CN107446954A - 一种sd大鼠t细胞缺失遗传模型的制备方法 - Google Patents

一种sd大鼠t细胞缺失遗传模型的制备方法 Download PDF

Info

Publication number
CN107446954A
CN107446954A CN201710646278.XA CN201710646278A CN107446954A CN 107446954 A CN107446954 A CN 107446954A CN 201710646278 A CN201710646278 A CN 201710646278A CN 107446954 A CN107446954 A CN 107446954A
Authority
CN
China
Prior art keywords
rat
lck
cells
rats
ivt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710646278.XA
Other languages
English (en)
Inventor
张黎琛
卢燎勋
梁银明
黄蓉
晁天柱
郑前前
罗静
谷妍蓉
袁鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang Medical University
Original Assignee
Xinxiang Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang Medical University filed Critical Xinxiang Medical University
Priority to CN201710646278.XA priority Critical patent/CN107446954A/zh
Publication of CN107446954A publication Critical patent/CN107446954A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种SD大鼠T细胞缺失遗传模型的制备方法,属于基因工程和遗传修饰技术领域。本发明在大鼠中利用CRISPR‑Cas9系统实现了对控制大鼠T细胞发育的关键基因Lck的特异性敲除,获得SD大鼠T细胞缺失遗传模型。本发明首次确定了2个针对大鼠Lck基因的特异性打靶位点,通过实验证明其具有很高的剪切效率;本发明同时利用2个sgRNA针对大鼠Lck基因进行打靶,并获得了大片段缺失的基因敲除大鼠,一方面可以保证被打靶基因能够彻底失去功能,另外一方面也可以方便后续检测。构建得到的T细胞缺失的SD大鼠动物模型在免疫与疾病研究中有着非常重大的意义。

Description

一种SD大鼠T细胞缺失遗传模型的制备方法
技术领域
本发明涉及一种SD大鼠T细胞缺失遗传模型的制备方法,属于基因工程和遗传修饰技术领域。
背景技术
Lck(Lymphocyte-specific protein tyrosine kinase)的激活是启动TCR信号通路的关键因素,其在胸腺的发育以及T细胞的分化和发育中都起着关键性的作用,所以在大鼠中敲除Lck基因,即可以获得T细胞缺失的大鼠动物模型。目前,常用的基因敲除的方法有三种:1.锌指核酸酶(ZFNs);2.转录激活因子样效应物核酸酶(TALENs);3.CRISPR-Cas9。锌指核酸酶ZFNs在植物基因组定点改造上的可能前景,但由于ZFNs的合成组装技术难度大,一般实验室难以实施,而且ZFNs易于对基因组进行非特异性切割,或对靶点DNA切割效率低,一直限制其进入实际应用。相比于传统的锌指核酸酶技术,TALENs具有独特的优势:设计更简单,特异性更高。但具有一定的细胞毒性,模块组装过程繁琐,一般需要求帮助于外包公司。
CRISPR是指成簇的、规律的短回文重复序列(Clustered RegularlyInterspersed Short Palindromic Repeats)。CRISPR-Cas9系统主要是由三个部分组成,分别是Cas9蛋白、precursor CRISPR RNA(pre-crRNA)和trans-activating crRNA(tracrRNA),CRISPR-Cas9识别特定的DNA序列,进行特定位点切割造成双链DNA断裂,在没有模版的条件下,发生非同源重组末端连接,造成移码突变,导致基因敲除。CRISPR-Cas9系统对特异性位点的识别靠小的crRNA的引导,CRISPR区可以有一系列的crRNA组成,每个针对特异性位点的crRNA只有几十个碱基,整个载体较小,相对于ZFNs和TALENs载体,更加容易构建。
T细胞来源于骨髓的多能干细胞。在胚胎期和初生期,骨髓中的一部分多能干细胞或前T细胞迁移到胸腺内,在胸腺激素的诱导下分化成熟,成为具有免疫活性的T细胞。成熟的T细胞经血流分布至外周免疫器官的胸腺依赖区定居,并可经淋巴管、外周血和组织液等进行再循环,发挥细胞免疫及免疫调节等功能。T细胞的再循环有利于广泛接触进入体内的抗原物质,加强免疫应答,较长期保持免疫记忆。T细胞的细胞膜上有许多不同的标志,主要是表面抗原和表面受体。这些表面标志都是结合在细胞膜上的巨蛋白分子。T细胞是淋巴细胞的主要组分,它具有多种生物学功能,如直接杀伤靶细胞,辅助或抑制B细胞产生抗体,对特异性抗原和促有丝分裂原的应答反应以及产生细胞因子等,是身体中为抵御疾病感染、肿瘤而形成的英勇斗士。T细胞产生的免疫应答是细胞免疫,细胞免疫的效应形式主要有两种:与靶细胞特异性结合,破坏靶细胞膜,直接杀伤靶细胞;另一种是释放淋巴因子,最终使免疫效应扩大和增强。
T细胞在一些感染疾病的免疫反应中起着重要的作用,测定T细胞的作用,了解其功能有助于阐明体内T细胞与病原的复制、致病机制的相互作用。构建T细胞缺失的动物模型在免疫与疾病研究中有着非常重大的意义。
发明内容
本发明旨在提供一种SD大鼠T细胞缺失遗传模型的制备方法。
为了实现上述目的,本发明所采用的技术方案是:
一种SD大鼠T细胞缺失遗传模型的制备方法,包括如下步骤:
包括如下步骤:
1)确定靶序列:两个靶序列分别为:sgRNA1:5‘-GCCCAAGTCTCCATCATGGG AGG-3’,sgRNA2:5‘-GACCCACTGGTCACCTATGA GGG-3’;
2)设计引物:根据步骤1)获得的sgRNA靶序列设计3条引物,分别为:Rat-LCK-IVT-1:5‘-TTAATACGAC TCACTATAGG GGCCCAAGTC TCCATCATGG GGTTTTAGAG CTAGAAATAG CAAG-3’,Rat-LCK-IVT-2:5‘-TTAATACGAC TCACTATAGG GGACCCACTG GTCACCTATG AGTTTTAGAGCTAGAAATAG CAAG-3’,Rat-LCK-IVT-3:5‘-AAAAAAGCAC CGACTCGGTG CC-3’;
3)获得双链DNA片段:将步骤2)中Rat-LCK-IVT-1和Rat-LCK-IVT-3配对,Rat-LCK-IVT-1和Rat-LCK-IVT-3配对,以pX330质粒为模板,进行PCR扩增;将PCR扩增产物纯化,获得双链DNA片段;
4)获得sgRNA mRNA:将步骤3)获得的双链DNA片段分别作为模板,在体外转录后纯化,得到sgRNA1 mRNA和sgRNA2 mRNA;
5)获得Cas9 mRNA并进行纯化:将Cas9载体经AgeI线性化,在体外转录后纯化,即得Cas9 mRNA;
6)获得SD大鼠T细胞缺失遗传模型:将步骤5)获得的Cas9 mRNA与步骤4)获得的sgRNA1 mRNA和sgRNA2 mRNA混合后,注射入大鼠受精卵细胞中,将存活的受精卵细胞移植入假孕SD大鼠雌鼠输卵管;待假孕SD大鼠分娩后,得到Founder大鼠;
将Founder大鼠与野生型SD大鼠回交,挑选F1代杂合子继续与野生型SD大鼠回交,重复从后代中挑选出杂合子用于回交,在回交后代中挑选杂合子自交,自交后代经检测得到的纯合子进行免疫表型分析,完全缺失T细胞的即为SD大鼠T细胞缺失遗传模型。
步骤1)中,在基因组数据库中找到目标基因Lck的DNA序列,然后使用在线软件CRISPOR在大鼠Lck基因的靶位点exon3和exon4内各挑选1个特异性位点作为sgRNA的靶序列,具有较高的基因敲除效率。
步骤6)中,Cas9 mRNA、sgRNA1 mRNA、sgRNA2 mRNA的注射浓度均为50-100ng/ul。
步骤6)中进行免疫表型分析具体操作为:抽取LCK基因敲除SD大鼠纯合子的外周血,通过流式细胞术检测其T细胞是否已经完全缺失。
采用T细胞特异性抗体对T细胞进行标记,然后通过流式细胞术检测其T细胞是否已经完全缺失。
本发明首次在大鼠中利用CRISPR-Cas9系统实现了对控制大鼠T细胞发育的关键基因Lck的特异性敲除,获得SD大鼠T细胞缺失动物模型。本发明的有益效果如下::1.SD大鼠品系育种、动物实验已在生物医药领域被广泛应用,但SD大鼠基因敲除模型仍极其缺乏,更无免疫缺陷遗传模型,本发明首次在SD大鼠中实现Lck基因敲除、并获得T淋巴细胞缺失稳定遗传模型;2.首次确定了2个针对大鼠Lck基因的特异性打靶位点,通过实验证明其具有很高的剪切效率;3.首次同时利用2个sgRNA针对大鼠Lck基因进行打靶,并获得了大片段缺失的基因敲除大鼠,一方面可以保证被打靶基因能够彻底失去功能,另外一方面也可以方便后续检测;4.大鼠中利用CRISPR-Cas9系统敲除Lck基因在国内外尚属首次,具有很高的原创性和非常重要的基础研究和实际应用价值,也为在大鼠中基因敲除工作的开展提供了良好的示范。
附图说明
图1为sgRNA转录产物质量检测图;
图2为Founder大鼠PCR检测电泳条带图;
图3为Lck基因敲除打靶位点示意图和Lck基因敲除Founder大鼠测序序列图;
图4为Lck基因敲除SD大鼠外周血细胞流式细胞仪检测结果图。
具体实施方式
下面结合具体实施例对本发明做进一步的详细说明。
实施例1
一、根据CRISPR/Cas9系统原理,使用CRISPOR在线设计软件(http://crispor.tefor.net/crispor.cgi),在大鼠Lck基因的靶位点exon3(exon ID:ENSRNOE00000091030)和exon4(exon ID:ENSRNOE00000091075)内各挑选1个特异性位点作为sgRNA的靶序列,这两个靶序列分别为:sgRNA1(SEQ ID NO.1):sgRNA1:5‘-GCCCAAGTCTCCATCATGGGAGG-3’;sgRNA2(SEQ ID NO.2):5-GACCCACTGGTCACCTATGAGGG-3。
二、在上海百力格生物技术有限公司订购3条引物:Rat-LCK-IVT-1(SEQ IDNO.3):5‘-TTAATACGAC TCACTATAGG GGCCCAAGTC TCCATCATGG GGTTTTAGAG CTAGAAATAGCAAG-3’,Rat-LCK-IVT-2(SEQ ID NO.4):5‘-TTAATACGAC TCACTATAGG GGACCCACTGGTCACCTATG AGTTTTAGAG CTAGAAATAG CAAG-3’,Rat-LCK-IVT-3(SEQ ID NO.5):5‘-AAAAAAGCAC CGACTCGGTG CC-3’。
三、通过PCR扩增,获得带有T7启动子的双链DNA(将T7启动子序列添加入合成的引物序列的5‘端,经过PCR扩增即可以获得带有T7启动子的双链DNA):其中,PCR反应体系为:模板为pX330质粒DNA(购于Addgene),加入10ng;上游引物Rat-LCK-IVT-1(10μM)和Rat-LCK-IVT-2(10μM)分别加入2μl;下游通用引物Rat-LCK-IVT-3(10μM)分别加入2μl;2×TaqMaster Mix(购于vazyme,P111-01)加入25μl;补充H2O至总体积50μl(PCR得到的双链DNA序列如SEQ ID NO.8和SEQ ID NO.9所示)。PCR反应程序为:94℃,5min;94℃,30s,60℃,30s,72℃,30s;72℃,10min;循环数为30次。PCR程序结束后,使用invitrogen PCR回收试剂盒(invitrogen,K220001),纯化PCR产物。
四、体外转录获得sgRNA mRNA。体外转录试剂盒使用NEB试剂盒(NEB,E2050S),详细反应步骤如下:按照试剂盒要求,配制反应体系,依次加入NTP Buffer Mix 10μl;模板DNA 1μg;T7RNA Polymerase Mix 2μl;补充H2O至总体积30μl;置于37℃反应孵育4小时,获得体外转录产物,得到的sgRNA转录产物跑胶结果如图1所示,1:marker;2:目的条带为sgRNA1;3:目的条带为sgRNA2;使用Ambion RNA纯化试剂盒(Ambion,AM1909)按照说明书要求回收条带得sgRNA1 mRNA和sgRNA2 mRNA。
五、获得Cas9体外转录模板DNA。使用高纯度质粒抽提试剂盒(天根生化科技(北京)有限公司,DP116)提取Cas9载体质粒DNA,然后使用以下体系采用AgeI限制性内切酶(NEB,R3552S)酶切质粒DNA:质粒DNA:10μg;CutSmart Buffer:20μl;AgeI限制性内切酶:2μl;补充H2O至总体积200μl。使用封口胶将管口封好,然后置于37℃温箱过夜反应。通过琼脂糖凝胶电泳检测酶切产物,酶切产物电泳后呈现单一条带,表明载体质粒DNA线性化完成。利用DNA回收试剂盒(天根生化科技(北京)有限公司,DP205)纯化酶切产物,即获得Cas9体外转录模板DNA。
六、体外转录获得Cas9 mRNA。体外转录试剂盒使用invitrogen试剂盒(invitrogen,AMB1345-5),详细反应步骤如下:按照试剂盒要求,配制反应体系,依次加入T7 2*NTP/ARCA 10μl;10*T7 Reaction Buffer 2μl;模板DNA 1μg;T7 Enzyme Mix 2μl;补充H2O(invitrogen,10977015)至总体积20μl;置于37℃反应孵育2小时,然后加入1μlTURBO DNase,充分混匀以后,置于37℃反应孵育15min;接下来再向以上反应产物中按照以下顺序配制加尾反应体系,mMESSAGE mMACHINE T7 Ultra reaction产物20μl;H2O(invitrogen,10977015)36μl;5*E-PAP Buffer 20μl;25mM MnCl2 10μl;ATP Solution 10μl;E-PAP 4μl,充分混匀以后,置于37℃反应孵育45min。获得体外转录产物以后,使用Ambion RNA纯化试剂盒(Ambion,AM1909)回收Cas9 mRNA。
七、获得的sgRNA mRNA和Cas9 mRNA通过显微注射系统注射SD大鼠受精卵细胞。通过对4周龄SD大鼠雌鼠注射激素,经过超排卵和交配以后获取受精卵细胞。将sgRNA1 mRNA、sgRNA2 mRNA和Cas9 mRNA使用无RNA酶的超纯水(invitrogen,10977015)稀释至终浓度均为50ng/μl,混合后通过显微注射系统注射入SD大鼠受精卵细胞中,置于培养箱(37℃,CO2浓度为5%)培养1小时以后,挑选存活的细胞,将其移植入假孕SD大鼠雌鼠输卵管中。共注射77个受精卵细胞,存活76个,移植3只假孕雌鼠,最终得到2只Founder大鼠。
八、Founder大鼠基因型鉴定。将得到的2只Founder大鼠剪鼠尾,抽提DNA,然后利用其作为模板DNA,进行PCR扩增,使用引物序列为:
LCK-F(SEQ ID NO.6):5‘-CCAGGATTCGGAGCTGTTCA-3’,
LCK-R(SEQ ID NO.7):5‘-ATTTCCTACCCCACAGCTGC-3’;
野生型DNA模板扩增片段长度为358bp(扩增序列如SEQ ID NO.10所示),PCR反应体系为:模板为鼠尾DNA,加入10ng;上游引物加入2μl;下游引物加入2μl;2×Taq MasterMix(购于vazyme,P111-01)加入25μl;补充H2O至总体积50μl。PCR反应程序为:94℃,5min;94℃,30s,60℃,30s,72℃,30s;72℃,10min;循环数为30次。得到PCR产物以后,取10μl产物用于跑胶,与野生型扩增产物进行对照,发现2只Founder大鼠(分别命名为#1和#2)的扩增片段与野生型相比,缺失较多,结果如图2所示,1:marker;2:阴性对照H2O;3:野生型SD大鼠;4:野生型SD大鼠;5:Lck基因敲除大鼠#1;6:Lck基因敲除大鼠#2。取2μl#1和#2大鼠的PCR扩增产物用于TA克隆连接反应(天根生化科技(北京)有限公司,DP205),然后将连接产物转化DH5α感受态细胞,于37℃培养箱过夜培养,待其长出单克隆以后,挑取单克隆进行培养,并送样进行测序鉴定。2只Founder大鼠均进行测序鉴定,测序结果如图3所示,结果表明,#1大鼠两条染色体分别缺失280和249个碱基,#2大鼠一条染色体缺失70个碱基。
九、通过回交和自交获得LCK基因敲除SD大鼠纯合子。将获得的2只Founder大鼠分别与野生型SD大鼠交配得到F1代,通过PCR扩增与DNA测序技术筛选得到F1代LCK基因敲除大鼠杂合子个体(共4种基因型),将F1代杂合子大鼠分别继续与野生型SD大鼠回交,并每次从后代中挑选出杂合子基因敲除大鼠用于回交,在回交6代后,挑选F6杂合子基因敲除大鼠自交获得F7代大鼠,进一步检测,可筛选获得纯合子个体,即为构建的Lck基因敲除大鼠模型。
十、通过流式细胞术分析Lck基因敲除SD大鼠免疫表型。获得LCK基因敲除SD大鼠纯合子后,从其尾静脉采血,通过流式细胞仪(BD,Canto II plus)检测,确认其T细胞已经完全缺失,表明Lck基因敲除SD大鼠模型构建成功。检测用抗体分别为:CD3(Biolegend,B223192)、CD4(Biolegend,B227587)、B220(eBioscience,25-0460-82)、CD45(eBioscience,48-0461-82)。详细操作步骤如下:首先使用具有EDTA的抗凝管采集大鼠静脉血液50μl,然后使用FACS缓冲液配制合适浓度的抗体混合液(最终体系中,抗体CD3稀释200倍,抗体CD4稀释400倍,抗体B220稀释200倍,抗体CD45稀释200倍),取10μl抗体混合液和40μl抗凝大鼠血液充分涡旋混匀,然后置于4℃冰箱孵育30min。向孵育好的混合液中加入500μl红细胞裂解液(eBioscience),充分涡旋混匀,再于室温静置5min,使红细胞充分裂解;最后向混合液中加入1ml FACS缓冲液,充分涡旋混匀,然后于4℃使用400×g离心5min,保留管底部的细胞,加入300μl FACS缓冲液重悬细胞,使用流式细胞仪进行检测。
野生型SD大鼠检测结果如图4-A所示;Lck基因敲除大鼠#1检测结果如图4-B所示;Lck基因敲除大鼠#2检测结果如图4-C所示;结果表明,Lck基因敲除纯合子大鼠#1和#2其外周血中CD4+T细胞、CD8+T细胞已经完全缺失,表明我们已经成功获得Lck基因敲除T细胞缺失的大鼠模型。
<110> 新乡医学院
<120> 一种SD大鼠T细胞缺失遗传模型的制备方法
<160> 10
<170> PatentIn version 3.5
<211> 23
<212> DNA
<213> 序列
<221> Lck基因sgRNA1
<400> 1
gcccaagtct ccatcatggg agg 23
<211> 23
<212> DNA
<213> 序列
<221> Lck基因sgRNA2
<400> 2
gacccactgg tcacctatga ggg 23
<211> 64
<212> DNA
<213> 序列
<221> Rat-LCK-IVT-1
<400> 3
ttaatacgac tcactatagg ggcccaagtc tccatcatgg ggttttagag ctagaaatag 60
caag 64
<211> 64
<212> DNA
<213> 序列
<221> Rat-LCK-IVT-2
<400> 4
ttaatacgac tcactatagg ggacccactg gtcacctatg agttttagag ctagaaatag 60
caag 64
<211> 22
<212> DNA
<213> 序列
<221> Rat-LCK-IVT-3
<400> 5
aaaaaagcac cgactcggtg cc 22
<211> 20
<212> DNA
<213> 序列
<221> Lck-F
<400> 6
ccaggattcg gagctgttca 20
<211> 20
<212> DNA
<213> 序列
<221> Lck-R
<400> 7
atttcctacc ccacagctgc 20
<211> 123
<212> DNA
<213> 序列
<221> sgRNA1双链DNA序列
<400> 8
ttaatacgac tcactatagg ggcccaagtc tccatcatgg ggttttagag ctagaaatag 60
caagttaaaa taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt 120
ttt 123
<211> 123
<212> DNA
<213> 序列
<221> sgRNA2双链DNA序列
<400> 9
ttaatacgac tcactatagg ggacccactg gtcacctatg agttttagag ctagaaatag 60
caagttaaaa taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt 120
ttt 123
<211> 358
<212> DNA
<213> 序列
<221> Lck基因PCR检测片段
<400> 10
ccaggattcg gagctgttca cccttttcaa agcccaagtc tccatcatgg gagggctcat 60
agctgtgcag ggcaataact aggttgtctg taaagagaga aggagtcaag aggacccagc 120
ctggggctga caggaacagt gacgttctag agacacagga tgcagactaa gtggagagat 180
ggggaagagg gtatggacag gaacgggcaa gcctccacag tctgctgtta ttatgtttca 240
cacgctgtgg atggagtcac cttgcagcgg ggaggctggt gggagggagc cctcataggt 300
gaccagtggg tcccgaactt cagagccggt ccggatgggc agctgtgggg taggaaat 358

Claims (3)

1.一种SD大鼠T细胞缺失遗传模型的制备方法,其特征在于:包括如下步骤:
1)确定靶序列:两个靶序列分别为:sgRNA1:5‘-GCCCAAGTCTCCATCATGGG AGG-3’,sgRNA2:5‘-GACCCACTGGTCACCTATGA GGG-3’;
2)设计引物:根据步骤1)获得的sgRNA靶序列设计3条引物,分别为:Rat-LCK-IVT-1:5‘-TTAATACGAC TCACTATAGG GGCCCAAGTC TCCATCATGG GGTTTTAGAG CTAGAAATAG CAAG-3’,Rat-LCK-IVT-2:5‘-TTAATACGAC TCACTATAGG GGACCCACTG GTCACCTATG AGTTTTAGAGCTAGAAATAG CAAG-3’,Rat-LCK-IVT-3:5‘-AAAAAAGCAC CGACTCGGTG CC-3’;
3)获得双链DNA片段:将步骤2)中Rat-LCK-IVT-1和Rat-LCK-IVT-3配对,Rat-LCK-IVT-1和Rat-LCK-IVT-3配对,以pX330质粒为模板,进行PCR扩增;将PCR扩增产物纯化,获得双链DNA片段;
4)获得sgRNA mRNA:将步骤3)获得的双链DNA片段分别作为模板,在体外转录后纯化,得到sgRNA1mRNA和sgRNA2mRNA;
5)获得Cas9mRNA并进行纯化:将Cas9载体经AgeI线性化,在体外转录后纯化,即得Cas9mRNA;
6)获得SD大鼠T细胞缺失遗传模型:将步骤5)获得的Cas9mRNA与步骤4)获得的sgRNA1mRNA和sgRNA2mRNA混合后,注射入大鼠受精卵细胞中,将存活的受精卵细胞移植入假孕SD大鼠雌鼠输卵管;待假孕SD大鼠分娩后,得到Founder大鼠;
将Founder大鼠与野生型SD大鼠回交,挑选F1代杂合子继续与野生型SD大鼠回交,重复从后代中挑选出杂合子用于回交,在回交后代中挑选杂合子自交,自交后代经检测得到的纯合子进行免疫表型分析,完全缺失T细胞的即为SD大鼠T细胞缺失遗传模型。
2.根据权利要求1所述的SD大鼠T细胞缺失遗传模型的制备方法,其特征在于:步骤6)中,Cas9mRNA、sgRNA1mRNA、sgRNA2mRNA的注射浓度均为50-100ng/ul。
3.根据权利要求1所述的SD大鼠T细胞缺失遗传模型的制备方法,其特征在于:步骤6)中进行免疫表型分析具体操作为:抽取LCK基因敲除SD大鼠纯合子的外周血,通过流式细胞术检测其T细胞是否已经完全缺失。
CN201710646278.XA 2017-07-28 2017-07-28 一种sd大鼠t细胞缺失遗传模型的制备方法 Pending CN107446954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710646278.XA CN107446954A (zh) 2017-07-28 2017-07-28 一种sd大鼠t细胞缺失遗传模型的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710646278.XA CN107446954A (zh) 2017-07-28 2017-07-28 一种sd大鼠t细胞缺失遗传模型的制备方法

Publications (1)

Publication Number Publication Date
CN107446954A true CN107446954A (zh) 2017-12-08

Family

ID=60490604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710646278.XA Pending CN107446954A (zh) 2017-07-28 2017-07-28 一种sd大鼠t细胞缺失遗传模型的制备方法

Country Status (1)

Country Link
CN (1) CN107446954A (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108300738A (zh) * 2018-02-01 2018-07-20 新乡医学院 一种nod遗传背景的中性粒细胞缺失的人源化小鼠模型的制备方法
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112410341A (zh) * 2020-12-01 2021-02-26 新乡医学院 一种可诱导的中性粒细胞特异性剔除的小鼠模型构建方法
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624196A (zh) * 2015-12-24 2016-06-01 江苏大学 一种建立cyp2c11基因敲除大鼠模型的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624196A (zh) * 2015-12-24 2016-06-01 江苏大学 一种建立cyp2c11基因敲除大鼠模型的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
T. J. MOLINA 等: "Profound block in thymocyte development in mice lacking p56lck", 《NATURE》 *
刘燕 等: "利用CRISPR/Cas9技术建立基因外显子敲除小鼠模型", 《中华老年医学杂志》 *
田兰: "p56lck与T细胞发育", 《生命科学》 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN108300738A (zh) * 2018-02-01 2018-07-20 新乡医学院 一种nod遗传背景的中性粒细胞缺失的人源化小鼠模型的制备方法
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112410341B (zh) * 2020-12-01 2023-05-23 新乡医学院 一种可诱导的中性粒细胞特异性剔除的小鼠模型构建方法
CN112410341A (zh) * 2020-12-01 2021-02-26 新乡医学院 一种可诱导的中性粒细胞特异性剔除的小鼠模型构建方法
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN107446954A (zh) 一种sd大鼠t细胞缺失遗传模型的制备方法
CN107043787B (zh) 一种基于CRISPR/Cas9获得MARF1定点突变小鼠模型的构建方法和应用
CN103388006B (zh) 一种基因定点突变的构建方法
Farboud et al. Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and organisms
CN103409468B (zh) 一种免疫缺陷小鼠模型的建立方法
CN108660161A (zh) 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
CN106318934A (zh) 胡萝卜β(1,2)木糖转移酶的基因全序列及用于转染双子叶植物的CRISPR/CAS9 的质粒构建
CN104178461A (zh) 携带cas9的重组腺病毒及其应用
CN105039339A (zh) 一种以RNA介导的特异性敲除绵羊FecB基因的方法及其专用sgRNA
CN106414740A (zh) CRISPR‑Cas9特异性敲除猪SLA‑3基因的方法及用于特异性靶向SLA‑3基因的sgRNA
CN109385451A (zh) 一种牡蛎CRISPR/Cas9基因编辑方法
CN106119284A (zh) 一种用于构建免疫缺陷动物模型的产品及其应用
Gu et al. Efficient generation of large‐fragment knock‐in mouse models using 2‐cell (2C)‐homologous recombination (HR)‐CRISPR
WO2018141127A1 (zh) 一种免疫缺陷大鼠模型的构建方法
CN106987604A (zh) 一种制备动脉粥样硬化疾病模型犬的方法
CN108300738B (zh) 一种nod遗传背景的中性粒细胞缺失的人源化小鼠模型的制备方法
CN112410341A (zh) 一种可诱导的中性粒细胞特异性剔除的小鼠模型构建方法
CN109868285A (zh) 一种免疫缺陷大鼠动物模型的构建方法及应用
CN108251456A (zh) 一种nod遗传背景的动脉粥样硬化小鼠模型的制备方法
CN106244556A (zh) 定点突变ApoE基因的方法
CN109929876A (zh) Vps28基因敲除小鼠动物模型的构建方法和应用
CN109504708A (zh) 一种筛选标记自我删除的基因打靶载体及方法
CN109811009A (zh) 一种利用CRISPR/Cas9系统构建敲除小鼠模型分析致死基因功能的方法
CN108949763A (zh) 能有效抑制猪瘟病毒感染的精确突变LamR基因及应用
CN103952442B (zh) Cre重组酶调控的非免疫耐受型OVA-HBsAg转基因小鼠的构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171208

RJ01 Rejection of invention patent application after publication