CN107488649A - 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用 - Google Patents

一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用 Download PDF

Info

Publication number
CN107488649A
CN107488649A CN201710740411.8A CN201710740411A CN107488649A CN 107488649 A CN107488649 A CN 107488649A CN 201710740411 A CN201710740411 A CN 201710740411A CN 107488649 A CN107488649 A CN 107488649A
Authority
CN
China
Prior art keywords
dna
cpf1
lbcpf1
activation
artificial sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710740411.8A
Other languages
English (en)
Inventor
荣知立
林瑛
王为
单琳
马淑凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern Medical University
Original Assignee
Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern Medical University filed Critical Southern Medical University
Priority to CN201710740411.8A priority Critical patent/CN107488649A/zh
Publication of CN107488649A publication Critical patent/CN107488649A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01048Histone acetyltransferase (2.3.1.48)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Abstract

本发明公开了一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用。本发明将具有酶切割活性的CRISPR/Cpf1突变为无酶切割活性有靶向基因识别特性,并融和p300蛋白转录激活作用,达到在哺乳动物细胞内靶向基因激活的目的,具有简单、高效、高特异性。脱靶率低、节约成本等优点。本发明可与现有的基于CRISPR/Cas9的靶向基因激活方法相互补充,拓宽了CRISPR/Cas系统的基因编辑范围,具有良好的应用前景。

Description

一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活 系统和应用
技术领域
本发明涉及基因工程和生物技术领域,具体涉及利用CRISPR/Cpf1及其变体和p300融和蛋白对哺乳动物细胞进行靶向基因激活。
背景技术
CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated systems),全名是常间回文重复序列丛集/常间回文重复序列丛集关联蛋白系统,是细菌及古生菌的一种获得性免疫系统。2010年, Garneau等发现,在嗜热链球菌的CRISPRⅡ型系统中Cas9是唯一能够介导DNA 切割的Cas核酸酶。2013年,张锋等科学家首次报道了CRISPR-Cas9系统在哺乳动物基因组编辑中的应用,开启了CRISPR-Cas9强大的基因编辑功能成为生命科学领域的新星,获得广泛研究和应用。
尽管CRISPR比之前的基因编辑方法要简单得多,但是张锋认为仍有改进的余地。他和他的团队搜索了整个细菌王国,找到了一种替代实验室中常用Cas9 酶的选择。2015年,他们在金黄色葡萄球菌中发现了一个更小版本的Cas9即 Cpf1,全新基因编辑系统CRISPR/Cpf1酶更容易进入成熟细胞,可能将克服 CRISPR-Cas9系统应用中的一些限制。CRISPR/Cpf1归类于CRISPRⅡ型系统,其系统包括Cpf1蛋白和单一向导RNA,后者由19bp具种属特异性的保守重复序列(或scaffold骨架序列)和23bp的间隔区(Spacer)构成,Cpf1与其向导 RNA形成的蛋白-核酸复合物由向导RNA引导,识别具有5’T-rich PAM(原型间隔序列毗邻基序)靶序列,随后Cpf1蛋白中的核酸酶活性结构域对靶向DNA 双链进行切割,产生双粘性末端。
与Cas9相比,Cpf1有以下四大优势:第一,大小不同。Cas9剪切DNA需要两个小RNA分子,而Cpf1只需要一个。Cpf1酶比标准的SpCas9要小,更容易进入组织和细胞。第二,剪切方式不同。Cas9是在同一个位置同时剪切DNA 分子的双链,最后形成平末端;而Cpf1剪切后形成黏性末端,平末端通常不容易处理,粘性末端让DNA插入更可控。第三,剪切位置不同。Cpf1剪切时离识别位点很远,这让研究人员在编辑位置的选择上有了更多的选项。第四,Cpf1 系统在目标位置的选择上提供了灵活性,Cpf1复合物识别的5’T-rich PAM序列,而Cas9识别G-rich PAM。
在已知16种来源于不同菌属的Cpf1家族蛋白中,来自氨基酸球菌属(Acidominococcus)的AsCpf1亚型和来自毛螺旋菌科(Lachnospiraceae)的 LbCpf1亚型被证明在人源细胞系中作用活跃,具高效基因编辑潜质。目前对 CRISPR/Cpf1系统的认识和探究尚处于初始阶段,其成为新晋基因编辑工具的优良潜质具有极大的开发和应用空间。
p300蛋白具有组蛋白乙酰转移酶活性,使染色质结构重构,暴露基因的启动子和或增强子,同时富集转录因子于此区域,起到调控基因的高表达的作用.有报导指出p300蛋白的基因激活作用效果优于VP64等相似功能蛋白,但其在基因修饰领域的应用仍少于VP64等传统作用因子。
发明内容
本发明的目的在于:针对已有基因激活方法靶向性低,激活效率低,涉及作用原件繁多作用系统复杂等问题,将具有酶切割活性的CRISPR/Cpf1突变为无酶切割活性有靶向基因识别特性,并融和p300蛋白转录激活作用,提供一种可在哺乳动物细胞内靶向基因激活的融合蛋白、表达载体和相应的DNA靶向激活系统。
为了实现上述发明目的,本发明提供了一种融合蛋白,其含有两个异源多肽结构域,其中一个多肽结构域包含Cpf1蛋白,另一个多肽结构域包含具有转录激活活性的p300核心结构域;所述Cpf1蛋白包含AsCpf1亚型和LbCpf1亚型;且所述AsCpf1亚型中含有D908A单位点和/或E993A单位点氨基酸突变(突变后的AsCpf1蛋白为丧失核酸酶活性且保留特异性识别、结合目标DNA功能的变体d AsCpf1);所述LbCpf1亚型中含有D832A单位点和/或E925A单位点氨基酸突变(突变后的LbCpf1蛋白为丧失核酸酶活性且保留特异性识别、结合目标DNA功能的变体d LbCpf1)。
为了实现上述发明目的,本发明还提供了一种表达载体,用于表达上述融合蛋白。
作为本发明所述表达载体的一种优选技术方案,所述表达载体的启动子为 CAG,剪切肽为P2A,入核信号为NLS和SV40NLS,Cpf1蛋白和p300核心结构域之间插入NLS信号和3xHA标签。
为了实现上述发明目的,本发明还提供了一种DNA靶向激活系统,其包含上述融合蛋白和至少一种向导RNA;所述向导RNA为针对目的基因启动子或增强子区域设计的一段长度为23bp的序列,其5’端为19bp的骨架序列,其中, AsCpf1的骨架序列如SEQ ID NO:1所示;LbCpf1的骨架序列如SEQ ID NO:2 所示。
作为本发明所述DNA靶向激活系统的一种优选技术方案,所述启动子或增强子区域位于MyoD、IL1RN和/或OCT4。
作为本发明所述DNA靶向激活系统的一种优选技术方案,所述DNA靶向激活系统含有四种不同的向导RNA。
本发明DNA靶向激活系统可对哺乳动物细胞进行靶向基因激活,所述哺乳动物细胞包括293T、U2OS和MCF7。
具体地,可以包括如下步骤:
(1)构建含有至少一种氨基酸突变的Cpf1表达载体;
(2)构建表达特定向导RNA的载体;
(3)将步骤(1)所述Cpf1表达载体和步骤(2)所述表达特定向导RNA 的载体混合,通过脂质体转染试剂聚乙烯亚胺(PEI)共转染到哺乳动物细胞,在细胞内表达的融合蛋白与其特定向导RNA结合,将p300核心蛋靶向目标基因区。
之后,可通过转染培养48h,提取mRNA,检查目标基因mRNA表达水平;再经全转录水平mRNA测序,分析靶向激活结果和特异性水平。
相对于现有技术,本发明具有如下优点和有益效果:
本发明所利用的CRISPR/Cpf1系统特异性高,脱靶率低,所需向导RNA序列较Cas9简单,具有易于合成,节约成本的优点;与p300核心区结合成的融合蛋白具有激活效率高,特异性高(图26)的特点。此外,因Cpf1向导RNA 识别的PAM序列有异于Cas9,本发明方法可与已有的基于CRISPR/Cas9的靶向基因激活方法相互补充,拓宽CRISPR/Cas系统的基因编辑范围。本发明方法还具有操作简便,涉及作用原件少、作用效果优良等优势,具备成为高效高特异性的靶向基因激活方法的潜质。
附图说明
图1是AsCpf1原始质粒图谱。
图2是LbCpf1原始质粒图谱。
图3是AsCpf1-3xHATag质粒图谱。
图4是LbCpf1-3xHATag质粒图谱。
图5是p2U6-pCAG-dCas9-mCherry质粒图谱。
图6是p2U6-pCAG-AsCpf1-mCherry质粒图谱。
图7是p2U6-pCAG-LbCpf1-mCherry质粒图谱。
图8是p1U6-Asscaf-pCAG-AsCpf1-mCherry质粒图谱。
图9是p1U6-Lbscaf-pCAG-LbCpf1-mCherry质粒图谱。
图10是p1U6-Asscaf-dAsD908A-mCherry质粒图谱。
图11是p1U6-Asscaf-dAsE993A–mCherry质粒图谱。
图12是dAsCpf1酶切割活性检验PAGE胶电泳结果。
图13是dLbCpf1酶切割活性检验PAGE胶电泳结果。
图14是T7EIdAs/dLbCpf1酶切割活性检验电泳结果。
图15是p1U6-As scaf-pCAG-dAsCpf1D908A-p300-mCherry质粒图谱。
图16是p1U6-As scaf-pCAG-dAsCpf1E993A-p300-mCherry质粒图谱。
图17是p1U6-As scaf-pCAG-dLbCpf1D832A-p300-mCherry质粒图谱。
图18是p1U6-As scaf-pCAG-dLbCpf1E925A-p300-mCherry质粒图谱。
图19是pCAG-dAsCpf1(D908A)-p300-mCherry质粒图谱。
图20是pCAG-dAsCpf1(E993A)-p300-mCherry质粒图谱。
图21是pCAG-dLbCpf1(D832A)-p300-mCherry质粒图谱。
图22是pCAG-dLbCpf1(E925A)-p300-mCherry质粒图谱。
图23是pBlu2SKP质粒图谱。
图24是pBlu2SKP-pU6-As质粒图谱。
图25是western blot检测Cpf1-p300融合蛋白表达结果图。
图26是a是Cpf1-P300介导基因激活模式图,b是Cpf1图突变体模式图, c是在293T细胞中,靶向基因MyoD、IL1RN和OCT4启动子处,激活两者情况的Real-Time PCR柱状结果图,d是通过全转录水平mRNA测序,MyoD激活水平散点图。
图27是在细胞系U2OS和MCF7中靶向基因MyoD和IL1RN启动子处,激活两者情况的Real-Time PCR柱状结果图。
图28是在293T中,靶向基因MyoD和IL1RN增强子处,激活两者情况的 Real-TimePCR柱状结果图。
具体实施方式
为了使本发明的目的、技术方案和有益技术效果更加清晰,以下结合实施例,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本发明,并非为了限定本发明,实施例的参数、比例等可因地制宜做出选择而对结果并无实质性影响。
实施例
As/LbCpf1-3xHATag(图3~4)载体构建:
由商业公司合成一段含BamHI-3xHATag-XohI-AGC-(Ser)-AgeI的单链DNA 片段Oligo-F和Oligo-R,其碱基序列如SEQ ID NO:3~4所示。
两条部分互补配对单链DNA片段合成双链的DNA片段。具体步骤如下:
10ul 100uM Oligo-F和10ul 100uM Oligo-R预混于1.5ml EP管中,用烧杯煮沸800ml的蒸馏水,将1.5ml EP管置于沸水中5分钟,取出1.5ml EP管室温放置过夜。
用BamHI和NdeI切割由商业公司合成的AsCpf1/LbCpf1原始质粒(图 1~2),用0.8%琼脂糖凝胶电泳分析酶产物,分别切胶回收4015bp条带,并利用 NanoDrop测定回收片段浓度,将线性化的AsCpf1/LbCpf1原始质粒与上述双链的DNA片段通过NEB购买的T4DNA连接酶连接,然后将连接产物转化到 TOP10大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板,37℃培养过夜,然后挑取单个克隆,37℃250rpm摇菌后提取质粒进行DNA测序,由此筛选到构建的载体,命名为As/LbCpf1-3xHATa(图3~4)。
T4连接体系10μL,具体包括:
T4连接酶1μL,10x T4ligase buffer1μL,稀释15倍的双链的DNA片段2μL,线性化AsCpf1/LbCpf1原始质粒2μL,ddH2O4μL,反应条件:25℃水浴1h。
p2U6-pCAG-As/LbCpf1-mCherry载体构建(图6~7):
用EcoRI和AgeI切割As/LbCpf1-3xHATag(图3~4)和由商业公司合成的p2U6-pCAG-Cas9-mCherry(图5)质粒,用0.8%琼脂糖凝胶电泳分析酶产物,切胶分别回收4000bp和6000bp条带,并利用NanoDrop测定浓度.上述两个片段通过NEB购买的T4DNA链接酶连接,然后将连接产物转化到TOP10大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板,37℃培养过夜,然后挑取单个克隆,37℃250rpm摇菌后提取质粒进行DNA测序,由此筛选到构建的载体,得到质粒命名为p2U6-pCAG-As/LbCpf1-mCherry(图6~7).
T4连接体系10μL,包括:
T4连接酶1μL,10x T4ligase buffer1μL,线性化As/LbCpf1-3xHATag: 2μL,线性化p2U6-pCAG-Cas9-mCherry质粒2μL,ddH2O4μL,反应条件:25℃水浴1h。
p1U6-pCAG-As/LbCpf1-scaffold-mCherry(图8~9)载体构建“”
由商业公司合成AsCpf1和LbCpf1向导RNA的骨架序列,序列如下:
AsCpf1-scaffold-OLIGO F如SEQ ID NO:5所示,AsCpf1-scaffold-OLIGO R 如SEQ ID NO:6所示,LbCpf1-scaffold-OLIGO F如SEQ ID NO:7所示, LbCpf1-scaffold-OLIGO R如SEQ ID NO:8所示。
AsCpf1/LbCpf1两条互补配对的单链DNA骨架序列分别合成双链的 AsCpf1/LbCpf1DNA骨架片段.具体步骤如下:
10ul 100uM F和10ul 100uM R预混于1.5ml EP管中,用烧杯煮沸800ml 的蒸馏水,将1.5ml EP管置于沸水中5分钟,取出1.5ml EP管室温放置过夜。
用BaeⅠ和MluⅠ切割p2U6-pCAG-As/LbCpf1-mCherry(图6~7)载体,用0.8%琼脂糖凝胶电泳分析酶产物,切胶回收条带,并利用NanoDrop测定浓度.上述片段分别与AsCpf1/LbCpf1骨架序片段通过NEB购买的T4DNA链接酶连接,然后将连接产物转化到TOP10大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板,37℃培养过夜,然后挑取单个克隆,37℃250rpm摇菌后提取质粒进行DNA测序,由此筛选到构建的载体得到质粒命名为 p1U6-As/Lbscaf-pCAG-As/LbCpf1-mCherry。(图8~9)。
T4连接体系10μL,包括:
T4连接酶1μL,10x T4ligase buffer1μL,稀释15倍的双链的AsCpf1/LbCpf1 骨架片段2μL,线性化p2U6-pCAG-As/LbCpf1-mCherry质粒2μL,ddH2O4μL,反应条件:25℃水浴1h。
核酸酶活性沉默型dAs/LbCpf1突变载体构建
具体突变位点包括AsCpf1的D908A和E993A中的至少一个,LbCpf1的 D832A和E925A中的至少一个。具体步骤如下:
shuttle-As/LbCpf1载体质粒构建:
用EcoR I和BamH I切割shuttle质粒和p2U6-pCAG-As/LbCpf1-mCherry(图 6,7)质粒,用0.8%琼脂糖凝胶电泳分析酶产物,切胶分别回收2521bp和4000bp 条带,并利用NanoDrop测定浓度,上述两者通过NEB购买的T4DNA连接酶连接,然后将连接产物转化到TOP10大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板,37℃培养过夜,然后挑取单个克隆,37℃250rpm摇菌后提取质粒进行DNA测序,由此筛选到构建的载体质粒命名为shuttle-As/LbCpf1。
shuttle-dAs/LbCpf1载体质粒构建:
用Apa1和BamH1切割shuttle-As/LbCpf1质粒,同时以shuttle-As/LbCpf1 为模版PCR,所用引物序列如下表1,具体反应体系如下:
表1
PCR体系如下:模版质粒:1μL(50ng),前向引物:1μL(10μM),后向引物:1μL(10μM),2ⅹTaq酶混合物:25μL,ddH2O:至50μL。
PCR程序如下:①95℃:2min,②95℃:30s,③58℃:30s,④72℃:30s,②③④循环39次,⑤72℃2min,⑥16℃保存。
用0.8%琼脂糖凝胶电泳分析酶切和PCR产物,切胶分别回收,使用从NEB 公司购买的连接试剂盒Gibson Assembly将上述回收的两个片段连接,将连接产物转化到TOP10大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板, 37℃培养过夜,挑取单个克隆,37℃250rpm摇菌后提取质粒进行DNA测序,所得载体包括四个突变体AsCpf1D908A/E993A和LbCpf1D832A/E925A。由此筛选所得到的载体质粒命名为:shuttle-dAsD908A Cpf1/shuttle-dAsE993A Cpf1/ shuttle-dLbD832A Cpf1/shuttle-dLb E925A Cpf1。
p1U6-As/Lbscaf-dAs/LbCpf1-mCherry(图10~11)载体构建:
用EcoRⅠ和BamHⅠ分别切割shuttle-dAs/Lb Cpf1和p1U6-As/Lb scaf-pCAG-As/LbCpf1-mCherry质粒,用0.8%琼脂糖凝胶电泳分析酶产物,切胶分别回收4000bp和5471bp条带,两者通过NEB购买的T4DNA连接酶连接,产物转化到TOP10大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板, 37℃培养过夜,挑取单个克隆,37℃250rpm摇菌后提取质粒进行DNA测序,筛选所得到载体质粒命名为:p1U6-Asscaf-dAsD908A-mCherry(图10) /p1U6-Asscaf-dAsE993A–mCherry(图11)/p1U6-Lbscaf-dLbD832A–mCherry/ p1U6-Lbscaf-dLb E925A-mCherry。
选取DNMT-1为靶基因位点,构建p1U6-DNMTgRNA-dAs/LbCpf1-mCherry 载体。
设计合成gRNA,其序列如下:
DNMT-1-3-F如SEQ ID NO:20所示,DNMT-1-3-R如SEQ ID NO:21所示。
两条部分互补配对单链DNA片段合成双链的DNA片段。
用BaeI切割p1U6-As/Lb scaf-dAs/LbCpf1-mCherry(图10~11)质粒,与上述合成的双链DNA片段通过NEB购买的T4DNA连接酶连接,产物转化到TOP10 大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板,37℃培养过夜,挑取单个克隆,37℃250rpm摇菌后提取质粒进行DNA测序,所筛选得到的载体质粒的命名为p1U6-DNMTgRNA-dAs/LbCpf1-mCherry。
核酸酶活性沉默dCpf1功能鉴定,包括AsCpf1D908A/E993A和LbCpf1 D832A/E925A。
于24孔板铺1.5*105细胞每孔,置于37℃,5%CO2孵箱培养18~24小时,至细胞密度为65~70%,换为无血清的基础培养基DMEM,以待质粒转染,使用脂质体转染试剂聚乙烯亚胺(PEI),具体方法如下:
制备PEI(10ⅹ):1mg/ml,pH7.0,制备HEBS:20Mm Hepes,150mM NaCl, pH7.4。
转染条件:DNA500ng每孔,PEI:total DNA=3:1(m/m)。
先将待转染质粒预混于30μl HEBS中,室温静置5min,再与PEI混合,室温静置25min后均匀的加入24孔板孔中,置于37℃,5%CO2孵箱培养,8h后换为全培基,48h后胰酶消化后收取细胞,用十二烷基肌氨酸钠缓冲溶液提取细胞基因组DNA,具体方法如下:
制备:十二烷基肌氨酸钠缓冲溶液:0.5%十二烷基肌氨酸钠,10Mm Tris,10MmEDTA,10Mm NaCL,1%蛋白酶K(现配现加)。加入200μl十二烷基肌氨酸钠缓冲溶液重悬细胞,置于55℃水浴中过夜,加入20%饱和NaCl,再加入 2倍体积的无水乙醇,析出白色沉淀,12000rpm,离心10min,去上清液,再加入1mL70%的乙醇清洗沉淀,12000rpm,离心10min,反复两次。最后挥干乙醇后,加入适量的ddH2O溶解,利用NanoDrop测定浓度。
设计引物在目标基因DNMT-1切割位点两侧,PCR产物300bp,用5%聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis Based Genotyping/PAGE) 进行切割与否鉴定,结果如图12、图13所示,相比于野生AsCpf1(WT),AsCpf1 单突变体D908A(M908)、单突变体E993A(M993)和双突变体 AsCpf1D908A/E993A(DM)无核酸酶切割,同样突变体LbCpf1D832A(M832)和或E925A(M925)无核酸酶切割,可见各突变体DNA酶切割活性明显降低或丧失。PAGE所用引物序列如下:
DNMT1-3-PAGE-F如SEQ ID NO:22所示,DNMT1-3-PAGE-R如SEQ ID NO:23所示。
PCR体系如下:模版质粒:1μL(30ng),前向引物:0.6μL(10μM),后向引物:0.6μL(10μM),2ⅹTaq酶混合物:10μL,ddH2O:至20μL。
PCR-PAGE程序如下:①95℃:2min,②95℃:30s,③58℃:30s,④72℃:30s,②③④循环35次,⑤72℃2min,⑥95℃5min,⑦95℃-85℃1℃/s,⑧16℃保存。
T7EI验证dLbCpf1核酸酶切割活性,具体操作如下:
使用引物DNMT1-3-PAGE-F和DNMT1-3-PAGE-R进行T7EI实验,两引物位于目标基因DNMT-1切割位点两侧,产物大小400bp,经过T7核酸内切酶切割可得到120bp和280bp条带,具体过程如下:
PCR体系如下:模版质粒:1μL(100ng),前向引物:2.5μL(10μM),后向引物:2.5μL(10μM),2ⅹTaq酶混合物:25μL,ddH2O:至50μL。
PCR程序如下:①95℃:2min,②95℃:30s,③58℃:30s,④72℃:40s,②③④循环40次,⑤72℃2min,⑥16℃保存。
使用PCR纯化试剂盒纯化PCR产物,利用NanoDrop测定浓度.取400ngPCR 产物加入2uL 10xNEB缓冲液2,补水至20uL,然后退火,再加0.4uLT7核酸内切酶,37℃,2小时,用2%琼脂糖凝胶电泳分析切割产物,结果如图14,退火具体过程如下:①95℃2min,②-2℃/s to85℃,③-0.1℃/s to 25℃,④16℃保存。
dAs/LbCpf1-p300融合蛋白表达载体构建:
以p1U6-dCas9-p300mutant-iRFP670质粒为模板,通过PCR获得p300Core 蛋白序列片段,并引入XhoI和AgeI酶切位点,所用引物序列如下:P300PCR Primer-F如SEQ ID NO:24所示,P300PCR Primer-R如SEQ ID NO:25所示。
用Age I和Xho I切割PCR所得p300片段和p1U6-As/Lb scaf-pCAG-dAs/LbCpf1-mCherry(图11,12)质粒,用0.8%琼脂糖凝胶电泳分析酶产物,切胶分别回收条带,两者通过NEB购买的T4DNA连接酶连接,产物转化到TOP10大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板,37℃培养过夜,然后挑取单个克隆,37℃250rpm摇菌后进行DNA测序,筛选得到载体质粒命名为:p1U6-As/Lbscaf-pCAG-dAs/LbCpf1-p300-mCherry质粒(图 15~18)。
用MfeI和MluI双酶切割,经Klenow Fragment修饰和NEB购买的T4DNA 连接酶连接,产物转化到TOP10大肠杆菌中,涂在含有100μg/mL氨苄青霉素的LB固体平板,37℃培养过夜,然后挑取单个克隆,37℃250rpm摇菌后进行 DNA测序,筛选所得到的载体质粒命名为:pCAG-dAs/LbCpf1-p300-mCherry融合蛋白表达终质粒(图19~22)。
pBlu2SKP-As/Lbscaffold载体质粒构造:
以p1U6-As/Lb scaf-pCAG-As/LbCpf1-p300-mCherry为模板,通过PCR合成含U6-scaffold片段,并引入SalI酶切位点,所用引物序列如下:U6PCR-F如 SEQ ID NO:26所示,As scaffold-R如SEQ ID NO:27所示,Lb scaffold-R如SEQ ID NO:28所示。
用Sal I和EcoR V切割购买的质粒pBlu2SKP(Agilent Technologies:212205)(图23)和上述PCR产物,经过NEB购买的T4DNA连接酶连接,所筛选得到载体质粒的命名为pBlu2SKP-As/Lbscaffold载体(图24)。
pBlu2SKP-gRNA-As/Lbscaffold载体质粒构造:
用EcoR V和Xma I切割上述所得pBlu2SKP-As/Lbscaffold载体,通过 Benchling网站设计gRNA,由商业公司合成gRNA见表2,并两条部分互补配对单链DNA片段合成双链的DNA片段,将上述线性化载体和双链的DNA片段通过T4连接酶连接,筛选所得的载体质粒命名为:pBlu2SKP-gRNA-As/Lbscaffold。
表2
dCpf1-p300融合蛋白功能鉴定,包括dLbCpf1D832A/E925A
于12孔板铺3*105细胞每孔,置于37℃,5%CO2孵箱培养18~24小时,至细胞密度为65-70%,换为无血清的基础培养基DMEM,以待质粒转染,使用脂质体转染试剂聚乙烯亚胺(PEI),具体方法如下:
制备PEI(10ⅹ)1mg/ml,pH7.0,制备HEBS20Mm Hepes,150mM NaCl, pH7.4。
转染条件:DNA:1000ng每孔,PEI:total DNA=4:1(g/g)。
先将待转染质粒包括pCAG-dLbCpf1-p300-mCherry和 pBlu2SKP-gRNA-Lbscaffold,预混于30μlHEBS中,室温静置5min,再与PEI混合,室温静置25min后均匀的加入12孔板孔中,置于37℃,5%CO2孵箱培养,8h后换为全培基,培养48h后,一半细胞量提取细胞全蛋白质进行western blot检测,结果显示dLbCpf1在哺乳动物细胞中表达(图25),一半细胞量使用QIAGEN RNA 提取试剂盒提取总RNA,实验步骤参见(Qiagen’s RNA MiniKit:74106说明书),设计引物序列,具体如表3所示,进行Real-Time PCR实验,实验步骤参见 (TaKaRa:RR036Q说明书中Biosystems 7500RT-Time PCR System,StepOnePlus), 结果显示,在人肾上皮细胞系293T中,目标基因MyoD、IL1RN、OCT4表达量明显升高,同样在乳腺癌细胞系MCF7和人骨肉瘤细胞系U2OS两种不类别细胞系中MyoD、IL1RN表达量也明显升高,结果如图26~28所示,因此本发明构建的Cpf1-p300靶向激活系统具有明显的广谱性。
表3
Real-timePCR引物 序列(5’-3’)
GAPDH-qPCR-F SEQ ID NO:61
GAPDH-qPCR-R SEQ ID NO:62c
MyoD-qPCR-F SEQ ID NO:63
MyoD-qPCT-R SEQ ID NO:64
IL1RN-qPCR-F SEQ ID NO:65
IL1RN-qPCR-R SEQ ID NO:66
OCT-4-qPCR-F SEQ ID NO:67
OCT-4-qPCR-R SEQ ID NO:68
将收取RNA送往公司,进行全转录水平mRNA水平测序,结果如图26中d,显示MYOD基因表达水平明显高于对照组,说明成功构建基因组靶向激活系统,同时为了验证Cpf1-p300特异性水平,进行了特异性分析,结果显示如表4、5、6,实验组dLbCpf1(M832)单基因突变体相比于对照组dLbCpf1(C832)激活MyoD 基因中,分析测序结果显示,转录水平较高的前5位基因中,MyoD水平明显高于其它基因,同样,实验组dLbCpf1(M925)单基因突变体和实验组dLbCpf1(DM) 相比于对照组dLbCpf1(C925)单基因突变体和dLbCpf1(CDM),MyoD基因激活水平也明显高于其它基因,因此说明本发明所构建的Cpf1-p300靶向激活系统特异性高,具有很好的应用前景。
表4
表5
表6
序列表
<110> 南方医科大学
<120> 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用
<160> 68
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> AsCpf1的骨架序列(Artificial Sequence)
<400> 1
taatttctac tcttgtagat 20
<210> 2
<211> 20
<212> DNA
<213> LbCpf1的骨架序列(Artificial Sequence)
<400> 2
aatttctact aagtgtagat 20
<210> 3
<211> 101
<212> DNA
<213> Oligo-F(Artificial Sequence)
<400> 3
gatcctaccc atacgatgtt ccagattacg cttatcccta cgacgtgcct gattatgcat 60
acccatacga tgtccccgac tatgccctcg agagcaccgg t 101
<210> 4
<211> 99
<212> DNA
<213> Oligo-R(Artificial Sequence)
<400> 4
taaccggtgc tctcgagggc atagtcgggg acatcgtatg ggtatgcata atcaggcacg 60
tcgtagggat aagcgtaatc tggaacatcg tatgggtag 99
<210> 5
<211> 56
<212> DNA
<213> AsCpf1-scaffold-OLIGO F(Artificial Sequence)
<400> 5
taatttctac tcttgtagat atcaccgcct acgtcagtac ctacaagctt ttttta 56
<210> 6
<211> 65
<212> DNA
<213> AsCpf1-scaffold-OLIGO R(Artificial Sequence)
<400> 6
cgcgtaaaaa aagcttgtag gtactgacgt aggcggtgat atctacaaga gtagaaatta 60
cggtg 65
<210> 7
<211> 56
<212> DNA
<213> LbCpf1-scaffold-OLIGO F(Artificial Sequence)
<400> 7
aatttctact aagtgtagat atcaccgcct acgtcagtac ctacaagctt ttttta 56
<210> 8
<211> 65
<212> DNA
<213> LbCpf1-scaffold-OLIGO R(Artificial Sequence)
<400> 8
cgcgtaaaaa aagcttgtag gtactgacgt aggcggtgat atctacactt agtagaaatt 60
cggtg 65
<210> 9
<211> 29
<212> DNA
<213> AsCpf1-Mut-D908A-F(Artificial Sequence)
<400> 9
cgacctgtct gatgaggcca gggccctgc 29
<210> 10
<211> 29
<212> DNA
<213> AsCpf1-Mut-D908A- Rm(Artificial Sequence)
<400> 10
ctctcgcccc gggcgatgcc gatgatagg 29
<210> 11
<211> 27
<212> DNA
<213> AsCpf1-Mut-D908A- Fm(Artificial Sequence)
<400> 11
atcggcatcg cccggggcga gagaaac 27
<210> 12
<211> 27
<212> DNA
<213> AsCpf1-Mut-D908A- R(Artificial Sequence)
<400> 12
aaagtggcac cgagtcggtg cggatcc 27
<210> 13
<211> 27
<212> DNA
<213> AsCpf1-Mut-E993A- Rm(Artificial Sequence)
<400> 13
attcaggttg gctagcacca ccacggc 27
<210> 14
<211> 27
<212> DNA
<213> AsCpf1-Mut-E993A- Fm(Artificial Sequence)
<400> 14
ggtggtgcta gccaacctga atttcgg 27
<210> 15
<211> 36
<212> DNA
<213> LbCpf1-Mut-D832A-Fm(Artificial Sequence)
<400> 15
aacccctatg tgatcggcat cgctaggggc gagcgc 36
<210> 16
<211> 33
<212> DNA
<213> LbCpf1-Mut-D832A- R(Artificial Sequence)
<400> 16
cttgaaaaag tggcaccgag tcggtgcgga tcc 33
<210> 17
<211> 32
<212> DNA
<213> LbCpf1-Mut-E925A-F(Artificial Sequence)
<400> 17
acgataaccc ctatgtgatc ggcatcgata gg 32
<210> 18
<211> 32
<212> DNA
<213> LbCpf1-Mut-E925A- Rm(Artificial Sequence)
<400> 18
agttcaggtc ggctagcgcg atcacggcat cg 32
<210> 19
<211> 32
<212> DNA
<213> LbCpf1-Mut-E925A- Fm(Artificial Sequence)
<400> 19
ccgtgatcgc gctagccgac ctgaactctg gc 32
<210> 20
<211> 28
<212> DNA
<213> DNMT-1-3-F(Artificial Sequence)
<400> 20
ctgatggtcc atgtctgtta ctcttttt 28
<210> 21
<211> 28
<212> DNA
<213> DNMT-1-3-R(Artificial Sequence)
<400> 21
gagtaacaga catggaccat cagatcta 28
<210> 22
<211> 20
<212> DNA
<213> DNMT1-3-PAGE-F(Artificial Sequence)
<400> 22
caagtgctta gagcaggcgt 20
<210> 23
<211> 20
<212> DNA
<213> DNMT1-3-PAGE-R(Artificial Sequence)
<400> 23
gtgacgggag ggcagaacta 20
<210> 24
<211> 26
<212> DNA
<213> P300 PCR Primer-F(Artificial Sequence)
<400> 24
gcgcctcgag attttcaaac cagaag 26
<210> 25
<211> 27
<212> DNA
<213> P300 PCR Primer-R(Artificial Sequence)
<400> 25
atataccggt gtcctggctc tgcgtgt 27
<210> 26
<211> 27
<212> DNA
<213> U6PCR-F(Artificial Sequence)
<400> 26
tatagtcgac aaggtcgggc aggaaga 27
<210> 27
<211> 21
<212> DNA
<213> As scaffold-R(Artificial Sequence)
<400> 27
cgcggatatc tacaagagta g 21
<210> 28
<211> 21
<212> DNA
<213> Lb scaffold-R(Artificial Sequence)
<400> 28
cgcggatatc tacacttagt a 21
<210> 29
<211> 31
<212> DNA
<213> MyoD-P 1-F(Artificial Sequence)
<400> 29
ggctactacg gataaatagc ccattttttt c 31
<210> 30
<211> 35
<212> DNA
<213> MyoD-P 1-R(Artificial Sequence)
<400> 30
ccgggaaaaa aatgggctat ttatccgtag tagcc 35
<210> 31
<211> 31
<212> DNA
<213> MyoD-P 2-F(Artificial Sequence)
<400> 31
tccgtagtag cctaaacgcc ccgttttttt c 31
<210> 32
<211> 35
<212> DNA
<213> MyoD-P 2-R(Artificial Sequence)
<400> 32
ccgggaaaaa aacggggcgt ttaggctact acgga 35
<210> 33
<211> 31
<212> DNA
<213> MyoD-P 3-F(Artificial Sequence)
<400> 33
gaaagggcgt gccggagagc caattttttt c 31
<210> 34
<211> 35
<212> DNA
<213> MyoD-P 3-R(Artificial Sequence)
<400> 34
ccgggaaaaa aattggctct ccggcacgcc ctttc 35
<210> 35
<211> 31
<212> DNA
<213> MyoD-P 4-F(Artificial Sequence)
<400> 35
ccgcggatac agcagtcggg tgtttttttt c 31
<210> 36
<211> 35
<212> DNA
<213> MyoD-P 4-R(Artificial Sequence)
<400> 36
ccgggaaaaa aaacacccga ctgctgtatc cgcgg 35
<210> 37
<211> 31
<212> DNA
<213> MyoD-DRR-1-F(Artificial Sequence)
<400> 37
gcgcccccca cctcccggcc agattttttt c 31
<210> 38
<211> 35
<212> DNA
<213> MyoD-DRR-1-R(Artificial Sequence)
<400> 38
ccgggaaaaa aatctggccg ggaggtgggg ggcgc 35
<210> 39
<211> 31
<212> DNA
<213> MyoD-DRR-2-F(Artificial Sequence)
<400> 39
tatatatagc ctctggaaac ccattttttt c 31
<210> 40
<211> 35
<212> DNA
<213> MyoD-DRR-2-F(Artificial Sequence)
<400> 40
ccgggaaaaa aatgggtttc cagaggctat atata 35
<210> 41
<211> 31
<212> DNA
<213> MyoD-DRR-3-F(Artificial Sequence)
<400> 41
ccagggagca agtttgtcag gggttttttt c 31
<210> 42
<211> 35
<212> DNA
<213> MyoD-DRR-3-R(Artificial Sequence)
<400> 42
ccgggaaaaa aacccctgac aaacttgctc cctgg 35
<210> 43
<211> 31
<212> DNA
<213> MyoD-DRR-4-F(Artificial Sequence)
<400> 43
cagaggccag ctctccattt atattttttt c 31
<210> 44
<211> 35
<212> DNA
<213> MyoD-DRR-4-R(Artificial Sequence)
<400> 44
ccgggaaaaa aatataaatg gagagctggc ctctg 35
<210> 45
<211> 29
<212> DNA
<213> OCT4pro-1-F(Artificial Sequence)
<400> 45
gcccagtaga tcgaggctac atttttttc 29
<210> 46
<211> 33
<212> DNA
<213> OCT4pro-1-R(Artificial Sequence)
<400> 46
ccgggaaaaa aatgtagcct cgatctactg ggc 33
<210> 47
<211> 31
<212> DNA
<213> OCT4pro-2-F(Artificial Sequence)
<400> 47
tgtgggggac ctgcactgag gtcttttttt c 31
<210> 48
<211> 35
<212> DNA
<213> OCT4pro-2-R(Artificial Sequence)
<400> 48
ccgggaaaaa aagacctcag tgcaggtccc ccaca 35
<210> 49
<211> 31
<212> DNA
<213> OCT4pro-3-F(Artificial Sequence)
<400> 49
cctaatggtg gtggcaatgg tgtttttttt c 31
<210> 50
<211> 35
<212> DNA
<213> OCT4pro-3-R(Artificial Sequence)
<400> 50
ccgggaaaaa aaacaccatt gccaccacca ttagg 35
<210> 51
<211> 31
<212> DNA
<213> OCT4pro-4-F(Artificial Sequence)
<400> 51
tccccccacc tccctctcct ccattttttt c 31
<210> 52
<211> 35
<212> DNA
<213> OCT4pro-4-R(Artificial Sequence)
<400> 52
ccgggaaaaa aatggaggag agggaggtgg gggga 35
<210> 53
<211> 31
<212> DNA
<213> OCT4PE-1-F(Artificial Sequence)
<400> 53
ggccccctcc actatggaac ctgttttttt c 31
<210> 54
<211> 35
<212> DNA
<213> OCT4PE-1-R(Artificial Sequence)
<400> 54
ccgggaaaaa aacaggttcc atagtggagg gggcc 35
<210> 55
<211> 31
<212> DNA
<213> OCT4PE-2-F(Artificial Sequence)
<400> 55
gggttagagc tgccccctct gggttttttt c 31
<210> 56
<211> 35
<212> DNA
<213> OCT4PE-2-R(Artificial Sequence)
<400> 56
ccgggaaaaa aacccagagg gggcagctct aaccc 35
<210> 57
<211> 31
<212> DNA
<213> OCT4PE-3-F(Artificial Sequence)
<400> 57
gcgtctctga aggggattct gtgttttttt c 31
<210> 58
<211> 35
<212> DNA
<213> OCT4PE-3-R(Artificial Sequence)
<400> 58
ccgggaaaaa aacacagaat ccccttcaga gacgc 35
<210> 59
<211> 31
<212> DNA
<213> OCT4PE-4-F(Artificial Sequence)
<400> 59
ccaacctttg ctgaaacaga gtgttttttt c 31
<210> 60
<211> 35
<212> DNA
<213> OCT4PE-4-R(Artificial Sequence)
<400> 60
ccgggaaaaa aacactctgt ttcagcaaag gttgg 35
<210> 61
<211> 20
<212> DNA
<213> GAPDH-qPCR-F(Artificial Sequence)
<400> 61
agaaggctgg ggctcatttg 20
<210> 62
<211> 20
<212> DNA
<213> GAPDH-qPCR-R(Artificial Sequence)
<400> 62
aggggccatc cacagtcttc 20
<210> 63
<211> 20
<212> DNA
<213> MyoD-qPCR-F(Artificial Sequence)
<400> 63
tccctctttc acggtctcac 20
<210> 64
<211> 20
<212> DNA
<213> MyoD-qPCT-R(Artificial Sequence)
<400> 64
aacacccgac tgctgtatcc 20
<210> 65
<211> 20
<212> DNA
<213> IL1RN-qPCR-F(Artificial Sequence)
<400> 65
ggaatccatg gagggaagat 20
<210> 66
<211> 20
<212> DNA
<213> IL1RN-qPCR-R(Artificial Sequence)
<400> 66
tgttctcgct caggtcagtg 20
<210> 67
<211> 30
<212> DNA
<213> OCT-4-qPCR-F(Artificial Sequence)
<400> 67
cgaaagagaa agcgaaccag tatcgagaac 30
<210> 68
<211> 27
<212> DNA
<213> OCT-4-qPCR-R(Artificial Sequence)
<400> 68
cgttgtgcat agtcgctgct tgatcgc 27

Claims (9)

1.一种融合蛋白,其特征在于,含有两个异源多肽结构域,其中一个多肽结构域包含Cpf1蛋白,另一个多肽结构域包含具有转录激活活性的p300核心结构域;所述Cpf1蛋白包含AsCpf1亚型和LbCpf1亚型;且所述AsCpf1亚型中含有D908A单位点和/或E993A单位点氨基酸突变;所述LbCpf1亚型中含有D832A单位点和/或E925A单位点氨基酸突变。
2.一种表达载体,其特征在于,该表达载体用于表达权利要求1所述的融合蛋白。
3.根据权利要求2所述的表达载体,其特征在于,所述表达载体的启动子为CAG,剪切肽为P2A,入核信号为NLS和SV40NLS,Cpf1蛋白和p300核心结构域之间插入NLS信号和3xHA标签。
4.一种DNA靶向激活系统,其特征在于,包含权利要求1所述的融合蛋白和至少一种向导RNA;所述向导RNA为针对目的基因启动子或增强子区域设计的一段长度为23bp的序列。
5.根据权利要求4所述的DNA靶向激活系统,其特征在于,所述启动子或增强子区域位于MyoD、IL1RN和/或OCT4。
6.根据权利要求4所述的DNA靶向激活系统,其特征在于,所述DNA靶向激活系统含有四种不同的向导RNA。
7.权利要求4~6中任意一条权利要求所述DNA靶向激活系统对细胞进行靶向基因激活中的应用。
8.根据权利7所述的DNA靶向激活系统对细胞进行靶向基因激活中的应用,其特征在于,所述细胞包括293T、U2OS和MCF7。
9.根据权利要求7或8所述的DNA靶向激活系统对细胞进行靶向基因激活中的应用,其特征在于,包括如下步骤:
(1)构建含有至少一种氨基酸突变的Cpf1表达载体;
(2)构建表达特定向导RNA的载体;
(3)将步骤(1)所述Cpf1表达载体和步骤(2)所述表达特定向导RNA的载体混合,通过脂质体转染试剂聚乙烯亚胺共转染到哺乳动物细胞,在细胞内表达的融合蛋白与其特定向导RNA结合,将p300核心蛋白靶向目标基因区。
CN201710740411.8A 2017-08-25 2017-08-25 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用 Pending CN107488649A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710740411.8A CN107488649A (zh) 2017-08-25 2017-08-25 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710740411.8A CN107488649A (zh) 2017-08-25 2017-08-25 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用

Publications (1)

Publication Number Publication Date
CN107488649A true CN107488649A (zh) 2017-12-19

Family

ID=60645751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710740411.8A Pending CN107488649A (zh) 2017-08-25 2017-08-25 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用

Country Status (1)

Country Link
CN (1) CN107488649A (zh)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN109554394A (zh) * 2018-11-23 2019-04-02 佛山科学技术学院 一种条件性诱导表达AsCpf1慢病毒载体及其构建方法和在猪小肠上皮细胞建系中的应用
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
WO2019173942A1 (en) * 2018-03-12 2019-09-19 Nanjing Bioheng Biotech Co., Ltd Engineered chimeric guide rna and uses thereof
CN110358753A (zh) * 2019-07-29 2019-10-22 南方医科大学 基于CjCas9和VPR核心结构域的融合蛋白、相应的DNA靶向激活系统及其应用
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
CN110452893A (zh) * 2019-08-19 2019-11-15 南方医科大学 一种高保真CRISPR/AsCpf1突变体的构建及其应用
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
WO2019237383A1 (zh) * 2018-06-16 2019-12-19 深圳市博奥康生物科技有限公司 用于人 tnfsf18 基因编辑的修饰载体、其制备方法及应用
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112159822A (zh) * 2020-09-30 2021-01-01 扬州大学 一种PS转座酶与CRISPR/dCpf1融合蛋白表达载体及其介导的定点整合方法
WO2021031085A1 (zh) * 2019-08-19 2021-02-25 南方医科大学 一种高保真CRISPR/AsCpf1突变体的构建及其应用
CN112941110A (zh) * 2019-12-10 2021-06-11 鼓润(武汉)医疗科技有限公司 一种CRISPR/Lbcpf1基因编辑系统及其应用
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
CN114441772A (zh) * 2022-01-29 2022-05-06 北京大学 用于检测细胞内能够与rna结合的靶分子的方法和试剂
CN114958910A (zh) * 2022-05-13 2022-08-30 南方医科大学 DropCRISPRa高效靶向相分离基因激活系统及其构建方法和应用
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658805A (zh) * 2013-06-05 2016-06-08 杜克大学 Rna指导的基因编辑和基因调节
CN106922154A (zh) * 2014-08-06 2017-07-04 基因工具股份有限公司 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑
CN106978428A (zh) * 2017-03-15 2017-07-25 上海吐露港生物科技有限公司 一种Cas蛋白特异结合靶标DNA、调控靶标基因转录的方法及试剂盒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658805A (zh) * 2013-06-05 2016-06-08 杜克大学 Rna指导的基因编辑和基因调节
CN106922154A (zh) * 2014-08-06 2017-07-04 基因工具股份有限公司 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑
CN106978428A (zh) * 2017-03-15 2017-07-25 上海吐露港生物科技有限公司 一种Cas蛋白特异结合靶标DNA、调控靶标基因转录的方法及试剂盒

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERND ZETSCHE等: "Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system", 《CELL》 *
ISAAC B. HILTON等: "Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers", 《NAT BIOTECHNOL》 *
李文均等: "CRISPR/Cas 工具——分子遗传研究的新刃", 《微生物学报》 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2019173942A1 (en) * 2018-03-12 2019-09-19 Nanjing Bioheng Biotech Co., Ltd Engineered chimeric guide rna and uses thereof
WO2019237383A1 (zh) * 2018-06-16 2019-12-19 深圳市博奥康生物科技有限公司 用于人 tnfsf18 基因编辑的修饰载体、其制备方法及应用
CN109554394A (zh) * 2018-11-23 2019-04-02 佛山科学技术学院 一种条件性诱导表达AsCpf1慢病毒载体及其构建方法和在猪小肠上皮细胞建系中的应用
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110358753B (zh) * 2019-07-29 2021-04-06 南方医科大学 基于CjCas9和VPR核心结构域的融合蛋白、相应的DNA靶向激活系统及其应用
CN110358753A (zh) * 2019-07-29 2019-10-22 南方医科大学 基于CjCas9和VPR核心结构域的融合蛋白、相应的DNA靶向激活系统及其应用
WO2021031085A1 (zh) * 2019-08-19 2021-02-25 南方医科大学 一种高保真CRISPR/AsCpf1突变体的构建及其应用
CN110452893B (zh) * 2019-08-19 2021-09-07 南方医科大学 一种高保真CRISPR/AsCpf1突变体的构建及其应用
CN110452893A (zh) * 2019-08-19 2019-11-15 南方医科大学 一种高保真CRISPR/AsCpf1突变体的构建及其应用
CN112941110A (zh) * 2019-12-10 2021-06-11 鼓润(武汉)医疗科技有限公司 一种CRISPR/Lbcpf1基因编辑系统及其应用
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112159822A (zh) * 2020-09-30 2021-01-01 扬州大学 一种PS转座酶与CRISPR/dCpf1融合蛋白表达载体及其介导的定点整合方法
CN114441772A (zh) * 2022-01-29 2022-05-06 北京大学 用于检测细胞内能够与rna结合的靶分子的方法和试剂
CN114441772B (zh) * 2022-01-29 2023-03-21 北京大学 用于检测细胞内能够与rna结合的靶分子的方法和试剂
CN114958910A (zh) * 2022-05-13 2022-08-30 南方医科大学 DropCRISPRa高效靶向相分离基因激活系统及其构建方法和应用
CN114958910B (zh) * 2022-05-13 2024-03-01 南方医科大学 DropCRISPRa高效靶向相分离基因激活系统及其构建方法和应用

Similar Documents

Publication Publication Date Title
CN107488649A (zh) 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用
CN107922931B (zh) 热稳定的Cas9核酸酶
US11111508B2 (en) Modified CAS9 compositions and methods of use
JP2023002712A (ja) S.ピオゲネスcas9変異遺伝子及びこれによってコードされるポリペプチド
AU2021231074B2 (en) Class II, type V CRISPR systems
CN107012164A (zh) CRISPR/Cpf1植物基因组定向修饰功能单元、包含该功能单元的载体及其应用
KR102626503B1 (ko) 뉴클레오타이드 표적 인식을 이용한 표적 서열 특이적 개변 기술
JP2022520428A (ja) Ruvcドメインを有する酵素
EP3612630B1 (en) Site-specific dna modification using a donor dna repair template having tandem repeat sequences
EP3940078A1 (en) Off-target single nucleotide variants caused by single-base editing and high-specificity off-target-free single-base gene editing tool
WO2022199511A1 (zh) 一种Lt1Cas13d蛋白及基因编辑系统
CN113337502B (zh) 一种gRNA及其用途
JP2022514603A (ja) 藻類における遺伝子の誘導発現
WO1982000158A1 (en) System for amplification of eukaryotic genes
JP2024501892A (ja) 新規の核酸誘導型ヌクレアーゼ
DE602004009649T2 (de) Verfahren zur Klonierung und Expression der SbfI Restriktionsendonuklease und der SbfI Methylase in E. coli
CN116751764B (zh) 一种Cas9蛋白、II型CRISPR/Cas9基因编辑系统及应用
CN115975986B (zh) 突变的Cas12j蛋白及其应用
CN104774860B (zh) 适于转化细胞的构建体、系统及其应用
CN110387362B (zh) 一种可识别切割agct位点的耐高温限制性内切酶
JP7125727B1 (ja) 核酸配列改変用組成物および核酸配列の標的部位を改変する方法
CN110452894B (zh) 靶向agct位点的耐高温ii型限制性内切酶及其应用
CN110438103B (zh) 一种新型高效的常温ii型限制性内切酶
JP2024043578A (ja) 新規Casタンパク質
CA3225082A1 (en) Enzymes with ruvc domains

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171219