CN106191064B - 一种制备mc4r基因敲除猪的方法 - Google Patents

一种制备mc4r基因敲除猪的方法 Download PDF

Info

Publication number
CN106191064B
CN106191064B CN201610587597.3A CN201610587597A CN106191064B CN 106191064 B CN106191064 B CN 106191064B CN 201610587597 A CN201610587597 A CN 201610587597A CN 106191064 B CN106191064 B CN 106191064B
Authority
CN
China
Prior art keywords
crispr
sgrna
cell
pig
mc4r gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610587597.3A
Other languages
English (en)
Other versions
CN106191064A (zh
Inventor
李秋艳
郝海阳
韩建永
邹云龙
付怡静
李志远
尹志安
罗洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201610587597.3A priority Critical patent/CN106191064B/zh
Publication of CN106191064A publication Critical patent/CN106191064A/zh
Application granted granted Critical
Publication of CN106191064B publication Critical patent/CN106191064B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • C12N15/877Techniques for producing new mammalian cloned embryos
    • C12N15/8778Swine embryos
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Abstract

本发明涉及基因工程和遗传修饰领域,具体地说,涉及利用CRISPR/Cas9系统对MC4R基因进行编辑,并通过体细胞核移植技术获得MC4R基因敲除猪。本发明首次针对猪MC4R基因的CDS区的两个位点(MC4R基因CDS区的6133‑6152bp序列和7127‑7146bp序列)设计sgRNA,并借助CRISPR‑Cas9系统对两个位点同时进行切割,实现了MC4R基因的大片段删除,并且获得了大片段删除的敲除猪个体,为研究猪MC4R基因提供了一种切实可行的方法。

Description

一种制备MC4R基因敲除猪的方法
技术领域
本发明涉及基因工程和遗传修饰领域,具体地说,涉及利用CRISPR/Cas9系统对MC4R基因进行编辑,并通过体细胞核移植技术获得MC4R基因敲除猪。
背景技术
PVN是食欲调节的一把钥匙,主要表达MC4R。在PVN区,MC4R的活性受弓状核不同神经元分泌的激素调节(如激动剂α-MSH和拮抗剂Agrp等)。MC4R与配体结合后被活化,细胞外的信号传到细胞内,激活腺苷酸环化酶,使细胞内cAMP浓度增高。最终激活cAMP应答元件(cAMPresponseelement,CRE)调控的基因转录,从而调节细胞的物质代谢和基因表达。MC4R除参与经典的信号调节通路外,它还调节MAPK信号通路中某些信号因子的活性,发挥减少体重的功能。
MC4R可以作为大动物育种的一个候选基因。该基因的突变与体重及脂肪性状的呈现显著的相关性。如猪MC4R基因高度保守区内发生一个错义突变Asp298Asn,该位点多态性与猪的许多经济性状显著相关:MC4R基因型为298Asp时,猪表现为背膘厚减少、增长速度变慢、采食量降低,MC4R基因型突变为298Asn时,猪表现为背膘厚增多、增长速度加快、采食量提高等相关性状。
MC4R基因突变是最常见的单基因肥胖病因,占早期开始的严重儿童期肥胖的4%。
因而MC4R基因对于农业上大动物的育种改良,以及医学上的治疗早发性肥胖具有重要的意义。
因而通过制作基因敲除猪,在此模型的基础上阐明MC4R在猪脂肪发育中信号通路的作用,具有重要的意义。
CRISPR/Cas9是一种存在于细菌和古生菌中的适应性免疫系统。利用人工合成的sgRNA序列与基因组DNA的碱基互补配对,Cas9核酸内切酶可以实现基因组的定点切割,从而产生DNA的双链断裂。DNA双链断裂可以通过两种方式进行修复:其一是采取非同源末端连接修复方式(NHEJ),这种方式会在双链断裂处产生随机类型的插入/缺失修复,可能会造成基因的移码突变,造成基因功能缺失。另一种修复方式是在以单链寡核苷酸或者双链Donor质粒载体为模板的指导下,通过同源重组(HR)的方式实现预期的精准修复。
发明内容
为了解决现有技术中存在的问题,本发明的目的是提供一种制备MC4R基因敲除猪的方法。
为了实现本发明目的,本发明首先提供特异性靶向MC4R基因的sgRNA,其靶向MC4R基因CDS区6133-6152bp序列或7127-7146bp序列。
进一步地,当所述sgRNA靶向MC4R基因CDS区6133-6152bp序列时,其核苷酸序列为5’-ttctggaaccgcagcaccta-3’。
当所述sgRNA靶向MC4R基因CDS区7127-7146bp序列时,其核苷酸序列为5’-gactttctccttacacagtc-3’。
其次,本发明还提供了含有前述sgRNA的CRISPR/Cas9打靶载体。作为优选,其为连接有sgRNA的px-330质粒,所述pX330质粒购于Addgene公司。
所述CRISPR/Cas9打靶载体,是通过以下方法制备得到的:以合成引物的方式,合成sgRNA及其互补的寡核苷酸序列。将寡核酸序列进行退火操作,步骤为在94℃,5min;37℃,10min;冰上,5min。用限制性内切酶BbsⅠ酶切pX330质粒,切胶回收载体骨架,利用T4DNA连接酶与退火后的寡核苷酸产物进行连接。
进一步地,本发明还提供了一种制备MC4R基因敲除细胞的方法,将含有靶向MC4R基因CDS区6133-6152bp序列的sgRNA的CRISPR/Cas9打靶载体,与含有靶向MC4R基因CDS区7127-7146bp序列的sgRNA的CRISPR/Cas9打靶载体共转染细胞,从而敲除细胞的MC4R基因。
与此同时,本发明还提供了一种制备MC4R基因敲除猪的方法,即同时利用靶向MC4R基因CDS区6133-6152bp序列的CRISPR/Cas9打靶载体与靶向MC4R基因CDS区7127-7146bp序列的CRISPR/Cas9打靶载体,对MC4R基因实现敲除。
具体而言,所述方法包括如下步骤:
(1)将含有靶向MC4R基因CDS区6133-6152bp序列的sgRNA的CRISPR/Cas9打靶载体、含有靶向MC4R基因CDS区7127-7146bp序列的sgRNA的CRISPR/Cas9打靶载体、与PL452-Neo质粒分别进行酶切,得到线性化片段;所述pl452-Neo质粒购于Addgene公司;
(2)将步骤(1)得到的线性化片段共转染猪的胎儿成纤维细胞,通过G418(遗传霉素)筛选具有抗性的单细胞克隆;
(3)选取状态良好的阳性单细胞克隆作为核移植的供体细胞,卵母细胞作为核移植的受体细胞,利用体细胞核移植技术构建克隆胚胎,将优质的克隆胚胎移植到代孕母猪的输卵管内,经过全期发育获得MC4R基因敲除猪。
其中,CRISPR/Cas9打靶载体pX330(包括靶向MC4R基因CDS区不同序列的两种CRISPR/Cas9打靶载体pX330)与PL452-Neo基因进行共转猪的胎儿成纤维细胞的方法为:pX330质粒的总量为4μg(两种pX330各2μg),PL452-Neo基因线性载体与pX330质粒按照摩尔比1:3混合,利用lonza核电转仪及成纤维细胞电转试剂盒进行转染。
进一步地,本发明还提供了前述sgRNA或前述CRISPR/Cas9打靶载体在CRISPR-Cas9特异性敲除猪MC4R基因中的应用。
本发明的有益效果在于:
本发明首次针对猪MC4R基因的CDS区的两个位点设计的sgRNA,并借助CRISPR-Cas9系统对两个位点同时进行切割,实现了MC4R基因的大片段删除,并且获得了大片段删除的敲除猪个体,这种制备MC4R基因敲除猪的方法在国内外之前是没有报道的。为研究猪MC4R基因提供了一种切实可行的方法。
附图说明
图1为本发明实施例1中针对MC4R基因设计的靶向序列位置。
图2为本发明实施例7中对单克隆细胞进行测序后,序列比对的结果。
图3为本发明实施例9中使用PCR方法鉴定新生猪的突变类型;其中,1号为820,2号为11502,3号为11501,4号为11503,5号为死胎,WT为野生型。
具体实施方式
下面将结合实施例对本发明的优选实施方式进行详细说明。需要理解的是以下实施例的给出仅是为了起到说明的目的,并不是用于对本发明的范围进行限制。本领域的技术人员在不背离本发明的宗旨和精神的情况下,可以对本发明进行各种修改和替换。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
其中:
pX330载体,pl452-Neo质粒购于Addgene公司;
T4DNA连接酶、Q5超保真酶、BbsⅠ及T7EN1购于NEB公司;
引物合成由上海生工完成;
测序由美吉生物公司合成。
质粒去内毒素提取试剂盒及基因组提取试剂盒购于QIAGEN公司。
胶回收试剂盒购于GENSTAR公司。
酶切、连接、切胶回收、转化、PCR扩增等常规实验操作步骤详见《分子克隆(第三版)》。
实施例1、CRSIPR/Cas9打靶载体cas-1-3、cas-3-3的构建
根据CRISPR/Cas9的作用原理,在猪MC4R基因的CDS区设计sgRNA序列,如图1所示。
选取cas9靶点1-3:
sgRNA序列为5’-ttctggaaccgcagcaccta-3’,根据碱基互补配对的原则,其反向互补序列为5’-taggtgctgcggttccagaa-3’;
选取cas9靶点3-3:
sgRNA序列为5’-gactttctccttacacagtc-3’,根据碱基互补配对的原则,其反向互补序列为5’-gactgtgtaaggagaaagtc-3。
pX330载体骨架需要使用BbsⅠ进行酶切,所以需要在sgRNA序列上补出BbsⅠ酶切位点的粘性末端,以利于其连入pX330载体骨架。加入BbsⅠ粘性末端的sgRNA序列及其互补序列。
a.将设计好的加入BbsⅠ酶切位点粘性末端的sgRNA及其互补序列以合成引物的方式进行合成。将合成的寡核苷酸进行退火操作,使其形成带有粘性末端的DNA双链。退火程序如下:94℃,5min;37℃,10min;冰上,5min。
b.pX330载体骨架使用BbsⅠ酶切,37℃水浴4h。然后进行琼脂糖凝胶电泳,并切胶回收目的条带。
c.载体骨架与sgRNA序列连接。将回收的载体骨架与sgRNA序列退火产物于16℃连接仪进行连接过夜。将连接产物转化DH5α感受态细胞,37℃培养箱培养,待其长出单克隆后,挑取单克隆划线,并进行测序鉴定阳性单克隆。测序引物为F:5'-GAGGGCCTATTTCCCATGAT-3';R:5'-GGAAAGTCCCTATTGGCGTTA-3'。构建好的质粒(打靶载体)命名为cas-1-3、cas-3-3。
实施例2、阳性菌落的大量培养
a.挑取测序正确的阳性单克隆菌落,将其加入2-5ml氨苄抗性的LB培养基中,于摇床中37℃,300rpm剧烈摇动8h。
b.将初始培养的菌液以1/500-1/1000的稀释比例加入到100ml氨苄抗性的LB培养基中,于摇床中37℃,300rpm剧烈摇动12h-16h。
实施例3、cas-1-3、cas-3-3质粒的去内毒提取
参见QIAGEN公司的EndoFree Plasmid Maxi Kit说明书。将提取好的质粒测浓度后分装、冻存,用于后续的猪胎儿成纤维细胞的转染。
实施例4、PL452-Neo质粒的酶切
使用NEB公司的限制性内切酶NotⅠ和NheⅠ对PL452-Neo质粒酶切,37℃水浴4h。使用Genstar的胶回收试剂盒回收,测浓度后分装,冻于-20℃冰箱备用。
实施例5、猪胎儿成纤维细胞的建系
a.将妊娠30天的农大小香猪麻醉,从其子宫内无菌取出胎儿,用含双抗的PBS清洗胎儿后,置于超净工作台中,用眼科剪去除胎儿的头部、四肢、内脏及软骨组织,用PBS冲洗干净;
b.在细胞培养皿内用眼科剪将剩余组织剪碎成约1mm3小块;
c.加入适量的FBS,保持组织不至于过分干燥。将剪碎的组织块转移到1个T75细胞培养瓶中,将组织块均匀铺开;
d.加入5mL细胞培养基,将铺有组织块的一面向上,不被培养基浸没,于37℃,5%CO2培养箱中培养3~5h后,将T75翻转,使组织块被培养基浸没;
e.培养3天左右,观察到组织块周围有大量细胞爬出,待细胞生长至约90%汇合度时,对细胞进行消化并冻存备用。
实施例6、猪胎儿成纤维细胞的转染和中靶单细胞克隆的筛选:
a.将一个六孔板孔中,已达到80-90%汇合的猪胎儿成纤维细胞,进行消化、离心,获得数量约2×105-2×106的猪胎儿成纤维细胞。
b.将质粒pX330-1-3、pX330-3-3及PL452-Neo基因线性化片段加入Lonza转染试剂中,混匀。
c.使用加入质粒的转染试剂重悬细胞,并将细胞悬液加入到电击杯中,T-016程序电击细胞。
d.电击完成后,立即将细胞吸出,加3ml含10%血清的DMEM到六孔板的一个孔中。
e.37℃,5%CO2培养箱培养48h后,细胞达到80%-90%汇合,将细胞消化下来,稀释至20-30个10cm细胞培养皿中。
f.24-48h后,待10cm皿中的细胞贴壁、且状态良好,加入400-600μg/ml的G418,每隔一天补加一次G418,加药量根据细胞状态及汇合度灵活掌控,总加药量不能超过1000μg/ml。G418筛选10-14天,可见单克隆长出。
g.单克隆的挑取及扩大培养。在显微镜下,使用记号笔将状态良好的单克隆用圆圈圈出。弃掉10cm培养皿中的培养基,PBS清洗一次,将克隆环蘸取明胶,用克隆环将细胞单克隆圈住,加入10-30μl0.1%的胰蛋白酶,37℃消化1min。在显微镜下观察,细胞变圆、游离,加入含20%FBS的DMEM终止消化,将细胞吸出加入24孔板中。48-72h后,24孔板中细胞汇合至80-90%时,将细胞传至12孔板中。待12孔板中细胞达到80%-90%汇合时,对细胞进行冻存。
实施例7、中靶阳性单细胞克隆的鉴定
由于Cas9的切割造成双链断裂,NHEJ的修复方式会随机产生插入/缺失突变,因此我们需要以打靶单克隆的基因组为模板,PCR扩增打靶位点所在区域,对其区域进行测序,检测其碱基的插入/缺失突变的情况。
提取48个单克隆的基因组DNA,以其为模板进行PCR扩增,PCR扩增引物为,PCR产物大小为1427bp。以野生型细胞的基因组作为阴性对照。PCR程序如下:98℃,30s;98℃,10s;56℃,30s;72℃,1min;72℃,2min。35个循环。缺失或者插入大片段的细胞单克隆,可以使用琼脂糖凝胶电泳进行初步判定。将PCR产物连接peasy-simple blunt载体进行测序,序列比对情况如图2所示。
实施例8、MC4R基因敲除猪的制备
a.以实施例7获得的阳性猪胎儿成纤维细胞为核移植供体细胞。培养胎儿成纤维细胞至100%汇合1-2天,去除培养皿内培养基,加入PBS洗涤1次,然后用0.1%胰蛋白酶消化约2min,待细胞变圆后立即后用含血清的细胞培养液终止消化,1000rpm离心5min,弃上清,用操作液T2重悬离心沉淀的细胞,冰浴放置备用。
b.以体外成熟的卵母细胞为核移植受体卵质。从母猪卵巢中采集卵丘卵母细胞复合体,经过体外成熟并用透明质酸酶脱去卵丘细胞,而后在体式显微镜下挑选排出第一极体、形态正常、胞质均匀的成熟卵母细胞备用。
c.在显微操作仪下,将核移植供体细胞移入去核的成熟卵母细胞中。经过电融合及化学激活,诱导细胞与卵子融合并同时激活卵母细胞。构建成重组胚胎,融合胚放入低氧培养环境下(低氧培养箱或充入低氧混合配气封袋密闭培养)培养。采用微滴或四孔板培养,气相条件为含7%O2、88%N2、和5%CO2的混合气体,培养温度为39℃,湿度为100%。体外发育至1-4细胞期后观察卵裂情况及发育状态,并用于胚胎移植。
d.挑选形态正常、发育优良的克隆胚胎用手术法移植入胚胎同期的母猪内。移植步骤为舒泰常规麻醉,将母猪保定在手术架上面,尽量避开血管,在腹中线处切口,露出卵巢,输卵管及子宫,使用胚胎移植管吸取胚胎,然后沿输卵管伞部进入将克隆胚胎释放到输卵管壶腹部、峡部结合处。胚胎移植后给代孕母猪注射消炎针,30天后进行B超检测妊娠情况。
实施例9、MC4R基因敲除猪的DNA水平检测
使用新生公猪820#、11501#、11502#、11503#的耳组织提取基因组DNA,以其为模板对MC4R基因进行PCR扩增。PCR扩增引物F:5'-GATGCTAATCAGAGCCCTAC-3';R:5'-TCCATTGTGCCTATAACCTG-3'。使用该引物对野生型猪基因组DNA进行扩增的PCR产物大小应为1427bp。若新生猪为基因敲除猪,则PCR产物大小约为420bp。结果表明11501#为部分缺失。其他样送测序比对结果表明820#及11502#发生移码突变,翻译提前终止。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (4)

1.一种制备MC4R基因敲除细胞的方法,其特征在于,将含有序列为5’-ttctggaaccgcagcaccta-3’的sgRNA的CRISPR/Cas9打靶载体,与含有序列为5’-gactttctccttacacagtc-3’的sgRNA的CRISPR/Cas9打靶载体共转染细胞,从而敲除细胞的MC4R基因;所述细胞来源于猪。
2.一种制备MC4R基因敲除猪的方法,其特征在于,同时利用含有序列为5’-ttctggaaccgcagcaccta-3’的sgRNA的CRISPR/Cas9打靶载体与含有序列为5’-gactttctccttacacagtc-3’的sgRNA的CRISPR/Cas9打靶载体,对MC4R基因实现敲除。
3.根据权利要求2所述的方法,其特征在于,包括如下步骤:
(1)将含有序列为5’-ttctggaaccgcagcaccta-3’的sgRNA的CRISPR/Cas9打靶载体、含有序列为5’-gactttctccttacacagtc-3’的sgRNA的CRISPR/Cas9打靶载体、与PL452-Neo分别进行酶切,得到线性化片段;
(2)将步骤(1)得到的线性化片段共转染猪的胎儿成纤维细胞,通过G418筛选具有抗性的单细胞克隆;
(3)选取状态良好的阳性单细胞克隆作为核移植的供体细胞,卵母细胞作为核移植的受体细胞,利用体细胞核移植技术构建克隆胚胎,将优质的克隆胚胎移植到代孕母猪的输卵管内,经过全期发育获得MC4R基因敲除猪。
4.根据权利要求2或3所述的方法,其特征在于,所述CRISPR/Cas9打靶载体为连接有sgRNA的px-330质粒。
CN201610587597.3A 2016-07-22 2016-07-22 一种制备mc4r基因敲除猪的方法 Expired - Fee Related CN106191064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610587597.3A CN106191064B (zh) 2016-07-22 2016-07-22 一种制备mc4r基因敲除猪的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610587597.3A CN106191064B (zh) 2016-07-22 2016-07-22 一种制备mc4r基因敲除猪的方法

Publications (2)

Publication Number Publication Date
CN106191064A CN106191064A (zh) 2016-12-07
CN106191064B true CN106191064B (zh) 2019-06-07

Family

ID=57491808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610587597.3A Expired - Fee Related CN106191064B (zh) 2016-07-22 2016-07-22 一种制备mc4r基因敲除猪的方法

Country Status (1)

Country Link
CN (1) CN106191064B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
AU2015298571B2 (en) 2014-07-30 2020-09-03 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
IL258821B (en) 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
CN109804066A (zh) 2016-08-09 2019-05-24 哈佛大学的校长及成员们 可编程cas9-重组酶融合蛋白及其用途
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR102622411B1 (ko) 2016-10-14 2024-01-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
GB2575930A (en) 2017-03-23 2020-01-29 Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
CN107099533A (zh) * 2017-06-23 2017-08-29 东北农业大学 一种特异靶向猪IGFBP3基因的sgRNA导向序列及应用
CN107119053A (zh) * 2017-06-23 2017-09-01 东北农业大学 一种特异靶向猪MC4R基因的sgRNA导向序列及其应用
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
EP3676376A2 (en) 2017-08-30 2020-07-08 President and Fellows of Harvard College High efficiency base editors comprising gam
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
CN109055434B (zh) * 2018-07-05 2022-04-29 中山大学 一种利用CRISPRCas9技术纠正猪KIT基因结构突变的方法
WO2020191249A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
MX2022014008A (es) 2020-05-08 2023-02-09 Broad Inst Inc Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo.
CN112608941B (zh) * 2020-12-18 2023-03-21 南京启真基因工程有限公司 用于构建mc4r基因突变的肥胖症猪核移植供体细胞的crispr系统及其应用
CN113491255B (zh) * 2021-06-16 2022-07-15 温州大学 一种肥胖性ii型糖尿病斑马鱼模型的构建方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129198A1 (en) * 2011-03-23 2012-09-27 Transposagen Biopharmaceuticals, Inc. Genetically modified rat models for obesity and diabetes
CN105463027A (zh) * 2015-12-17 2016-04-06 中国农业大学 一种高肌肉量及肥厚型心肌病模型克隆猪的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129198A1 (en) * 2011-03-23 2012-09-27 Transposagen Biopharmaceuticals, Inc. Genetically modified rat models for obesity and diabetes
CN105463027A (zh) * 2015-12-17 2016-04-06 中国农业大学 一种高肌肉量及肥厚型心肌病模型克隆猪的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《CRISPR/Cas9系统中sgRNA设计与脱靶效应评估》;谢胜松等;《遗传》;20151130(第11期);全文
《Heritable gene targeting in the mouse and rat using a CRISPR-Cas system》;Li DL等;《Nature Biotechnology》;20131231;第31卷(第8期);摘要部分,第682页右栏倒数第1段,第683页左栏第1段,序列参见第681页图1
《Influence of silencing the MC4R gene by lentivirus-mediated RNA interference in bovine fibroblast cells》;Yang Run-Jun等;《African Journal of biotechnology》;20111231;第10卷(第41期);全文
登录号:EU169096.1;Meidtner K.等;《Genbank》;20080930;第1-13000位

Also Published As

Publication number Publication date
CN106191064A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106191064B (zh) 一种制备mc4r基因敲除猪的方法
CN105821049B (zh) 一种Fbxo40基因敲除猪的制备方法
CN106191113B (zh) 一种mc3r基因敲除猪的制备方法
CN108949824A (zh) 基于HMEJ的方法介导Ipr1定点插入获取转基因牛胎儿成纤维细胞的方法
CN107937345B (zh) 一种制备同时敲除cd163基因和cd13基因的猪成纤维细胞的方法
CN104419719B (zh) 一种转基因猪筛选标记基因敲除的方法
CN108285906A (zh) 一种定点整合外源dna转基因猪的构建方法
CN103725710B (zh) 一种可自我删除游离载体及其应用
CN107893088A (zh) 一种制备cd13基因敲除的猪成纤维细胞和基因编辑猪的方法
CN113957069B (zh) 用于pAPN基因第736位和第738位氨基酸同时修饰的组合物及其应用
CN107354170A (zh) 一种基因敲除载体以及制备cd163基因敲除猪成纤维细胞的方法
CN106520838A (zh) 一种体细胞核移植重组胚注射基因新方法
CN104293833B (zh) 一种基于TALEN介导的Sp110巨噬细胞特异打靶载体及重组细胞
CN109112159A (zh) 基于Cas9介导的定点整合FABP4基因和MSTN基因点突变打靶载体及重组细胞
CN113957093B (zh) 用于pAPN基因定点修饰的系统及其应用
JP2002537785A (ja) 体細胞の遺伝的改変とそれらの使用
CN113604504A (zh) 用于pAPN基因16外显子定点修饰的组合物及其应用
US20190032086A1 (en) Method for preparing a gene knock-out canine with somatic cell cloning technology
CN103993027B (zh) 一种转基因猪筛选标记基因敲除的方法
JP4153878B2 (ja) Gt遺伝子が除去された複製豚及びその生産方法
CN104059877B (zh) 一种“仿比利时蓝牛”mstn基因型的基因编辑猪的制备方法
CN116790604B (zh) 一种sgRNA、CRISPR/Cas9载体及其构建方法和用途
CN113403337A (zh) 一种载体系统、制备猪成纤维细胞和基因编辑猪的方法
CN116445454B (zh) 一种用于培育抗tgev感染的猪品种的成套系统及其应用
CN117487855A (zh) 通过对cd163靶向灭活来改善猪类健康的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190607

Termination date: 20200722