CN106399360A - 基于crispr技术敲除fut8基因的方法 - Google Patents

基于crispr技术敲除fut8基因的方法 Download PDF

Info

Publication number
CN106399360A
CN106399360A CN201510447211.4A CN201510447211A CN106399360A CN 106399360 A CN106399360 A CN 106399360A CN 201510447211 A CN201510447211 A CN 201510447211A CN 106399360 A CN106399360 A CN 106399360A
Authority
CN
China
Prior art keywords
sgrna
cell
sequence
fut8 gene
endonuclease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510447211.4A
Other languages
English (en)
Inventor
邱沛然
蔡洁行
周伟昌
陈智胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Biologics Shanghai Co Ltd
Wuxi Apptec Biopharmaceuticals Co Ltd
Original Assignee
Wuxi Biologics Shanghai Co Ltd
Wuxi Apptec Biopharmaceuticals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Biologics Shanghai Co Ltd, Wuxi Apptec Biopharmaceuticals Co Ltd filed Critical Wuxi Biologics Shanghai Co Ltd
Priority to CN201510447211.4A priority Critical patent/CN106399360A/zh
Publication of CN106399360A publication Critical patent/CN106399360A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种基于CRISPR技术敲除FUT8基因的方法,步骤包括:1)设计sgRNA序列;2)将sgRNA序列重组至第一载体中,得第二载体;3)将第二载体转染至细胞中,抽提DNA;4)PCR扩增;5)PCR产物变性、退火,形成异源杂交双链;6)切割异源杂交双链并分析产物,得各细胞群发生NHEJ的比例;7)挑选NHEJ比例高的细胞群进行有限稀释法克隆,筛选单克隆细胞扩大培养,获得FUT8基因敲除抗体。本发明还公开了用于上述方法的sgRNA序列。本发明通过编码能识别FUT8基因特定序列的sgRNA,将其与编码核酸内切酶的序列转染进细胞中,实现了让FUT8基因失活的目的,提高了抗体ADCC活性。

Description

基于CRISPR技术敲除FUT8基因的方法
技术领域
本发明涉及生物领域,特别是涉及一种基于CRISPR技术敲除FUT8基因以提高抗体ADCC活性的方法。
背景技术
ADCC(antibody dependent cellular cytotoxicity,抗体依赖的细胞介导的细胞毒性作用)是指由NK(natural killer)细胞引发的一系列免疫反应,NK细胞通过FcγRIII受体与抗体分子恒定区(Fc)结合,然后通过穿孔素和颗粒酶在靶细胞表面引起细胞降解和引发细胞凋亡。然而,抗体分子的恒定区和FcγRIII受体之间的相互作用对抗体分子恒定区的糖基化水平非常地敏感,完全没有糖基化的抗体恒定区或者糖基化程度过高的抗体恒定区都无法正常地与FcγRIII受体结合。其中,更加重要的是岩藻糖基化的水平,已有文献报道没有岩藻糖基化的Fc端与FcγRIII受体的亲和力明显要比岩藻糖基化的Fc端高,相应的体外ADCC作用活性要强100倍。
大多数由哺乳动物细胞产生的单克隆抗体都是岩藻糖基化的,这其中当然也包括了最广泛使用的中国仓鼠卵巢细胞,岩藻糖与抗体Fc端上的氨基葡萄糖通过一个α-1,6糖苷键结合。在哺乳动物细胞中,这个糖苷键由FUT8基因编码的α-1,6-岩藻糖基转移酶催化形成。敲除FUT8基因将完全消除抗体Fc端的岩藻糖,从而提高单抗药物的ADCC作用。
传统的基于同源重组的基因编辑技术是一个高投入、低产出并且费时费力的过程,往往需要从106-109个细胞中才能筛选出一个被正确敲除的细胞。后续出现的一些可编码人工核酸酶基因编辑技术(如锌指酶、TALEN),它们依靠其DNA结合结构域结合到基因组中特定的位点上,然后,再依靠融合表达的酶切结构域,将该位点的DNA链切断。这样的人工核酸酶技术往往有着可识别序列受限制,编码过程复杂耗时以及作用效率低等缺点。
CRISPR是Clustered Regularly Interspaced Short Palindromic Repeats即成簇出现规律间隔的短回文序列的缩写,此序列和CRISPR相关基因(Cas基因)共同作用,因其特有的RNA介导的核酸内切酶活性引起了生物学界的广泛关注,其中以来源于StreptococcusPyogenes为代表的II类CRISPR/Cas9系统应用最为广泛,以RNA作为基因组定位工具,用特定序列的sgRNA(small-guide RNA)引导Cas9核酸内切酶识别并切割靶向序列。众所周知在体内合成RNA要比在体内合成蛋白质容易的多,而与人工开发的特异性DNA位点结合蛋白相比,RNA无论是在定位的准确性上还是在效率上都要好的多。基于RNA定位的CRISPR技术可以避开DNA甲基化对定位的影响,所以CRISPR/Cas9系统在基因组定位的自由度方面要比人工开发的特异性DNA位点结合蛋白技术要大得多。编码一段RNA要比编码一段蛋白质容易,所以CRISPR/Cas9系统只需要很短的时间就可以得到实验结果。
发明内容
本发明要解决的技术问题之一是提供一种基于CRISPR技术敲除FUT8基因的方法,它可以提高抗体药物的ADCC的活性。
为解决上述技术问题,本发明的基于CRISPR技术敲除FUT8基因的方法,步骤包括:
1)针对FUT8基因的序列,设计引导核酸内切酶切割的sgRNA序列;
2)将所述sgRNA序列重组至第一载体中,得到sgRNA和核酸内切酶共表达的第二载体;
3)将第二载体转染至哺乳动物细胞中,孵育后,抽提细胞的DNA;
4)以所述DNA为模板,进行PCR扩增,得到包含FUT8基因片段的PCR产物;
5)对所述PCR产物进行变性、退火,形成异源杂交双链;
6)使用核酸内切酶对所述异源杂交双链进行切割,用凝胶电泳对切割产物进行分析,得到各个细胞群发生非同源末端连接的比例;
7)挑选非同源末端连接比例高的细胞群进行有限稀释法克隆,筛选出单克隆细胞进行扩大培养,获得稳定的FUT8基因敲除抗体。
较佳的,步骤1)所述sgRNA序列包括SEQ ID NO:1和SEQ ID NO:2所示的序列;所述核酸内切酶包括CAS9核酸内切酶。
较佳的,步骤2)所述第一载体包括基因敲除载体px330。
较佳的,步骤2)进一步包括步骤:
21)合成编码sgRNA靶向部分的引物,将两条引物退火,获得短的插入片段;
22)用BbsI核酸内切酶消化第一载体,获得酶切载体;
23)将所述插入片段和所述酶切载体用连接酶连接,转化大肠杆菌,获得所述第二载体。
步骤3),转染的方法包括脂质体转染法、电转化法等。所述细胞包括中国仓鼠卵巢细胞。孵育的较佳温度为37℃,时间为48-72小时。
较佳的,步骤5),变性条件为,95℃,10分钟;退火条件为:95-85℃,-1℃/s,85-25℃,-0.1℃/s。
步骤6),所述核酸内切酶包括T7E1酶。
较佳的,步骤7),采用小扁豆凝集素筛选单克隆细胞,具体步骤包括:
71)将有限稀释法获得的克隆转移到96孔板中,36.5℃培养1-3天至汇合度大于70%;
72)将上述克隆按1:5或者1:10传代至含有小扁豆凝集素的培养基中。
小扁豆凝集素的使用浓度为20-100μg/ml。细胞培养条件为:36.5℃,6%CO2,湿度85%。
本发明要解决的技术问题之二是提供用于上述方法的sgRNA的序列,该sgRNA序列包括有SEQ ID NO:1和SEQ ID NO:2所示的序列。
本发明通过编码一条能识别FUT8基因特定序列的sgRNA,并将含有此sgRNA的序列与编码核酸内切酶的序列转染进哺乳动物细胞中,使核酸内切酶通过sgRNA的引导靶向地切割FUT8基因的特定序列,引发细胞内的NHEJ修复机制,在FUT8基因的特定区域引入indel修饰,并进而引起FUT8基因序列出现编码框移位或者在FUT8基因序列中提前引入终止密码子,从而达到让FUT8基因失活的目的。在FUT8基因失活后,细胞产生的单克隆抗体将不再带有α-1,6岩藻糖基化的修饰,这样就提高了单克隆抗体的ADCC活性。
附图说明
图1是未敲除FUT8基因克隆分泌抗体的糖基化结果。
图2是敲除FUT8基因克隆分泌抗体的糖基化结果。
图3是敲除FUT8基因克隆和未敲除FUT8基因克隆分泌抗体的ADCC活性结果。
图4是琼脂糖凝胶电泳分析不同细胞群NHEJ发生比例结果。其中,M为天根DNA markerIII;1为细胞群1PCR产物变性退火后T7E1酶切结果,PCR片段包括靶向位点SEQ ID NO:2;2为细胞群2PCR产物变性退火后T7E1酶切结果,PCR片段包括靶向位点SEQ ID NO:1;3为细胞群3PCR产物变性退火后T7E1酶切结果,PCR片段包括靶向位点SEQ ID NO:1;4为细胞群4PCR产物变性退火后T7E1酶切结果,PCR片段包括靶向位点SEQ ID NO:2;5为野生型CHOK1细胞PCR产物变性退火后T7E1酶切结果,PCR片段包括靶向位点SEQ ID NO:1;6为野生型CHOK1细胞PCR产物变性退火后T7E1酶切结果,PCR片段包括靶向位点SEQ ID NO:2。
具体实施方式
为对本发明的技术内容、特点与功效有更具体的了解,现结合附图,详述如下:
本实施例的基于CRISPR技术敲除FUT8基因的方法,包括以下步骤:
步骤1,针对FUT8基因的序列,设计引导CAS9核酸内切酶切割的sgRNA序列。
其中,sgRNA序列包括:
ggatcaagtatttgacaaactgg (SEQ ID NO:1)
gtcagacgcactgacaaagtggg (SEQ ID NO:2)
步骤2,将步骤1所述sgRNA序列重组至基因敲除载体px330(以下称为第一载体)中,得到sgRNA和核酸内切酶共表达的载体(以下称为第二载体)。
具体包括如下步骤:
1)合成编码sgRNA靶向部分的引物,将两条引物退火,获得短的插入片段。
退火条件为:95~85℃,-1℃/s;85~25℃,-0.1℃/s。
2)用BbsI核酸内切酶消化第一载体,获得酶切载体。
3)将所述插入片段和所述酶切载体用Takara solution I连接酶连接,转化大肠杆菌,获得第二载体。
步骤3,将第二载体用脂质体转染法转染至中国仓鼠卵巢细胞中,在37℃下孵育48~72小时,抽提细胞DNA。
步骤4,以步骤3得到的DNA为模板,进行PCR扩增,得到包含FUT8基因所在片段的PCR扩增产物。
扩增条件为:98℃,2分钟,变性,98℃,15s;退火,60℃,10s;延伸,68℃,90s;扩增30个循环,最后68℃,5min;4℃保存。
步骤5,将步骤4得到的PCR扩增产物进行变性、退火,形成异源杂交双链。其中,变性条件为:95℃,10分钟。退火条件为:95~85℃,-1℃/s;85~25℃,-0.1℃/s。
步骤6,使用T7E1酶对所述异源杂交双链进行切割,用2%琼脂糖凝胶电泳对切割产物进行分析,得到各个细胞群发生非同源末端连接(Non Homologous End Joining,NHEJ)的比例,如图4所示。其中,细胞群1和细胞群4发生NHEJ的比例约为25%,细胞群2和细胞群3发生NHEJ的比例约为15%。
步骤7,根据细胞群发生NHEJ的比例,挑选细胞群1和细胞群4进行有限稀释法克隆,并进行小扁豆凝集素筛选,以获取单克隆细胞,然后将单克隆细胞进行扩大培养(细胞培养条件为:36.5℃,6%CO2,湿度85%),获得稳定的FUT8基因敲除抗体。
小扁豆凝集素可以特异性的识别并结合带有岩藻糖的多糖,粘附在细胞表面的小扁豆凝集素被内吞后会导致细胞死亡,以此为依据可以筛选出敲除了FUT8基因的单克隆细胞。小扁豆凝集素的筛选过程具体包括如下步骤:
1)将有限稀释法获得的克隆转移到96孔板中,36.5℃培养1-3天,至汇合度大于70%;
2)将步骤1)所得克隆按1:5或者1:10传代至含有小扁豆凝集素的培养基中。其中,小扁豆凝集素的筛选使用浓度为20-100μg/ml。细胞培养条件为:36.5℃,6%CO2,湿度85%。
敲除和未敲除FUT8基因的克隆分泌抗体的糖基化结果和ADCC活性结果请参阅图1~3所示。从图3可以明显看出,敲除FUT8基因克隆分泌抗体的ADCC活性要明显高于未敲除FUT8基因克隆分泌抗体的ADCC活性。

Claims (10)

1.基于CRISPR技术敲除FUT8基因的方法,其特征在于,步骤包括:
1)针对FUT8基因的序列,设计引导核酸内切酶切割的sgRNA序列;
2)将所述sgRNA序列重组至第一载体中,得到sgRNA和核酸内切酶共表达的第二载体;
3)将第二载体转染至哺乳动物细胞中,孵育后,抽提细胞的DNA;
4)以所述DNA为模板,进行PCR扩增,得到包含FUT8基因片段的PCR产物;
5)对所述PCR产物进行变性、退火,形成异源杂交双链;
6)使用核酸内切酶对所述异源杂交双链进行切割,用凝胶电泳对切割产物进行分析,得到各个细胞群发生非同源末端连接的比例;
7)挑选非同源末端连接比例高的细胞群进行有限稀释法克隆,筛选出单克隆细胞进行扩大培养,获得稳定的FUT8基因敲除抗体。
2.根据权利要求1所述的方法,其特征在于,步骤1)所述sgRNA序列包括SEQ ID NO:1和SEQ ID NO:2所示的序列,所述核酸内切酶包括CAS9核酸内切酶。
3.根据权利要求1所述的方法,其特征在于,步骤2)所述第一载体包括基因敲除载体px330。
4.根据权利要求1或3所述的方法,其特征在于,步骤2)进一步包括步骤:
21)合成编码sgRNA靶向部分的引物,将两条引物退火,获得短的插入片段;
22)用BbsI核酸内切酶消化第一载体,获得酶切载体;
23)将所述插入片段和所述酶切载体用连接酶连接,转化大肠杆菌,获得所述第二载体。
5.根据权利要求1所述的方法,其特征在于,步骤3),转染的方法包括脂质体转染法、电转化法,所述哺乳动物细胞包括中国仓鼠卵巢细胞;孵育的温度为37℃,时间为48-72小时。
6.根据权利要求1所述的方法,其特征在于,步骤5),变性条件为,95℃,10分钟;退火条件为:95-85℃,-1℃/s,85-25℃,-0.1℃/s。
7.根据权利要求1所述的方法,其特征在于,步骤6),所述核酸内切酶包括T7E1酶。
8.根据权利要求1所述的方法,其特征在于,步骤7),采用小扁豆凝集素筛选单克隆细胞,步骤包括:
71)将有限稀释法获得的克隆转移到96孔板中,36.5℃培养1-3天至汇合度大于70%;
72)将上述克隆按1:5或者1:10传代至含有小扁豆凝集素的培养基中。
9.根据权利要求8所述的方法,其特征在于,小扁豆凝集素的使用浓度为20-100μg/ml;细胞培养条件为:36.5℃,6%CO2,湿度85%。
10.用于权利要求1所述方法的sgRNA的序列,其特征在于,所述sgRNA包括SEQ ID NO:1和SEQ ID NO:2所示的序列。
CN201510447211.4A 2015-07-27 2015-07-27 基于crispr技术敲除fut8基因的方法 Pending CN106399360A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510447211.4A CN106399360A (zh) 2015-07-27 2015-07-27 基于crispr技术敲除fut8基因的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510447211.4A CN106399360A (zh) 2015-07-27 2015-07-27 基于crispr技术敲除fut8基因的方法

Publications (1)

Publication Number Publication Date
CN106399360A true CN106399360A (zh) 2017-02-15

Family

ID=58008453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510447211.4A Pending CN106399360A (zh) 2015-07-27 2015-07-27 基于crispr技术敲除fut8基因的方法

Country Status (1)

Country Link
CN (1) CN106399360A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217042A (zh) * 2017-07-31 2017-09-29 江苏东抗生物医药科技有限公司 一种生产无岩藻糖基化蛋白的基因工程细胞系及其建立方法
CN107841509A (zh) * 2017-12-06 2018-03-27 南方医科大学南方医院 一种敲除胶质母细胞瘤dhc2基因的试剂盒
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
CN113061605A (zh) * 2020-07-13 2021-07-02 中山大学 一种岩藻糖转移酶8(fut8)功能缺失细胞株的构建方法及其应用
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11999947B2 (en) 2023-02-24 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212836A (zh) * 2014-09-18 2014-12-17 东华大学 一种在哺乳动物细胞系中敲除mir-505的方法
WO2015052231A2 (en) * 2013-10-08 2015-04-16 Technical University Of Denmark Multiplex editing system
CN105969747A (zh) * 2016-06-24 2016-09-28 大连大学 利用毕赤酵母表达系统分泌生产人源核心岩藻糖基转移酶的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052231A2 (en) * 2013-10-08 2015-04-16 Technical University Of Denmark Multiplex editing system
CN104212836A (zh) * 2014-09-18 2014-12-17 东华大学 一种在哺乳动物细胞系中敲除mir-505的方法
CN105969747A (zh) * 2016-06-24 2016-09-28 大连大学 利用毕赤酵母表达系统分泌生产人源核心岩藻糖基转移酶的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARLOTTA RONDA等: "Accelerating Genome Editing in CHO Cells Using CRISPR Cas9 and CRISPy, a Web-Based Target Finding Tool", 《BIOTECHNOLOGY AND BIOENGINEERING》 *
TAO SUN等: "Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody", 《ENGINEERING IN LIFE SCIENCE》 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
CN107217042A (zh) * 2017-07-31 2017-09-29 江苏东抗生物医药科技有限公司 一种生产无岩藻糖基化蛋白的基因工程细胞系及其建立方法
CN107217042B (zh) * 2017-07-31 2020-03-06 江苏东抗生物医药科技有限公司 一种生产无岩藻糖基化蛋白的基因工程细胞系及其建立方法
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN107841509B (zh) * 2017-12-06 2021-03-23 南方医科大学南方医院 一种敲除胶质母细胞瘤dhc2基因的试剂盒
CN107841509A (zh) * 2017-12-06 2018-03-27 南方医科大学南方医院 一种敲除胶质母细胞瘤dhc2基因的试剂盒
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12006520B2 (en) 2019-06-14 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN113061605B (zh) * 2020-07-13 2022-11-29 中山大学 一种岩藻糖转移酶8(fut8)功能缺失细胞株的构建方法及其应用
CN113061605A (zh) * 2020-07-13 2021-07-02 中山大学 一种岩藻糖转移酶8(fut8)功能缺失细胞株的构建方法及其应用
US11999947B2 (en) 2023-02-24 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof

Similar Documents

Publication Publication Date Title
CN106399360A (zh) 基于crispr技术敲除fut8基因的方法
CN108546716A (zh) 一种基因组编辑方法
EP3744844A1 (en) Extended single guide rna and use thereof
CN103382468B (zh) 一种水稻基因组定点改造方法
Sun et al. Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody
KR20200091850A (ko) 키메라 게놈 조작 분자 및 방법
KR102151065B1 (ko) 동물 배아의 염기 교정용 조성물 및 염기 교정 방법
CN109536526A (zh) 核酸酶介导的使用大靶向载体的靶向
CN110592089A (zh) 用于切割靶dna的组合物及其用途
US9670271B2 (en) Production of recombinant proteins with simple glycoforms
KR20140045398A (ko) Cmp-n-아세틸뉴라민산 하이드록실라제 및/또는 당단백질 알파-1,3-갈락토실트랜스퍼라제가 결핍된 세포
CN110835632A (zh) 新型碱基转换编辑系统用于基因治疗的应用
BR112020005217A2 (pt) métodos para a engenharia genética de células hospedeiras de kluyveromyces
CN105154436A (zh) 包含突变的核酸内切酶识别区dna及其基因组编辑应用
CN101343635B (zh) 构建表达预定糖链修饰糖蛋白工程菌株的方法
WO2022198080A1 (en) Multiplex editing with cas enzymes
CN107034234A (zh) 一种用于敲除cho细胞中fut8和dhfr两种基因的试剂盒
JP7416745B2 (ja) 改変細胞、調製方法、及び構築物
CN114958852A (zh) 一种Ifnar1基因敲除小鼠动物模型的构建方法及其应用
JP4821012B2 (ja) 遺伝子増幅法
JP7428459B2 (ja) ユーグレナのゲノム改変方法及びユーグレナの育種方法
KR20170137354A (ko) Cpf1 유전자가위를 이용한 유전자 결손 동물모델 및 이의 제조방법
US20200199524A1 (en) Compositions and methods for improving alcohol tolerance in yeast
Park et al. Genome editing of hybrid poplar (Populus alba× P. glandulosa) protoplasts using Cas9/gRNA ribonucleoprotein
CN104774860B (zh) 适于转化细胞的构建体、系统及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Room 701, 7th Floor, Huajing Road, China (Shanghai) Free Trade Pilot Area, Pudong New Area, Shanghai, 2001

Applicant after: SHANGHAI YAOMING BIOTECHNOLOGY CO., LTD.

Applicant after: Wuxi Yaoming Biotechnology Co., Ltd.

Address before: Room 701, 7th Floor, Huajing Road, China (Shanghai) Free Trade Pilot Area, Pudong New Area, Shanghai, 2001

Applicant before: SHANGHAI YAOMING BIOTECHNOLOGY CO., LTD.

Applicant before: WUXI APPTEC BIOPHARMACEUTICALS CO., LTD.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170215