CN107523567A - 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法 - Google Patents
一种敲除人ezrin基因增强子的食管癌细胞株的构建方法 Download PDFInfo
- Publication number
- CN107523567A CN107523567A CN201710957308.9A CN201710957308A CN107523567A CN 107523567 A CN107523567 A CN 107523567A CN 201710957308 A CN201710957308 A CN 201710957308A CN 107523567 A CN107523567 A CN 107523567A
- Authority
- CN
- China
- Prior art keywords
- ezrin
- grna
- people
- seq
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明属于分子生物学领域,具体涉及CRISPR/Cas9靶向敲除人ezrin基因增强子的方法、用于靶向人ezrin基因增强子的特异性gRNA以及一种敲除人ezrin基因增强子的食管癌细胞株。本发明提供了用于敲除人ezrin基因增强子的特异性gRNA,所述gRNA的靶DNA序列为SEQ ID NO.1‑4所示序列中的任意一条序列。本发明提供了一种敲除人食管癌细胞ezrin基因增强子的方法,为利用CRISPR/Cas系统在人食管癌细胞中对ezrin基因进行改造。本发明还提供了一种敲除人ezrin基因增强子的食管癌细胞株,为研究ezrin基因表达与肿瘤侵袭移动的相关性提供了有效的平台。
Description
技术领域
本发明属于分子生物学领域,具体涉及CRISPR/Cas9靶向敲除人ezrin基因增强子的方法、用于靶向人ezrin基因增强子的特异性gRNA以及一种敲除人ezrin基因增强子的食管癌细胞株。
背景技术
CRISPR/Cas(clustered regularly interspaced short palindromic repeats-associated)是很多细菌和大部分古生菌的天然免疫系统,通过对入侵的病毒和核酸进行特异性的识别,利用Cas蛋白进行切割,从而达到对自身的免疫。CRISPR/Cas9系统借鉴细菌的防御策略,由gRNA(guide RNA)寻找特定的DNA序列,然后利用Cas9核酸内切酶对靶DNA进行切割,造成双链断裂,在没有模板的情况下,发生非同源末端连接,造成DNA缺失突变(Lau,2017)。
肿瘤相关基因ezrin在食管癌、鼻咽癌、肺癌、胰腺癌等多种肿瘤中存在异常表达现象,其表达上调与肿瘤细胞的移动侵袭相关,抑制ezrin基因的过表达可有效阻止食管癌等肿瘤细胞的侵袭移动(Yang,2012)。我们既往采用双荧光素酶报告基因检测系统研究发现,在人ezrin基因编码区上游的启动子和增强子区(Gao,2009),有望成为控制ezrin基因表达的有效靶点(张青峰,2014)。采用CRISPR/Cas9系统,在人ezrin基因增强子区的上游和下游分别设计筛选特异性gRNA靶位点,对靶位点同时进行双链断裂,有望实现人ezrin增强子的靶向敲除,获得敲除人ezrin基因增强子的细胞株,这对于研究人ezrin基因增强子在Ezrin蛋白过表达中的调控作用,以及研究人ezrin基因增强子与肿瘤细胞生物学行为之间的关系具有重要意义。
参考文献:
1.Lau V, Davie JR. The discovery and development of the CRISPR system inapplications in genome manipulation. Biochem Cell Biol, 2017, 95(2): 203-210.
2.Yang L, Guo T, Jiang S, et al. Expression of ezrin, HGF and c-met andits clinicopathological significance in the benign and malignant lesions ofthe gallbladder. Hepatogastroenterology, 2012, 59(118): 1769-1775.
3.Gao SY, Li EM, Cui L, et al. Sp1 and AP-1 regulate expression of thehuman gene VIL2 in esophageal carcinoma cells. J Biol Chem, 2009, 284(12):7995-8004.
4.张青峰, 卫金岐, 张芳婷, 等. 几种肿瘤细胞中ezrin基因增强子区转录调控特性的研究. 中国细胞生物学学报, 2014, 36(5): 610-616.
发明内容
本发明的目的在于通过设计、构建和检测,提供靶向人ezrin基因增强子的gRNA及其靶位点序列,并用其实现目标序列的靶向敲除,获得敲除人ezrin基因增强子的食管癌细胞株。
为实现上述目的,本发明以CRISPR/Cas9系统原理和gRNA设计原则为基础,利用软件设计4个gRNA,靶向人ezrin基因增强子上游和下游的gRNA各2个。合成gRNA相对应的正向和反向互补寡核苷酸链,退火后形成双链,连接至载体pX459构建CRISPR/Cas9重组质粒;将重组质粒转染至人食管癌细胞Eca-109中进行gRNA活性验证;筛选、鉴定靶向敲除目的片段的细胞株。本发明提供的gRNA能够实现人ezrin基因增强子的特异性敲除,本发明获得敲除人ezrin基因增强子的食管癌细胞株对于研究人ezrin基因增强子在Ezrin蛋白过表达中的调控作用,以及研究人ezrin基因增强子与肿瘤细胞生物学行为之间的关系具有重要意义。
本发明申请的技术方案如下:
1、靶向人ezrin基因增强子的gRNA设计,gRNA对应的寡核苷酸链的合成,携带gRNA寡核苷酸链的CRISPR/Cas9重组质粒构建。
2、在肿瘤细胞模型中分析鉴定本发明gRNA指导的CRISPR/Cas9系统对于靶向敲除人ezrin基因增强子的特异性,验证gRNA活性。
3、CRISPR/Cas9重组质粒转染人食管癌细胞,利用嘌呤霉素筛选单细胞克隆。测序鉴定突变等位基因的基因型,筛选纯合突变单克隆细胞系, 获得敲除人ezrin基因增强子的食管癌细胞株。
一种在CRISPR/Cas9靶向敲除人ezrin基因增强子中用于特异性靶向人ezrin基因增强子的gRNA:
(1) 所述gRNA在人ezrin基因的靶序列符合5′-N(20)-NGG-3′或者5′-CCN-N(20)-3′序列的排列规则;
(2)所述gRNA在人ezrin基因的靶序列是唯一的;
(3)所述gRNA在人ezrin基因的靶序列位于人ezrin基因增强子的上游或下游。
上述其对应的DNA序列如序列表SEQ ID NO.1-4任意一条序列所示。
上述方法用于非诊断或治疗目的,其包括如下步骤:
(1)权利要求1-2任意一项所述的gRNA,在gRNA序列SEQ ID NO.1和SEQ ID NO.2的互补链的5′端加上CACCG,合成得到正向寡核苷酸链;在SEQ ID NO.1和SEQ ID NO.2的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链。在gRNA序列SEQ ID NO.3和SEQ ID NO.4的5′端加上CACCG,合成得到正向寡核苷酸链;在SEQ ID NO.3和SEQ ID NO.4的互补链的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链。将合成的一对互补正、反寡核苷酸链退火,形成双链gRNA寡核苷酸链;
(2)将载体pX459经BbsⅠ酶切反应线性化,与上述双链gRNA寡核苷酸链连接,连接产物转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆,提取质粒进行测序鉴定,构建CRISPR/Cas9重组质粒pX459-sgRNA-L1、pX459-sgRNA-L2、pX459-sgRNA-R1和pX459-sgRNA-R2。
(3)采用Lipofectamine™ 3000转染试剂将CRISPR/Cas9重组质粒共转染至人食管癌Eca-109细胞,提取细胞基因组DNA进行PCR扩增,扩增产物重组连接入pGEM-T Easy载体中,测序鉴定gRNA活性。
(4)CRISPR/Cas9重组质粒转染食管癌细胞48 h后,利用嘌呤霉素筛选,直至细胞在嘌呤霉素中能形成单细胞克隆。将单细胞克隆的PCR产物重组连接入pGEM-T Easy载体中,测序鉴定突变等位基因的基因型,筛选纯合突变的单克隆细胞株,获得敲除人ezrin基因增强子的食管癌细胞株。
附图说明
图1为gRNA靶向人ezrin基因位点示意图。
图2为CRISPR/Cas9重组质粒序列比对分析图。
图3为CRISPR/Cas9重组质粒测序部分截图。
图4为转染重组质粒pX459-sgRNA-L1/2的食管癌细胞基因组DNA亚克隆测序比对分析图。
图5为转染重组质粒pX459-sgRNA-L1/2的食管癌细胞基因组DNA亚克隆测序部分截图。
图6为转染重组质粒pX459-sgRNA-R1/2的食管癌细胞基因组DNA亚克隆测序的序列比对分析图。
图7为转染重组质粒pX459-sgRNA-R1/2的食管癌细胞基因组DNA亚克隆测序部分截图。
图8为单克隆细胞株突变型等位基因序列分析图。
图9为单克隆细胞株突变型等位基因测序部分截图。
具体实施方式
下面结合具体实施例和附图进一步阐述本发明。
实施例1 靶向人ezrin基因增强子的gRNA设计以及载体构建
1、靶向人ezrin基因增强子的gRNA设计及寡核苷酸链的合成
从Genebank中查找人ezrin基因序列(http://www.ncbi.nlm.nih.gov/gene/7430),利用在线软件http://www.e-crisp.org/E-CRISP/设计gRNA靶位点,分别位于人ezrin基因增强子(–1541/–706)的上游和下游。在本发明中将gRNA对应的DNA序列又称为gRNA序列,是gRNA在目标基因上的靶位点。gRNA对应的寡核苷酸链(Oligo DNA)按照5′-G(N)20NGG-3′的PAM结构(protospacer adjacent motif)为设计原则,选择分值较高的序列,如果序列的正向寡核苷酸链(Forward oligo)5′端第一个碱基不是G,则在5′端添加一个G,相应地在反向寡核苷酸链(Reverse oligo)的3′端添加一个C。同时在每对互补序列的正向寡核苷酸链的5′端添加CACC,反向寡核苷酸链的5′端添加AAAC,使其退火后形成的末端与pSpCas9(BB)-2A-Puro质粒(Addgene plasmid ID:48139,以下简称pX459)经BbsⅠ酶切后形成的黏性末端互补。本发明设计筛选的gRNA-L1和gRNA-L2分别靶向人ezrin基因增强子的上游(–1541/–1522和–1673/–1654),gRNA-R1和gRNA-R2分别靶向人ezrin基因增强子的下游(–723/–704和–714/–695)。gRNA靶向人ezrin基因位点见图1。在gRNA-L1序列SEQ ID NO.1和gRNA-L2序列 SEQ ID NO.2的互补链的5′端加上CACCG,合成得到正向寡核苷酸分别为SEQ ID NO.5和SEQ ID NO.7;在gRNA-L1和gRNA-L2序列的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链分别为SEQ ID NO.6和SEQ ID NO.8。在gRNA-R1序列SEQ ID NO.3和gRNA-R2序列SEQID NO.4的5′端加上CACCG,合成得到正向寡核苷酸分别为SEQ ID NO.9和SEQ ID NO.11;在gRNA-R1和gRNA-R2序列的互补链的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链分别为SEQ ID NO.10和SEQ ID NO.12。
2、靶向人ezrin基因增强子的CRISPR/Cas9重组质粒构建
将上述寡核苷酸链稀释至终浓度为100 μM,进行退火反应。反应体系如下:两条互补Oligo DNA各0.5 μl,2 μl Annealing Buffer(10×),17 μl ddH2O。将以上体系瞬时离心后,置于65℃水浴中孵育10 min,随后取出,室温下缓慢冷却1~2 h。退火后形成的双链如下:
将载体pX459进行BbsⅠ(NEB,Code No.R0539S)酶切反应,纯化回收目的片段,与上述gRNA-L1、gRNA-L2、gRNA-R1和gRNA-R2杂交双链DNA分别连接,构建CRISPR/Cas9重组质粒pX459-sgRNA-L1、pX459-sgRNA-L2、pX459-sgRNA-R1和pX459-sgRNA-R2。连接反应体系如下:2 μl杂交双链DNA,2 μl pX459酶切片段,1 μl T4 DNA ligation buffer,1 μl T4 DNALigase(TAKARA,Code No.2011B),4 μl ddH2O。将以上体系瞬时离心后,置于16℃水浴中孵育2 h。连接产物转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆,提取质粒进行测序鉴定。测序鉴定引物序列见SEQ ID NO.13。
四种重组质粒的测序结果与载体pX459的序列比对见图2(阴影部分为载体序列,阴影之间为重组的gRNA序列),测序部分截图见图3(图中,A:重组质粒pX459-sgRNA-L1;B:重组质粒pX459-sgRNA-L2;C:重组质粒pX459-sgRNA-R1;D:重组质粒pX459-sgRNA-R2。方框内为gRNA序列,方框两侧为pX459载体序列),测序结果表明,分别靶向人ezrin基因增强子上游和下游的gRNA序列在载体pX459上的连接位置和方向完全正确,重组质粒构建成功。
实施例2 CRISPR/Cas9重组质粒转染人食管癌细胞及gRNA活性验证
1、CRISPR/Cas9重组质粒转染人食管癌细胞
人食管癌Eca-109细胞在含10%灭活胎牛血清的DMEM培养基中贴壁生长,用含0.25%胰蛋白酶和0.02% EDTA的消化液消化细胞,进行传代培养。将对数生长期的细胞消化接种到六孔板中,次日,当细胞汇合率达60%~80%时即可用于转染。采用脂质体法共转染CRISPR/Cas9重组质粒pX459-sgRNA-L1、pX459-sgRNA-L2、pX459-sgRNA-R1和pX459-sgRNA-R2,转染步骤参照Lipofectamine™ 3000(Invitrogen,Code No.L3000008)转染试剂说明进行。
2、gRNA活性验证
CRISPR/Cas9重组质粒转染食管癌细胞48 h后,将终浓度为5 μg/ml的嘌呤霉素加入到细胞培养液中进行筛选,提取细胞基因组DNA。检测gRNA-L活性时使用第一轮PCR引物对SEQID NO.14-15和巢式PCR引物对SEQ ID NO.16-17;检测gRNA-R活性时使用第一轮PCR引物对SEQ ID NO.18-19和巢式PCR引物对SEQ ID NO.20-21。将巢式扩增产物重组连接入pGEM-TEasy载体中,转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆。挑取克隆进行测序鉴定。测序引物为SEQ ID NO.22。
验证gRNA-L活性的5个克隆的测序结果,以未突变序列EZR-L为对照,进行序列比对,结果见图4(图中,EZR-L为未缺失的对照序列,C-L-1~5为转化克隆测序。 方框内为gRNA-L1/2序列),其中1个克隆(C-L-2)未发生突变,3个克隆(C-L-1、3、4)缺失突变87 bp发生在sgRNA-L2上游,1个克隆(C-L-5)缺失突变150 bp发生在sgRNA-L1上游,可以确定gRNA-L1和gRNA-L2均具有活性。克隆C-L-1和C-L-5测序的部分截图见图5(图中,A:克隆C-L-1,目标序列为正向插入,方框内为残存的部分gRNA-L2序列;B:克隆C-L-5,目标序列为反向插入,方框内为残存的部分gRNA-L1序列。箭头所指为缺失片段连接位点)。测序比对结果中在gRNA识别位点以外的个别碱基不同可能源于PCR引入的突变或单核苷酸多态性(singlenucleotide polymorphism,SNP)。
验证gRNA-R活性的5个克隆的测序结果,以未突变序列EZR-R为对照,进行序列比对,结果见图6(图中,EZR-R为未缺失的对照序列,C-R-1~5为转化克隆测序。方框内为gRNA-R1/2序列),检测的5个克隆均出现了大小不同的缺失突变,突变发生在gRNA-R1和gRNA-R2识别位点附近,可以确定gRNA-R1和gRNA-R2具有活性。克隆C-R-4测序的部分截图见图7(图中,目标序列为正向插入,方框内为gRNA-R1和残存的部分gRNA-R2序列。箭头所指为缺失片段连接位点)。
由此可见,转染CRISPR/Cas9重组质粒pX459-sgRNA-L1、pX459-sgRNA-L2、pX459-sgRNA-R1和pX459-sgRNA-R2,能够实现在预定位点对目标DNA进行的切割。
实施例3、单细胞克隆的筛选及ezrin基因增强子的敲除鉴定
1、单细胞克隆筛选
CRISPR/Cas9重组质粒转染食管癌细胞48 h后,将终浓度为5 μg/ml的嘌呤霉素加入到细胞培养液中进行筛选。筛选72 h后,更换正常培养基,待细胞长到一定融合度后进行第二次筛选,直至细胞在嘌呤霉素中能形成单细胞克隆。
2、单克隆细胞株ezrin基因增强子的敲除鉴定
选取12个单细胞克隆,分别提取基因组DNA,以SEQ ID NO.14和SEQ ID NO.19为引物进行第一轮PCR,以SEQ ID NO.16和SEQ ID NO.21为引物进行巢式PCR,将获得的12个PCR产物分别测序,根据测序结果选择1号单克隆细胞株做进一步亚克隆测序,以确认其携带的突变等位基因的基因型。将1号单细胞克隆的巢式PCR产物重组连接入pGEM-T Easy载体中,转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆进行测序鉴定。测序引物为SEQ ID NO.22。
测序结果以引物对SEQ ID NO.16和SEQ ID NO.21之间未突变序列EZR为对照,进行序列比对,结果见图8(图中,EZR为未缺失的对照序列,C-A为突变型A等位基因测序结果,C-B为突变型B等位基因测序结果,方框内为gRNA序列),表现为两种不同的突变型等位基因。突变型A等位基因序列SEQ ID NO.23为EZR缺失826 bp,位于gRNA-L1和gRNA-R2之间,突变型B等位基因序列SEQ ID NO.24为EZR缺失959 bp,位于gRNA-L2和gRNA-R2之间,两个等位基因的缺失区域均包含ezrin基因增强子。突变型等位基因测序的部分截图见图9(图中,A:突变型A等位基因,目标序列为反向插入,箭头所指为缺失片段连接位点,箭头左侧方框为残存的gRNA-R2序列,箭头右侧方框为残存的gRNA-L1序列;B:突变型B等位基因,目标序列为反向插入。箭头所指为缺失片段连接位点,箭头左侧方框为残存的gRNA-R2序列,箭头右侧方框为残存的gRNA-L2序列)。
由上述实验结果可见,本发明成功筛选出纯合突变单克隆细胞系, 获得敲除人ezrin基因增强子的食管癌细胞株。
序列表:
SEQUENCE LISTING
<110> 遵义医学院
<120> 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法
<130> 2017
<160> 24
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
caaacgtgcc acttaaccag 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<400> 2
ccaaagtatg tgttttgtgt 20
<210> 3
<211> 20
<212> DNA
<213> 人工序列
<400> 3
tcggcttctc acgggcttcc 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<400> 4
cacgggcttc ctggcagccc 20
<210> 5
<211> 25
<212> DNA
<213> 人工序列
<400> 5
caccgctggt taagtggcac gtttg 25
<210> 6
<211> 25
<212> DNA
<213> 人工序列
<400> 6
aaaccaaacg tgccacttaa ccagc 25
<210> 7
<211> 25
<212> DNA
<213> 人工序列
<400> 7
caccgacaca aaacacatac tttgg 25
<210> 8
<211> 25
<212> DNA
<213> 人工序列
<400> 8
aaacccaaag tatgtgtttt gtgtc 25
<210> 9
<211> 25
<212> DNA
<213> 人工序列
<400> 9
caccgtcggc ttctcacggg cttcc 25
<210> 10
<211> 25
<212> DNA
<213> 人工序列
<400> 10
aaacggaagc ccgtgagaag ccgac 25
<210> 11
<211> 25
<212> DNA
<213> 人工序列
<400> 11
caccgcacgg gcttcctggc agccc 25
<210> 12
<211> 25
<212> DNA
<213> 人工序列
<400> 12
aaacgggctg ccaggaagcc cgtgc 25
<210> 13
<211> 22
<212> DNA
<213> 人工序列
<400> 13
ccaagtagga aagtcccata ag 22
<210> 14
<211> 18
<212> DNA
<213> 人工序列
<400> 14
tctggtctca acctttag 18
<210> 15
<211> 18
<212> DNA
<213> 人工序列
<400> 15
gaacttggcg gaagtgcg 18
<210> 16
<211> 18
<212> DNA
<213> 人工序列
<400> 16
ttgtaacaca ctgattgc 18
<210> 17
<211> 18
<212> DNA
<213> 人工序列
<400> 17
agtcaggaaa acgtaaat 18
<210> 18
<211> 18
<212> DNA
<213> 人工序列
<400> 18
tcggcggcag gtgcggcg 18
<210> 19
<211> 18
<212> DNA
<213> 人工序列
<400> 19
cagcggagag aggcggag 18
<210> 20
<211> 19
<212> DNA
<213> 人工序列
<400> 20
tcccctcagg tctctcccg 19
<210> 21
<211> 19
<212> DNA
<213> 人工序列
<400> 21
caggaggaac acctaggag 19
<210> 22
<211> 20
<212> DNA
<213> 人工序列
<400> 22
taatacgact cactataggg 20
<210> 23
<211> 484
<212> DNA
<213> 人工序列
<400> 23
ttgtaacaca ctgattgctg ggctcagccc tagagtttct gaatcctaag gctgagcaac 60
acctaatttc cacttatgca agctcccagt gaatgctgtt gctgctcgtc tggaagccag 120
acgttgagaa ccccttctag agtgagctct cccgcagcag attctactgg cccccaaaaa 180
gtatgtgttt tgtgtgtctt aaaaatttgt tgagaaccat tagcaaaaaa acaaacaaaa 240
aaacttaatt cctagaattt cagagaaatc ccatggagct ttttgccagt cacgtcaaaa 300
gaggccacaa ccccgggaag ttcctcggcg gaccccgagc ccgcgccccc tctccacgga 360
tccctcccca gcgagtgccc ccccgcccgc cctgtgcccc ctctcccctg acccctccct 420
gtcgggtgcc ccgcgggctc gcgctggctg tcctgggact ccttcctcct aggtgttcct 480
cctg 484
<210> 24
<211> 351
<212> DNA
<213> 人工序列
<400> 24
ttgtaacaca ctgattgctg ggctcagccc tagagtttct gaatcctaag gctgagcaac 60
acctaatttc cacttatgca agttcccagt gaatgctgtt gctgctcgtc tggaagccag 120
acgttgagaa ccccttctag agtgggctct cccgcagcaa attctactgg cccccaaccc 180
cgggaagttc ctcggcggac cccgagcccg cgccccctct ccacggatcc ctccccagcg 240
agtgcccccc cgcccgccct gtgccccctc tcccctgacc cctccctgtc gggtgccccg 300
cgggctcgcg ctggctgtcc tgggactcct tcctcctagg tgttcctcct g 351
SEQUENCE LISTING
<110> 遵义医学院
<120> 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法
<130> 2017
<160> 24
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
caaacgtgcc acttaaccag 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<400> 2
ccaaagtatg tgttttgtgt 20
<210> 3
<211> 20
<212> DNA
<213> 人工序列
<400> 3
tcggcttctc acgggcttcc 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<400> 4
cacgggcttc ctggcagccc 20
<210> 5
<211> 25
<212> DNA
<213> 人工序列
<400> 5
caccgctggt taagtggcac gtttg 25
<210> 6
<211> 25
<212> DNA
<213> 人工序列
<400> 6
aaaccaaacg tgccacttaa ccagc 25
<210> 7
<211> 25
<212> DNA
<213> 人工序列
<400> 7
caccgacaca aaacacatac tttgg 25
<210> 8
<211> 25
<212> DNA
<213> 人工序列
<400> 8
aaacccaaag tatgtgtttt gtgtc 25
<210> 9
<211> 25
<212> DNA
<213> 人工序列
<400> 9
caccgtcggc ttctcacggg cttcc 25
<210> 10
<211> 25
<212> DNA
<213> 人工序列
<400> 10
aaacggaagc ccgtgagaag ccgac 25
<210> 11
<211> 25
<212> DNA
<213> 人工序列
<400> 11
caccgcacgg gcttcctggc agccc 25
<210> 12
<211> 25
<212> DNA
<213> 人工序列
<400> 12
aaacgggctg ccaggaagcc cgtgc 25
<210> 13
<211> 22
<212> DNA
<213> 人工序列
<400> 13
ccaagtagga aagtcccata ag 22
<210> 14
<211> 18
<212> DNA
<213> 人工序列
<400> 14
tctggtctca acctttag 18
<210> 15
<211> 18
<212> DNA
<213> 人工序列
<400> 15
gaacttggcg gaagtgcg 18
<210> 16
<211> 18
<212> DNA
<213> 人工序列
<400> 16
ttgtaacaca ctgattgc 18
<210> 17
<211> 18
<212> DNA
<213> 人工序列
<400> 17
agtcaggaaa acgtaaat 18
<210> 18
<211> 18
<212> DNA
<213> 人工序列
<400> 18
tcggcggcag gtgcggcg 18
<210> 19
<211> 18
<212> DNA
<213> 人工序列
<400> 19
cagcggagag aggcggag 18
<210> 20
<211> 19
<212> DNA
<213> 人工序列
<400> 20
tcccctcagg tctctcccg 19
<210> 21
<211> 19
<212> DNA
<213> 人工序列
<400> 21
caggaggaac acctaggag 19
<210> 22
<211> 20
<212> DNA
<213> 人工序列
<400> 22
taatacgact cactataggg 20
<210> 23
<211> 484
<212> DNA
<213> 人工序列
<400> 23
ttgtaacaca ctgattgctg ggctcagccc tagagtttct gaatcctaag gctgagcaac 60
acctaatttc cacttatgca agctcccagt gaatgctgtt gctgctcgtc tggaagccag 120
acgttgagaa ccccttctag agtgagctct cccgcagcag attctactgg cccccaaaaa 180
gtatgtgttt tgtgtgtctt aaaaatttgt tgagaaccat tagcaaaaaa acaaacaaaa 240
aaacttaatt cctagaattt cagagaaatc ccatggagct ttttgccagt cacgtcaaaa 300
gaggccacaa ccccgggaag ttcctcggcg gaccccgagc ccgcgccccc tctccacgga 360
tccctcccca gcgagtgccc ccccgcccgc cctgtgcccc ctctcccctg acccctccct 420
gtcgggtgcc ccgcgggctc gcgctggctg tcctgggact ccttcctcct aggtgttcct 480
cctg 484
<210> 24
<211> 351
<212> DNA
<213> 人工序列
<400> 24
ttgtaacaca ctgattgctg ggctcagccc tagagtttct gaatcctaag gctgagcaac 60
acctaatttc cacttatgca agttcccagt gaatgctgtt gctgctcgtc tggaagccag 120
acgttgagaa ccccttctag agtgggctct cccgcagcaa attctactgg cccccaaccc 180
cgggaagttc ctcggcggac cccgagcccg cgccccctct ccacggatcc ctccccagcg 240
agtgcccccc cgcccgccct gtgccccctc tcccctgacc cctccctgtc gggtgccccg 300
cgggctcgcg ctggctgtcc tgggactcct tcctcctagg tgttcctcct g 351
Claims (3)
1.一种在CRISPR/Cas9靶向敲除人ezrin基因增强子中用于特异性靶向人ezrin基因增强子的gRNA,其特征为:
(1)所述gRNA在人ezrin基因的靶序列符合5′-N(20)-NGG-3′或者5′-CCN-N(20)-3′序列的排列规则;
(2)所述gRNA在人ezrin基因的靶序列是唯一的;
(3)所述gRNA在人ezrin基因的靶序列位于人ezrin基因增强子的上游或下游。
2.如权利要求1所述的在CRISPR/Cas9靶向敲除人ezrin基因增强子中用于特异性靶向人ezrin基因增强子的gRNA,其特征为:其对应的DNA序列如序列表SEQ ID NO.1-4任意一条序列所示。
3.一种在CRISPR/Cas9靶向敲除人ezrin基因增强子的方法,该方法用于非诊断或治疗目的,其特征为包括如下步骤:
(1)权利要求1-2任意一项所述的gRNA,在gRNA序列SEQ ID NO.1和SEQ ID NO.2的互补链的5′端加上CACCG,合成得到正向寡核苷酸链;在SEQ ID NO.1和SEQ ID NO.2的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链;
在gRNA序列SEQ ID NO.3和SEQ ID NO.4的5′端加上CACCG,合成得到正向寡核苷酸链;在SEQ ID NO.3和SEQ ID NO.4的互补链的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链;
将合成的一对互补正、反寡核苷酸链退火,形成双链gRNA寡核苷酸链;
(2)将载体pX459经BbsⅠ酶切反应线性化,与上述双链gRNA寡核苷酸链连接,连接产物转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆,提取质粒进行测序鉴定,构建CRISPR/Cas9重组质粒pX459-sgRNA-L1、pX459-sgRNA-L2、pX459-sgRNA-R1和pX459-sgRNA-R2;
(3)采用Lipofectamine™ 3000转染试剂将CRISPR/Cas9重组质粒共转染至人食管癌Eca-109细胞,提取细胞基因组DNA进行PCR扩增,扩增产物重组连接入pGEM-T Easy载体中,测序鉴定gRNA活性;
(4)CRISPR/Cas9重组质粒转染食管癌细胞48 h后,利用嘌呤霉素筛选,直至细胞在嘌呤霉素中能形成单细胞克隆;
将单细胞克隆的PCR产物重组连接入pGEM-T Easy载体中,测序鉴定突变等位基因的基因型,筛选纯合突变的单克隆细胞株, 获得敲除人ezrin基因增强子的食管癌细胞株。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710957308.9A CN107523567A (zh) | 2017-10-16 | 2017-10-16 | 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710957308.9A CN107523567A (zh) | 2017-10-16 | 2017-10-16 | 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107523567A true CN107523567A (zh) | 2017-12-29 |
Family
ID=60685163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710957308.9A Pending CN107523567A (zh) | 2017-10-16 | 2017-10-16 | 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107523567A (zh) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
CN108913691A (zh) * | 2018-07-16 | 2018-11-30 | 洛阳轩智生物科技有限公司 | 表皮干细胞中采用CRISPR-Cas系统进行Card3基因敲除 |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
WO2020000436A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人INDO基因的gRNA导向序列及其应用 |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
CN113321721A (zh) * | 2021-06-11 | 2021-08-31 | 中南大学湘雅二医院 | 一种细胞外Ezrin蛋白及其应用 |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1908169A (zh) * | 2006-08-09 | 2007-02-07 | 汕头大学医学院 | 人食管癌细胞ezrin基因启动子 |
CN105518135A (zh) * | 2015-05-22 | 2016-04-20 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA |
-
2017
- 2017-10-16 CN CN201710957308.9A patent/CN107523567A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1908169A (zh) * | 2006-08-09 | 2007-02-07 | 汕头大学医学院 | 人食管癌细胞ezrin基因启动子 |
CN105518135A (zh) * | 2015-05-22 | 2016-04-20 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA |
Non-Patent Citations (2)
Title |
---|
GAO SY ET AL.: "Sp1 and AP-1 regulate expression of the human gene VIL2 in esophageal carcinoma cells", 《J BIOL CHEM》 * |
张青峰 等: "几种肿瘤细胞中ezrin基因增强子区转录调控特性的研究", 《中国细胞生物学学报》 * |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
WO2020000436A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人INDO基因的gRNA导向序列及其应用 |
CN108913691B (zh) * | 2018-07-16 | 2020-09-01 | 山东华御生物科技有限公司 | 表皮干细胞中采用CRISPR-Cas系统进行Card3基因敲除 |
CN108913691A (zh) * | 2018-07-16 | 2018-11-30 | 洛阳轩智生物科技有限公司 | 表皮干细胞中采用CRISPR-Cas系统进行Card3基因敲除 |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN113321721A (zh) * | 2021-06-11 | 2021-08-31 | 中南大学湘雅二医院 | 一种细胞外Ezrin蛋白及其应用 |
CN113321721B (zh) * | 2021-06-11 | 2022-06-03 | 中南大学湘雅二医院 | 一种细胞外Ezrin蛋白及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107523567A (zh) | 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法 | |
Kan et al. | Mechanisms of precise genome editing using oligonucleotide donors | |
CN108753772B (zh) | 基于CRISPR/Cas技术敲除CAPNS1基因的人神经母细胞瘤细胞系的构建方法 | |
CN107858346B (zh) | 一种敲除酿酒酵母染色体的方法 | |
CN104651401B (zh) | 一种mir-505双等位基因敲除的方法 | |
Trevino et al. | Genome editing using Cas9 nickases | |
JP7144618B2 (ja) | バーコード付きガイドrna構築体を使用する効率的な遺伝子スクリーニングのための組成物及び方法 | |
CN106434663A (zh) | CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA | |
WO2017069829A2 (en) | High-throughput strategy for dissecting mammalian genetic interactions | |
Karas et al. | Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid | |
US10428327B2 (en) | Compositions and methods for enhancing homologous recombination | |
EP3940078A1 (en) | Off-target single nucleotide variants caused by single-base editing and high-specificity off-target-free single-base gene editing tool | |
Huo et al. | Analysis of microsatellite instability in CRISPR/Cas9 editing mice | |
Yang et al. | A simple two‐step,‘hit and fix’method to generate subtle mutations in BACs using short denatured PCR fragments | |
CN104212836A (zh) | 一种在哺乳动物细胞系中敲除mir-505的方法 | |
Malina et al. | Adapting CRISPR/Cas9 for functional genomics screens | |
CN110835635B (zh) | 不同启动子启动多个串联sgRNA表达的质粒构建方法 | |
Zhang et al. | Simple and efficient recycling of fungal selectable marker genes with the Cre-loxP recombination system via anastomosis | |
CN105567718A (zh) | 一种同时表达多个sgRNA的载体的构建方法 | |
Adjalley et al. | CRISPR/Cas9 editing of the Plasmodium falciparum genome | |
Wang et al. | Efficient genome editing by CRISPR-Mb3Cas12a in mice | |
Kumpfmüller et al. | An optimized technique for rapid genome modifications of Bacillus subtilis | |
CN106544360B (zh) | 一种终止lncRNA双等位基因转录的方法 | |
CN104388456A (zh) | 一种同时表达两条sgRNA的载体的构建方法 | |
JP7109009B2 (ja) | 遺伝子ノックアウト方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171229 |
|
WD01 | Invention patent application deemed withdrawn after publication |