CN107354173A - 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法 - Google Patents

基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法 Download PDF

Info

Publication number
CN107354173A
CN107354173A CN201611216919.XA CN201611216919A CN107354173A CN 107354173 A CN107354173 A CN 107354173A CN 201611216919 A CN201611216919 A CN 201611216919A CN 107354173 A CN107354173 A CN 107354173A
Authority
CN
China
Prior art keywords
liver
tail vein
model
mouse
crispr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611216919.XA
Other languages
English (en)
Inventor
马月
余陈欢
应华忠
张欢欢
方杰
莫丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Academy of Medical Sciences
Original Assignee
Zhejiang Academy of Medical Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Academy of Medical Sciences filed Critical Zhejiang Academy of Medical Sciences
Priority to CN201611216919.XA priority Critical patent/CN107354173A/zh
Publication of CN107354173A publication Critical patent/CN107354173A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Abstract

基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法,属于生物技术领域。该方法通过水动力尾静脉注射输送CRISPR系统在肝脏特异性表达建立肝脏特异性敲除小鼠模型。本发明不仅可以针对性使用CRISPR/Cas9系统进行肝脏特异性的模型研究,而且可以为肝脏重大疾病和新药研发提供高水平的动物模型。

Description

基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小 鼠模型的方法
技术领域
本发明属于生物技术领域,具体涉及基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法。
背景技术
CRISPR基因修饰动物(包括人源化动物)是研究生物医学领域中的分子机理和致病机制的重要研究手段。传统的转基因动物制作方法需要得到相应动物的干细胞,显微注射改造的遗传物质后将干细胞植入囊胚,直至生产出嵌合型动物,并通过杂交最终得到纯合型动物(Terry Van Dyke , T.J,2002)。由于转基因动物传统制备的复杂性,近年来,具有序列特异性的核酸酶广泛应用于动物的基因组定点修饰,其中,ZFN 和TALEN 是两种最常见的基因编辑技术, ZFN 和TALEN 系统均基于蛋白质工程,构建基因(编码特异性结合靶基因的蛋白)较困难,而且由于切割时以二聚体的形式发挥作用,需要成对设计,技术难度较大,构建组装时间较长(Kim, H. and J.S. Kim, 2014)。而CRISPR/Cas系统,是细菌特有的一种获得性免疫系统,研究人员将其改造成为靶向基因组编辑的工具,由于操作简单、成功率高且效率高,成为了靶向基因组编辑工具中的佼佼者(Gasiunas, G., et al.2012.)。CRISPR/Cas 技术已经在基因功能研究、动物模型建立、基因治疗等领域得到广泛的推广和应用,国内外研究表明,应用CRISPR/Cas系统构建小鼠动物模型为全身性敲除。
水动力基因转移技术是一种简便、高效的体内基因转染方法,近年来已有成熟地发展。它是在高压下经小鼠尾静脉快速注射含目的基因重组质粒的生理盐水,从而在小鼠体内(主要在小鼠肝脏)实现目的基因的高效表达,常用于动物实验和实验动物的造模。
发明内容
针对现有技术存在的问题,本发明的目的在于设计提供一种基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法技术方案。
所述的基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法,其特征在于在AAV-GFP肝脏特异性表达小鼠模型中通过水动力尾静脉注射输送CRISPR系统px330-sgGFP建立肝脏特异性敲除小鼠模型。
所述的基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法,其特征在于所述的AAV-GFP肝脏特异性表达小鼠模型是AAV-GFP病毒液经尾静脉高压水动力注射的方法感染小鼠肝细胞而建立的小鼠模型。
所述的基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法,其特征在于所述的CRISPR系统px330-sgGFP由px330质粒的多克隆位点BasI插入sgGFP得到。
所述的一种肝脏特异性敲除小鼠模型,由任一上述记载的方法制备获得。
所述的一种肝脏特异性敲除小鼠模型,其特征在于所述的小鼠为雌性7-8 周龄FVB/NJ小鼠。
本发明与现有技术相比,具有以下优点:为了解决真核质粒转染的瞬时表达的问题,以及慢病毒转染体系病毒滴度低转染效率低下的问题,本发明特别利用 AAV-GFP病毒液通过小鼠尾静脉水动力注射建立肝脏特异性稳定表达GFP小鼠模型,达到稳定高效率的肝脏特异性表达目的基因。在此模型基础上,进一步使用CRISPR/Cas9系统进行GFP肝脏特异性敲除模型构建,建立小鼠肝脏特异性的快速基因敲除模型。CRISPR/Cas9基因编辑技术操作简单且效率高,但由于 CRISPR/Cas9系统敲除动物模型为全身性敲除,本发明利用高压尾静脉水动力技术输送CRISPR/Cas9系统特异性到动物肝脏表达,从而实现CRISPR/Cas9系统的靶向组织特异性敲除的功能。本发明不仅可以针对性使用CRISPR/Cas9系统进行肝脏特异性的模型研究,而且可以为肝脏重大疾病和新药研发提供高水平的动物模型。
附图说明
图1为pEGFP-N1(CMV-GFP)质粒结构示意图;
图2为AAV-GFP质粒结构示意图;
图3为AAV-GFP肝脏特异性表达成像检测;
图4为CRISPR/CAS9系统示意图;
图5为px330-sgGFP质粒结构示意图;
图6a、6b为注射AAV-GFP/px330-sgGFP肝脏特异性敲除表型观察,其中图6a.为注射3天(72h)后生理盐水组和AAV-GFP组肝脏特异性表达, 图6b.为注射AAV-GFP/px330-sgGFP肝脏特异性敲除。
图7 px330-sgPTEN-sgp53-Cas特异性敲除对肝组织病理的影响。
具体实施方式
以下通过实施例进一步说明本发明。
实施例1:真核表达载体pEGFP-N1的建立
材料及来源:质粒pEGFP-N1来源于CLONTECH(GenBank Accession #U55762 Catalog #6085-1),由本室保存,pEGFP-N1(CMV-GFP)质粒结构如图1所示。质粒小提试剂盒购自Omega公司,质粒大提提取试剂盒购自Axygen 公司。
方法:活化质粒pEGFP-N1甘油菌,用质粒大提提取试剂盒获得大量真核表达EGFP质粒1mg。
实施例2:腺相关病毒表达载体AAV-GFP的建立
材料及来源:pAV-U6-GFP(AAV-GFP)质粒来自于维真生物,pAV-U6-GFP(AAV-GFP)质粒结构如图2所示。质粒小提试剂盒购自Omega公司,质粒大提提取试剂盒购自Axygen 公司。AAV-GFP病毒液购自于维真生物,滴度达到1×1013 V.G/ml。
构建方法:活化质粒pAV-U6-GFP菌液,用质粒大提提取试剂盒获得大量质粒1mg。使用pAV-U6-GFP(AAV-GFP)质粒以及辅助质粒Ad Helper Vector和AAV Rep/Cap Vector共转染293T细胞,纯化测定滴度为1×1013 V.G/ml。
实施例3:小鼠尾静脉水动力注射真核表达质粒pEGFP-N1和腺相关病毒AAV-GFP
材料及来源:动物SPF级FVB/NJ小鼠,7-8 周龄,雌性,体重18-22g,由浙江中医药大学动物中心提供,饲养于浙江省医学科学院动物中心二级动物房。饲养条件按照SPF 级动物标准执行。
试剂:经Axygen 公司质粒大量提取纯化试剂盒纯化的质粒pEGFP-N1 及病毒液AAV-GFP ;生理盐水(0.9%的NaCl溶液)。
仪器:1ml、2ml 及5ml 注射器。
方法:高压水动力尾静脉注射:雌性SPF 级FVB/NJ小鼠分成三组,每组6只,分别经高压水动力尾静脉注射生理盐水(control组)、50-80μg 质粒pEGFP-N1(真核质粒表达组)及1011IU/ml AAV-GFP病毒液(腺相关病毒表达组)。
具体操作如下:先将小鼠尾巴置于白炽灯泡下照射或热台上,使小鼠尾静脉扩张;5-8 秒内将2-2.5ml(相当于小鼠体重的8%-10%体积) 的质粒溶液匀速注射到小鼠体内,注射后室温条件下观察小鼠反应。
实施例4:小鼠肝脏特异性表达GFP模型成像检测
方法:各组小鼠注射后24h、72h、2周后,乙醚麻醉后进行活体成像和取肝脏成像观察GFP的表达情况。
结果显示:如图3所示,注射生理盐水的实验对照组(control组)肝脏不发出绿色荧光,无GFP蛋白表达;pEGFP-N1(真核质粒表达组)肝脏在72h发出绿色荧光, 2周后无GFP蛋白表达;AAV-GFP病毒液(腺相关病毒表达组)在72h、两周后均表达GFP蛋白,绿色荧光强于真核表达组且两周后GFP蛋白表达稳定。提示腺相关病毒AAV-GFP更优于真核质粒pEGFP-N1建立小鼠肝脏特异性表达模型。因此,小鼠肝脏特异性CRISPR敲除模型在腺相关病毒AAV-GFP感染模型的基础上进行。
实施例5:CRISPR系统px330-sgGFP的设计构建
材料及来源:CRISPR质粒选用 px330质粒体系(购自Addgene: Plasmid 42230),由本室保存。质粒小提试剂盒购自Omega 公司,质粒大提提取试剂盒购自Axygen 公司。引物合成和测序于上海生物工程公司,内切酶购自NEB公司,连接酶购自Takara公司。
构建方法:px330质粒采用内切酶BbsI 插入目的基因片段序列,采用分子克隆技术构建px330-sgRNAs-Cas9质粒,px330-sgRNAs-Cas9的结构如图4所示。
设计合成sgGFP-F:CACCGGGGCGAGGAGCTGTTCACCG,sgGFP-R:CCCCGCTCCTCGACAAGTGGCCAAA,两条oligos进行退火形成DNA双链。退火形成的DNA与内切酶BbsI酶切纯化后的线性px330载体连接,转化,阳性克隆筛选和鉴定。测序鉴定正确的阳性克隆进行活化,大量抽提质粒准备尾静脉水动力注射。
实施例6:小鼠尾静脉水动力注射输送CRISPR系统
材料及来源:动物SPF级FVB/NJ小鼠,7-8 周龄,雌性,体重18-22g,由浙江中医药大学动物中心提供,饲养于浙江省医学科学院动物中心二级动物房。饲养条件按照SPF 级动物标准执行。
试剂:病毒液AAV-GFP及经Axygen 公司质粒大量提取纯化试剂盒纯化的质粒px330-sgGFP-Cas9;生理盐水(0.9%的NaCl 溶液)。
仪器:1ml、2ml 及5ml 注射器。
方法:高压水动力尾静脉注射:雌性SPF 级FVB/NJ小鼠分成三组,每组6 只,分别经高压水动力尾静脉注射生理盐水(Control组)、1011AAV-GFP病毒液 (GFP腺相关病毒表达组) 及50-80μg 质粒px330-sgGFP-Cas9 (如图5所示,sgGFP组)。
具体操作如下:先将小鼠尾巴置于白炽灯泡下照射或热台上,使小鼠尾静脉扩张;5-8 秒内将2-2.5ml(相当于小鼠体重的8%-10%体积) 的生理盐水或病毒溶液匀速注射到小鼠体内,注射后室温条件下观察小鼠反应;AAV-GFP病毒液注射72h后为第一次开始注射50-80μg px330-sgGFP-Cas9质粒溶液,第一次注射72h后,再次尾静脉水动力注射50-80μg px330-sgGFP-Cas9质粒溶液,第二次注射72h后,进行第三次尾静脉水动力注射50-80μgpx330-sgGFP-Cas9质粒溶液,一共注射等量px330-sgGFP-Cas9质粒溶液三次,第三次注射结束72h后,恰好AAV-GFP病毒液注射两周后,进行小鼠肝脏特异性敲除成像检测观察。
实施例8:小鼠肝脏特异性CRISPR敲除模型成像检测
方法:各组小鼠注射后3天、9天、12天、2周后,乙醚麻醉后进行活体成像和取肝脏成像观察GFP的表达情况;
结果显示:如图6所示,注射生理盐水的实验对照组(control组)肝脏不发出绿色荧光,无GFP蛋白表达; AAV-GFP病毒液(腺相关病毒表达组)在3天、9天、12天、两周后均表达GFP蛋白;质粒px330-sgGFP-Cas9 (sgGFP组)在9天、12天、两周后GFP蛋白的表达明显减弱,明显低于GFP特异性表达组。提示尾静脉水动力注射输送CRISPR系统(px330-sgGFP-Cas9)可以快速进行小鼠肝脏特异性敲除模型建立。
实施例9:CRISPR系统双敲PTEN+p53对小鼠肝功能的影响
方法:雌性SPF 级FVB/NJ小鼠分成三组,分别为正常对照组,阴性干扰组及基因敲除组。每组5只。除正常对照组外,于第1、4、7天,阴性干扰组小鼠尾静脉注射生理盐水,基因敲除组小鼠尾静脉注射50μg 质粒px330- sgPTEN-sgp53-Cas9。于末次注射后3天,各组随机取若干小鼠,均处死后取肝脏适量,4%中性福尔马林溶液固定,常规石蜡包埋切片,油红O染色,于显微镜下观察各组小鼠肝组织病理变化。结果显示:如图7所示,正常对照组小鼠及注射生理盐水组的小鼠肝细胞排列紧密,边缘清晰,胞质未见脂滴。AAV-GFP/px330-sgGFP肝脏特异性敲除组肝细胞脂肪变性,体积增大,含有大量的红染颗粒,细胞核被推向周边,脂质沉积明显增多,结构被破坏,肝细胞排列紊乱,提示尾静脉水动力注射输送CRISPR系统(px330- sgPTEN-sgp53-Cas9)可抑制肝细胞PTEN和p53基因表达,导致肝组织脂代谢紊乱。

Claims (5)

1.基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法,其特征在于通过水动力尾静脉注射输送CRISPR系统在肝脏特异性表达建立肝脏特异性敲除小鼠模型。
2.如权利要求1所述的基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法,其特征在于所述的AAV-GFP肝脏特异性表达小鼠模型是AAV-GFP病毒液经尾静脉高压水动力注射的方法感染小鼠肝细胞而建立的小鼠模型。
3.如权利要求1所述的基于CRISPR技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法,其特征在于所述的CRISPR系统px330-sgGFP由px330质粒的多克隆位点BasI插入sgGFP得到。
4.一种肝脏特异性敲除小鼠模型,由权利要求1-3 任一权利要求所述方法制备获得。
5.如权利要求4所述的一种肝脏特异性敲除小鼠模型,其特征在于所述的小鼠为雌性7-8 周龄小鼠。
CN201611216919.XA 2016-12-26 2016-12-26 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法 Pending CN107354173A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611216919.XA CN107354173A (zh) 2016-12-26 2016-12-26 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611216919.XA CN107354173A (zh) 2016-12-26 2016-12-26 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法

Publications (1)

Publication Number Publication Date
CN107354173A true CN107354173A (zh) 2017-11-17

Family

ID=60272002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611216919.XA Pending CN107354173A (zh) 2016-12-26 2016-12-26 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法

Country Status (1)

Country Link
CN (1) CN107354173A (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN109266685A (zh) * 2018-09-20 2019-01-25 赵永祥 快速基因编辑构建灵长类动物疾病模型的方法
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN113025650A (zh) * 2021-03-08 2021-06-25 中国人民解放军军事科学院军事医学研究院 诱发型炎癌转化小鼠模型及其建立方法和应用
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311974A (zh) * 2010-07-05 2012-01-11 北京五加和分子医学研究所有限公司 rAAV8-HBV1.3病毒用于建立HBV小鼠模型
CN103329852A (zh) * 2013-06-19 2013-10-02 中国医学科学院病原生物学研究所 一种hbv持续性感染及纤维化小鼠模型建立
CN104498493A (zh) * 2014-12-30 2015-04-08 武汉大学 CRISPR/Cas9特异性敲除乙型肝炎病毒的方法以及用于特异性靶向HBV DNA的gRNA
CN104673834A (zh) * 2013-11-27 2015-06-03 上海市公共卫生临床中心 一种乙型肝炎病毒慢性转染模型的构建方法
CN105647922A (zh) * 2016-01-11 2016-06-08 中国人民解放军疾病预防控制所 基于一种新gRNA序列的CRISPR-Cas9系统在制备乙肝治疗药物中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311974A (zh) * 2010-07-05 2012-01-11 北京五加和分子医学研究所有限公司 rAAV8-HBV1.3病毒用于建立HBV小鼠模型
CN103329852A (zh) * 2013-06-19 2013-10-02 中国医学科学院病原生物学研究所 一种hbv持续性感染及纤维化小鼠模型建立
CN104673834A (zh) * 2013-11-27 2015-06-03 上海市公共卫生临床中心 一种乙型肝炎病毒慢性转染模型的构建方法
CN104498493A (zh) * 2014-12-30 2015-04-08 武汉大学 CRISPR/Cas9特异性敲除乙型肝炎病毒的方法以及用于特异性靶向HBV DNA的gRNA
CN105647922A (zh) * 2016-01-11 2016-06-08 中国人民解放军疾病预防控制所 基于一种新gRNA序列的CRISPR-Cas9系统在制备乙肝治疗药物中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘霜等: "水动力注射法构建乙型肝炎病毒感染小鼠模型", 《胃肠病学和肝病学杂志》 *
彭秀华等: "利用高压水动力法建立乙型肝炎病毒转染小鼠模型及初步评价", 《实验动物与比较医学》 *
马月等: "CRISPR系统特异性敲除目的基因在肝病小鼠模型中的应用", 《国际流行病学传染病学杂志》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN109266685A (zh) * 2018-09-20 2019-01-25 赵永祥 快速基因编辑构建灵长类动物疾病模型的方法
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN113025650B (zh) * 2021-03-08 2022-07-12 中国人民解放军军事科学院军事医学研究院 诱发型炎癌转化小鼠模型及其建立方法和应用
CN113025650A (zh) * 2021-03-08 2021-06-25 中国人民解放军军事科学院军事医学研究院 诱发型炎癌转化小鼠模型及其建立方法和应用

Similar Documents

Publication Publication Date Title
CN107354173A (zh) 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法
Bagó et al. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy
Orlic Adult bone marrow stem cells regenerate myocardium in ischemic heart disease
JP7396783B2 (ja) 移植を改善するためのcrispr/cas関連方法および組成物
Wang et al. A microfluidics-based scalable approach to generate extracellular vesicles with enhanced therapeutic microRNA loading for intranasal delivery to mouse glioblastomas
US9539290B2 (en) Individualized bacterial treatment of pancreatic cancer
Rippon et al. Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo
CN103620035A (zh) 用于调节mir-21活性的微rna化合物以及方法
US20220073921A1 (en) Aptamer and use of the aptamer in the diagnosis and treatment of cancer
Li et al. mRNA-engineered mesenchymal stromal cells expressing CXCR2 enhances cell migration and improves recovery in IBD
CN108473956A (zh) 增强外源性施用t细胞的体内持久性和功效的方法、基因修饰的t细胞和方法以及使用方法
EP4134084A2 (en) Tissue-specifically expressed circular rna molecule and application thereof
Meldgaard Knudsen et al. Reduced bone marrow stem cell pool and progenitor mobilisation in multiple myeloma after melphalan treatment
KR20060065712A (ko) 간엽계 줄기세포의 간세포로의 분화 방법 및 인공 인간간장 세포
CN110616233B (zh) CRISPR-Cas9高效敲除原代T细胞基因的方法及其应用
CN101368180A (zh) 一类能将间充质干细胞分化为造血细胞的小rna分子及其作用靶点
WO2022095853A1 (zh) 一种溶酶体靶向的核酸嵌合体的制备及应用
CN101173299A (zh) 肿瘤靶向性腺相关病毒载体的构建和应用
Kreiter et al. FLT3 ligand as a molecular adjuvant for naked RNA vaccines
CN106635999A (zh) Mmhrl1转基因小鼠肝肿瘤细胞系的建立及应用
Fath-Bayati et al. Tracking of intraperitoneally and direct intrahepatic administered mesenchymal stem cells expressing miR-146a-5p in mice hepatic tissue
JP2022546302A (ja) ダンベル型dnaベクターを作出するための方法
CN113069547B (zh) Bap1作为肿瘤治疗靶点在制备预防或治疗肿瘤药物中的应用
CN109929865A (zh) 基于gal4-uas系统的crispr辅助反式增强子激活基因表达的方法及其应用
CN107058228B (zh) Mmhrl3转基因小鼠肝肿瘤细胞系的建立及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171117

RJ01 Rejection of invention patent application after publication