CN107022562B - 利用CRISPR/Cas9系统对玉米基因定点突变的方法 - Google Patents

利用CRISPR/Cas9系统对玉米基因定点突变的方法 Download PDF

Info

Publication number
CN107022562B
CN107022562B CN201610074115.4A CN201610074115A CN107022562B CN 107022562 B CN107022562 B CN 107022562B CN 201610074115 A CN201610074115 A CN 201610074115A CN 107022562 B CN107022562 B CN 107022562B
Authority
CN
China
Prior art keywords
corn
site
crispr
cas9
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610074115.4A
Other languages
English (en)
Other versions
CN107022562A (zh
Inventor
胡燕琳
杨桥
王文舒
许洁婷
唐通
黄磊
旷乐
左丹
汤益
周倩
周正剑
刘涛
章旺根
马崇烈
成雄鹰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Group Inc
Original Assignee
China National Seed Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Seed Group Co Ltd filed Critical China National Seed Group Co Ltd
Priority to CN201610074115.4A priority Critical patent/CN107022562B/zh
Publication of CN107022562A publication Critical patent/CN107022562A/zh
Application granted granted Critical
Publication of CN107022562B publication Critical patent/CN107022562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Abstract

本发明提供利用CRISPR/Cas9系统对玉米基因定点突变的方法,针对玉米中的目标基因设计基于CRISPR/Cas9的sgRNA序列,将含有编码所述sgRNA序列的DNA片段连接到携带CRISPR/Cas的载体中,转化玉米,实现对玉米中特定基因的定点突变。进一步地,通过遗传转化的方法将含有CRISPR/Cas9的载体转入携带目标基因的受体材料中,获得该目标基因定点突变的再生植株。利用本方法可实现对玉米基因组的定点突变,本方法具有实验周期短、操作简便等特点,利用不同靶向的CRISPR/Cas9系统可对不同目标基因进行定点定向改造,为玉米改良育种提供了新方法,对于改良玉米性状具有重大实际意义。

Description

利用CRISPR/Cas9系统对玉米基因定点突变的方法
技术领域
本发明涉及植物转基因技术领域和作物遗传育种领域,具体地说,涉及一种利用CRISPR/Cas9系统对玉米基因定点突变的方法。
背景技术
随着生物技术的不断发展,越来越多的新型育种技术不断涌现。传统育种技术周期长,难以对目标形状作定点定向改良。近些年兴起的生物技术育种很大程度上缩短了育种周期,可有目的地引入新性状或改良固有性状。
CRISPR(clustered regularly interspersed short palindromic repeats)/Cas是源于细菌及古细菌中的一种后天免疫系统。它利用靶位点特异性的RNA指引Cas蛋白对靶位点序列进行修饰,进而在靶标序列上形成各种类型的突变。自2013年以来,CRISPR/Cas系统已经成功应用于人类、小鼠、斑马鱼、家蚕、果蝇、酵母、拟南芥及水稻、大豆等多个物种中。
在医学上,该系统可用于某些疾病的治疗。在基础生物学领域,该方法可用于基因功能研究。近年来有学者开始应用该系统对作物内源基因进行改良,用于产生新的育种材料。CRISPR/Cas系统由于其可对靶标位点进行特异性改变而受到高度关注,且定点改变后的作物在第二代即可获得突变基因纯合体,大大缩短了育种周期。玉米是世界上最重要的粮食和饲料作物,目前尚未发现在玉米育种中应用CRISPR/Cas系统的报道。在玉米种质改良上应用该技术具有重要价值。
发明内容
本发明的目的是提供利用CRISPR/Cas9系统对玉米基因定点突变的方法。
本发明的另一目的是提供上述方法在玉米基因定点突变育种中的应用。
为了实现本发明目的,本发明提供利用CRISPR/Cas9系统对玉米基因定点突变的方法。为此,针对玉米中的目标基因设计基于CRISPR/Cas9的sgRNA序列,将含有编码所述sgRNA序列的DNA片段连接到携带CRISPR/Cas的载体中,转化玉米,实现对玉米中特定基因的定点突变。
本发明中所述玉米包括自交种、杂交种、普通玉米、甜玉米、糯玉米等。优选地,所述玉米为祥249自交系。本发明中涉及的目标基因可以是本领域技术人员感兴趣的基因或有生物学功能的任何DNA序列,包括玉米基因组中任何有生物学功能的基因或DNA序列,或者是希望定点改良的任何基因,例如GFP基因。
针对玉米祥249自交系转基因植株中GFP基因设计基于CRISPR/Cas9的sgRNA序列,其中,sgRNA作用位点的核苷酸序列为5’-ACCGGGGTGGTGCCCATCC-3’。
前述的方法,将含有编码所述sgRNA序列的DNA片段连接到携带CRISPR/Cas的载体中,构建得到载体Cas9-GFP-gRNA,用载体Cas9-GFP-gRNA转化玉米,实现对玉米GFP基因的定点突变/敲除。其中,载体Cas9-GFP-gRNA的全序列如SEQ ID NO:2所示。
本发明还提供所述方法在玉米基因定点突变育种中的应用。所述玉米包括但不限于祥249自交系。
所述应用包括以下步骤:
(1)将玉米的幼胚浸入携带CRISPR/Cas9和选择标记基因(例如CP4)的农杆菌菌液中侵染;
(2)将幼胚移至共培养培养基上培养;
(3)将幼胚移至愈伤诱导培养基上培养,诱导初级愈伤组织;
(4)将初级愈伤组织移至筛选培养基上培养,诱导抗性愈伤组织,再转移到分化培养基上,分化形成再生幼苗;
(5)再生幼苗在生根培养基上生根后炼苗、移栽,得到转基因玉米;
(6)根据sgRNA作用位点的核苷酸序列设计引物,通过PCR法鉴定玉米植株突变位点。
其中,所述共培养培养基的组成如下:1/2MS+蔗糖15-30g/L+葡萄糖8-15g/L+脯氨酸0.1-0.3g/L+盐酸硫胺素0.1-1.0mg/L+AgNO315-25μM+L-半胱氨酸100-300mg/L+2,4-D(2,4-二氯苯氧乙酸)0.3-1.0mg/L+毒莠定0.8-3.0mg/L+KT(6-糠基氨基嘌呤)0.01-1mg/L+乙酰丁香酮100-300μM+植物凝胶3-8g/L;优选地,共培养培养基的组成如下:1/2MS+蔗糖20g/L+葡萄糖10g/L+脯氨酸0.115g/L+盐酸硫胺素0.5mg/L+AgNO320μM+L-半胱氨酸200mg/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+KT 0.01-1mg/L+乙酰丁香酮200μM+植物凝胶8g/L;
所述愈伤诱导培养基的组成如下:MS+蔗糖15-30g/L+脯氨酸0.1-0.3g/L+盐酸硫胺素0.1-1.0mg/L+AgNO315-25μM+水解酪蛋白0.1-1.0g/L+2,4-D 0.3-1.0mg/L+毒莠定0.8-3.0mg/L+KT 0.01-1mg/L+特美汀100-300mg/L+植物凝胶3-8g/L;优选地,愈伤诱导培养基的组成如下:MS+蔗糖30g/L+脯氨酸1.38g/L+盐酸硫胺素0.5mg/L+AgNO320μM+水解酪蛋白0.5g/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+KT0.01-1mg/L+特美汀200mg/L+植物凝胶8g/L;
所述筛选培养基的组成如下:MS+蔗糖15-30g/L+脯氨酸0.1-0.3g/L+盐酸硫胺素0.1-1.0mg/L+AgNO315-25μM+水解酪蛋白0.1-1.0g/L+2,4-D 0.3-1.0mg/L+毒莠定0.8-3.0mg/L+特美汀100-300mg/L+草甘膦100-300mg/L+植物凝胶3-8g/L;优选地,筛选培养基的组成如下:MS+蔗糖30g/L+脯氨酸1.38g/L+盐酸硫胺素0.5mg/L+AgNO320μM+水解酪蛋白0.5g/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+特美汀200mg/L+草甘膦200mg/L+植物凝胶8g/L;
所述分化培养基包括分化培养基I和分化培养基II:
MS+蔗糖15-30g/L+硫酸铜3-15μM+MES(2-吗啉乙磺酸)0.3-0.8g/L+6-BA(6-苄氨基嘌呤)1.0-4.0mg/L+特美汀100-300mg/L+草甘膦3-15mg/L+植物凝胶3-8g/L;优选地,分化培养基I:MS+蔗糖20g/L+硫酸铜10μM+MES 0.5g/L+6-BA 3.5mg/L+特美汀200mg/L+草甘膦10mg/L+植物凝胶8g/L;
分化培养基II:MS+蔗糖15-30g/L+硫酸铜3-15μM+MES0.3-0.8g/L+特美汀100-300mg/L+草甘膦3-15mg/L+植物凝胶3-8g/L;优选地,分化培养基II:MS+蔗糖20g/L+硫酸铜10μM+MES 0.5g/L+特美汀200mg/L+草甘膦10mg/L+植物凝胶8g/L;
所述生根培养基的组成如下:MS+蔗糖15-30g/L+MES0.3-0.8g/L+IBA(吲哚丁酸)0.1-0.3mg/L+植物凝胶3-8g/L;优选地,生根培养基的组成如下:MS+蔗糖20g/L+MES 0.5g/L+IBA 0.2mg/L+植物凝胶8g/L。
前述的应用,步骤(1)中玉米的幼胚是从授粉后6-15天,待玉米幼胚长至0.5-2.0mm时,从玉米幼穗上剥取获得。
前述的应用,步骤(1)中将玉米的幼胚浸入如下侵染液中侵染5-15分钟。
其中,侵染液组成为:1/2MS+蔗糖40-80g/L+葡萄糖20-40g/L+L-脯氨酸0.1-0.3g/L+乙酰丁香酮100-300μM+OD600值0.1-0.5携带目的基因和选择标记基因(CP4基因)的农杆菌菌液;优选使用农杆菌菌株为EHA105;
前述的应用,步骤(2)中培养条件为:23℃黑暗培养3-5天;
前述的应用,步骤(3)中培养条件为:26-34℃黑暗培养5-14天。
本发明进一步提供利用上述方法获得的转化玉米细胞、植株部分和转基因植株及其种子和后代。
本发明提供利用CRISPR/Cas9系统对玉米进行定点突变的方法,通过遗传转化的方法将含有CRISPR/Cas9的载体转入携带目标基因的受体材料中,获得该目标基因定点突变的再生植株。利用该方法成功实现了对玉米基因组的定点突变,该方法具有实验周期短、操作简便等特点,利用不同靶向的CRISPR/Cas9系统可对不同目标基因进行定点定向改造,为玉米改良育种提供了新方法,对于改良玉米性状具有重大实际意义。
附图说明
图1为本发明实施例3中经两轮筛选培养结束后得到的两块玉米愈伤组织中GFP的表达情况;其中,A和C为白光灯下愈伤状态,B和D为紫外光下愈伤状态,圆圈标注处为抗性愈伤组织。从图中标注处可以看出两块抗性愈伤处均无GFP表达,而非抗性愈伤处有GFP表达。说明未转化细胞中的GFP基因依旧表达,而转化细胞中GFP基因不再表达,表明转化细胞中GFP基因已失活。
图2为本发明实施例3中GFP基因突变结果序列比对;其中,阳性对照为GFP基因部分序列,样品1-2为转化后植株GFP基因部分序列,从图中可以看出,样品1-2的GFP基因序列与阳性对照相比,在同一位置发生了一个腺嘌呤(A)碱基缺失,从而导致GFP基因功阅读框位移和失活。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular Cloning:a Laboratory Manual,2001),或按照制造厂商说明书建议的条件。
以下实施例中所用玉米材料为祥249自交系,由中国种子集团有限公司提供。
实施例1靶向玉米祥249自交系中GFP基因的CRISPR/Cas9系统的构建
1、针对玉米祥249自交系中GFP基因设计基于CRISPR/Cas9的sgRNA序列。其中,sgRNA作用位点的核苷酸序列为5’-ACCGGGGTGGTGCCCATCC-3’。
2、将含有编码所述sgRNA序列的DNA片段连接到携带CRISPR/Cas的载体中,构建得到载体Cas9-GFP-gRNA,用于转化玉米。其中,载体Cas9-GFP-gRNA的全序列如SEQ ID NO:2所示。
实施例2基因定点突变玉米植株的制备方法
1、玉米果穗处理和幼胚的分离
(1)携带外源GFP基因的玉米祥249自交系T1代转基因玉米植株种于温室,授粉后约10天,待幼胚长至0.8-2.0mm时,收获玉米穗子,去除苞叶,准备灭菌;
(2)将浓度为6-15%的次氯酸钠母液用灭菌水按体积比稀释到15%-20%,按1滴(20μL)/3L加入Tween-20%混匀制成灭菌液;
(3)将玉米穗子放入灭菌液中浸泡15分钟,无菌水冲洗3-5次备用;
(4)用无菌的手术刀片削去种子顶端,用无菌刮铲掘取胚乳使幼胚从种子中暴露出来,剥取幼胚。将分离出来的幼胚放入含有1.8mL悬浮液的2mL塑料离心管中。
2、侵染与共培养
(1)吸去离心管中的悬浮液,加入200μL新鲜的悬浮液,4000rpm离心15秒,45℃水浴热击3分钟,然后转入0℃冰浴1分钟;
(2)用移液枪吸去离心管中的悬浮液,加入1.0mL OD600值为0.1-0.5的农杆菌EHA105侵染液,侵染10分钟。该农杆菌含Cas9-GFP-gRNA;
(3)将离心管中的幼胚悬浮后倒入共培养培养基中,并用移液枪吸去表面多余的农杆菌侵染液,将幼胚盾片朝上放置,于23℃黑暗共培养3-5天。
3、诱导与筛选
(1)共培养后,将幼胚转移到愈伤诱导培养基中,于32℃黑暗诱导培养5-14天;
(2)愈伤诱导培养结束后,将幼胚转入含200mg/L草甘膦的筛选培养基上,于28℃黑暗培养。筛选2-3轮,一轮为2周。
4、植株再生与移栽
(1)筛选培养结束后,将抗性愈伤组织转移至分化培养基I(含10mg/L草甘膦)中,25℃,5000lx,光照培养1周;
(2)将出现绿点的愈伤组织转移至分化培养基II(含10mg/L草甘膦)中,光照培养2周;
(3)将分化出的幼苗转移至生根培养基上,25℃,5000lx,光照培养直至生根;
(4)将转基因再生苗转入专用穴盘中生长,炼苗后移栽于温室中,3-4个月后即可收获后代种子。
转化过程中所用到的试剂和培养基配方如下:
悬浮液:1/2MS+蔗糖68.5g/L+葡萄糖36g/L+L-脯氨酸0.115g/L;
侵染液:1/2MS+蔗糖68.5g/L+葡萄糖36g/L+L-脯氨酸0.115g/L+乙酰丁香酮200μM+OD600值0.3农杆菌液;
共培养培养基的组成如下:1/2MS+蔗糖20g/L+葡萄糖10g/L+脯氨酸0.115g/L+盐酸硫胺素0.5mg/L+AgNO320μM+L-半胱氨酸200mg/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+KT0.01-1mg/L+乙酰丁香酮200μM+植物凝胶8g/L;
愈伤诱导培养基的组成如下:MS+蔗糖30g/L+脯氨酸1.38g/L+盐酸硫胺素0.5mg/L+AgNO320μM+水解酪蛋白0.5g/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+KT 0.01-1mg/L+特美汀200mg/L+植物凝胶8g/L;
筛选培养基的组成如下:MS+蔗糖30g/L+脯氨酸1.38g/L+盐酸硫胺素0.5mg/L+AgNO320μM+水解酪蛋白0.5g/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+特美汀200mg/L+草甘膦200mg/L+植物凝胶8g/L;
分化培养基I:MS+蔗糖20g/L+硫酸铜10μM+MES 0.5g/L+6-BA3.5mg/L+特美汀200mg/L+草甘膦10mg/L+植物凝胶8g/L;
分化培养基II:MS+蔗糖20g/L+硫酸铜10μM+MES 0.5g/L+特美汀200mg/L+草甘膦10mg/L+植物凝胶8g/L;
生根培养基的组成如下:MS+蔗糖20g/L+MES 0.5g/L+IBA0.2mg/L+植物凝胶8g/L。
实施例3基因定点突变玉米的检测
1、GFP基因在定点突变玉米组织中的表达观察
取实施例2的GFP基因定点突变后的抗性愈伤组织,观察GFP基因在愈伤组织中的表达,结果发现,在紫外光下见绿色荧光,说明这部分愈伤中GFP基因未被定点突变,若紫外光下未见绿色荧光则为GFP基因已失活,结果见图1。从图1圆圈标注处可以看出两块新生的草甘膦抗性愈伤处均无GFP表达,而非抗性愈伤处有GFP表达(图1B、D)。说明未转化细胞中的GFP基因正常表达,而转化细胞中GFP基因不再表达,表明转化细胞中GFP基因已被成功编辑失活。
2、基因测序
(1)DNA提取:用购自天根生化科技(北京)有限公司的DNA提取试剂盒抽提实施例2获得的转基因玉米基因组DNA。
(2)GFP基因PCR
将下列试剂从-20℃冰箱中取出解冻:5×PCR Buffer(NEB)、d NTP Mix(10mM,Sigma)、正、反向引物混合液(F:5’-GGATGATGGCATATGCAGCAGC-3’,R:5’-GAAGTCGTGCTGCTTCATGTGG-3’),以及DNA模板。
所有试剂解冻后,简短离心数秒,置于冰上待用;配制PCR反应体系的混合液,混匀,简短离心数秒;将混合液分装至200μL的PCR管中,再加入2μL模板DNA,;将PCR反应管放入Thermo 9700型PCR扩增仪;选择预设PCR扩增程序,开始运行反应。
PCR反应体系:5×PCR Buffer(NEB)10μL,dNTP Mix(10mM,Sigma)1μL,正反向引物混合液(5μM)4μL,Phusion超保真DNA聚合酶(1U,NEB)0.5μL,DNA模板2μL。
PCR反应程序为:98℃预变性30秒;98℃变性10秒,58℃退火10秒,72℃延伸20秒,30个循环;最后72℃延伸5分钟。
(3)样品测序
将所得的PCR产物经纯化后用购自ABI公司的Big Dye3.1试剂盒处理后,用3730×L测序仪进行测序,测序后用Vevtor NTI Advance11.5软件对测序结果进行分析。
图2结果显示,样品中的GFP基因序列与阳性对照相比,在同一位置发生了一个腺嘌呤(A)碱基缺失,从而导致GFP基因功能失活。表明利用本发明提供方法成功实现了对特定基因的定位定点突变。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
Figure IDA0000920622870000011
Figure IDA0000920622870000021
Figure IDA0000920622870000031
Figure IDA0000920622870000041
Figure IDA0000920622870000051
Figure IDA0000920622870000061

Claims (7)

1.利用CRISPR/Cas9系统对玉米基因定点突变的方法,其特征在于,针对玉米中的目标基因设计基于CRISPR/Cas9的sgRNA序列,将含有编码所述sgRNA序列的DNA片段连接到携带CRISPR/Cas的载体中,转化玉米,实现对玉米中特定基因的定点突变;
所述玉米为祥249自交系;
所述目标基因为GFP;其sgRNA作用位点的核苷酸序列为5’-accggggtggtgcccatcc-3’;
用载体Cas9-GFP-gRNA转化玉米,载体Cas9-GFP-gRNA的全序列如SEQ ID NO:2所示。
2.权利要求1所述方法在玉米基因定点突变育种中的应用,所述玉米包括祥249自交系。
3.根据权利要求2所述的应用,其特征在于,包括以下步骤:
(1)将玉米的幼胚浸入携带载体Cas9-GFP-gRNA的农杆菌菌液中侵染;
(2)将幼胚移至共培养培养基上培养;
(3)将幼胚移至愈伤诱导培养基上培养,诱导初级愈伤组织;
(4)将初级愈伤组织移至筛选培养基上培养,诱导抗性愈伤组织,再转移到分化培养基上,分化形成再生幼苗;
(5)再生幼苗在生根培养基上生根后炼苗、移栽,得到转基因玉米;
(6)根据sgRNA作用位点的核苷酸序列设计引物,通过PCR法鉴定玉米植株突变位点。
4.根据权利要求3所述的应用,其特征在于,共培养培养基的组成如下:1/2MS+蔗糖20g/L+葡萄糖10g/L+脯氨酸0.115g/L+盐酸硫胺素0.5mg/L+AgNO3 20μM+L-半胱氨酸200mg/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+KT 0.01-1mg/L+乙酰丁香酮200μM+植物凝胶8g/L;
愈伤诱导培养基的组成如下:MS+蔗糖30g/L+脯氨酸1.38g/L+盐酸硫胺素0.5mg/L+AgNO3 20μM+水解酪蛋白0.5g/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+KT 0.01-1mg/L+特美汀200mg/L+植物凝胶8g/L;
筛选培养基的组成如下:MS+蔗糖30g/L+脯氨酸1.38g/L+盐酸硫胺素0.5mg/L+AgNO3 20μM+水解酪蛋白0.5g/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+特美汀200mg/L+草甘膦200mg/L+植物凝胶8g/L;
分化培养基I:MS+蔗糖20g/L+硫酸铜10μM+MES 0.5g/L+6-BA 3.5mg/L+特美汀200mg/L+草甘膦10mg/L+植物凝胶8g/L;
分化培养基II:MS+蔗糖20g/L+硫酸铜10μM+MES 0.5g/L+特美汀200mg/L+草甘膦10mg/L+植物凝胶8g/L;
生根培养基的组成如下:MS+蔗糖20g/L+MES 0.5g/L+IBA 0.2mg/L+植物凝胶8g/L。
5.根据权利要求3或4所述的应用,其特征在于,步骤(1)中玉米的幼胚是从授粉后6-15天,待玉米幼胚长至0.5-2.0 mm时,从玉米幼穗上剥取获得。
6.根据权利要求3或4所述的应用,其特征在于,步骤(1)中将玉米的幼胚浸入如下侵染液中侵染5-15分钟;
侵染液组成为:1/2MS+蔗糖40-80g/L+葡萄糖20-40g/L+L-脯氨酸0.1-0.3g/L+乙酰丁香酮100-300μM+ OD600值0.1-0.5携带载体Cas9-GFP-gRNA的农杆菌菌液;
步骤(2)中培养条件为:23℃黑暗培养3-5天;
步骤(3)中培养条件为:26-34℃黑暗培养5-14天。
7.根据权利要求6所述的应用,其特征在于,步骤(1)中使用农杆菌菌株为EHA105。
CN201610074115.4A 2016-02-02 2016-02-02 利用CRISPR/Cas9系统对玉米基因定点突变的方法 Active CN107022562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610074115.4A CN107022562B (zh) 2016-02-02 2016-02-02 利用CRISPR/Cas9系统对玉米基因定点突变的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610074115.4A CN107022562B (zh) 2016-02-02 2016-02-02 利用CRISPR/Cas9系统对玉米基因定点突变的方法

Publications (2)

Publication Number Publication Date
CN107022562A CN107022562A (zh) 2017-08-08
CN107022562B true CN107022562B (zh) 2020-07-17

Family

ID=59524345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610074115.4A Active CN107022562B (zh) 2016-02-02 2016-02-02 利用CRISPR/Cas9系统对玉米基因定点突变的方法

Country Status (1)

Country Link
CN (1) CN107022562B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
AU2015298571B2 (en) 2014-07-30 2020-09-03 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
IL258821B (en) 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
KR102547316B1 (ko) 2016-08-03 2023-06-23 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 아데노신 핵염기 편집제 및 그의 용도
CN109804066A (zh) 2016-08-09 2019-05-24 哈佛大学的校长及成员们 可编程cas9-重组酶融合蛋白及其用途
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
KR102622411B1 (ko) 2016-10-14 2024-01-10 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
GB2575930A (en) 2017-03-23 2020-01-29 Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
EP3676376A2 (en) 2017-08-30 2020-07-08 President and Fellows of Harvard College High efficiency base editors comprising gam
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
WO2020191249A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
CN110226517B (zh) * 2019-06-26 2021-06-01 北京市农林科学院 一种洋葱离体再生的方法及其使用的培养基
CN110878312B (zh) * 2019-12-13 2021-03-23 李佳 玉米ZmDTX3.1突变基因及其遗传转化体系的构建方法和应用
MX2022014008A (es) 2020-05-08 2023-02-09 Broad Inst Inc Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981216A (zh) * 2014-05-23 2014-08-13 安徽省农业科学院水稻研究所 一种骨干质粒载体及应用
CN106701754A (zh) * 2015-11-13 2017-05-24 中国农业科学院作物科学研究所 一种玉米rna聚合酶iii识别的启动子及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981216A (zh) * 2014-05-23 2014-08-13 安徽省农业科学院水稻研究所 一种骨干质粒载体及应用
CN106701754A (zh) * 2015-11-13 2017-05-24 中国农业科学院作物科学研究所 一种玉米rna聚合酶iii识别的启动子及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9;Zhu jinjie等;《Journal of Genetics and Genomics》;20160120;第43卷(第1期);全文 *
Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System;Feng chao等;《Journal of Genetics and Genomics》;20160120;第43卷(第1期);全文 *

Also Published As

Publication number Publication date
CN107022562A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
CN107022562B (zh) 利用CRISPR/Cas9系统对玉米基因定点突变的方法
EP3816292A1 (en) Method of obtaining multi-leaf alfalfa material by means of mspalm1 artificial site-directed mutant
CN112899247B (zh) 雄性不育基因ZmTKPR1及其在创制玉米雄性不育系中的应用
CN112961231A (zh) 雄性不育基因ZmbHLH122及其在创制玉米雄性不育系中的应用
CN107022561B (zh) 用于培育转基因玉米的培养基及培养方法
CN112813098B (zh) 利用人工突变创制玉米bhlh51雄性不育系
CN113005128B (zh) 雄性不育基因ZmMYB84及其在创制玉米雄性不育系中的应用
CN112680461B (zh) 雄性不育基因ZmPHD11及其在创制玉米雄性不育系中的应用
US20210171973A1 (en) Method of Obtaining Multileaflet Medicago Sativa Materials by Means of MsPALM1 Artificial Site-Directed Mutants
Bueno dos Reis et al. Agrobacterium rhizogenes-mediated transformation of passionfruit species: Passiflora cincinnata and P. edulis f. flavicarpa
US20230265447A1 (en) Delivery of developmental regulators to plants for the induction of meristematic tissue with genetic alterations
CN111575311A (zh) 一种基于基因枪介导的棉花基因编辑方法及应用
CN113604497B (zh) 一种禾本科植物的遗传转化方法
CN112680460B (zh) 雄性不育基因ZmTGA9及其在创制玉米雄性不育系中的应用
CN113234720B (zh) 小麦长链非编码RNAlncR156及其在调控小麦响应干旱胁迫中的应用
Zhang et al. An improved method of Agrobacterium tumefaciens-mediated genetic transformation system of melon (Cucumis melo L.)
Polowick et al. A protocol for Agrobacterium-mediated genetic transformation of Lens culinaris Medik (lentil)
CN116837002B (zh) ZmDPP1及其编码蛋白在玉米育性控制中的应用
Xu et al. High-efficiency agrobacterium-mediated transformation of chrysanthemum via vacuum infiltration of internode
CN116769792B (zh) 一种毛竹茎秆伸长相关基因PheLBD12及其应用
CN117247967B (zh) 雄性不育基因ZmPKSA及其在创制玉米雄性不育系中的应用
CN113652434B (zh) 一种具有促进水稻籽粒增大作用的芡实dna分子及其应用
CN116751808A (zh) 调控植物开花和成熟时间的方法及其生物材料与应用
Thoris YIELD IMPROVEMENT IN ORYZA SATIVA BY MANIPULATING THE PLA1/GE PATHWAY WITH CRISPR/CAS9
CN117402890A (zh) 一个簇毛麦转录因子wrky1-v及其所编码的蛋白和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201010

Address after: Unit 08, 30 / F, No. 88, Century Avenue, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai 200131

Patentee after: Syngenta Group Inc

Address before: 100045, Beijing, Xicheng District Fuxing street, No., Sinochem building, 15 Floor

Patentee before: China National Seed Group Corp.,Ltd.