CN106480027A - CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA - Google Patents
CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA Download PDFInfo
- Publication number
- CN106480027A CN106480027A CN201610871452.6A CN201610871452A CN106480027A CN 106480027 A CN106480027 A CN 106480027A CN 201610871452 A CN201610871452 A CN 201610871452A CN 106480027 A CN106480027 A CN 106480027A
- Authority
- CN
- China
- Prior art keywords
- gene
- grna
- people
- crispr
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70521—CD28, CD152
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明属于分子生物学与生物医学技术领域,具体地说本发明涉及基于CRISPR/Cas9系统的gRNA序列及其组合在敲除人PD‑1基因的应用以及肿瘤治疗中的应用。本发明根据CRISPR/Cas9的设计原则,在人基因组中设计出25个靶点,然后将其分别构建在px458载体上,并从中筛选得到18个向导RNA(gRNA)。在人T淋巴细胞中利用这18个gRNA介导的CRISPR/Cas9系统,可以有效的敲除人PD‑1基因,该系统操作简便、敲除效率高,适用于多种肿瘤细胞模型。本发明涉及的gRNA有望在肿瘤的细胞治疗中得到应用。
Description
技术领域
本发明属于分子生物学与生物医学技术领域,具体涉及CRISPR/Cas9特异性敲除人基因组PD-1基因的方法以及用于特异性靶向人PD-1基因的gRNA。
背景技术
CRISPR/Cas 系统是从细菌和古生菌对抗外来病毒或质粒的适应性免疫系统发展而来,具体包括三种不同的类型,其中 TypeⅡ型的CRISPR/Cas 系统的 DNA 内切酶 Cas9只有一个亚基,结构最为简单,所以应用也最广泛。除了 Cas9 蛋白外,该系统还包括两条短的 CRISPR RNAs(crRNAs)和 trans-activating crRNAs(tracrRNA)。成熟的 crRNA-tracrRNA 复合体可以通过碱基互补配对指导 Cas9 蛋白到靶序列上,并在 PAM(protospacer adjacent motif)附近特异性剪切 DNA 双链,形成 DSB(double strandbreak)。DSB 可以通过两种途径被修复,一种是非同源重组的末端接合(Non-HomologousEnd Joining NHEJ)DNA修复方式,另一种是同源重组修复( Homology Directed RepairHDR) 方式。NHEJ 修复方式可能产生碱基的插入或缺失,从而产生移码突变,或者也可能突变成终止密码子,这些突变形式都可以改变目的基因的开放阅读框; HDR 方式需要一段与被剪切片段同源的模板片段来修复DSB,这种修复方式可以将被用来作为模板的同源片段的序列复制到目的基因中,所以可以利用这种修复方式将特定的基因片段引入到目的基因中。
CRISPR基因编辑的第一个人体试验由宾夕法尼亚大学医学院的医生提出,这个试验是从癌症患者体内提取出免疫系统的T细胞。接着,研究人员将利用CRISPR对T细胞进行基因修饰,并将基因修饰后的T细胞灌注回病人体内,这样它们将靶向摧毁肿瘤细胞。这种利用CRISPR技术敲除人体T细胞的PD-1基因的免疫疗法,将用于对骨髓瘤,黑色素瘤和肉瘤的试验。研究申请获批利用CRISPR技术剔除T细胞中的两个基因:一个基因是PD-1,它是人体免疫反应的一种关键性的关闭开关,抑制T细胞攻击肿瘤的能力,因此,若没有这个基因,T细胞可能就能够让逃避免疫系统检测的肿瘤细胞现形,无处遁逃;另一个基因是一种T细胞受体编码基因,它能够调动人体的天然防御进行自我保护。Wolinetz说:“基因转移领域的科学家们对利用CRISPR/Cas9要比早期的基因编辑系统在更少的时间内以更少的成本修复或剔除参与多种人类疾病中的突变的潜力感到兴奋。” 因此,本发明开发出一种高效、靶向阻断人PD-1基因的gRNA,对于CRISPR/cas9系统充分发挥作用和肿瘤的细胞治疗研究具有极其重要的作用。
发明内容
本发明的目的在于通过设计、构建、筛选,最终提供一些基于CRISPR/Cas9系统,同时靶向人PD-1基因的高效gRNA及其靶位点序列,并用其抑制人PD-1基因的表达,从而抑制肿瘤细胞的增值。
为实现上述目的,本发明以CRISPR/Cas9系统原理及其gRNA的设计原理为基础,软件设计预测,设计出一系列的gRNA,并以px458为表达载体,构建了gRNA/cas9表达系统。通过筛选和系列分析测试,最终筛选出18个有效的gRNA,利用gRNA/cas9表达系统可敲除人T淋巴细胞PD-1基因,敲除PD-1基因的人T淋巴细胞在肿瘤细胞治疗领域具有极大的应用前景。
本发明的技术方案为:1.靶向人PD-1基因的高效gRNA及其靶点序列的设计及gRNA/Cas9表达系统的构建;2. 在人T淋巴细胞模型中分析检测gRNA内源活性,筛选到18条有效的gRNA,能够成功靶向敲除PD-1基因,其对应的DNA 序列如序列表SEQ ID NO. 1-18任意一条序列所示。
说明书附图
附图1:靶序列测序原始结果,由左到右,由上到下依次为px458-PD-1-gRNA1,px458-PD-1-gRNA2至 px458-PD-1-gRNA25;附图 2:T7 Endonuclease I 酶切鉴定结果。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。实施例中未注明具体条件的实验方法,通常按照常规条件,例如分子克隆实验指南(第三版,J. 萨姆布鲁克等著)中所述的条件,或按照制造厂商所建议的条件。
实施例1 靶向人PD-1基因的gRNA合成及载体构建
1.靶向人PD-1基因的gRNA 的选择和设计::在Genebank中找到人PD-1基因的序列,在人PD-1基因的第1、2外显子区域设计潜在靶位点。通过在线设计工具(http://crispr.mit.edu/)及gRNA的设计原则,评估人PD-1基因序列上得分较高的靶位点设计gRNA。靶序列如下:
2.靶向人PD-1基因的gRNA 寡核苷酸序列的合成和真核表达载体的构建:将pSpCas9(BB)-2A-GFP(PX458)质粒(Addgene plasmid ID:48138,以下简称pSpCas9(BB)),用BbSI酶切,37 ℃水浴1小时后, 1% 的琼脂糖电泳,回收酶切产物(TAKARA胶回收试剂盒)。 酶切体系如下:
将两寡核苷酸退火,形成带有粘性末端的短双链DNA,反应体系如下:
将上述反应体系在200ul PCR管中混合均匀,然后将PCR管在37℃水浴锅中处理30min,再放入500ml沸水中,自然冷却至室温,连接体系如下:
将带有粘性末端的双链短DNA产物连入酶切后的pSpCas9(BB)线性片段,将连接产物转化大肠杆菌DH5α感受态细胞(Takara Code : D9057A),并涂布于Ampicillin浓度为100 μg/mL的LB固体平板上培养过夜,挑取生长良好的单克隆,于15 mL Ampicillin浓度为100 μg/mL的LB液体培养基中,37℃振荡培养过夜,提取质粒,命名为px458-PD-1-gRNA1。无内毒素质粒DNA 的制备:A、取px458-PD-1-gRNA1质粒1μL加入100μL DH5α感受态细胞中吹匀,冰中静置20min,再放入42℃水浴90s,迅速置于冰浴中3min,加入500μL LB液体培养基,放置摇床180rpm 37℃ 1h,取菌液100μL均匀涂布于Ampicillin浓度为100 μg/mL 的LB固体培养基37℃培养过夜。 B、取单菌落于3mL Ampicillin浓度为100 μg/mL的LB液体培养基中,250rpm、37℃振荡培养8小时;从中取300μL菌液接种于300mL Ampicillin浓度为100 μg/mL的LB液体培养基中,并于250rpm、37℃振荡培养12~16小时;C、收集菌液,然后在4℃、4000rpm条件下离心15min,弃上清,收集菌体,然后按照QIAGEN EndoFree Plasmid MaxiKit试剂盒说明书操作步骤提取质粒,得无内毒素的px458-PD-1-gRNA1质粒。同样的方法,根据设计的靶位点序列构建出另外24个敲除载体,并提取获得无内毒素质粒DNA依次命名为(px458-PD-1-gRNA2、px458-PD-1-gRNA3...... px458-PD-1-gRNA25),将载体测序,进一步确认正确,如附图1所示。
实施例2 转染人T淋巴细胞
1、人T淋巴细胞的分离培养
将T细胞分离尼龙毛柱(Polysciences,美国)固定在支架上,倒入37℃的细胞培养液,关闭阀门一定时间,然后打开阀门,放掉细胞培养液,以清洗几次尼龙毛,关上阀门。将要分离的细人体血液(血液样本,重庆医科大学附属儿童医院提供)预先加温的培养液稀释成适当的浓度,约5.00×107个细胞/ml。将细胞液倒入注射器内,使之没过尼龙毛柱。盖上注射器,37℃温育45min至1h。打开下口,缓慢放流(1滴/min),收集于离心管中。离心,即获所需的T淋巴细胞。将细胞接种于T75细胞培养瓶中,加入培养基(RPMI-1640+10%胎牛血清+1%双抗,Gbico)培养至600-800万/T75即可进行转染。2、人T淋巴细胞的转染
采用脂质体转染法将px458-PD-1-gRNA1转染人T淋巴细胞。转染体系及试剂使用Lipofectamine™ 2000(invitrogen公司),转染详细步骤参照转染说明书。转染48小时后,离心收集细胞,吸掉废液加入1ml PBS重悬细胞,取500ul放入原瓶中继续培养,剩余细胞放入1.5ml离心管,提取DNA(按照DNA提取试剂盒说明书进行)。以提取的DNA为模板,扩增靶点序列。PCR反应体系如下:
PCR扩增程序:95℃预变性3min;95℃变性30s,58℃退火30 s,72℃延伸40s,35个循环后72℃延伸5 min,最后4℃保温。通过验证靶点序列突变情况来确定px458-PD-1-gRNA1质粒在细胞内的活性。PCR产物用T7 Endonuclease I 50℃水浴酶切1h,酶切体系如下:
结果如附图2显示:靶点序列若没有发生突变,则说明px458-PD-1-gRNA1敲除载体在目标靶点没有活性,说明该靶点序列不能作为PD-1基因敲除的靶位点。同样方法,检测剩余24个靶点,酶切检测结果显示,靶点2、3、4、5、6、7、8、10、11、15、16、17、18、19、20、22、23、24发生突变,说明该敲除载体在靶点具有较高的活性;靶点1、9、12、13、14、21、25均不能使靶位点发生突变。
实施例3 PCR产物克隆测序检测靶位点突变
按照实施例2的方法进行PCR反应,PCR产物用TAKARA试剂盒进行纯化后连接至 PMD18-T载体上,连接体系如下:
在16℃下连接2小时。取感受态细胞DH5α,放置冰中融化5min,加入10ul连接产物吹匀,放置冰中20min。42℃热击90s,迅速转入冰浴中静置3min,加入500ul的LB液体培养基,置于摇床中,37℃ 180rpm 1h。取菌液100ul均匀涂布于LB固体培养基(含1/1000AMP),37℃培养过夜。挑取单菌落,分别放入3ml LB液体培养基(含3ul AMP),37℃ 200rpm 12h。以1ul菌液为模板进行PCR鉴定,均为阳性。将菌液送样到上海生工进行测序,测序结果显示,靶点2、3、4、5、6、7、8、10、11、15、16、17、18、19、20、22、23、24敲除的细胞中,均能检测到人PD-1基因发生突变,进一步验证以上靶位点具有活性,可以根据靶点序列构建CRISPR/Cas9载体敲除人PD-1基因。
测序结果:靶点2细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失3个碱基,其对应的序列表见SEQ ID NO.1;靶点3细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失2个碱基,其对应的序列表见SEQ ID NO.2;靶点4细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失11个碱基,其对应的序列表见SEQID NO.3;靶点5细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,增加4个碱基,其对应的序列表见SEQ ID NO.4;靶点6细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失6个碱基,其对应的序列表见SEQ ID NO.5;靶点7细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失8个碱基,其对应的序列表见SEQ ID NO.6;靶点8细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失19个碱基,其对应的序列表见SEQ ID NO.7;靶点10细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失2个碱基,其对应的序列表见SEQ ID NO.8;靶点11细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,增加2个碱基,其对应的序列表见SEQ ID NO.9;靶点15细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失1个碱基,其对应的序列表见SEQ ID NO.10;靶点16细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失14个碱基,其对应的序列表见SEQ ID NO.11;靶点17细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失4个碱基,其对应的序列表见SEQ ID NO.12;靶点18细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失7个碱基,其对应的序列表见SEQ ID NO.13;靶点19细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失6个碱基,其对应的序列表见SEQ ID NO.14;靶点20细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失2个碱基,其对应的序列表见SEQ ID NO.15;靶点22细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失34个碱基,其对应的序列表见SEQ ID NO.16;靶点23细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失24个碱基,其对应的序列表见SEQ ID NO.17;靶点24细胞克隆基因与野生型的PD-1基因对照相比,发生了基因突变,缺失11个碱基,其对应的序列表见SEQ ID NO.18。
PD-1(Wild type control group)
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.1
actccccagacaggccctggaaccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.2
actccccagacaggccctggaacccccccaccttctccccagctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.3
actccccagacaggccctggaacccccccaccttctccccagccctgcgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.4
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcgGAGAgagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.5
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.7
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.8
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.9
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcAAaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.10
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggctgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.11
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.12
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacgcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.13
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacaggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.14
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.15
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.16
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcaacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.17
actccccagacaggccctggaacccccccaccttctccccagccctgctcgtggtgaccgaaggggacaacgccaccttcacctgcagcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttccacatgagcgtggtcagggcccggcgcaatgacagcggcacctacctcaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
SEQ ID NO.18
agcttctccaacacatcggagagcttcgtgctaaactggtaccgcatgagccccagcaaccagacggacaagctggccgccttccccgaggaccgcagccagcccggccaggactgccgcttccgtgtcacacaactgcccaacgggcgtgacttcggtcagggcccggcgcaatgacagcggcacctacctctgtggggccatctccctggcccccaaggcgcagatcaaagagagcctgcgggcagagctcagggtgacag
Claims (4)
1.在CRISPR-Cas9 特异性敲除人PD-1基因中用于靶向人PD-1基因的 gRNA,所述 gRNA在人PD-1基因上的靶序列符合 5’- N (20)-NGG3’ 或 者 5’-CCN- N (20)N-3’的序列排列规则,在人PD-1基因上的靶序列是唯一的,其特征在于:所述 gRNA 在人PD-1基因的靶向位点位于人PD-1基因的第2外显子上。
2.根据权利要求 1所述的在 CRISPR-Cas9 特异性敲除人PD-1基因中用于靶向人PD-1基因的 gRNA,其特征在于:其对应的 DNA 序列如序列表 SEQ ID NO. 1-18任意一条序列所示。
3.根据权利要求1所述的在 CRISPR-Cas9 特异性敲除人PD-1基因中用于靶向人PD-1基因的 gRNA,其特征在于:该gRNA在肿瘤细胞治疗中具有广泛的应用前景。
4.CRISPR-Cas9 特异性敲除人PD-1基因的方法,具体涉及如下步骤 :
4.1如权利要求 1-3 任意一项所述的 gRNA,在其对应 DNA 序列的 5’末端加上 CACC得到正向寡核苷酸序列,在其互补链的 5’末端加上 AAAC 得到反向寡核苷酸序列,分别合成正向和反向寡核苷酸序列,然后将合成的序列变性、退火,得到具有 BbsI 粘性末端的双链 DNA 片段 ;
4.2将步骤(1)中合成的双链 DNA 片段和用 BbsI 酶切过的px458 载体进行连接,将连接产物转化到大肠杆菌DH5a中,涂布于带有氨苄青霉素抗性的LB平板上,筛选阳性菌落,提取阳性菌落质粒进行分析及测序,确定gRNA 表达载体构建成功,命名为 px458- PD-1 -gRNA ;
4.3将步骤(2)构建的px458-PD-1-gRNA 质粒转染人T淋巴细胞,用PX458空载体(pSpCas9(BB)),同时也转染人T淋巴细胞作为对照;
4.4将步骤(3)中转染24小时后的细胞收集,流式分选出GFP标记的细胞,提取DNA,PCR扩增PD-1靶位点区域,T7E1酶切鉴定靶位点的突变效率,筛选得到敲除效率较高的靶位点。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610871452.6A CN106480027A (zh) | 2016-09-30 | 2016-09-30 | CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610871452.6A CN106480027A (zh) | 2016-09-30 | 2016-09-30 | CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106480027A true CN106480027A (zh) | 2017-03-08 |
Family
ID=58268299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610871452.6A Pending CN106480027A (zh) | 2016-09-30 | 2016-09-30 | CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106480027A (zh) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107384959A (zh) * | 2017-08-02 | 2017-11-24 | 山东百福基因科技有限公司 | Pd‑1和ctla4双基因缺陷型t淋巴细胞制剂的制备方法 |
CN107475292A (zh) * | 2017-08-02 | 2017-12-15 | 山东百福基因科技有限公司 | Pd‑1基因缺陷型t淋巴细胞制剂的制备方法 |
WO2018040537A1 (zh) * | 2016-08-31 | 2018-03-08 | 南京凯地生物科技有限公司 | 人pd-1基因敲除的cldn18.2 特异性嵌合抗原受体t细胞的制备方法以及应用 |
CN108148812A (zh) * | 2017-08-09 | 2018-06-12 | 广西医科大学 | 一种高效基因编辑快速制备pd-1-t细胞方法及其应用 |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
CN110358735A (zh) * | 2019-06-24 | 2019-10-22 | 广州安捷生物医学技术有限公司 | 一种ctl细胞的制备方法及应用 |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
WO2020000462A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种制备mcdr2基因敲除小鼠的方法 |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US20200306309A1 (en) * | 2015-07-31 | 2020-10-01 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
WO2022012531A1 (zh) * | 2020-07-14 | 2022-01-20 | 苏州克睿基因生物科技有限公司 | 一种经修饰的免疫细胞的制备方法 |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103820454A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
CN104436190A (zh) * | 2005-06-08 | 2015-03-25 | 达纳-法伯癌症研究院公司 | 通过抑制程序性细胞死亡1(pd-1)途经治疗持续性感染和癌症的方法及组合物 |
CN105671083A (zh) * | 2016-02-03 | 2016-06-15 | 安徽柯顿生物科技有限公司 | PD-1基因重组病毒质粒及构建、重组逆转录病毒Lenti-PD-1-Puro及包装与应用 |
WO2016154596A1 (en) * | 2015-03-25 | 2016-09-29 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
-
2016
- 2016-09-30 CN CN201610871452.6A patent/CN106480027A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104436190A (zh) * | 2005-06-08 | 2015-03-25 | 达纳-法伯癌症研究院公司 | 通过抑制程序性细胞死亡1(pd-1)途经治疗持续性感染和癌症的方法及组合物 |
CN103820454A (zh) * | 2014-03-04 | 2014-05-28 | 黄行许 | CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA |
WO2016154596A1 (en) * | 2015-03-25 | 2016-09-29 | Editas Medicine, Inc. | Crispr/cas-related methods, compositions and components |
CN105671083A (zh) * | 2016-02-03 | 2016-06-15 | 安徽柯顿生物科技有限公司 | PD-1基因重组病毒质粒及构建、重组逆转录病毒Lenti-PD-1-Puro及包装与应用 |
Non-Patent Citations (2)
Title |
---|
YAN, F ET AL.: "Elevated Cellular PD1/PD-L1 Expression Confers Acquired Resistance to Cisplatin in Small Cell Lung Cancer Cells", 《PLOS ONE》 * |
赵沙 等: "抗PD-1/PD-L1免疫治疗疗效预测标志物在非小细胞肺癌中的研究进展", 《肿瘤》 * |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11903966B2 (en) | 2015-07-31 | 2024-02-20 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
US20200306309A1 (en) * | 2015-07-31 | 2020-10-01 | Regents Of The University Of Minnesota | Intracellular genomic transplant and methods of therapy |
US11925664B2 (en) | 2015-07-31 | 2024-03-12 | Intima Bioscience, Inc. | Intracellular genomic transplant and methods of therapy |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
CN109844125A (zh) * | 2016-08-31 | 2019-06-04 | 南京凯地生物科技有限公司 | 人pd-1基因敲除的cldn18.2特异性嵌合抗原受体t细胞的制备方法以及应用 |
WO2018040537A1 (zh) * | 2016-08-31 | 2018-03-08 | 南京凯地生物科技有限公司 | 人pd-1基因敲除的cldn18.2 特异性嵌合抗原受体t细胞的制备方法以及应用 |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
CN107384959A (zh) * | 2017-08-02 | 2017-11-24 | 山东百福基因科技有限公司 | Pd‑1和ctla4双基因缺陷型t淋巴细胞制剂的制备方法 |
CN107475292A (zh) * | 2017-08-02 | 2017-12-15 | 山东百福基因科技有限公司 | Pd‑1基因缺陷型t淋巴细胞制剂的制备方法 |
CN108148812A (zh) * | 2017-08-09 | 2018-06-12 | 广西医科大学 | 一种高效基因编辑快速制备pd-1-t细胞方法及其应用 |
CN108148812B (zh) * | 2017-08-09 | 2021-08-31 | 广西医科大学 | 一种高效基因编辑快速制备pd-1ˉt细胞方法及其应用 |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
WO2020000462A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种制备mcdr2基因敲除小鼠的方法 |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
CN110358735B (zh) * | 2019-06-24 | 2021-09-21 | 广州安捷生物医学技术有限公司 | 一种ctl细胞的制备方法及应用 |
CN110358735A (zh) * | 2019-06-24 | 2019-10-22 | 广州安捷生物医学技术有限公司 | 一种ctl细胞的制备方法及应用 |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
WO2022012531A1 (zh) * | 2020-07-14 | 2022-01-20 | 苏州克睿基因生物科技有限公司 | 一种经修饰的免疫细胞的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106480027A (zh) | CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA | |
CN106701763B (zh) | CRISPR/Cas9靶向敲除人乙肝病毒P基因及其特异性gRNA | |
CN106047877B (zh) | 一种靶向敲除FTO基因的sgRNA及CRISPR/Cas9慢病毒系统与应用 | |
CN107893074A (zh) | 一种用于敲除CXCR4基因的gRNA、表达载体、敲除系统、试剂盒 | |
CN104480144B (zh) | 用于艾滋病基因治疗的CRISPR/Cas9重组慢病毒载体及其慢病毒 | |
CN108315330A (zh) | CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及敲除方法和应用 | |
CN106047803A (zh) | CRISPR/Cas9靶向敲除兔BMP2基因的细胞模型及其应用 | |
CN106755091A (zh) | 基因敲除载体,mh7a细胞nlrp1基因敲除方法 | |
CN106906242A (zh) | 一种提高CRIPSR/Cas9靶向敲除基因产生非同源性末端接合效率的方法 | |
CN107446923A (zh) | rAAV8‑CRISPR‑SaCas9系统及在制备乙肝治疗药物中的应用 | |
CN111607594A (zh) | 一种基于CRISPR-Cas9编辑技术的敲除猪IRF8基因的细胞系及其构建方法 | |
CN106414740A (zh) | CRISPR‑Cas9特异性敲除猪SLA‑3基因的方法及用于特异性靶向SLA‑3基因的sgRNA | |
CN109750035B (zh) | 靶向并引导Cas9蛋白高效切割TCR及B2M基因座的sgRNA | |
CN110234762A (zh) | 用于治疗肌强直性营养不良的组合物和方法 | |
CN105593367A (zh) | CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA | |
CN110337493A (zh) | 用于治疗肌强直性营养不良的组合物和方法 | |
KR20190097057A (ko) | 이중나선 dna의 표적화된 변형 방법 | |
WO2019018041A1 (en) | MODULATION OF THE IMMUNE RESPONSE OF A HOST SPECIFIC TO HUMAN CAS9 | |
CN107667853A (zh) | 水稻普通核不育系的创制方法和应用 | |
CN109628494A (zh) | 冠状病毒抗性克隆猪及其制备方法 | |
CN106609267A (zh) | 黄瓜CsTTG1基因在调控植物表皮毛、果刺及刺瘤发育中的应用 | |
CN1323163C (zh) | 水稻转座子基因 | |
CN107164409A (zh) | 犬瘟热病毒敏感细胞系slam‑mdck及其构建方法和应用 | |
Jones | Phytoplasma plant pathogens. | |
CN110423762A (zh) | 一种PVMV侵染性全长cDNA克隆的构建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170308 |
|
RJ01 | Rejection of invention patent application after publication |