、转基因育种和分子设计育种为代表的现代分子育种手段在茄子研究中占据一定地位。但这些手段存在一些缺点:得到的材料不能稳定遗传,非定点敲除,育种周期长等。
基因组编辑技术已成为基因功能研究和精准的分子育种等重要手段。常用的基因组编辑技术主要包括锌指核酸酶(Zinc finger nuclease,ZFN)、类转录激活因子效应物核酸酶(Transcription activator-like effector nuclease,TALEN)和成簇的规律间隔的短回文重复序列及其相关系统(Clustered regularly interspaced shore palindromicrepeats/CRISPR associated,CRISPR/Cas system)。而在CRISPR/Cas系统中以Ⅱ型的CRISPR/Cas9系统应用最为常见。与ZFN和TALEN这两种编辑技术相比,CRISPR/Cas9具有如下几点优点:(1)操作简单,可直接通过RNA与靶序列的碱基互补完成;(2)靶位点的识别广泛,可识别切割甲基化位点;(3)灵活高效,可同时对多个靶位点进行编辑。因此,自2013年CRISPR/Cas9基因编辑技术的建立以来,CRISPR/Cas9已经被广泛应用于多种物种的基因和基因组编辑研究。其原理是在20nt长的碱基靶序列(gRNA)的引导下,完成靶位点的识别,然后Cas9核酸酶切割靶点双链,形成DNA双链断裂缺口(DSB),激活细胞内的两种修复机制(即非同源末端连接或同源重组),从而产生断口处碱基缺失、插入和替换。
CRISPR/Cas9编辑技术在植物中的应用主要集中在模式植物拟南芥、农作物水稻、小麦、棉花以及蔬菜作物番茄中。然而,到目前为止尚未见有关CRISPR/Cas9技术在与番茄同科的茄子上的应用报道。因此,本发明以茄子SmWRKY26基因为例,建立了茄子CRISPR/Cas9基因编辑载体的构建方法,为CRISPR/Cas9基因编辑技术在茄子中的应用奠定了坚实基础。
发明内容
技术问题
本发明所要解决的问题是:针对茄子基因功能研究和育种研究中存在的无法定点敲除基因、无法获得稳定的和无外源基因插入的突变体的问题,提供一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用。
技术方案
一种茄子CRISPR/Cas9基因敲除载体的构建方法,包括:将含gRNA和Cas9蛋白的表达盒插入到pCAMBIA1301载体中产生敲除编辑载体和农杆菌介导的茄子遗传转化,其特征在于,gRNA靶位点设计在SmWRKY26基因5’端,序列为:P1:5’-ATTGCAGAGAGGACTGGTTC-3’;其反向互补序列P2:5’-GAACCAGTCCTCTCTGCAAT-3’;扩增靶位点对应的引物序列:P3:5’-GATTGATTGCAGAGAGGACTGGTTC-3’;
P4:5’-AAACGAACCAGTCCTCTCTGCAATC-3’。
具体包括以下步骤:
(1)gRNA靶位点的选择
根据CRISPR/Cas9技术设计靶位点的原则,把gRNA靶位点设计在SmWRKY26(Sme2.5_01585.1_g00006.1)的5’端第一个外显子上,序列为
P1:5’-ATTGCAGAGAGGACTGGTTC-3’,
P2:5’-GAACCAGTCCTCTCTGCAAT-3’;
(2)gRNA的设计和退火
以SmWRKY26基因组DNA SEQ ID NO:1为参照,设计扩增gRNA的引物序列,序列如下:根据psgR-cas9-At载体经BbsI酶切后产生的粘性末端序列以及G为转录起始位点的原则,设计扩增靶位点对应的引物序列:
P3:5’-GATTGATTGCAGAGAGGACTGGTTC-3’,
P4:5’-AAACGAACCAGTCCTCTCTGCAATC-3’;
将P3和P4分别稀释到10μM,并各取5μl等体积混合,进行退火反应得到gRNA产物;
反应条件:95℃,5min;95℃(-1℃/cycle),70cycles,1min;4℃保存;
(3)gRNA插入到psgR-cas9-At载体:
16℃过夜后,连接产物转化至大肠杆菌感受态,挑取单克隆,PCR并送样测序验证,得到中间载体即为包含gRNA和Cas9蛋白的表达盒,命名为pEA1;
(4)pEA1和pCAMBIA1301双酶切,37℃水浴3h后纯化酶切产物;pEA1和pCAMBIA1301的酶切产物分以5:1的摩尔比进行混合,加入1μl T4连接酶和1μl连接酶buffer,16℃过夜;连接产物转化至大肠杆菌感受态,挑取单克隆,PCR并送样测序验证,得到最终编辑载体命名为pEA2;酶切体系如下:
(5)遗传转化:将编辑载体pEA2电转化农杆菌EHA105感受态细胞,筛选阳性克隆;以茄子子叶为外植体进行遗传转化,经潮霉素抗性筛选,愈伤组织再生,获得遗传转化植株,并进行PCR和测序验证。
所述的遗传转化,包括以下步骤:
(1)将编辑载体pEA2通过电击转化法导入农杆菌EHA105感受态中;
(2)在超净工作台上,先用75%的乙醇浸泡茄子种子30s后,用10%NaClO消毒20min,无菌水冲洗种子5次,确保洗去残留消毒液,将茄子种子接种于1/2MS培养基中,28℃黑暗条件下培养至萌发,转入光照培养;
(3)种子萌发后10天子叶完全展开,用刀片将子叶切成4mm×4mm的外植体小段,将子叶正面朝上置于YMS培养基中预培养2天;
(4)将含有编辑载体的农杆菌在含有抗生素的YEP培养基上划板,挑取单菌落接种于含有抗生素的YEP液体培养基中,28℃,200r/min过夜培养至OD600为1.0,4000r/min离心10min,倒出上清,加入含有200μM乙酰丁香酮的液体XMS培养基进行重悬至OD600为0.3;
(5)将外植体浸泡在悬浮液中,并轻轻晃动培养皿,暗下侵染5min,待外植体表明残留的菌液吸干,将外植体背面朝上置于YMS培养基,避光共培养2d;
(6)共培养2d后,将外植体转入MS2Z愈伤诱导培养基上,诱导愈伤;
(7)2周后将愈伤组织转入MS0.2Z芽分化培养基上进行芽诱导,直至芽伸长至1cm,将芽切下放入RMS培养基进行生根,诱导芽期间每2周进行一次继代;
(8)利用CTAB法提取再生植株基因组DNA,进行PCR验证和测序。
其中:
(1)所述的1/2MS培养基包括:2.22g/LMS、10g/L蔗糖、8g/LAgar、pH5.8;
(2)所述的YMS培养基包括:4.43g/LMS、30g/L蔗糖、5.2g/LAgar、pH5.8;
(3)所述的XMS培养基包括:4.43g/LMS、20g/L蔗糖、2mg/L玉米素、pH5.8;
(4)所述的MS2Z培养基包括:4.43g/LMS、20g/L蔗糖、2mg/L玉米素、360mg/L特美汀、6g/L潮霉素、7.4g/LAgar、pH5.8;
(5)所述的MS0.2Z培养基包括:4.43g/LMS、20g/L蔗糖、0.2mg/L玉米素、360mg/L特美汀、6g/L潮霉素、7.4g/LAgar、pH5.8;
(6)所述的RMS培养基包括:4.43g/LMS、30g/L蔗糖、0.1mg/L IBA、360mg/L特美汀、6g/L潮霉素、8g/LAgar、pH5.8。
所述方法构建的茄子CRISPR/Cas9基因敲除载体可以在相关功能基因方面得到应用。
有益效果
本发明根据CRISPR/Cas9技术设计靶位点的原则,把靶位点设计在SmWRKY26基因的第一个外显子上,并以茄子SmWRKY26基因的基因组序列为参考设计靶序列;本发明还摸索了一整套高效率的遗传转化方法,能够运用CRISPR/Cas9系统敲除茄子基因的编辑方法能够快速、高效地获得茄子基因组定点敲除突变体,为茄子基因功能研究和创制茄子新种质奠定基础。
试验结果经分析发现,以三月茄(公知公用,张兴国,刘元清,杨正安,等.2001.茄子遗传转化体系的建立[J].西南农业大学学报,(03):233-234.)为背景的突变株系1#和2#分别存在1bp碱基和3碱基缺失,以成都墨茄(张淑芬.1989.成都三个名茄[J].长江蔬菜,(05):22-23.)为背景的株系3#也存在3碱基突变,同时测序图谱显示1#、2#和3#株系DNA的PCR产物均存在双峰,说明这三个株系为非纯合株系,此结果说明高效率得到了gRNA靶位点定点突变的植株。
附图说明
图1为最终的pEA2载体示意图;
图2为野生型中SmWRKY26靶位点的序列和用此发明发生突变的序列;
图3野生型和突变株系的靶位点突变测序图谱;
具体实施方式
下述实施例中所用实验方法如无特殊说明,均为常规方法。
下述实施例中所用实验材料、试剂等,如无特殊说明,均可从商业途径得到。
下面结合具体实施例对本发明进一步进行描述。
实施例茄子SmWRKY26(Sme2.5_01585.1_g00006.1)基因敲除株系的获得与鉴定
1.gRNA靶位点的选择
根据CRISPR/Cas9技术设计靶位点的原则,本发明靶位点设计在SmWRKY26基因的第一个外显子上。见SEQ ID NO:1,粗体部分为SmWRKY26外显子,划线部分为gRNA靶位点序列;
2.gRNA的设计和退火
2.1以SmWRKY26基因组DNA SEQ ID NO:1为参照,设计扩增gRNA的引物序列,序列如下:
P3:5’-GATTGATTGCAGAGAGGACTGGTTC-3’
P4:5’-AAACGAACCAGTCCTCTCTGCAATC-3’
2.2退火
将P3和P4分别稀释到10μM,并各取5μl等体积混合,进行退火反应得到gRNA产物;
反应条件:95℃,5min;95℃(-1℃/cycle),70cycles,1min;4℃保存;
3.gRNA插入到psgR-cas9-At载体(Mao Y,Zhang H,Xu N,Zhang B,Gou F,ZhuJ.Application of the CRISPR–Cas System for Efficient Genome Engineering inPlants.Molecular Plant.2013.6(6):2008-2011.),得到中间载体pEA1
3.1psgR-cas9-At质粒的酶切
psgR-cas9-At 20μl
BbsⅠ 2μl
10×Buffer G 5μl
ddH2O 23μl
合计 50μl
37℃水浴3h后纯化;
3.2连接反应
16℃水浴,过夜;
3.3连接产物转化至大肠杆菌感受态,挑取单克隆,PCR并送样测序验证,得到中间载体pEA1;
4.最终编辑载体构建
4.1 pEA1和pCAMBIA1301双酶切
pEA1/pCAMBIA1301 20μl
HindⅢ 1.5μl
Kpn Ⅰ 1.5μl
10×FD buffer 5μl
ddH2O 22μl
合计 50μl
37℃水浴3h后纯化;
4.2连接反应
pEA1和pCAMBIA1301的酶切产物分以5:1的摩尔比进行混合,加入1μl T4连接酶和1μl连接酶buffer,16℃过夜;
4.3连接产物转化至大肠杆菌感受态,挑取单克隆,PCR并送样测序验证,得到最终编辑载体pEA2;
5.利用电击转化法将质粒pEA2转化至农杆菌株系EHA105感受态细胞,并进行筛选鉴定;
6.在超净工作台上,先用75%的乙醇浸泡茄子种子30s后,用10%NaClO消毒20min,无菌水冲洗种子5次,确保洗去残留消毒液。将茄子种子接种于1/2MS培养基中,28℃黑暗条件下培养至萌发,转入光照培养;
7.种子萌发后10天子叶完全展开,用刀片将子叶切成4mm×4mm的外植体小段,将子叶正面朝上置于YMS培养基中预培养1-4天;
8.将含有编辑载体的农杆菌在含抗生素的YEP培养基上划板,挑取单菌落接种于含有抗生素的YEP液体培养基中,28℃,200r/min过夜培养至OD600为1.0。4000r/min离心10min,倒出上清,加入含有200μM乙酰丁香酮的液体XMS培养基进行重悬至OD600为0.1-0.5;
9.将外植体浸泡在悬浮液中,并轻轻晃动培养皿,暗下分别侵染3min、5min和10min。待外植体表明残留的菌液吸干,将外植体背面朝上置于YMS培养基,避光共培养2d;
10.共培养1-4d后,将外植体转入愈伤诱导培养基上,诱导愈伤;培养基中不同浓度激素组合如下:
表1不同浓度的NAA和ZT对愈伤诱导的影响
由表1可知,当愈伤诱导培养基中添加2mg/L ZT时,愈伤组织诱导效果最好。
11.2周后将愈伤组织转入芽诱导培养基上进行芽诱导,直至芽伸长至1cm,将芽切下放入RMS培养基进行生根。诱导芽期间每2周进行一次继代;芽诱导和生根培养基中不同浓度激素组合分别如下:
表2不同浓度的NAA和ZT对芽分化的影响
由表2可以看出,在含有0.2mg/LZT的芽分化培养基上,愈伤分化成苗的效果最佳能达到10%以上。
表3不同浓度IBA对再生植株生根的影响
由表3可知,IBA浓度在0.1mg/L为最适宜不定芽生根的浓度。
综上所述,遗传转化结果:以预培养2天,侵染液OD600为0.3,暗下侵染时间为5min,共培养基上共培养2d,含有2mg/L ZT的愈伤诱导培养基,0.2mg/LZT的芽诱导培养基以及含0.1mg/L IBA的生根培养基上进行的遗传转化效果最佳。
12.利用CTAB法提取再生植株基因组DNA,进行PCR验证和测序;
12.1设计Cas9的检测引物P8和P9,进行PCR反应,反应体系:
2×Taqmix 10μl
DNA 1μl
P8 1μl
P9 1μl
ddH2O 7μl
合计 20μl
反应程序为:94℃,3min;94℃,30s,56℃,30s,72℃,40s,28个循环;72℃延伸5min,4℃保存;
12.2在靶位点上下游分别设计引物P10和P11,进行PCR反应,反应体系和程序同12.1,将PCR产物纯化后送样测序,测序引物为P10,测序结果如图所示,测序结果经分析发现,以三月茄(公知公用,张兴国,刘元清,杨正安,等.2001.茄子遗传转化体系的建立[J].西南农业大学学报,(03):233-234.)为背景的突变株系1#和2#分别存在1bp碱基和3碱基缺失,以成都墨茄(张淑芬.1989.成都三个名茄[J].长江蔬菜,(05):22-23.)为背景的株系3#也存在3碱基突变,同时测序图谱显示1#、2#和3#株系DNA的PCR产物存在双峰,说明这三个株系为非纯合株系,相关基因功能还需待植株纯合后验证,但此结果仍说明高效率得到了gRNA靶位点定点突变的植株;
以上所述仅为本发明专利的具体实施案例,但任何参照本发明申请专利所作的变化或修饰皆涵盖在本发明的专利范围之中。
序列表
SEQ ID NO:1
茄子WRKY26基因组DNA(加粗部分为外显子序列,划线部分为gRNA序列)
SEQ ID NO:2
靶位点序列P1:
P1:5’-ATTGCAGAGAGGACTGGTTC-3’
SEQ ID NO:3
靶位点反向互补序列P2:
P2:5’-GAACCAGTCCTCTCTGCAATC-3’
SEQ ID NO:4
根据靶位点设计的oligo序列P3
P3:5’-GATTGATTGCAGAGAGGACTGGTTC-3’
SEQ ID NO:5
根据靶位点设计的oligo序列P4
P4:5’-AAACGAACCAGTCCTCTCTGCAATC-3’
SEQ ID NO:6
用于克隆中间载体pEA1检测引物P5
P5:5’-ATCTTATCGTCATCGTCTTTG-3’
SEQ ID NO:7
用于克隆中间载体pEA1测序引物P6
P6:5’-CGCCAGGGTTTTCCCAGTCACGAC-3’
SEQ ID NO:8
用于克隆编辑载体pEA2检测和测序引物P7
P7:5’-CAGGAAACAGCTATGAC-3’
SEQ ID NO:9
用于遗传转化植株Cas9检测正向引物P8
P8:5’-CCCATCTTCGGCAACATCGT-3’
SEQ ID NO:10
用于遗传转化植株Cas9检测反向引物P9
P9:5’-TGGTGGTGCTCGTCGTATCTC-3’
SEQ ID NO:11
用于遗传转化植株测序片段扩增的正向引物P10
P10:5’-CCACAGTCAAAGCCACCAAT-3’
SEQ ID NO:12
用于遗传转化植株测序片段扩增的反向引物P11
P11:5’-CGACAAAAGAACAGGGGAGTC-3’
序列表
<110> 江苏省农业科学院
<120> 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用
<141> 2018-06-19
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2588
<212> DNA
<213> 茄子(Solanum melongena)
<400> 1
ggcttgtaga atacgtgttc gttttcgttt ttaatttccc acccactccc aaacgagacg 60
aagtcaaaac cattatataa tccatttccc attgctctct tctatcttct ctctaatggc 120
tgcttcaagt ttctcttttc ccacttcttc ttcattcatg aatacttctt tcaccgacct 180
tcttgcttct gatgattatc ccaccaaagg acttgctgat agaattgcag agaggactgg 240
ttctggagtt cccaagttca agtctcttcc acctccttca ctgcctttat ctcctcctcc 300
tttttctccg tcatcttact ttgctattcc tcctggttta agtcctaccg aactattgga 360
ctcccctgtt cttttgtcgt cttcaaacgt atgtagttga gatctctctc ttctctgttt 420
tcattggatt tttcaagatg actgatgttc ttgtttaatt gtaacaattt tgcagcttct 480
tccatctccg acgacaggga cttttccagc tcaggccttt aattggaaga gcagcagcca 540
tcagcacgtt aaacaggaag acaaaaactg ctcagatttt tctttccaga cccaagtagg 600
gacagctgca tcaatctctc aatctcaaac taaccatgtc tctttggtaa tccctcgtct 660
caaattatct atcatttttt aaattacgtt aaccttgtta tagttgaggt ataatctctc 720
tccatcaatt ttgccatcgt atcaacaaaa atgagtagaa aatcttctga attctttgaa 780
gttgataaat aatttgagat aactattttt agaaaaaatg atagataatt tgaaatggag 840
ggagtatact gtttctgaat tctaagttga ctgactctct atttccttct tgtgtaaaat 900
caatagggac agcaaggatg gaattatcga gagcccgcaa aacagaatgt tctgtcatct 960
gatcaaaacg ctaatggatc tgaatacaac actctgccga gctttctttc attcaaattt 1020
gtttttatct tgtatttagt agtattttac tattatctga atacaacact ctgccgagct 1080
ttatgcagaa taataacaat cagaataata gcgggaacca atacaaccag tgtataaggg 1140
agcagaaaag gtcagatgat ggatacaatt ggaggaaata tgggcagaaa caagtaaaag 1200
gcagtgaaaa tccaagaagt tactacaagt gtacataccc aaattgtccc accaagaaga 1260
aggttgagag atctttagat ggccaaatta ctgagattgt ttataagggt aatcacaacc 1320
acccaaagcc tcagtctacc agaagatcgt cgtcatccac agcttcatct gcaatccagt 1380
cttataatac acaaactaat gaaatcccag atcatcaatc ctatggttca caaatggatt 1440
cagttgcaac acctgagaat tcttctattt catttgggga tgatgatcat gagcacactt 1500
ctcaaaagag tagtaggtca agaggagatg atcttgatga agaggaacca gactcaaaaa 1560
gatggtaagt gaaataataa tatgtcatgt atagtcaaat ctctctacaa cgacgtcgtt 1620
tgtttcaaca ttttttgact gctatagtaa aatgttttta tagagaacat atgatataac 1680
ataacataaa aggtctgttc ggctgttcca catgaaacat cgttgttaca gagagatctg 1740
actatattgt atttgtcttg aatccaattt ttggtgacat ttgaactttg ctgaatttgt 1800
tttcaggaaa agagaaagtg aaagtgaagg tctatctgta ctaggaggga gtaggacagt 1860
aagagaacct agagttgtag ttcaaactac gagtgatatt gatatcctag atgatggtta 1920
tagatggagg aagtatggtc aaaaagtagt gaagggaaat cctaatccga ggtaaaaaaa 1980
cctagtcttt gatctataaa tttggctcaa cttttttcta caagtttttg gaagttcctt 2040
aatgtggaaa ttgaaagtga acctaatttc ttgattggga tactatgtaa caggagctac 2100
tacaaatgca ccagtacggg atgtccagta agaaaacatg tggaaagggc atcacaagac 2160
ataaggtcag tgataacaac ctatgaaggg aagcacaacc atgatgttcc agcagccagg 2220
ggcagtggca accactcaat taaccgacct gtggtgccaa ccataaggcc ttccgtgaca 2280
tctcatcaat ccaactatca agttccattg caaagtataa ggccacaaca gtctgaaatg 2340
ggagcaccct ttacgctaga gatgttgcag aagcctaatg attacggttt ctcggggtat 2400
gcaaattcag aggattcata cggaaaccaa gttcaggaca ataatgtgtt ttcaagagct 2460
aagaacgagc ctcgggatga catgtttatg gagtcattgc tttgctgaaa tctcttggtg 2520
atcttgagag ctggagtcct agtaaggagc acaaatcgaa gtttatgaaa tgaaacaccg 2580
aacctttt 2588
<210> 3
<211> 20
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 3
attgcagaga ggactggttc 20
<210> 3
<211> 21
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 3
gaaccagtcc tctctgcaat c 21
<210> 4
<211> 25
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 4
gattgattgc agagaggact ggttc 25
<210> 5
<211> 25
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 5
aaacgaacca gtcctctctg caatc 25
<210> 7
<211> 21
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 7
atcttatcgt catcgtcttt g 21
<210> 7
<211> 24
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 7
cgccagggtt ttcccagtca cgac 24
<210> 8
<211> 17
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 8
caggaaacag ctatgac 17
<210> 9
<211> 20
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 9
cccatcttcg gcaacatcgt 20
<210> 10
<211> 21
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 10
tggtggtgct cgtcgtatct c 21
<210> 11
<211> 20
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 11
ccacagtcaa agccaccaat 20
<210> 12
<211> 21
<212> DNA
<213> 人工合成(Solanum melongena)
<400> 12
cgacaaaaga acaggggagt c 21

Claims (7)

1.一种茄子CRISPR/Cas9基因敲除植株的构建方法,包括:将含gRNA和Cas9蛋白的表达盒插入到pCAMBIA1301载体中产生敲除编辑载体和农杆菌介导的茄子遗传转化,其特征在于,gRNA靶位点设计在SmWRKY26基因5’端,序列为:P1:5’-ATTGCAGAGAGGACTGGTTC-3’;其反向互补序列P2:5’-GAACCAGTCCTCTCTGCAAT-3’;扩增靶位点对应的引物序列:
P3:5’-GATTGATTGCAGAGAGGACTGGTTC-3’;
P4:5’-AAACGAACCAGTCCTCTCTGCAATC-3’。
2.根据权利要求1所述的一种茄子CRISPR/Cas9基因敲除植株的构建方法,其特征在于,包括以下具体步骤:
(1)gRNA靶位点的选择
根据CRISPR/Cas9技术设计靶位点的原则,把gRNA靶位点设计在登录号为Sme2.5_01585.1_g00006.1的SmWRKY26的5’端第一个外显子上,序列为
P1:5’-ATTGCAGAGAGGACTGGTTC-3’,
P2:5’-GAACCAGTCCTCTCTGCAAT-3’;
(2)gRNA的设计和退火
以SmWRKY26基因组DNA SEQ ID NO:1为参照,设计扩增gRNA的引物序列,序列如下:根据psgR-cas9-At载体经BbsI酶切后产生的粘性末端序列以及G为转录起始位点的原则,设计扩增靶位点对应的引物序列:
P3:5’-GATTGATTGCAGAGAGGACTGGTTC-3’,
P4:5’-AAACGAACCAGTCCTCTCTGCAATC-3’;
将P3和P4分别稀释到10μM,并各取5μl等体积混合,进行退火反应得到gRNA产物;
反应条件:95℃,5min;95℃(-1℃/cycle),70cycles,1min;4℃保存;
(3)gRNA插入到psgR-cas9-At载体:
16℃过夜后,连接产物转化至大肠杆菌感受态,挑取单克隆,PCR并送样测序验证,得到中间载体即为包含gRNA和Cas9蛋白的表达盒,命名为pEA1;
(4)pEA1和pCAMBIA1301双酶切,37℃水浴3h后纯化酶切产物;pEA1和pCAMBIA1301的酶切产物分以5:1的摩尔比进行混合,加入1μl T4连接酶和1μl连接酶buffer,16℃过夜;连接产物转化至大肠杆菌感受态,挑取单克隆,PCR并送样测序验证,得到最终编辑载体命名为pEA2;酶切体系如下:
(5)遗传转化:将编辑载体pEA2电转化农杆菌EHA105感受态细胞,筛选阳性克隆;以茄子子叶为外植体进行遗传转化,经潮霉素抗性筛选,愈伤组织再生,获得遗传转化植株,并进行PCR和测序验证。
3.根据权利要求2所述的一种茄子CRISPR/Cas9基因敲除植株的构建方法,其特征在于,所述的遗传转化,包括以下步骤:
(1)将编辑载体pEA2通过电击转化法导入农杆菌EHA105感受态中;
(2)在超净工作台上,先用75%的乙醇浸泡茄子种子30s后,用10%NaClO消毒20min,无菌水冲洗种子5次,确保洗去残留消毒液,将茄子种子接种于1/2MS培养基中,28℃黑暗条件下培养至萌发,转入光照培养;
(3)种子萌发后10天子叶完全展开,用刀片将子叶切成4mm×4mm的外植体小段,将子叶正面朝上置于YMS培养基中预培养2天;
(4)将含有编辑载体的农杆菌在含有抗生素的YEP培养基上划板,挑取单菌落接种于含有抗生素的YEP液体培养基中,28℃,200r/min过夜培养至OD600为1.0,4000r/min离心10min,倒出上清,加入含有200μM乙酰丁香酮的液体XMS培养基进行重悬至OD600为0.3;
(5)将外植体浸泡在悬浮液中,并轻轻晃动培养皿,暗下侵染5min,待外植体表明残留的菌液吸干,将外植体背面朝上置于YMS培养基,避光共培养2d;
(6)共培养2d后,将外植体转入MS2Z培养基上,诱导愈伤;
(7)2周后将愈伤组织转入MS0.2Z培养基上进行芽诱导,直至芽伸长至1cm,将芽切下放入RMS培养基进行生根,诱导芽期间每2周进行一次继代;
(8)利用CTAB法提取再生植株基因组DNA,进行PCR验证和测序。
4.根据权利要求3所述的一种茄子CRISPR/Cas9基因敲除植株的构建方法,其特征在于,
(1)所述的1/2MS培养基包括:2.22g/LMS、10g/L蔗糖、8g/LAgar、pH5.8;
(2)所述的YMS培养基包括:4.43g/LMS、30g/L蔗糖、5.2g/LAgar、pH5.8;
(3)所述的XMS培养基包括:4.43g/LMS、20g/L蔗糖、2mg/L玉米素、pH5.8;
(4)所述的MS2Z培养基包括:4.43g/LMS、20g/L蔗糖、2mg/L玉米素、360mg/L特美汀、6g/L潮霉素、7.4g/LAgar、pH5.8;
(5)所述的MS0.2Z培养基包括:4.43g/LMS、20g/L蔗糖、0.2mg/L玉米素、360mg/L特美汀、6g/L潮霉素、7.4g/LAgar、pH5.8;
(6)所述的RMS培养基包括:4.43g/LMS、30g/L蔗糖、0.1mg/L IBA、360mg/L特美汀、6g/L潮霉素、8g/LAgar、pH5.8。
5.权利要求1-4之一所述方法构建的茄子CRISPR/Cas9基因敲除植株。
6.权利要求5所述茄子CRISPR/Cas9基因敲除载体的应用。
7.权利要求5所述茄子CRISPR/Cas9基因敲除载体在相关功能基因方面的应用。
CN201810637465.6A 2018-06-20 2018-06-20 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用 Pending CN108728486A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810637465.6A CN108728486A (zh) 2018-06-20 2018-06-20 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810637465.6A CN108728486A (zh) 2018-06-20 2018-06-20 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用

Publications (1)

Publication Number Publication Date
CN108728486A true CN108728486A (zh) 2018-11-02

Family

ID=63930418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810637465.6A Pending CN108728486A (zh) 2018-06-20 2018-06-20 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用

Country Status (1)

Country Link
CN (1) CN108728486A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628445A (zh) * 2018-12-03 2019-04-16 浙江万里学院 利用CRISPR/Cas9技术对葡萄ZEP基因定点编辑方法
CN109722446A (zh) * 2019-03-06 2019-05-07 江苏丘陵地区镇江农业科学研究所 一种辣椒CRISPR-Cas9基因编辑方法及其应用
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
CN110607322A (zh) * 2019-09-25 2019-12-24 山西省农业科学院作物科学研究所 一种应用于马铃薯上的CRISPR/Cas9载体的构建方法
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112042542A (zh) * 2020-09-15 2020-12-08 上海市农业科学院 一种茄子高效再生体系的建立方法
CN112063651A (zh) * 2020-08-20 2020-12-11 江苏省农业科学院 一种利用CRISPR/Cas9定向编辑结球甘蓝基因的方法及应用
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805632A (zh) * 2014-01-28 2014-05-21 浙江省农业科学院 一种转基因茄子的制备方法
CN104293828A (zh) * 2013-07-16 2015-01-21 中国科学院上海生命科学研究院 植物基因组定点修饰方法
CN106636182A (zh) * 2016-10-21 2017-05-10 山西省农业科学院蔬菜研究所 一种番茄PSY 1基因的CRISPR‑Cas9体系构建及其应用
CN107312795A (zh) * 2017-08-24 2017-11-03 浙江省农业科学院 运用CRISPR/Cas9系统创制粉色果实番茄的基因编辑方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293828A (zh) * 2013-07-16 2015-01-21 中国科学院上海生命科学研究院 植物基因组定点修饰方法
CN103805632A (zh) * 2014-01-28 2014-05-21 浙江省农业科学院 一种转基因茄子的制备方法
CN106636182A (zh) * 2016-10-21 2017-05-10 山西省农业科学院蔬菜研究所 一种番茄PSY 1基因的CRISPR‑Cas9体系构建及其应用
CN107312795A (zh) * 2017-08-24 2017-11-03 浙江省农业科学院 运用CRISPR/Cas9系统创制粉色果实番茄的基因编辑方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
NATHANIEL M. BUTLER ET AL.: "Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System", 《PLOS ONE》 *
RISA UETA ET AL.: "Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9", 《SCIENTIFIC REPORTS》 *
THOMAS B. JACOBS ET AL.: "Generation of a Collection of Mutant Tomato Lines Using Pooled CRISPR Libraries", 《PLANT PHYSIOLOGY》 *
XU YANG等: "The WRKY Transcription Factor Genes in Eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.)", 《INT. J. MOL. SCI.》 *
张明华等: "农杆菌介导抗根结线虫Bt cry6A 基因转化茄子的研究", 《核农学报》 *
胡雪娇等: "利用CRISPR/Cas9 系统定向编辑水稻SD1 基因", 《中国水稻科学》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN109628445A (zh) * 2018-12-03 2019-04-16 浙江万里学院 利用CRISPR/Cas9技术对葡萄ZEP基因定点编辑方法
CN109722446B (zh) * 2019-03-06 2022-05-31 江苏丘陵地区镇江农业科学研究所 一种辣椒CRISPR-Cas9基因编辑方法及其应用
CN109722446A (zh) * 2019-03-06 2019-05-07 江苏丘陵地区镇江农业科学研究所 一种辣椒CRISPR-Cas9基因编辑方法及其应用
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110607322A (zh) * 2019-09-25 2019-12-24 山西省农业科学院作物科学研究所 一种应用于马铃薯上的CRISPR/Cas9载体的构建方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112063651A (zh) * 2020-08-20 2020-12-11 江苏省农业科学院 一种利用CRISPR/Cas9定向编辑结球甘蓝基因的方法及应用
CN112042542A (zh) * 2020-09-15 2020-12-08 上海市农业科学院 一种茄子高效再生体系的建立方法

Similar Documents

Publication Publication Date Title
CN108728486A (zh) 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用
CN106957855B (zh) 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法
AU2019299296B2 (en) Method for site-specific mutagenesis of medicago sativa gene by using CRISPR/Cas9 system
WO2018086623A1 (en) A method for base editing in plants
CN107988229A (zh) 一种利用CRISPR-Cas修饰OsTAC1基因获得分蘖改变的水稻的方法
CN108949774B (zh) 一种利用MsPALM1 人工定点突变体获得多叶型紫花苜蓿材料的方法
CN102634522B (zh) 控制水稻育性的基因及其编码蛋白和应用
CN107338265B (zh) 一种基因编辑系统及应用其对植物基因组进行编辑的方法
CN106868036B (zh) 一种定点突变创制玉米紧凑株型种质的方法及其应用
CN112322631B (zh) 一种抗草甘膦转基因大豆的培育方法
US20210147844A1 (en) Method for Site-Specific Mutagenesis of Medicago Sativa Genes by Using CRISPR/Cas9 System
US11365423B2 (en) Method of obtaining multileaflet Medicago sativa materials by means of MsPALM1 artificial site-directed mutants
CN112126707B (zh) 来自玉米事件ca09328的核酸分子及其检测方法
CN110878302B (zh) 利用CRISPR/Cas9系统敲除甘蓝型油菜Bna.TT8基因的方法和应用
WO2019014917A1 (zh) 一种基因编辑系统及应用其对植物基因组进行编辑的方法
CN112011547A (zh) 一种控制油菜叶形的主效基因及其应用
CN108165578B (zh) 一种同时针对芥蓝同一基因家族多个成员突变体的高效制备方法
CN105671075B (zh) 水稻OsCSA基因的应用及其定点敲除方法
CN103320463B (zh) 用RNAi技术控制水稻育性基因获得水稻不育系的方法
CN112522299A (zh) 一种利用OsTNC1基因突变获得分蘖增加的水稻的方法
Chopy et al. Genome editing by CRISPR-Cas9 technology in Petunia hybrida
CN111979233A (zh) 一种增大水稻粒型的方法及其应用
CN110699363B (zh) 水稻反转座子基因LOC_Os11g45295及其编码蛋白与应用
CN113151352B (zh) 一种八倍体油菜转基因方法以及在基因编辑中的应用
CN110628813B (zh) 水稻脂肪酶基因Os07g0586800及其编码蛋白的功能和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181102

WD01 Invention patent application deemed withdrawn after publication