CN106086061A - 一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用 - Google Patents

一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用 Download PDF

Info

Publication number
CN106086061A
CN106086061A CN201610599571.0A CN201610599571A CN106086061A CN 106086061 A CN106086061 A CN 106086061A CN 201610599571 A CN201610599571 A CN 201610599571A CN 106086061 A CN106086061 A CN 106086061A
Authority
CN
China
Prior art keywords
carrier
cas9
genes
brewing yeast
sgrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610599571.0A
Other languages
English (en)
Inventor
季广建
钟云鹏
蔡晓辉
李彦敏
杨平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU SYNBIO TECH Co Ltd
Original Assignee
SUZHOU SYNBIO TECH Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU SYNBIO TECH Co Ltd filed Critical SUZHOU SYNBIO TECH Co Ltd
Priority to CN201610599571.0A priority Critical patent/CN106086061A/zh
Publication of CN106086061A publication Critical patent/CN106086061A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/102Plasmid DNA for yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Abstract

本发明涉及一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用,所述的酿酒酵母基因组编辑载体通过将Cas9蛋白表达框和sgRNA scaffold表达框整合在载体中,获得载体‑Cas9‑sgRNA scaffold,然后将以ADE1为靶位点设计合成的多条sgRNA片段中的任意一条整合到所述的载体‑Cas9‑sgRNA scaffold中得到所述的酿酒酵母基因组编辑载体。本发明采用单质粒并单拷贝的载体系统,采用一个质粒同时表达Cas9蛋白和sgRNA scaffold,使得靶基因编辑系统只需一步构件和转化,操作简便。

Description

一种基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体及其 应用
技术领域
本发明涉及一种基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体及其应用。
背景技术
随着人类全基因组测序的完成,生命科学研究进入了一个以揭示基因功能为目的的后基因组时代,基因组编辑技术成为了重要的研究工具和手段。传统的基因组编辑技术利用同源重组机制(homologous recombination)对基因进行定向编辑,可以帮助科研人员明确基因的功能,传统的基因组编辑技术是以长片段DNA为靶位点,“定位系统”也必须是长DNA片段,编辑系统构建复杂且费时,实验周期长,效率很低、且基因易突变等缺陷。第二代基因组编辑技术(包括ZFN系统和TALEN系统)在一定程度上解决了编辑系统特异性很低的问题,但是,依旧没能解决编辑系统构建繁琐,费时费力的突出问题。第三代基因组编辑技术CRISPR-Cas9基因组编辑系统在很大程度上解决了以上问题,相比于之前的基因编辑技术,CRISPR-Cas9系统有着一些无可比拟的优点。1.靶点多,基因组中平均8个碱基就能找到一个靶点;2.功能更加丰富,经过不同的改造后可提高编辑效率、及调控基因表达水平;3.CRISPR-Cas9系统构建步骤简单、使用方便。因此CRISPR-Cas9技术能够大大降低实验难度,缩短实验周期,提高效率。
随着生物技术的发展,CRISPR-Cas9系统发展成为能够对多个物种进行精准基因组编辑的技术。CRISPR-Cas9系统是来源于细菌和古生菌中的一种由RNA介导的适应性免疫系统,包括两部分:有切割双链DNA活性的Cas9蛋白和能与靶点DNA序列结合的sgRNA(20个核苷酸)。CRISPR-Cas9系统仅需20bp的RNA介导其对靶点的编辑,该系统存在构建简便快捷、编辑效率高、实验周期短等优点,已经成为目前最受热捧的基因组编辑技术。
此外,因CRISPR-Cas9技术具有简便性和通用性,其在科研、农业、精准医疗领域展现了巨大的应用前景,尤其在传染性疾病、遗传病(如地中海贫血)、肿瘤以及器官移植等领域开辟了全新的途径。
哈佛大学研究人员利用CRISPR-Cas9技术一次性敲除猪细胞中62个逆转录病毒基因,扫清猪器官用于人体移植的重大难关。美国研究人员针利用该技术将艾滋病毒从艾滋病患者的细胞基因组中剔除。中山大学黄军就应用CRISPR-Cas9对人体胚胎细胞中修改β-地中海贫血的基因进行的研究有望治愈这一疾病。
参考文献
[1]:DOI:10.1126/science.aad1191
[2]:DOI:10.1038/srep22555
[3]:DOI:10.1007/s13238-015-0153-5
但是,现有的CRISPR-Cas9系统由两个质粒组成,其中一个质粒表达具有切割双链DNA活性的Cas9蛋白,另一个质粒表达sgRNA scaffold。由于CRISPR-Cas9系统采用的是双质粒系统,存在构建困难,且双质粒易受质粒相容性影响。
酵母菌是酿酒和面包等发酵产品制作过程的主要“参与者”,与人类生产和生活息息相关,广泛应用于食品、医药、化工等领域。酿酒酵母(Saccharomyces.Cerevisiae)在分子遗传学方面是最先作为外源基因表达的酵母宿主物的酵母菌具有比较完备的基因表达调控机制和对表达产物的加工修饰能力。在医药领域酵母也具有得天独厚的优势,如斯坦福大学Christina D.Smolke通过导入来自植物、细菌和啮齿动物的21个基因,成功地在酵母菌内将糖转化为吗啡的前体——蒂巴因(thebaine),Christina D.Smolke还发现,进一步调整过的酵母可以产生氢可酮——一种由蒂巴因化学合成的止痛药。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种在一个质粒中表达CRISPR-Cas9系统,减少后续编辑系统构建难度的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体及其应用。
为解决以上技术问题,本发明采用如下技术方案:
本发明的一个目的是提供一种基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体,所述的酿酒酵母基因组编辑载体通过将Cas9蛋白表达框和sgRNA scaffold表达框整合在载体中,获得载体-Cas9-sgRNA scaffold,然后将以ADE1为靶位点设计合成的多条sgRNA片段中的任意一条整合到所述的载体-Cas9-sgRNA scaffold中得到所述的酿酒酵母基因组编辑载体。
具体地,所述的Cas9蛋白表达框包括TEF1启动子、Cas9蛋白、CYC1终止子。
更具体地,所述的Cas9蛋白表达框的序列如SEQ ID NO.1所示。
具体地,所述的sgRNA scaffold表达框包括SNR52启动子、sgRNA scaffold、SUP4终止子。
更具体地,所述的sgRNA scaffold表达框的序列如SEQ ID NO.2所示。
具体地,所述的多条sgRNA片段的序列分别如SEQ ID NO.3、SEQ ID NO.4、SEQ IDNO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8所示。
具体地,所述的载体为pSynoYACO,其序列如SEQ ID NO.9所示。
具体地,所述的载体-Cas9-sgRNA scaffold的序列如SEQ ID NO.10所示。
本发明的另一个目的是提供一种所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体的制备方法,其包括如下步骤:
步骤(1)、根据已知序列设计并合成Cas9蛋白表达框、sgRNA scaffold表达框和多条sgRNA片段;
步骤(2)、将Cas9蛋白表达框重组到经酶切的载体中,获得载体-Cas9;
步骤(3)、将sgRNA scaffold表达框重组到经酶切的载体-Cas9中,获得载体-Cas9-sgRNA scaffold;
步骤(4)、将多条sgRNA片段中的任意一条重组到经酶切的载体-Cas9-sgRNAscaffold中,获得所述的酿酒酵母基因组编辑载体。
本发明中,按照常规基因合成方法合成Cas9蛋白表达框、sgRNA scaffold表达框和多条sgRNA片段,其中,Cas9蛋白表达框分为每段1kb进行合成。
具体地,步骤(2)采用AscI酶切载体;步骤(3)采用PmeI酶切载体-Cas9;步骤(4)采用NotI酶切载体-Cas9-sgRNA scaffold。
具体地,步骤(2)、步骤(3)、步骤(4)中进行重组的反应温度为48~52℃,重组反应时间为50~70min。
具体地,步骤(2)将Cas9蛋白表达框重组到经酶切的载体中,然后电转至Epi300感受态细胞中进行培养,获得所述的载体-Cas9。
具体地,步骤(3)将sgRNA scaffold表达框重组到经酶切的载体-Cas9中,然后电转至Epi300感受态细胞中进行培养,获得所述的载体-Cas9-sgRNA scaffold。
具体地,步骤(4)将多条sgRNA片段中的任意一条重组到经酶切的载体-Cas9-sgRNA scaffold中,然后电转至Epi300感受态细胞中进行培养,获得所述的酿酒酵母基因组编辑载体。
更具体地,步骤(2)、步骤(3)、步骤(4)中电转至Epi300感受态细胞中,然后涂布CmR平板,在36~38℃下进行培养11~12h。
本发明的第三个目的是提供一种基于CRISPR-Cas9系统的酿酒酵母基因组编辑系统的制备方法,其通过将所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体电转至电转化感受态细胞中,然后进行培养得到所述的酿酒酵母基因组编辑系统。
具体地,电转化感受态细胞为VL6-48N电转化感受态细胞。
VL6-48N电转化感受态细胞制备方法:
1.取超低温冰箱中冻存的VL6-48N酵母菌液于YPD平板上稀释涂布,30℃培养2天,获得单菌落;
2.挑取单菌落于50mLYPD液体培养基中培养过夜;
3.当菌液生长到OD600在0.4-0.6时3000rpm离心10min收集菌体;
4.0℃预冷的无菌水重悬菌体,3000rpm离心10min;
5.0℃预冷的10%甘油重悬菌体,3000rpm离心10min;
6.重复步骤5;
7.1mL10%甘油重悬步骤6菌体,每管200uL菌液,分装于1.5mL无菌EP管中,即为VL6-48N电转感受态。
本发明的第四个目的是提供一种所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体在酿酒酵母基因中的应用。
由于上述技术方案的实施,本发明与现有技术相比具有如下优点:
本发明采用单质粒并单拷贝的载体系统,采用一个质粒同时表达Cas9蛋白和sgRNA scaffold(能在两种不同的生物中复制的载体,例如既能在原核生物中复制,又能在真核生物中复制的载体),使得靶基因编辑系统只需一步构件和转化,操作简便。且本发明构建的质粒为单拷贝,属于严谨性控制。
说明书附图
图1为pSynoYACO载体图;
图2为pSynoYACO-Cas9-sgRNA scaffold载体图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的说明,但本发明并不限于以下实施例。本发明中若无特别说明,原料均可市购获得,方法为本领域的常规方法。
实施例1:
1、根据已知序列设计以下序列:
1)酵母Cas9蛋白表达框(TEF1promoter-Cas9-CYC1terminitor),包括TEF1启动子,Cas9蛋白,CYC1终止子,序列见SEQ ID NO.1,其中:位于SEQ ID NO.1序列首尾的CGAACGCCATCGACTTACCAGTATGCTACTTACTAT和CAGCAGGAGCTGGACTCTACTGATGTCTGGACAGC为Cas9蛋白表达框与pSynoYACO载体同源臂序列;ggcgcgcc和ggcgcgcc为AscI酶切位点序列,GTTTAAAC为PmeI酶切位点。
2)sgRNA scaffold表达框(SNR52 promoter+sgRNA Scaffold+SUP4terminitor)序列见SEQ ID NO.2,其中:位于SEQ ID NO.2序列首尾的GGACGCTCGAAGGCTTTAATTTGC和gctgctaacaaagcccgaaag为sgRNA Scaffold表达框与pSynoYACO-Cas9载体同源臂序列,GTTTAAAC为PmeI酶切位点序列。
3)以ADE1为靶位点的6条sgRNA片段的引物,序列见SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8。
ADE1sgRNA片段与pSynoYACO-Cas9-sgRNA scaffold同源臂序列为
F:tctccgcagtgaaagataaatgatc(SEQ ID NO.11)
R:GTTTTAGAGCTAGAAATAGCAAGTT(SEQ ID NO.12)。
2、根据常规基因合成方法合成步骤1中所有片段。
1)PCR扩增
其中Cas9蛋白表达框分为每段1kb进行合成,一轮和二轮反应体系如下表。
表1为PCR扩增一轮反应体系,表2为PCR扩增一轮反应程序。
表1
表2
一轮反应结束后进行二轮反应。
表3为PCR扩增二轮反应体系,表4为PCR扩增二轮反应程序。
表3
组分 用量(μl)
ddH2O 35
5×PCR 10
10mM dNTP 1
一轮反应产 1
Primer F 1
Primer R 1
S15酶 1
表4
经二轮扩增得到的PCR产物进行胶回收。
2)平连反应:
胶回收片段进行平连反应,反应体系如下表5,其中平连载体为经平末端内切酶酶切后的pUC载体。
表5
组分 用量(μl)
2×QB 5
PCR产物 3
平连载体 1
T4连接酶 1
平连反应程序为22℃反应30min。
3)转化、涂板
将上述反应液冷却后加入到于冰上融化的感受态细胞中,轻弹管壁数下混匀,冰浴放置30min。42℃热激90秒,冰浴2min。加入400~500μL LB培养基,37℃恢复培养60min。5000rpm离心5min后弃去上清,沉淀重悬后均匀涂布筛选平板上。于37℃培养12h。
4)克隆鉴定
用无菌牙签挑选单菌落于200μl左右LB培养基中,放入37℃摇床1~2h后,取3μl菌液进行菌检PCR扩增【菌检引物为77:GATGTGCTGCAAGGCGATTA(SEQ ID NO.13)和88:TTATGCTTCCGGCTCGTATG(SEQ ID NO.14)】,剩余菌液继续放入摇床。6h后将检到的菌液送测2~4个。表6为菌检反应体系,表7为菌检反应程序。
表6
表7
菌检反应结束后,点胶验证PCR产物大小是否正确,培养6h后将检到的菌液送测2~4个,测序引物同样为77/88。
将测序结果与设计序列进行比对,确定正确克隆。
以正确克隆质粒为模板进行扩增获得序列正确PCR产物,各PCR片段进行PCR反应拼接,获得拼接产物,拼接产物胶回收。
Cas9蛋白表达框(TEF1promoter-Cas9-CYC1terminitor)片段,其与pSynoYACO载体AscI酶切位点两侧同源臂为CGAACGCCATCGACTTACCAGTATGCTACTTACTAT(SEQ ID NO.15)和GCTGTCCAGACATCAGTAGAGTCCAGCTCCTGCTG(SEQ ID NO.16)(其与SEQ ID NO.1的同源臂反向互补),同时也是Cas9蛋白表达框扩增引物。sgRNA scaffold表达框与pSynoYACO-Cas9载体同源臂为GGACGCTCGAAGGCTTTAATTTGC(SEQ ID NO.17)和CTTTCGGGCTTTGTTAGCAGC(SEQID NO.18)(其与SEQ ID NO.2的同源臂反向互补),同时也是其扩增引物。sgRNA序列两端为sgRNA片段与pSynoYACO-Cas9-sgRNA scaffold载体NotI酶切位点两侧的同源臂为tctccgcagtgaaagataaatgatc(SEQ ID NO.11)和GTTTTAGAGCTAGAAATAGCAAGTT(SEQ IDNO.12)。
3、AscI酶切载体pSynoYACO(SEQ ID NO.9),采用切胶回收酶切后的载体。
4、TEF1promoter-Cas9-CYC1terminitor片段重组经AscI酶切的pSynoYACO载体片段,50℃反应1h。反应结束后转化Epi300感受态细胞,涂布CmR平板。37℃培养12h后挑取单克隆进行菌检,挑取菌检大小正确克隆进行送测,测序结果与序列进行比对,获得pSynoYACO-Cas9正确克隆。
5、PmeI酶切pSynoYACO-Cas9载体正确克隆,采用切胶回收酶切后的载体。
6、sgRNA scaffold表达框片段重组经PmeI酶切的pSynoYACO载体片段,50℃反应1h。反应结束后转化Epi300感受态细胞,涂布CmR平板。37℃培养12h后挑取单克隆进行菌检,挑取菌检大小正确克隆进行送测,测序结果与序列进行比对,获得pSynoYACO-Cas9-sgRNA scaffold正确克隆(SEQ ID NO.10)。
7、NotI酶切pSynoYACO-Cas9-sgRNA scaffold载体正确克隆,采用切胶回收酶切后的载体。
8、sgRNA片段重组经NotI酶切的pSynoYACO-Cas9-sgRNA scaffold载体片段,50℃反应1h。反应结束后转化Epi300感受态细胞,涂布CmR平板。37℃培养12h后挑取单克隆进行菌检,挑取菌检大小正确克隆进行送测,测序结果与序列进行比对,获得pSynoYACO-Cas9-ADE1-sgRNA scaffold正确克隆。
9、制备VL6-48N电转化感受态细胞:
(1)取超低温冰箱中冻存的VL6-48N酵母菌液于YPD平板上稀释涂布,30℃培养2天,获得单菌落;
(2)挑取单菌落于50mLYPD液体培养基中培养过夜;
(3)当菌液生长到OD600在0.4-0.6时3000rpm离心10min收集菌体;
(4)0℃预冷的无菌水重悬菌体,3000rpm离心10min;
(5)0℃预冷的10%甘油重悬菌体,3000rpm离心10min;
(6)重复步骤5;
(7)1mL10%甘油重悬步骤6菌体,每管200uL菌液,分装于1.5mL无菌EP管中,即为VL6-48N电转感受态。
10、电转1ug pSynoYACO-Cas9-ADE1-sgRNA scaffold载体。
11、电转后菌液于含有YPD液体培养基的单管中培养12h。
12、3000rpm,2min离心上述菌液,山梨醇清洗两次细胞,涂布0.06g/L腺嘌呤的组氨酸缺陷型酵母固体培养基。
13、2天后观察酵母单克隆生长情况,统计红色克隆比例。
14、挑取红色克隆于单管中进行培养30℃,1天。
15、将上述菌液提取基因组。
采用ADE1扩增引物CAATTACGAAGACTGAACTGGACGG(SEQ ID NO.19)和CTACGTGACAAATCTTCACCCACCAG(SEQ ID NO.20)扩增提取出的酵母基因组并对PCR产物进行测序。分析测序结果,计算成功编辑的克隆比例30%。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,且本发明不限于上述的实施例,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1. 一种基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体,其特征在于:所述的酿酒酵母基因组编辑载体通过将Cas9蛋白表达框和sgRNA scaffold表达框整合在载体中,获得载体- Cas9-sgRNA scaffold,然后将以ADE1为靶位点设计合成的多条sgRNA片段中的任意一条整合到所述的载体- Cas9-sgRNA scaffold中得到所述的酿酒酵母基因组编辑载体。
2.根据权利要求1所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体,其特征在于:所述的Cas9蛋白表达框包括TEF1启动子、Cas9蛋白、CYC1终止子。
3. 根据权利要求2所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体,其特征在于:所述的Cas9蛋白表达框的序列如SEQ ID NO.1所示。
4. 根据权利要求1所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体,其特征在于:所述的sgRNA scaffold表达框包括SNR52启动子、sgRNA scaffold、SUP4终止子。
5.根据权利要求4所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体,其特征在于:所述的sgRNA scaffold表达框的序列如SEQ ID NO.2所示。
6. 根据权利要求1所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体,其特征在于:所述的多条sgRNA片段的序列分别如SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5、SEQID NO.6、SEQ ID NO.7、SEQ ID NO.8所示。
7. 根据权利要求1所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体,其特征在于:所述的载体为pSynoYACO,其序列如SEQ ID NO.9所示。
8.一种如权利要求1至7中任一项所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体的制备方法,其特征在于:其包括如下步骤:
步骤(1)、根据已知序列设计并合成Cas9蛋白表达框、sgRNA scaffold表达框和多条sgRNA片段;
步骤(2)、将Cas9蛋白表达框重组到经酶切的载体中,获得载体-Cas9;
步骤(3)、将sgRNA scaffold表达框重组到经酶切的载体-Cas9中,获得载体- Cas9-sgRNA scaffold;
步骤(4)、将多条sgRNA片段中的任意一条重组到经酶切的载体- Cas9-sgRNAscaffold中,获得所述的酿酒酵母基因组编辑载体。
9.一种基于CRISPR-Cas9系统的酿酒酵母基因组编辑系统的制备方法,其特征在于:其通过将权利要求1至7中任一项所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体电转至电转化感受态细胞中,然后进行培养得到所述的酿酒酵母基因组编辑系统。
10.一种如权利要求1至7中任一项所述的基于CRISPR-Cas9系统的酿酒酵母基因组编辑载体在酿酒酵母基因中的应用。
CN201610599571.0A 2016-07-27 2016-07-27 一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用 Pending CN106086061A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610599571.0A CN106086061A (zh) 2016-07-27 2016-07-27 一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610599571.0A CN106086061A (zh) 2016-07-27 2016-07-27 一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用

Publications (1)

Publication Number Publication Date
CN106086061A true CN106086061A (zh) 2016-11-09

Family

ID=57450603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610599571.0A Pending CN106086061A (zh) 2016-07-27 2016-07-27 一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用

Country Status (1)

Country Link
CN (1) CN106086061A (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108048485A (zh) * 2017-12-22 2018-05-18 清华大学 运用CRISPRi基因敲低技术快速构建急性脑科学研究模型的方法
CN108103027A (zh) * 2018-02-02 2018-06-01 中国医学科学院血液病医院(血液学研究所) 高效率血细胞重编程同时实现基因编辑的方法
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN108949805A (zh) * 2017-05-26 2018-12-07 华中农业大学 一种植物基因组多位点编辑载体pCXUN-CAS9-RGR
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
CN110229842A (zh) * 2019-03-13 2019-09-13 云南师范大学 一种用于毕赤酵母的基因编辑载体pHS-AVC-LW1073
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
CN111440827A (zh) * 2020-05-22 2020-07-24 苏州泓迅生物科技股份有限公司 一种信息存储介质、信息存储方法及应用
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112322512A (zh) * 2019-08-05 2021-02-05 浙江大学 基于crispr技术改造酿酒酵母利用dl-蛋氨酸合成s-腺苷蛋氨酸的方法
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
CN113265383A (zh) * 2020-02-14 2021-08-17 中国科学院大连化学物理研究所 多形汉逊酵母基因编辑系统、其应用以及基因编辑方法
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
CN114480470A (zh) * 2020-11-13 2022-05-13 深圳华大生命科学研究院 高通量制备模式生物基因编辑突变体的方法及相关质粒
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981215A (zh) * 2014-05-23 2014-08-13 安徽省农业科学院水稻研究所 一种用于基因工程的骨干质粒载体及应用
WO2015133554A1 (ja) * 2014-03-05 2015-09-11 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
CN105112435A (zh) * 2015-08-09 2015-12-02 中国水稻研究所 植物多基因敲除载体的构建及应用
CN105238806A (zh) * 2015-11-02 2016-01-13 中国科学院天津工业生物技术研究所 一种用于微生物的CRISPR/Cas9基因编辑载体的构建及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133554A1 (ja) * 2014-03-05 2015-09-11 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
CN103981215A (zh) * 2014-05-23 2014-08-13 安徽省农业科学院水稻研究所 一种用于基因工程的骨干质粒载体及应用
CN105112435A (zh) * 2015-08-09 2015-12-02 中国水稻研究所 植物多基因敲除载体的构建及应用
CN105238806A (zh) * 2015-11-02 2016-01-13 中国科学院天津工业生物技术研究所 一种用于微生物的CRISPR/Cas9基因编辑载体的构建及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐坤: "源于嗜热链球菌的真核CRISPR/Cas9系统的建立、优化及其应用研究", 《中国博士学位论文全文数据库 基础科学辑》 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
CN108949805A (zh) * 2017-05-26 2018-12-07 华中农业大学 一种植物基因组多位点编辑载体pCXUN-CAS9-RGR
CN108949805B (zh) * 2017-05-26 2021-07-13 华中农业大学 一种植物基因组多位点编辑载体pCXUN-CAS9-RGR
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN108048485A (zh) * 2017-12-22 2018-05-18 清华大学 运用CRISPRi基因敲低技术快速构建急性脑科学研究模型的方法
CN108103027B (zh) * 2018-02-02 2021-12-24 中国医学科学院血液病医院(血液学研究所) 高效率血细胞重编程同时实现基因编辑的方法
CN108103027A (zh) * 2018-02-02 2018-06-01 中国医学科学院血液病医院(血液学研究所) 高效率血细胞重编程同时实现基因编辑的方法
CN110229842A (zh) * 2019-03-13 2019-09-13 云南师范大学 一种用于毕赤酵母的基因编辑载体pHS-AVC-LW1073
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN112322512A (zh) * 2019-08-05 2021-02-05 浙江大学 基于crispr技术改造酿酒酵母利用dl-蛋氨酸合成s-腺苷蛋氨酸的方法
CN113265383A (zh) * 2020-02-14 2021-08-17 中国科学院大连化学物理研究所 多形汉逊酵母基因编辑系统、其应用以及基因编辑方法
CN113265383B (zh) * 2020-02-14 2022-06-10 中国科学院大连化学物理研究所 多形汉逊酵母基因编辑系统、其应用以及基因编辑方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN111440827A (zh) * 2020-05-22 2020-07-24 苏州泓迅生物科技股份有限公司 一种信息存储介质、信息存储方法及应用
CN114480470A (zh) * 2020-11-13 2022-05-13 深圳华大生命科学研究院 高通量制备模式生物基因编辑突变体的方法及相关质粒

Similar Documents

Publication Publication Date Title
CN106086061A (zh) 一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用
CN106191099A (zh) 一种基于CRISPR‑Cas9系统的酿酒酵母基因组并行多重编辑载体及其应用
CN106916820B (zh) 能有效编辑猪ROSA26基因的sgRNA及其应用
CN105331627B (zh) 一种利用内源CRISPR-Cas系统进行原核生物基因组编辑的方法
CN108148835A (zh) CRISPR-Cas9靶向敲除SLC30A1基因及其特异性的sgRNA
CN105624187A (zh) 酿酒酵母基因组定点突变的方法
CN104745626A (zh) 一种条件性基因敲除动物模型的快速构建方法及应用
CN103430772A (zh) 一种杏鲍菇和常规食用菌综合工厂化循环生产方法
CN103999692A (zh) 一种杏鲍菇工厂化栽培方法
CN112662566A (zh) 一种高产多糖的灵芝少孢品种及其人工栽培方法
CN107937328A (zh) 基于细胞的比较器及应用与细胞计算机
WO2023134104A1 (zh) 一种利用人工微生物提高整合生物加工效率的方法
CN105483034B (zh) 一种转换酵母交配型的方法
CN104017742B (zh) 一株高耐性酵母菌株及其构建方法
Ryu Advanced technologies and mechanisms for yeast evolutionary engineering
CN104170650A (zh) 一种北虫草工厂化人工栽培方法
CN103540587B (zh) 靶向整合外源DNA序列到大鼠和小鼠Rosa26位点的方法及其应用
CN102523915B (zh) 一种食用菌单一型菌丝类母种的快速扩繁方法
Azi et al. Developing Ganoderma lucidum as a next-generation cell factory for food and nutraceuticals
CN108103025A (zh) 一种造血干细胞及其制备方法和用途
CN107574128A (zh) 一种体外快速优化菌株代谢通路的方法
CN113373172A (zh) 一种酿酒酵母大片段基因编辑的方法
CN103468623B (zh) 基因工程用工具菌及其应用
CN104419716B (zh) 一种标准化、高精度、通用的功能模块构建方法
CN102992829A (zh) 一种秀珍菇栽培料的配备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Suzhou City, Jiangsu Province, Suzhou Industrial Park 215123 Xinghu Street No. 218 BioBAY C20 Building 1 floor

Applicant after: Suzhou Wang Xun biological Polytron Technologies Inc

Address before: Suzhou City, Jiangsu Province, Suzhou Industrial Park 215123 Xinghu Street No. 218 BioBAY C20 Building 1 floor

Applicant before: SUZHOU SYNBIO TECH CO., LTD.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109