CN108342480B - 一种基因变异检测质控物及其制备方法 - Google Patents

一种基因变异检测质控物及其制备方法 Download PDF

Info

Publication number
CN108342480B
CN108342480B CN201810181583.0A CN201810181583A CN108342480B CN 108342480 B CN108342480 B CN 108342480B CN 201810181583 A CN201810181583 A CN 201810181583A CN 108342480 B CN108342480 B CN 108342480B
Authority
CN
China
Prior art keywords
cell
gene
quality control
dna
mutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810181583.0A
Other languages
English (en)
Other versions
CN108342480A (zh
Inventor
林贵高
李金明
张括
韩彦熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Hospital
Original Assignee
Beijing Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hospital filed Critical Beijing Hospital
Priority to CN201810181583.0A priority Critical patent/CN108342480B/zh
Publication of CN108342480A publication Critical patent/CN108342480A/zh
Application granted granted Critical
Publication of CN108342480B publication Critical patent/CN108342480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Abstract

本发明涉及一种基因变异检测质控物及其制备方法,属于临床检验学和生物技术领域。一种基因变异检测质控物,为通过CRISPR/Cas介导的非同源末端连接的高效整合机制在染色体靶位插入含特定变异DNA序列的永生化细胞系。本发明的创新点在于:在核酸序列已知的情况下,本发明可以通过基因编辑制备获得含任意基因变异的细胞阳性质控物,适用于所有基于PCR扩增的基因突变检测的质量控制。制备过程简单、高效。

Description

一种基因变异检测质控物及其制备方法
技术领域
本发明公开了一种基因变异检测质控物及其制备方法,属于临床检验学和生物技术领域。
背景技术
个体化医疗,是以患者的基因信息为基础制订个性化治疗方案,从基因组成或表达的差异来预测药物的治疗效果或毒副作用,为每个患者选择最合适的药物和用药方案。个体化用药基因检测的准确性是精准医学成功实施的基石。个体的基因变异,分为存在于胚系DNA的可遗传的变异,以及由于体细胞发生突变而获得的变异。可遗传的胚系变异,主要是通过影响药物的吸收、分布、代谢和排泄以及靶位点的敏感性,表现出药效的个体差异。如检测CYP2C9*2*3和VKORC1-1639G>A的多态性用于指导心血管药物华法林的安全用药。体细胞突变产生的变异,主要发生于肿瘤细胞,决定肿瘤“靶向”治疗药物的疗效。如检测EGFR/KRAS基因突变用于指导吉非替尼、帕尼单抗等靶向药物治疗非小细胞肺癌。
基因检测是高度复杂的检测项目。为确保每一次基因检测的准确性,需要阳性质控物(quality control materials)进行室内质量控制。质控物,包括质控品(controls)和标准物质(reference material,RM),主要用于室内质控、室间质量评价、校准、赋值、新检测项目的性能验证、评估检测试剂的性能表现,以及监测实验过程中存在的错误。理想的质控物在基质、浓度、成分上都应接近于实际的临床样本。目前,在个体化用药基因检测领域,实际应用的质控物,主要是含有特定突变的构建质粒,或者是来自病人检测剩余的阳性标本。质粒和临床样本(如石蜡包埋组织切片、活细胞等)有本质上的差异,因此无法对基因检测前的样本处理(如脱蜡、提取DNA)这一过程进行质量控制。阳性标本的主要问题是来源有限,且有一些稀有突变无法获得。由于缺乏合适的质控物,实验室无法对相关基因检测方法进行性能评估,检验质量控制机构无法对实验室进行检测水平的合理评价,这在一定程度上也制约了个体化基因检测试剂的研发,以及个体化医学检测的在临床上的开展。
目前可持续获得的个体化基因检测质控物的制备主要有三种途径:1)人工合成含有特定基因变异序列的质粒或DNA片段。缺点上文已述。2)从含有特定基因变异永生化人类细胞库获取,如美国Coriell细胞库。这种携带特定突变/多态性的人类细胞可以进一步制备成模拟临床样本的石蜡包埋组织切片等质控品,因此适合用于室内质量控制和室间质量评价。但是需要对大量的细胞进行基因检测、鉴定、永生化,单独的实验室无法完成。因为这些细胞库主要在国外,存在报关、购买不便、运输周期长以及价格昂贵等问题。还有一个主要问题是这种细胞库不可能覆盖所有的基因变异类型,某些稀有的突变/多态性细胞株无法从这些细胞库获取。3)采用基因编辑的方法对人类细胞基因组进行精确的改造。通过基因编辑制备的细胞质控品能最大程度上模拟临床样本,满足质量控制的要求。CRISPR/Cas9技术可以对基因组DNA进行精确点突变、插入、删除、多点位突变、基因重排等操作,基本上涵盖了主要的基因突变和基因多态性的模式。理论上,对一个野生的细胞系可以用CRISPR/Cas9技术改造获得包含任意变异类型的细胞系,细胞可以在体外无限传代培养,就可以从来源、数量和技术上解决个体化基因检测用质控物获取困难的问题。
目前基于同源重组修复的CRISPR/Cas9技术用于构建含特定基因突变细胞系的方法效率低下(<3%),且由于Cas9酶重复切割,常导致靶位点附近引入额外的碱基插入和删除(Indels),无法作为基因检测的质控物。
发明内容
为了解决现有基因检测质控物原料来源及制备技术所存在的问题,本发明的目的是提供一种基因变异检测质控物及其制备方法。
为了实现本发明目的,本发明首先提供一种基因变异检测质控物,其是利用CRISPR/Cas9介导的非同源末端连接(Non-homologous end joining,NHEJ)的序列整合技术在人永生细胞染色体非检测靶区域高效插入含预期突变DNA片段,经此改造的细胞即可作为基因突变检测的阳性质控物。
本发明的第一个方面,提供了一种基因变异检测质控物,是通过CRISPR/Cas介导的非同源末端连接的高效整合机制在染色体靶位插入含特定变异DNA序列的永生化细胞系。
所述的永生细胞是指获得无限繁殖能力,能持续生存的细胞系。包括:无恶性的无限细胞(如NIH3T3,HEK293T)和肿瘤细胞(如HeLa,A549)。
优选的永生细胞为HEK293T和A549肺癌细胞。
所述的特定变异DNA序列是指一段DNA序列,除某个特定的基因变异位点的碱基为突变碱基(如EGFR c.2369C>T,p.T790M点突变中,EGFR基因第2369位参考碱基为C,突变碱基为T)外,其余碱基与人基因组参考序列同源。由于人的基因序列有无数突变位点,所以该特定变异DNA序列无法穷举。本发明中下述含特定变异(EGFR G719A、L858R、T790M点突变、KRAS G12D点突变、BRAF V600E点突变、EGFR E746_A750del删除突变、和EGFR D770_N771insG插入突变)DNA序列作为举例,列出具体碱基,见表2。
所述的特定变异DNA序列包括但不限于基因突变EGFR G719A、L858R、T790M点突变、KRAS G12D点突变、BRAF V600E点突变、EGFR E746_A750del删除突变、和EGFR D770_N771insG插入突变。
所述基因变异模式包括1)单核苷酸变异(single nucleotide variant,SNV);2)短片段插入删除(Indels);以及3)含有上述变异的多重变异。
本发明的第二个方面,提供了所述基因变异检测质控物的制备方法,具体包括如下步骤:
1、向待编辑细胞转染引入1)向导RNA(sgRNA)及编码Cas9核酸酶的质粒;2)含预期突变DNA片段的供体质粒,待插入的DNA片段两端还包含sgRNA识别序列。进一步地,该方法包括细胞的培养,及sgRNA引导的Cas9核酸酶在染色体核酸序列及供体质粒靶位置的同时切割,造成DNA双链断裂,随后细胞修复机器对剪切后的相同DNA末端进行连接,由此将外源DNA片段引入染色体。在一项实施例中,编码Cas9核酸酶的质粒可以是含有绿色荧光蛋白(GFP)的质粒。在某些实施例中,待编辑的细胞可以是人正常永生化细胞,待引入突变位点为野生型的肿瘤细胞。
2、用单克隆技术将转染后的细胞混合克隆分离成单个细胞培养。
3、阳性克隆株的筛选及验证。用PCR技术筛选含有插入片段的克隆株,对阳性克隆株含有的变异进一步用基因变异检测技术验证。
本发明提供的方法可以制备的基因变异模式包括1)单核苷酸变异(singlenucleotide variant,SNV);2)短片段插入删除(Indels);以及3)含有上述变异的多重变异。
在本发明的具体实施方式中,以EGFR/KRAS/BRAF基因突变为例,本发明提供了多个肿瘤基因突变检测阳性质控物,其是将含有ALK基因sgRNA靶序列和特定变异的人DNA同源序列的不同的供体质粒和Cas9/sgRNA质粒,共同转染细胞,在细胞的ALK基因位置,插入目的变异序列。引入的突变包括EGFR G719A、L858R、T790M点突变、KRAS G12D点突变、BRAFV600E点突变、EGFR E746_A750del删除突变、EGFR D770_N771insG插入突变。
进一步地,其制备方法包括如下步骤:
1、构建EGFP-ALK_sgRNA-Cas9质粒
2、构建含有特定变异的人DNA序列的3条供体质粒。供体质粒1含有EGFR E746_A750del、EGFR D770_N771insG插入突变;供体质粒2含有EGFR G719A、L858R、T790M点突变;供体质粒3含有EGFR G719A、KRASG12D点突变、BRAF V600E点突变。
3、EGFP-ALK_sgRNA-Cas9质粒和供体质粒1转染HEK293T细胞;EGFP-ALK_sgRNA-Cas9质粒和供体质粒2转染A549细胞;EGFP-ALK_sgRNA-Cas9质粒和供体质粒3转染A549细胞。
4、转染后用流式细胞仪分选单个GFP+细胞,单克隆培养。
5、提取DNA,用PCR扩增5’整合区序列、插入序列全长的方法筛选阳性整合克隆。
6、阳性克隆进一步用测序或其他基因突变检测技术验证所设计的序列成功插入。
本发明的基因变异检测质控物用于制备基因检测标准品的用途。其可以用于基因检测室间质评体系使用,并以此为基础建立基因检测室间质评体系,这对开展基因检测室间质评具有重大意义,并对提升基因检测实验室的竞争力有重大的现实意义。
本发明的优点:本发明基于CRISPR/Cas9非同源末端连接修复的机制,巧妙地在细胞染色体插入一段含特定变异的人DNA序列(即引入需要的突变),具有很高的成功率(使用双侧切除供体质粒转染阳性克隆可以达45%以上),可以大量节省筛选阳性克隆的人力和时间。优于用同源重组方法引入基因突变的成功率低及编辑位点周围Indels的缺点。可以在一个细胞中一次引入多个变异(如同一基因多个变异,不同基因的多个变异),制备的一个质控物就可以用于多种突变检测的质控,具有很好的成本-效益价值。同时,通过对插入位置进行控制,可以获得纯合子变异和杂合子变异的细胞株。制备的突变细胞可以进一步免疫裸鼠形成异种肿瘤,制备成模拟临床病理样本的FFPE(甲醛固定,石蜡包埋)质控物,这种质控物可以监测包括核酸提取在内的分子检测全过程。最后,可制备用于肿瘤突变、药物基因多态性、遗传变异检测等不同应用领域的质控物。
下面结合附图和具体实施方式对本发明进行说明,以使公众更好地理解本发明内容及应用,并不以任何方式造成对本发明的限定。凡依照本发明公开内容所做的任何等同替换,均属于本发明保护范围。
附图说明
图1 T7E1错配酶酶切实验验证sgRNA效率。EGFP-ALK_sgRNA-Cas9转染后提细胞基因组DNA扩增PCR片段,酶切,电泳。Lane 1,ALK_sgRNA_1;Lane 2,ALK_sgRNA_2;Lane 3,ALK_sgRNA_3;Lane 4,对照。
图2利用CRISPR/Cas9介导的同源重组独立的序列整合技术将人工基因突变引入人细胞系。图2A展示了供体质粒的设计及基因突变的引入策略。图2B展示了用3种质粒转染的细胞,其基因组DNA与外源序列5’端连接处PCR的检测结果,引物对F1J/R1J和F2J/R2J分别扩增5’端连接处(产物分别为428bp和416bp),引物的位置见图A。图2C检测流式分选GFP阳性单克隆细胞株特异的PCR产物(代表性克隆)。引物对F1/R1、F2/R2和F3/R3分别扩增3条插入序列,长度分别为794bp,1600bp,1600bp,引物的位置见图A。阳性扩增子提示整条外源序列的成功整合。
图3阳性克隆190所含基因突变的验证。图3A上部为Sanger测序的结果,图3A下部为艾德EGFR突变检测试剂盒(原理为扩增阻滞突变系统)检测的结果,阴性对照为水和未经编辑的细胞株293T,阳性对照为试剂盒所带阳性质粒。图3B同理。测序结果和PCR检测结果显示190细胞株含有EGFR E746_A750del和EGFR D770_N771insG变异。
图4阳性克隆S16所含基因突变的验证。图4A上部为Sanger测序的结果,图4A下部为艾德EGFR突变检测试剂盒(原理为扩增阻滞突变系统)检测的结果,阴性对照为水和未经编辑的细胞株A549,阳性对照为试剂盒所带阳性质粒。图4B、4C同理。测序结果和PCR检测结果显示S16细胞株含有EGFR G719A、L858R、T790M点突变。
图5阳性克隆E7所含基因突变的验证。图5A上部为Sanger测序的结果,图5A下部为艾德KRAS/NRAS/BRAF突变检测试剂盒(原理为扩增阻滞突变系统)检测的结果,阴性对照为水和未经编辑的细胞株A549,阳性对照为试剂盒所带阳性质粒。图5B、5C同理。测序结果和PCR检测结果显示E7细胞株含有EGFR G719A、KRAS G12D点突变、BRAF V600E点突变。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。凡依照本发明公开内容所做的任何等同替换,均属于本发明保护范围。
实施例1:EGFR/KRAS/BRAF基因突变阳性质控物的制备
一、材料
HEK293T细胞,A549细胞,北京协和医科大学细胞库,中国
pSpCas9(BB)-2A-GFP质粒,addgene,美国
pUC19质粒,Promega,美国
FastDigest BbsI内切酶,NEB,美国
Gotaq green Mix,NEB,美国
T7E1,NEB,美国
T4 DNA连接酶缓冲液,NEB,美国
T4 PNK,NEB,美国
10×Tango buffer,NEB,美国
DTT,NEB,美国
ATP,NEB,美国
Plasmid-safe exonuclease,NEB,美国
T7连接酶NEB,美国
top10感受态细胞,天根,中国
Lipofectamine 3000,Thermo Fisher,美国
DMEM,Thermo Fisher,美国
F12K,Thermo Fisher,美国
FBS,Thermo Fisher,美国
胰酶,Thermo Fisher,美国
抗生素,Thermo Fisher,美国
24孔细胞培养板,Corning,美国
96孔细胞培养板,Corning,美国
PrimeSTAR Max,TAKARA,中国
QuickExtract,Epicentre,美国
引物,生工,中国
EGFR突变检测试剂盒,艾德,中国
KRAS/NRAS/BRAF突变检测试剂盒,艾德,中国
二、方法
1、EGFP-ALK_sgRNA-Cas9质粒的构建
(1)根据ALK内含子序列在sgRNA设计网站http://crispr.mit.edu/设计3条sgRNA。5’-GAGCTAGAAGTGACGTCTAG-3’(SEQ ID NO:1),5′-GCGAGCTTTCACCATCGTGA-3′(SEQID NO:2),5′-CTAGAAGTGACGTCTAGGGG-3’(SEQ ID NO:3)。
(2)构建sgRNA/Cas9质粒
1)将合成的sgRNA退火形成双链DNA,克隆至pSpCas9(BB)-2A-GFP质粒;
·将合成的oligo(sgRNA)用Tris-EDTA缓冲液调至终浓度为100μmol/L
·取等量的上游链和下游链混合
Figure BDA0001588418330000071
·按如下程序:37℃30min;95℃5min;95℃-25℃-5℃/min;4℃保持
·将2μL sgRNA寡核苷酸双链与398μL双蒸水常温下混合稀释
·双链sgRNA连接质粒DNA,配制连接反应体系
Figure BDA0001588418330000072
将以上连接反应体系混匀后按以下程序进行孵育:37℃5min;21℃5min;重复6个循环。
消化剩余残留线性DNA
Figure BDA0001588418330000073
将以上反应体系按以下程序进行孵育:37℃30min;70℃30min。
2)重组质粒转化大肠杆菌;
取产物2μL加入到刚解冻的20μL top10感受态细胞中,轻弹混匀,冰浴10min后,42℃热激30s,冰上静置2min,直接涂于含有100μg/mL氨苄西林的LB琼脂糖平板培养。
3)挑取阳性克隆,扩增,提质粒测序验证sgRNA正确插入。每个平板分别挑3至5个白色菌落,转入5mL LB培养液中,37℃摇菌过夜,取一定量菌液提质粒,进行测序(测序引物:AGGGATGGTTGGTTGGTGGG(SEQ ID NO:4))。
(3)HEK293T培养和转染:1)将HEK293T培养至适合转染状态和密度。用含10%胎牛血清DMEM培养液培养,培养基中含有10%胎牛血清,100IU/ml青霉素和100IU/ml链霉素;在37℃含5%CO2的恒温细胞培养箱中培养,用0.25%胰蛋白酶消化进行细胞传代,将细胞培养至密度为200,000/mL并处于对数生长期;2)质粒DNA:EGFP-ALK_sgRNA-Cas9质粒500ng,用Lipofectamine 3000,根据操作说明转染,同时转染阴性对照。以下参数适用于24孔细胞培养板一个孔的转染。EP管1中加入3μL lipo3000和50μL opti-MEM,漩涡振荡2秒,充分混匀;管2加入50μL opti-MEM、2μL P3000试剂、500ng质粒,充分混匀;管1与管2混合,室温孵育5min;加混合物至细胞孔,在37℃,5%的CO2中培养48h。
(4)T7E1错配酶筛选sgRNA:1)细胞转染48h后,取1000个以上细胞提DNA;2)设计错配酶靶位点扩增引物,使用高保真PCR酶扩增,以未转染的细胞作为对照进行实验;3)取2-5μL PCR产物电泳,确保只有一个扩增条带;4)纯化PCR产物,并按文献条件进行变性退火,加入T7E1酶切。阴性、阳性对照同样处理;5)酶切步骤结束后,将PCR产物琼脂糖电泳检测。若sgRNA/Cas9成功打靶会观察到3个条带。根据条带亮度挑选剪切效率最高的sgRNA序列。
2、含特定基因变异序列的供体质粒的构建
(1)序列设计。共设计3条插入序列,包含7个变异位点(表1)。其中每个变异位点左右两侧为200-300bp的人参考DNA序列(GRCh38)。序列A左侧引入ALK-sgRNA靶序列(表2下划线序列),序列B、C左右两侧各引入一个ALK-sgRNA靶序列(表2下划线序列)。
表1待人工引入的变异
Figure BDA0001588418330000081
Figure BDA0001588418330000091
表2插入序列
表2序列A、B、C即表1中的序列A、B、C的具体的DNA碱基,下划线为sgRNA靶向序列,灰色背景的碱基为引入的变异。
Figure BDA0001588418330000092
Figure BDA0001588418330000101
Figure BDA0001588418330000111
(2)质粒构建
上述3条序列交付上海生工合成,并分别克隆进pUC57载体质粒,分别命名为EGFR-indels质粒(包含序列A)、EGFR-3SNP质粒(包含序列B)和EKB质粒(包含序列C),Sanger测序验证序列。
3、转染
(1)细胞培养:HEK293T用DEME培养基,A549用F12K培养基,添加物为10%胎牛血清、100IU/ml青霉素和100IU/ml链霉素;在37℃含5%CO2的恒温细胞培养箱中培养,用0.25%胰蛋白酶消化进行细胞传代,将细胞系扩大培养至200,000细胞/ml并处于对数生长期。
(2)质粒:EGFP-ALK_sgRNA-Cas9质粒,含特定基因变异序列的供体质粒;
(3)对于一个24孔板细胞的转染,使用EGFP-ALK_sgRNA-Cas9质粒700ng,供体质粒300ng,用3μL Lipofectamine 3000依说明书转染;
(4)EGFR-indels质粒转染293T,EGFR-3SNP质粒和EKB质粒转染A549细胞;
(5)转染后24h更换培养基,再培养48h。
4、流式分选单个细胞克隆
(1)收集转染72h后的细胞,处理成单细胞悬液,重悬于0.5%BSA和双抗的PBS;
(2)将细胞过滤,冰上备用;
(3)将GFP阳性单个细胞使用FACS流式仪分选至96孔培养板培养,分选4~5块;显微镜下确认大部分为单细胞孔;
(4)分选剩余的细胞提基因组DNA,做外源序列5’端与基因组DNA连接处PCR;若含突变序列成功插入ALK内含子处,用设计的ALK内含子引物及插入序列(如EGFR基因19内含子)引物(表3引物对F1J/R1J),即可扩增出预期大小片段产物。
PCR扩增体系
Figure BDA0001588418330000121
PCR扩增条件:95℃ 2min;95℃ 30s,60℃ 30s,72℃ 1min,30cycles,72℃ 5min
(5)于分选5天后加入100μl培养基,每5天更换100μl培养基,培养2~3周,转至24孔板培养。
表3所用引物
Figure BDA0001588418330000122
Figure BDA0001588418330000131
5、外源序列插入阳性克隆的初筛
(1)备份细胞孔。
(2)待细胞生长融合至90%,胰酶消化,用QuickExtract提基因组DNA,设计引物扩增外源插入序列全长片段;对每种变异,可初步对10个克隆株进行PCR筛选。选取PCR阳性的克隆株,扩大培养。使用表3引物对F1/R1,F2/R2,F3/R3。
PCR扩增体系
Figure BDA0001588418330000132
PCR扩增条件:95℃ 2min;95℃ 30s,60℃ 30s,72℃ 2min,30cycles,72℃ 5min
6、含特定变异细胞株的验证
(1)Sanger测序:选取PCR阳性的克隆株,提DNA,设计引物扩增出插入序列全长,将PCR产物构建进入pUC19载体,进行Sanger测序,与设计的序列比对,分析设计的含特定变异外源序列是否整合入细胞。使用表3引物对F1/R1,F2/R2,F3/R3。
PCR扩增体系
Figure BDA0001588418330000133
PCR扩增条件:95℃ 2min;95℃ 30s,60℃ 30s,72℃ 2min,30cycles,72℃ 5min
(2)商品试剂验证:选取Sanger测序正确的克隆株,提DNA,使用艾德商品试剂,对上述特定基因变异是否成功引入进行验证。
三、结果
1、经过T7E1错配酶实验,选靶向切割效率最佳的ALK_sgRNA:5′-GCGAGCTTTCACCATCGTGA-3′(图1中的sgRNA2,SEQ ID NO:2)进行后续实验。
2、以HEK293T和A549肺癌细胞2种人永生化细胞为模式细胞,以临床检测中重要的肿瘤基因突变EGFR G719A、L858R、T790M点突变、KRAS G12D点突变、BRAF V600E点突变、EGFR E746_A750del删除突变、EGFR D770_N771insG插入突变等模式突变,展示本方法的可行性。将含有ALK基因sgRNA靶序列和特定变异的人DNA同源序列的不同的供体质粒和Cas9/sgRNA质粒,共同转染HEK293T和A549细胞,在细胞的ALK基因位置,插入目的变异序列,如图2A所示。转染后的细胞用流式荧光分选出单个细胞、再进行单细胞克隆、特异整合区域PCR的方法初步筛选出成功插入包含特定变异的人DNA同源序列的细胞株(图2B,2C),并扩大培养。采用单侧切除的供体质粒(EGFR-indels)转染后的109个培养起来的单克隆细胞中有9个阳性(阳性率9.17%,10/109)。采用双侧切除的供体质粒(EGFR-3SNP、EKB)转染后阳性率分别为45.16%(22/44)和59.09%(14/31)。选取3个初筛阳性的细胞株(I90,S16,E7),进一步克隆出包含特定突变的外源DNA序列并用Sanger测序验证目的变异确实存在(图3-图5)。同时用国家药监局批准的检测上述突变的商品试剂盒(基于突变阻滞扩增系统)验证目的变异确实存在(图3-图5)。
3、提取阳性克隆细胞DNA,由多家采用不同检测原理和平台的基因检测实验室进行盲样检测,均能测出人工编辑的变异,证明质控物具有广泛适用性。所用方法包括高通量测序(17家实验室)、突变阻滞扩增系统(15家实验室)、Sanger测序(8家实验室)、焦磷酸测序(3家实验室)、等位特异定量PCR(3家实验室)、PCR-流式荧光法(1家实验室)、数字PCR(1家实验室)和时间分辨飞行质谱(1家实验室)。
序列表
<110> 北京医院
<120> 一种基因变异检测质控物及其制备方法
<130> XDRC18I010
<160> 17
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
gagctagaag tgacgtctag 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gcgagctttc accatcgtga 20
<210> 3
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctagaagtga cgtctagggg 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
agggatggtt ggttggtggg 20
<210> 5
<211> 823
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ccatcacgat ggtgaaagct cgcccagcaa tatcagcctt aggtgcggct ccacagcccc 60
agtgtccctc accttcgggg tgcatcgctg gtaacatcca cccagatcac tgggcagcat 120
gtggcaccat ctcacaattg ccagttaacg tcttccttct ctctctgtca tagggactct 180
ggatcccaga aggtgagaaa gttaaaattc ccgtcgctat caaaacatct ccgaaagcca 240
acaaggaaat cctcgatgtg agtttctgct ttgctgtgtg ggggtccatg gctctgaacc 300
tcaggcccac cttttctcat gtctggcagc tgctctgctc tagaccctgc tcatctccac 360
atcctaaatg ttcactttct atgtctttcc ctttctagct ctagtgggta taactccctc 420
cccctgcgta aacgtccctg tgctaggtct tttgcaggca cagcttttcc tccatgagta 480
cgtattttga aactcaagat cgcattcatg cgtcttcacc tggaaggggt ccatgtgccc 540
ctccttctgg ccaccatgcg aagccacact gacgtgcctc tccctccctc caggaagcct 600
acgtgatggc cagcgtggac ggtaaccccc acgtgtgccg cctgctgggc atctgcctca 660
cctccaccgt gcagctcatc acgcagctca tgcccttcgg ctgcctcctg gactatgtcc 720
gggaacacaa agacaatatt ggctcccagt acctgctcaa ctggtgtgtg cagatcgcaa 780
aggtaatcag ggaagggaga tacggggagg ggagataagg agc 823
<210> 6
<211> 1849
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ccatcacgat ggtgaaagct cgcatcagag cctgtgtttc taccaacttc tgtcaagctc 60
tgtagagaag gcgtacattt gtccttccaa atgagctggc aagtgccgtg tcctggcacc 120
caagcccatg ccgtggctgc tggtccccct gctgggccat gtctggcact gctttccagc 180
atggtgaggg ctgaggtgac ccttgtctct gtgttcttgt cccccccagc ttgtggagcc 240
tcttacaccc agtggagaag ctcccaacca agctctcttg aggatcttga aggaaactga 300
attcaaaaag atcaaagtgc tggcctccgg tgcgttcggc acggtgtata aggtaaggtc 360
cctggcacag gcctctgggc tgggccgcag ggcctctcat ggtctggtgg ggagcccaga 420
gtccttgcaa gctgtatatt tccatcatct actttactct ttgtttcact gagtgtttgg 480
gaaactccag tgtttttccc aagttattga gaggaaatct tttataacca cagtaatcag 540
tggtcctgtg agaccaattc acagaccaaa ggcattttta tgaaaggggc cattgacctt 600
gccatggggt gcagcacagg gcggcaccca ggaggggccc tctcccactg catctgtcac 660
ttcacagccc tgcgtaaacg tccctgtgct aggtcttttg caggcacagc ttttcctcca 720
tgagtacgta ttttgaaact caagatcgca ttcatgcgtc ttcacctgga aggggtccat 780
gtgcccctcc ttctggccac catgcgaagc cacactgacg tgcctctccc tccctccagg 840
aagcctacgt gatggccagc gtggacaacc cccacgtgtg ccgcctgctg ggcatctgcc 900
tcacctccac cgtgcagctc atcatgcagc tcatgccctt cggctgcctc ctggactatg 960
tccgggaaca caaagacaat attggctccc agtacctgct caactggtgt gtgcagatcg 1020
caaaggtaat cagggaaggg agatacgggg aggggagata aggagccagg atcctcacat 1080
gcggtctgcg ctcctgggat agcaagagtt tgccatgggg atatgtgtgt gcgtgcatgc 1140
agcacacaca cattccttta ttttggattc aatcaagttg atcttcttgt gcacaaatca 1200
gtgcctgtcc catctgcatg tggaaagtta atggtcagca gcgggttaca tcttctttca 1260
tgcgcctttc cattctttgg atcagtagtc actaacgttc gccagccata agtcctcgac 1320
gtggagaggc tcagagcctg gcatgaacat gaccctgaat tcggatgcag agcttcttcc 1380
catgatgatc tgtccctcac agcagggtct tctctgtttc agggcatgaa ctacttggag 1440
gaccgtcgct tggtgcaccg cgacctggca gccaggaacg tactggtgaa aacaccgcag 1500
catgtcaaga tcacagattt tgggcgggcc aaactgctgg gtgcggaaga gaaagaatac 1560
catgcagaag gaggcaaagt aaggaggtgg ctttaggtca gccagcattt tcctgacacc 1620
agggaccagg ctgccttccc actagctgta ttgtttaaca catgcagggg aggatgctct 1680
ccagacattc tgggtgagct cgcagcagct gctgctggca gctgggtcca gccagggtct 1740
cctggtagtg tgagccagag ctgctttggg aacagtactt gctgggacag tgaatgagga 1800
tgttatcccc aggtgatcat tagcaaccat cacgatggtg aaagctcgc 1849
<210> 7
<211> 1849
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ccatcacgat ggtgaaagct cgcatcagag cctgtgtttc taccaacttc tgtcaagctc 60
tgtagagaag gcgtacattt gtccttccaa atgagctggc aagtgccgtg tcctggcacc 120
caagcccatg ccgtggctgc tggtccccct gctgggccat gtctggcact gctttccagc 180
atggtgaggg ctgaggtgac ccttgtctct gtgttcttgt cccccccagc ttgtggagcc 240
tcttacaccc agtggagaag ctcccaacca agctctcttg aggatcttga aggaaactga 300
attcaaaaag atcaaagtgc tggcctccgg tgcgttcggc acggtgtata aggtaaggtc 360
cctggcacag gcctctgggc tgggccgcag ggcctctcat ggtctggtgg ggagcccaga 420
gtccttgcaa gctgtatatt tccatcatct actttactct ttgtttcact gagtgtttgg 480
gaaactccag tgtttttccc aagttattga gaggaaatct tttataacca cagtaatcag 540
tggtcctgtg agaccaattc acagaccaaa ggcattttta tgaaaggggc cattgacctt 600
gccatggggt gcagcacagg gcggagaact gtctatgtag catttatgca tttttcttaa 660
gcgtcgatgg aggagtttgt aaatgaagta cagttcatta cgatacacgt ctgcagtcaa 720
ctggaatttt catgattgaa ttttgtaagg tattttgaaa taatttttca tataaaggtg 780
agtttgtatt aaaaggtact ggtggagtat ttgatagtgt attaacctta tgtgtgacat 840
gttctaatat agtcacattt tcattatttt tattataagg cctgctgaaa atgactgaat 900
ataaacttgt ggtagttgga gctgatggcg taggcaagag tgccttgacg atacagctaa 960
ttcagaatca ttttgtggac gaatatgatc caacaataga ggtaaatctt gttttaatat 1020
gcatattact ggtgcaggac cattctttga tacagataaa ggtttctctg accattttca 1080
tgagtactta ttacaagata attatgctga aagttaagtt atctgaaatg taccttgggt 1140
ttcaagttat atgtaaccat taatatggga actttacttt ccttgggagt atgtcagggt 1200
ccatgatgtt cactctctgt gcatttctca cctcatccta acacatttca agccccaaaa 1260
atcttaaaag caggttatat aggctaaata gaactaatca ttgttttaga catacttatt 1320
gactctaaga ggaaagatga agtactatgt tttaaagaat attatattac agaattatag 1380
aaattagatc tcttacctaa actcttcata atgcttgctc tgataggaaa atgagatcta 1440
ctgttttcct ttacttacta cacctcagat atatttcttc atgaagacct cacagtaaaa 1500
ataggtgatt ttggtctagc tacagagaaa tctcgatgga gtgggtccca tcagtttgaa 1560
cagttgtctg gatccatttt gtggatggta agaattgagg ctatttttcc actgattaaa 1620
tttttggccc tgagatgctg ctgagttact agaaagtcat tgaaggtctc aactatagta 1680
ttttcatagt tcccagtatt cacaaaaatc agtgttctta ttttttatgt aaatagattt 1740
tttaactttt ttctttaccc ttaaaacgaa tattttgaaa ccagtttcag tgtatttcaa 1800
acaaaaatat atgtcttata aacagtccat cacgatggtg aaagctcgc 1849
<210> 8
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gcatcatgat tggtgagtgc aca 23
<210> 9
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
aattgtgaga tggtgccaca tgc 23
<210> 10
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ccggcatcat gattggtgag tg 22
<210> 11
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
acttgccagc tcatttggaa gg 22
<210> 12
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
cagcaatatc agccttaggt gcg 23
<210> 13
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
ttatctcccc tccccgtatc tc 22
<210> 14
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
tcaagctctg tagagaaggc g 21
<210> 15
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
catcctcccc tgcatgtgtt a 21
<210> 16
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
tgtcaagctc tgtagagaag gc 22
<210> 17
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
agtaactcag cagcatctca gg 22

Claims (1)

1.一种肺癌基因变异检测质控物的制备方法,其特征在于包括如下步骤:
步骤一:向待编辑细胞转染引入1)向导RNA(sgRNA)及编码Cas9核酸酶的质粒;2)双侧切除的含预期突变DNA片段的供体质粒,待插入的DNA片段两端还包含sgRNA识别序列;sgRNA的核苷酸序列如序列表SEQ ID NO:2所示;
步骤二:用单克隆技术将转染后的细胞混合克隆分离成单个细胞培养;
步骤三:阳性克隆株的筛选及验证,用PCR技术筛选含有插入片段的克隆株,对阳性克隆株含有的变异进一步用基因变异检测技术验证;
步骤一还包括细胞的培养,及sgRNA引导的Cas9核酸酶在染色体核酸序列及供体质粒靶位置的同时切割,造成DNA双链断裂,随后细胞修复机器对剪切后的相同DNA末端进行连接,由此将外源DNA片段引入染色体;
所述待编辑的细胞为人永生化细胞HEK293T和/或A549,待引入突变位点为野生型的肿瘤细胞A549,编码Cas9核酸酶的质粒是含有绿色荧光蛋白的质粒。
CN201810181583.0A 2018-03-05 2018-03-05 一种基因变异检测质控物及其制备方法 Active CN108342480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810181583.0A CN108342480B (zh) 2018-03-05 2018-03-05 一种基因变异检测质控物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810181583.0A CN108342480B (zh) 2018-03-05 2018-03-05 一种基因变异检测质控物及其制备方法

Publications (2)

Publication Number Publication Date
CN108342480A CN108342480A (zh) 2018-07-31
CN108342480B true CN108342480B (zh) 2022-03-01

Family

ID=62957797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810181583.0A Active CN108342480B (zh) 2018-03-05 2018-03-05 一种基因变异检测质控物及其制备方法

Country Status (1)

Country Link
CN (1) CN108342480B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261500B2 (ja) 2011-07-22 2018-01-17 プレジデント アンド フェローズ オブ ハーバード カレッジ ヌクレアーゼ切断特異性の評価および改善
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
US20190225955A1 (en) 2015-10-23 2019-07-25 President And Fellows Of Harvard College Evolved cas9 proteins for gene editing
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR20240007715A (ko) 2016-10-14 2024-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US20220090204A1 (en) * 2018-11-21 2022-03-24 Guangzhou Igene Biotechnology Co., Ltd. Dna reference standard and use thereof
CA3130488A1 (en) 2019-03-19 2020-09-24 David R. Liu Methods and compositions for editing nucleotide sequences
CN111334505B (zh) * 2020-03-18 2022-01-11 菁良基因科技(深圳)有限公司 一种泛肿瘤基因检测的标准品及其制备方法和应用
CN112391461A (zh) * 2020-05-07 2021-02-23 苏州艾可瑞斯生物科技有限公司 基于CRSIPR-Cas9与类器官培养的三体综合征基因核酸检测质控品及其制备方法
GB2614813A (en) 2020-05-08 2023-07-19 Harvard College Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN111893178A (zh) * 2020-08-24 2020-11-06 重庆市人口和计划生育科学技术研究院 一种α地中海贫血基因检测遗传参考物质及其制备方法
KR20220052298A (ko) * 2020-10-20 2022-04-27 연세대학교 산학협력단 차세대 염기 서열 분석(ngs)에서 크리스퍼/카스9 시스템을 이용하여 저빈도 단일 염기 변이(snv) 검출 정확도를 향상시키는 방법
CN112708676A (zh) * 2020-12-29 2021-04-27 南京科佰基因科技有限公司 一种用于dna同源重组修复基因检测的标准品及其制备方法
CN113897438A (zh) * 2021-12-08 2022-01-07 南京科佰生物科技有限公司 一种用于分子诊断的cd74-ros1重排的dna标准品、rna标准品及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130000A (zh) * 2017-05-12 2017-09-05 浙江卫未生物医药科技有限公司 一种同时敲除KRAS基因和EGFR基因的CRISPR‑Cas9系统及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434788B1 (en) * 2013-03-15 2023-08-23 Life Technologies Corporation Classification and actionability indices for lung cancer
CN104152551B (zh) * 2014-07-18 2016-08-17 普世华康江苏医疗技术有限公司 一种检测肺癌热点突变基因的组合物及其使用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130000A (zh) * 2017-05-12 2017-09-05 浙江卫未生物医药科技有限公司 一种同时敲除KRAS基因和EGFR基因的CRISPR‑Cas9系统及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A novel cell line generated using the CRISPR/Cas9 technology as universal quality control material for KRAS G12V mutation testing;Shiyu Jia等;《Journal of Clinical Laboratory Analysis》;20180130;第32卷(第5期);摘要、第2页左栏第3段、第2-4页"2 METHODS AND MA TERIALS"部分 *
Huanyu Jin等.Using CRISPR/Cas9 to generate isogenic cell lines and reference standards for applications in cancer diagnostics.《Using CRISPR/Cas9 to generate isogenic cell lines and reference standards for applications in cancer diagnostics》.2017,第77卷Abstract. *
Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair;Xiangjun He等;《Nucleic Acids Research》;20160519;第44卷(第9期);摘要、第2页"Cell cultures"部分、第3页右栏第2段至第4段、第5页图1 *
Quality control materials for pharmacogenomic testing in the clinic;Guigao Lin等;《CLINICAL CHEMISTRY AND LABORATORY MEDICINE》;20161115;第55卷(第7期);第926-933页 *
Using CRISPR/Cas9 to generate isogenic cell lines and reference standards for applications in cancer diagnostics;Huanyu Jin等;《Using CRISPR/Cas9 to generate isogenic cell lines and reference standards for applications in cancer diagnostics》;20170731;第77卷;摘要 *

Also Published As

Publication number Publication date
CN108342480A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
CN108342480B (zh) 一种基因变异检测质控物及其制备方法
Giuliano et al. Generating single cell–derived knockout clones in mammalian cells with CRISPR/Cas9
CN115651927B (zh) 编辑rna的方法和组合物
WO2018098671A1 (en) A method for crispr library screening
CN106566838A (zh) 一种基于CRISPR‑Cas9技术的miR‑126全长基因敲除试剂盒及其应用
CN106893739A (zh) 用于靶向基因操作的新方法和系统
CN109880851B (zh) 用于富集CRISPR/Cas9介导的同源重组修复细胞的筛选报告载体及筛选方法
Huang et al. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction
CN103834686B (zh) 高效克隆筛选表达载体、其制备方法及用途
CN112899237A (zh) Cdkn1a基因报告细胞系及其构建方法和应用
CN112899238B (zh) 基于RNA-m6A修饰水平的化合物筛选细胞模型及其构建与应用
US11946163B2 (en) Methods for measuring and improving CRISPR reagent function
CN103923942B (zh) 一种表达猪端粒酶反转酶转座子载体及其构建方法与在建立猪永生化细胞系中的应用
CN113308470A (zh) 靶向敲除ARID1A基因的sgRNA、构建ARID1A基因缺失细胞株的方法及应用
Lin et al. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Endonuclease Cas9–Mediated Homology-Independent Integration for Generating Quality Control Materials for Clinical Molecular Genetic Testing
CN113897438A (zh) 一种用于分子诊断的cd74-ros1重排的dna标准品、rna标准品及其应用
Perretta-Tejedor et al. Generating mutant renal cell lines using CRISPR technologies
Termglinchan et al. Efficient genome editing in induced pluripotent stem cells with engineered nucleases in vitro
CN111454944B (zh) 一种分离的rna及其dna模板的合成方法
Yu et al. Yeast EndoG prevents genome instability by degrading cytoplasmic DNA
Chang et al. Reporter gene knock-in into Marc-145 cells using CRISPR/Cas9-mediated homologous recombination
Hu et al. Generation of IL17RB Knockout Cell Lines Using CRISPR/Cas9-Based Genome Editing
WO2022006745A1 (en) Guide rna for hsv-1 gene editing and method thereof
Moorthy et al. Evaluation of the efficiency of genome editing tools by a frameshift fluorescence protein reporter
Gan et al. Effects of P16 DNA Methylation on Proliferation, Senescence, and Lifespan of Human Fibroblasts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant