ES2754433T3 - Variantes de Cas para edición génica - Google Patents

Variantes de Cas para edición génica Download PDF

Info

Publication number
ES2754433T3
ES2754433T3 ES14825518T ES14825518T ES2754433T3 ES 2754433 T3 ES2754433 T3 ES 2754433T3 ES 14825518 T ES14825518 T ES 14825518T ES 14825518 T ES14825518 T ES 14825518T ES 2754433 T3 ES2754433 T3 ES 2754433T3
Authority
ES
Spain
Prior art keywords
protein
disease
mutant
deamination
mutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES14825518T
Other languages
English (en)
Inventor
David Liu
Alexis Komor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
Original Assignee
Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard College filed Critical Harvard College
Application granted granted Critical
Publication of ES2754433T3 publication Critical patent/ES2754433T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/50Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6472Cysteine endopeptidases (3.4.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/22Cysteine endopeptidases (3.4.22)
    • C12Y304/22062Caspase-9 (3.4.22.62)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04001Cytosine deaminase (3.5.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04004Adenosine deaminase (3.5.4.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04005Cytidine deaminase (3.5.4.5)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/22Endodeoxyribonucleases producing 3'-phosphomonoesters (3.1.22)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pathology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

Una proteína de fusión que comprende (i) un dominio de Cas9 de nucleasa inactiva; y (ii) un dominio de desaminasa.

Description

DESCRIPCIÓN
Variantes de Cas para edición génica
APOYO DEL GOBIERNO
La presente invención se hizo con el apoyo del gobierno de EE. UU. con la subvención HR0011-11-2-0003 concedida por la Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA), subvención GM095501 concedida por los Institutos Nacionales de Salud (NIH), y subvención N66001-12-C-4207 concedida por el Centro de Sistemas de Guerra Naval y Espacial (SPAWAR). El gobierno tiene ciertos derechos en la presente invención.
ANTECEDENTES DE LA INVENCIÓN
La edición dirigida de secuencias de ácidos nucleicos, por ejemplo, la introducción de una modificación específica en ADN genómico, es un enfoque muy prometedor para el estudio de la función génica y también tiene el potencial de proporcionar nuevas terapias para enfermedades genéticas humanas.1 Una tecnología ideal de edición de ácidos nucleicos posee tres características: (1) alta eficiencia de instalación de la modificación deseada; (2) actividad inespecífica mínima; y (3) la capacidad de ser programada para editar con precisión cualquier sitio en un ácido nucleico dado, por ejemplo, cualquier sitio dentro del genoma humano.2 Las actuales herramientas de ingeniería del genoma, que incluyen nucleasas de dedos de cinc modificadas (ZFNs),3 nucleasas efectoras de tipo activador de la transcripción (TALENs),4 y lo más recientemente, la ADN endonucleasa guiada por ARN Cas95, efectúan la escisión de ADN específica de secuencia en un genoma. Esta escisión programable puede dar como resultado la mutación del ADN en el sitio de escisión mediante unión de extremos no homólogos (NHEJ) o sustitución del ADN que rodea el sitio de escisión mediante reparación dirigida por homología (HDR).67
Un inconveniente de las tecnologías actuales es que tanto NHEJ como HDR son procesos estocásticos que normalmente dan como resultado modestas eficiencias de la edición génica, así como alteraciones génicas no deseadas, que pueden competir con la alteración deseada.8 Puesto que muchas enfermedades genéticas, en principio, se pueden tratar efectuando un cambio de nucleótidos específicos en una localización específica en el genoma (por ejemplo, un cambio de C a T en un codón específico de un gen asociado a una enfermedad),9 el desarrollo de una forma programable para lograr dicha edición génica con precisión representaría tanto una herramienta de investigación nueva poderosa, además de un posible nuevo enfoque de los agentes terapéuticos humanos basados en edición génica.
SUMARIO DE LA INVENCIÓN
El sistema de repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR) es un sistema inmunitario adaptativo procariota10 recientemente descubierto que ha sido modificado para permitir la ingeniería del genoma robusta y general en una variedad de organismos y líneas celulares.11 Los sistemas CRISPR-Cas (asociados a CRISPR) son complejos de proteína-ARN que usan una molécula de ARN (ARNgu) como guía para confinar el complejo a una secuencia de ADN diana mediante apareamiento de bases.12 En los sistemas naturales, una proteína Cas actúa entonces de endonucleasa para escindir la secuencia de ADN dirigida.13 La secuencia de ADN dirigida debe ser tanto complementaria al ARNgu, como también contener un dinucleótido de "motivo adyacente de protoespaciador" (PAM) en el extremo 3' de la región complementaria con el fin de que el sistema funcione (Figura 1).14 Entre las proteínas Cas conocidas, Cas9 de S. pyogenes ha sido generalmente ampliamente usada como una herramienta para ingeniería del genoma.15 Esta proteína Cas9 es una proteína multi-dominio grande que contiene dos dominios de nucleasa distintos. Se pueden introducir mutaciones puntuales en Cas9 para suprimir la actividad de nucleasa, dando como resultado una Cas9 muerta (dCas9) que todavía retiene su capacidad de unirse a ADN en un modo programado por ARNgu.16 En principio, cuando se fusiona con otra proteína o dominio, dCas9 puede dirigir esa proteína a prácticamente cualquier secuencia de ADN simplemente por co-expresión con un ARNgu apropiado.
El potencial del complejo de dCas9 para fines de ingeniería del genoma es inmenso. Su capacidad única para llevar proteínas a sitios específicos en un genoma programado por el ARNgu en teoría se puede desarrollar en una variedad de herramientas de ingeniería del genoma específicas de sitio más allá de las nucleasas, que incluyen activadores transcripcionales, represores transcripcionales, proteínas modificadoras de histonas, integrasas y recombinasas.11 Algunas de estas posibles aplicaciones se han implementado recientemente mediante fusiones de dCas9 con activadores transcripcionales para proporcionar activadores transcripcionales guiados por ARN,1718 represores transcripcionales,16-19-20 y enzimas de modificación de cromatina.21 La simple co-expresión de estas fusiones con una variedad de ARNgu da como resultado la expresión específica de los genes diana. Estos estudios seminales han sentado las bases para el diseño y la construcción de efectores específicos de secuencia fácilmente programables para la precisa manipulación de genomas.
Significativamente, el 80-90 % de las mutaciones de proteína responsables de la enfermedad humana surgen de la sustitución, deleción o inserción de solo un único nucleótido.6 Sin embargo, hasta ahora no se ha desarrollado ninguna herramienta de ingeniería del genoma que permita la manipulación de un único nucleótido de una manera general y directa. Las actuales estrategias para la corrección de genes de bases individuales incluyen nucleasas manipuladas (que se basan en la creación de roturas de cadena doble, DSBs, seguido por reparación dirigida por homología, HDR, ineficiente estocástica) y oligonucleótidos quiméricos de ADN-ARN.22 La última estrategia implica el diseño de una secuencia de ARN/ADN para aparear bases con una secuencia específica en ADN genómico, excepto en el nucleótido a editar. El desapareamiento resultante es reconocido por el sistema de reparación endógeno de células y reparado, conduciendo a un cambio en la secuencia de cualquiera de la quimera o el genoma. Ambas de estas estrategias padecen bajas eficiencias de edición génica y alteraciones génicas no deseadas, ya que se someten a tanto la estocasticidad de HDR como a la competición entre HDR y unión de extremos no homólogos, NHEJ.23-25 Las eficiencias de HDR varían según la localización del gen diana dentro del genoma,26 el estado del ciclo celular,27 y el tipo de célula/tejido.28 El desarrollo de una forma programable directa para instalar un tipo específico de modificación de base en una localización precisa en el ADN genómico con eficiencia de tipo enzima y sin estocasticidad representaría, por tanto, un enfoque nuevo y poderoso a las herramientas de investigación basadas en edición génica y agentes terapéuticos humanos.
Algunos aspectos de la presente divulgación proporcionan estrategias, sistemas, reactivos, métodos y kits que son útiles para la edición de ácidos nucleicos dirigidos, que incluyen editar un único sitio dentro del genoma de un sujeto, por ejemplo, el genoma humano. Se proporcionan proteínas de fusión de Cas9 y enzimas de edición de ácidos nucleicos o dominios de enzima, por ejemplo, dominios de desaminasa. Se proporcionan métodos de edición de ácidos nucleicos dirigidos. Se proporcionan reactivos y kits para la generación de proteínas de edición de ácidos nucleicos dirigidos, por ejemplo, proteínas de fusión de Cas9 y enzimas o dominios que editan ácidos nucleicos.
En un primer aspecto, la presente invención proporciona una proteína de fusión que comprende (i) un dominio de Cas9 de nucleasa inactiva; y (ii) un dominio de desaminasa. En algunas realizaciones, la desaminasa es una citidina desaminasa. En algunas realizaciones, la desaminasa es una desaminasa de la familia del complejo de edición de ARNm de apolipoproteína B (APOBEC). En algunas realizaciones, la desaminasa es una desaminasa de la familia APOBEC 1. En algunas realizaciones, la desaminasa es una citidina desaminasa inducida por activación (AID). En algunas realizaciones, la desaminasa es una ACF1/ASE desaminasa. En algunas realizaciones, la desaminasa es una adenosina desaminasa. En algunas realizaciones, la desaminasa es una desaminasa de la familia ADAT. En algunas realizaciones, el dominio de edición de ácidos nucleicos se fusiona con el extremo N del dominio de Cas9. En algunas realizaciones, el dominio de edición de ácidos nucleicos se fusiona con el extremo C del dominio de Cas9. En algunas realizaciones, el dominio de Cas9 y el dominio de edición de ácidos nucleicos se fusionan por un conector. En algunas realizaciones, el conector comprende un motivo (GGGGS)n (SEQ ID NO: 91), (G)n, (EAAAK)n (SEQ ID NO: 5), (GGS)n, SGSETPGTSESATPES (SeQ ID NO: 93) (véase, por ejemplo, Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82), o un motivo (XP)n, o una combinación de cualquiera de estos, en donde n es independientemente un número entero entre 1 y 30.
En un segundo aspecto, la invención proporciona una proteína de fusión según el primer aspecto de la invención, para su uso en medicina.
En un tercer aspecto, la invención proporciona un método in vitro o ex vivo de edición de ADN, comprendiendo el método poner en contacto una molécula de ADN con (a) una proteína de fusión según el primer aspecto de la invención; y (b) un ARN guía único (ARNgu) que dirige la proteína de fusión de (a) a una secuencia de nucleótidos diana de la molécula de ADN; en donde la molécula de ADN se pone en contacto con la proteína de fusión y el ARNgu en una cantidad eficaz y en condiciones adecuadas para la desaminación de una base nucleotídica de la molécula de ADN. En algunas realizaciones, la secuencia de ADN diana comprende una secuencia asociada a una enfermedad o trastorno, y en donde la desaminación de la base nucleotídica da como resultado una secuencia que no se asocia a una enfermedad o trastorno. En algunas realizaciones, la secuencia de ADN comprende una mutación puntual T>C o A>G asociada a una enfermedad o trastorno, y en donde la desaminación de la base C o G mutante da como resultado una secuencia que no se asocia a una enfermedad o trastorno. En algunas realizaciones, la desaminación corrige una mutación puntual en la secuencia asociada a la enfermedad o trastorno. En algunas realizaciones, la secuencia asociada a la enfermedad o trastorno codifica una proteína, y en donde la desaminación introduce un codón de terminación en la secuencia asociada a la enfermedad o trastorno, dando como resultado una truncación de la proteína codificada. En algunas realizaciones, la desaminación corrige una mutación puntual en el gen PI3KCA, corrigiendo así una mutación H1047R y/o A3140G. En algunas realizaciones, la enfermedad o trastorno es una enfermedad asociada a una mutación puntual, o una mutación de una base individual, en el genoma. En algunas realizaciones, la enfermedad es una enfermedad genética, un cáncer, una enfermedad metabólica, o una enfermedad de almacenamiento lisosómico.
En un cuarto aspecto, la invención proporciona la proteína de fusión del primer aspecto de la invención para su uso en un método de tratamiento de una enfermedad o trastorno, comprendiendo el método poner en contacto una molécula de ADN con
(a) la proteína de fusión; y
(b) un ARNgu que dirige la proteína de fusión de (a) a una secuencia de ADN diana de la molécula de ADN; en donde la molécula de ADN se pone en contacto con la proteína de fusión y el ARNgu en una cantidad eficaz y en condiciones adecuadas para la desaminación de una base nucleotídica de la molécula de ADN,
en donde la secuencia de ADN diana comprende una secuencia asociada a una enfermedad o trastorno, la desaminación de la base nucleotídica da como resultado una secuencia que no se asocia a una enfermedad o trastorno, y en donde el contacto es in vivo en un sujeto susceptible a tener, que tiene, o diagnosticado con una enfermedad o trastorno. En algunas realizaciones, la secuencia de ADN comprende una mutación puntual T>C o A>G asociada a una enfermedad o trastorno, y en donde la desaminación de la base C o G mutante da como resultado una secuencia que no se asocia a una enfermedad o trastorno. En algunas realizaciones, la desaminación corrige una mutación puntual en la secuencia asociada a la enfermedad o trastorno. En algunas realizaciones, la secuencia asociada a la enfermedad o trastorno codifica una proteína, y en donde la desaminación introduce un codón de terminación en la secuencia asociada a la enfermedad o trastorno, dando como resultado una truncación de la proteína codificada. En algunas realizaciones, la desaminación corrige una mutación puntual en el gen PI3KCA, corrigiendo así una mutación H1047R y/o A3140G. En algunas realizaciones, la enfermedad o trastorno es una enfermedad asociada a una mutación puntual, o una mutación de una base individual, en el genoma. En algunas realizaciones, la enfermedad es una enfermedad genética, un cáncer, una enfermedad metabólica, o una enfermedad de almacenamiento lisosómico.
Algunos aspectos de la presente divulgación proporcionan una construcción indicadora para detectar actividad de edición de ácidos nucleicos de una proteína de fusión de Cas9: dominio de edición de ADN. La construcción puede comprender (a) un gen indicador que comprende un sitio diana para la proteína de edición de ADN de Cas9, en donde la edición dirigida de ADN da como resultado un aumento en la expresión del gen indicador; y (b) una secuencia promotora que controla la expresión del gen indicador. La construcción puede comprender además (c) una secuencia que codifica un ARNgu que dirige la proteína de edición de ADN de Cas9 al sitio diana del gen indicador, en donde la expresión del ARNgu es independiente de la expresión del gen indicador. El sitio diana del gen indicador comprende un codón de terminación prematuro, y en donde la edición dirigida de ADN de la cadena molde por la proteína de edición de ADN de Cas9 da como resultado una conversión del codón de terminación prematuro en un codón que codifica un resto de aminoácido. El gen indicador puede codificar una luciferasa, una proteína fluorescente, o un marcador de resistencia a antibióticos.
Algunos aspectos de la presente divulgación proporcionan kits que comprenden una construcción de ácidos nucleicos que comprende una secuencia que codifica una secuencia de Cas9 inactiva en nucleasa, una secuencia que comprende un sitio de clonación situado para permitir la clonación de una secuencia que codifica una enzima de edición de ácidos nucleicos o dominio de enzima en marco con la secuencia codificante de Cas9, y, opcionalmente, una secuencia que codifica un conector situado entre la secuencia codificante de Cas9 y el sitio de clonación. Además, el kit puede comprender reactivos, tampones, y/o instrucciones adecuados para la clonación en marco de una secuencia que codifica una enzima de edición de ácidos nucleicos o dominio de enzima en la construcción de ácidos nucleicos para generar una proteína de fusión de edición de ácidos nucleicos de Cas9. La secuencia que comprende el sitio de clonación puede ser el extremo N de la secuencia de Cas9. La secuencia que comprende el sitio de clonación puede ser el extremo C de la secuencia de Cas9. El conector codificado puede comprender un motivo (GGGGS)n (SEQ ID NO: 91), (G)n, (EAAAK)n(SEQ ID NO: 5), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 93) (véase, por ejemplo, Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82, o un motivo (XP)n, o una combinación de cualquiera de estos, en donde n es independientemente un número entero entre 1 y 30.
Algunos aspectos de la presente divulgación proporcionan kits que comprenden una proteína de fusión que comprende un dominio de Cas9 de nucleasa inactiva y un enzima de edición de ácidos nucleicos o dominio de enzima, y, opcionalmente, un conector situado entre el dominio de Cas9 y la enzima de edición de ácidos nucleicos o dominio de enzima. Además, el kit puede comprender reactivos, tampones y/o instrucciones adecuados para usar la proteína de fusión, por ejemplo, para edición in vitro o in vivo de ADN o ARN. El kit puede comprender instrucciones referentes al diseño y uso de ARNgu adecuadas para la edición dirigida de una secuencia de ácidos nucleicos.
El sumario anterior se indica para ilustrar, de una manera no limitante, algunas de las realizaciones, ventajas, características y usos de la tecnología desvelada en el presente documento. Otras realizaciones, ventajas, características y usos de la tecnología desvelada en el presente documento serán evidentes a partir de la descripción detallada, los dibujos, los ejemplos y las reivindicaciones.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1. El complejo de Cas9/ARNgu-ADN. El extremo 3' del ARNgu forma un complejo de ribonucleoproteína con la nucleasa Cas9, mientras que el extremo 5' de 20 nt del ARNgu reconoce su extensión complementaria de ADN. La unión de ADN requiere la secuencia 5' de PAM de 3 nt para el ADN diana. En el caso de wtCas9, ocurre la escisión de ADN de cadena doble 3 nt desde PAM para producir extremos romos (mostrados por las flechas). Se debe observar que el tamaño de la burbuja es desconocido.
Figura 2. Estructura cristalina del dominio catalítico de APOBEC3G (PDB ID 3E1U). La estructura secundaria de núcleo, que se cree que está conservada entre toda la familia, consiste en una lámina p de cinco cadenas (flechas) flanqueada por seis hélices a. Se cree que el bucle de centro activo (bucle de sitio activo) es responsable de determinar la especificidad de desaminación. El Zn2+ responsable de la actividad catalítica se muestra como una esfera. Las secuencias corresponden, de arriba a abajo, a SEQ ID NOs: 97-98.
Figura 3. Diseño de ensayo indicador basado en luciferasa. Se variará el ARNgu para dirigir numerosas secuencias que corresponden a regiones antes de y que incluyen el gen luciferasa para dirigir el codón de iniciación mutado (resto C subrayado). Se añadirá una región "tampón" entre el codón de iniciación y el gen luciferasa para incluir codones de solo A y T (mostrados como (ZZZ)x). Se indica la secuencia de Shine-Dalgarno. En algunas realizaciones, es preferible mantener todos los C apareados con bases para prevenir efectos inespecíficos.
Figura 4. Ensayo de desaminasa. Las secuencias correspondes, de arriba a abajo, a SEQ ID NOs: 99-105. Figura 5. Gel de SDS-PAGE de ADNbc editado por proteínas de fusión Cas9-APOBEC1.
DEFINICIONES
Como se usa en el presente documento y en las reivindicaciones, las formas en singular "un", "una", "el" y "la" incluyen la referencia al singular y al plural, a menos que el contexto indique claramente de otro modo. Así, por ejemplo, una referencia a "un agente" incluye un único agente y una pluralidad de dichos agentes.
El término "Cas9" o "nucleasa Cas9" se refiere a una nucleasa guiada por ARN que comprende una proteína Cas9, o un fragmento de la misma (por ejemplo, una proteína que comprende un dominio de escisión de ADN activo o inactivo de Cas9, y/o el dominio de unión de ARNg de Cas9). Una nucleasa Cas9 también se refiere algunas veces como una nucleasa casn1 o una nucleasa asociada a CRISPR (repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas). CRISPR es un sistema inmunitario adaptativo que proporciona protección contra elementos genéticos móviles (virus, elementos transponibles y plásmidos conjugativos). Las agrupaciones CRISPR contienen espaciadores, secuencias complementarias a elementos móviles antecedentes, y se dirigen a ácidos nucleicos invasores. Las agrupaciones de CRISPR se transcriben y procesan en ARN de CRISPR (ARNcr). En sistemas CRISPR de tipo II, el correcto procesamiento de pre-ARNcr requiere un ARN pequeño trans-codificado (ARNcrtra), ribonucleasa endógena 3 (rnc) y una proteína Cas9. El ARNcrtra sirve de guía para el procesamiento ayudado por ribonucleasa 3 de pre-ARNcr. Posteriormente, Cas9/ARNcr/ARNcrtra escinde endonucleolíticamente el ADNbc diana lineal o circular complementario al espaciador. La cadena diana no complementaria a ARNcr se corta primero endonucleolíticamente, luego se corta en 3'-5' exonucleolíticamente. En la naturaleza, la unión y escisión de ADN normalmente requiere proteína y ambos ARNs. Sin embargo, se pueden manipular los ARN guía único ("ARNgu", o simplemente "ARNg") para incorporar aspectos de tanto el ARNcr como el ARNcrtra en una única especie de ARN. Véase, por ejemplo, Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816-821(2012). Cas9 reconoce un motivo corto en las secuencias de repetición de CRISPR (PAM o el motivo adyacente de protoespaciador) para ayudar a distinguir propio frente a no propio. Las secuencias y estructuras de la nucleasa Cas9 son bien conocidas por los expertos en la técnica (véanse, por ejemplo, "Complete genome sequence of an M1 strain of Streptococcus pyogenes." Ferretti et al., J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A., McLaughlin R.E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); "CRISPR RnA maturation by trans-encoded small RNA and host factor RNase III." Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E., Nature 471:602-607(2011); y "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity." Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816-821(2012)). Se han descrito ortólogos de Cas9 en diversas especies, que incluyen, pero no se limitan a, S. pyogenes y S. thermophilus. Las nucleasas y secuencias Cas9 adecuadas adicionales serán evidentes para los expertos en la técnica basándose en la presente divulgación, y dichas nucleasas y secuencias de Cas9 incluyen secuencias de Cas9 de los organismos y loci desvelados en Chylinski, Rhun y Charpentier, "The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems" (2013) RNA Biology 10:5, 726-737. En algunas realizaciones, una nucleasa Cas9 tiene un dominio de escisión de ADN inactivo (por ejemplo, uno inactivado).
Una proteína Cas9 inactivada en nucleasa se puede denominar indistintamente una proteína "dCas9" (de nucleasa Cas9 "muerta"). Se conocen métodos de generación de una proteína Cas9 (o un fragmento de la misma) que tienen un dominio de escisión de ADN inactivo (véase, por ejemplo, Jinek et al., Science. 337:816-821(2012); Qi et al., "Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression" (2013) Cell.
28;152(5):1173-83. Por ejemplo, se conoce que el dominio de escisión de ADN de Cas9 incluye dos subdominios, el dominio de nucleasa HNH y el subdominio RuvC1. El subdominio HNH escinde la cadena complementaria al ARNg, mientras que el subdominio RuvC1 escinde la cadena no complementaria. Las mutaciones dentro de estos subdominios pueden silenciar la actividad de nucleasa de Cas9. Por ejemplo, las mutaciones D10A y H841A inactivan completamente la actividad de nucleasa de Cas9 de S. pyogenes (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28;152(5):1173-83 (2013). En algunas realizaciones, se proporcionan proteínas que comprenden fragmentos de Cas9. Por ejemplo, en algunas realizaciones, una proteína comprende uno de los dos dominios de Cas9: (1) el dominio de unión ARNg de Cas9; o (2) el dominio de escisión de ADN de Cas9. En algunas realizaciones, las proteínas que comprenden Cas9 o fragmentos de la misma se denominan "variantes de Cas9". Una variante de Cas9 comparte homología con Cas9, o un fragmento de la misma. Por ejemplo, una variante de Cas9 es al menos aproximadamente 70 % idéntica, al menos aproximadamente 80 % idéntica, al menos aproximadamente 90 % idéntica, al menos aproximadamente 95 % idéntica, al menos aproximadamente 96 % idéntica, al menos aproximadamente 97 % idéntica, al menos aproximadamente 98 % idéntica, al menos aproximadamente 99 % idéntica, al menos aproximadamente 99,5 % idéntica, o al menos aproximadamente 99,9 % a Cas9 no mutante. En algunas realizaciones, la variante de Cas9 comprende un fragmento de Cas9 (por ejemplo, un dominio de unión de ARNg o un dominio de escisión de ADN), de forma que el fragmento sea al menos aproximadamente 70 % idéntico, al menos aproximadamente 80 % idéntico, al menos aproximadamente 90 % idéntico, al menos aproximadamente 95 % idéntico, al menos aproximadamente 96 % idéntico, al menos aproximadamente 97 % idéntico, al menos aproximadamente 98 % idéntico, al menos aproximadamente 99 % idéntico, al menos aproximadamente 99,5 % idéntico, o al menos aproximadamente 99,9 % al fragmento correspondiente de Cas9 no mutante. En algunas realizaciones, Cas9 no mutante corresponde a Cas9 de Streptococcus pyogenes (secuencia de referencia de NCBI:
NC_017053.1, SEQ ID NO: 1 (nucleótido); SEQ ID NO: 2 (aminoácido)).
ATGGATAAGAAATACTCAATAGGCTTAGAIATCGGCACAAATAGCGTCGGATGGGCGGTGATCACTGATGAITAT
AAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATACAGACCGCCACAGIATCAAAAAAAATCTTATAGGGGCT
CTTTTATTTGGCAGTGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATACACGTCGG
AAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTTTCTTTCATCGA
CITGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTCATCCIATTTTTGGAAATATAGTAGATGAA
GTTGCTTATCATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACTGATAAAGCGGAT
TIGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCAITTTTTGATTGAGGGAGATTTAAAT
CCTGATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAATCTACAATCAATTATTTGAAGAAAACCCT
ATTAACGCAAGTAGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCAAGACGATTAGAAAATCTC
AITGCTCAGCTCCCCGGTGAGAAGAGAAATGGCTTGTTTGGGAATCTCATIGCTTTGTCATTGGGATTGACCCCT
AATTTTAAATCAAATTTTGATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTA
GATAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTTATCAGATGCTATT
TTACTTTCAGATATCCTAAGAGTAAATAGTGAAATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAGCGCTAC
GATGAACATCATCAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATC
TTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCTAGCCAAGAAGAATTTTATAAATTT
ATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGC
AAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAGA
CAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTAT
TATGTTGGTCCATTGGCGCGTGGCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCA
TGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGCATGACAAACTTTGATAAA
AATCTTCCAAATGAAAAAGTACTACCAAAACATA.GTTTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACA
AAGGTCAAATATGTTACTGAGGGAATGCGAA.AACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGAT
TIACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAATGTTTT
GATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGCGCCTACCATGATTTGCTAAAAATT
ATTAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTTAACATTGACCTTA
TTTGAAGATAGGGGGATGATTGAGGAAAGACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAG
CTTAAACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCT
GGCAAAACAATATTAGAITTTTTGAAATCAGAIGGTTTTGCCAATCGCAATTTIATGCAGCTGATCCATGATGAT
AGTTTGACATTTAAAGAflGATATTCAAAAAGCACAGGTGTCTGGACAAGGCCATAGTTTACATGAACAGATTGCT
AACTTAGCTGGCAGTCCTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAATTGTTGATGAACTGGTCAAAGTA
ATGGGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGACAAJGTCAAAAGGGCCAGAAAAAT
TCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTT
GAAAATACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTACAAAATGGAA.GAGACATGTATGTGGACCAA
GAATTAGATATTAATCGTTTAAGTGATTATGATGTCGATCACATTGTTCCACAAAGTTTCATTAAAGACGATTCA
ATAGACAATAAGGTACTAACGCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTC
AAAAAGATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACG
AAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAA
ATCACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTATTCGA
GAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAAAGATTTCCAATTCTATAAAGTACGT
GAGATTAACAATTACCATCATGCCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATAT
CCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTA.AAATGATTGCTAAGTCTGAG
CAAGAAATAGGCAAAGCAACCGCAAAATAITTCTTTTACTCTAATATCATGAACTTCTTCAAAACAGAAATIACA
CTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAA
GGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTACAG
ACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGG
GATCCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAAAAA
GGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAATTATGGAAAGAAGTTCCTTTGAAAAA
AATCCGATTGACTTTTTAGAAGCTAAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATAT
AGTCTTTTTGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAGCTG
GCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCCAGAAGAT
AACGAACAAAAACAATTGTTTGIGGAGCAGCATAAGCATTATTTAGATGAGATTñTTGAGCAfiATCAGTGAATTI
TCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCA
ATACGTGAACAAGCAGAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATAT
TTTGATACAACAATTGATCGTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAATCC
ATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGA (SEQ ID NO: 1 )
MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFGSGETAEATRLKRTARRRYTRR
KNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLADSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQIYNQLFEENPINASRVDAKAILSARLSKSRRLENL
IAQLPGEKRNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKF
IKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQ1HLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGN SRFAWMTRKSEETITPMNFEEWDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELT
KVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGAYHDLLKI
IKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEERLKTYAHLFDDKVMKQLKRRRYTGÍJGRLSRKLINGIRDKQS
GKTILDFLKSDGFANRNFMOL1HDDSLTFKEDIOKAOVSGOGHSLHEOIANLAGSPAIKKGILOTVKIVDELVKV
MGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVEHTQLQNEKLYLYYLQNGRDMYVDQ
ELD1HRLSDYDVDHIVPQSFIKDDSIDNKVLTRSDKNRGKSDNVPSEEWKKMKNYWRQ1LNAKLITQRKFDNLT
KAERGGLSELDKAGFIKRQLVETROITKHVAOILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVR
EINNYHHAHDAYLNAWGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEOEIGKATAKYFFYSNIMNFFKTEIT
LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVOTGGFSKESILPKRNSDKLIARKKDW
DPKKYGGFDSPTVAZSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKY
SLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF
SKRVILADANLDKVLSAYNKHRDKPIREQAENI1HLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATL1HQS
ITGLYETRIDLSQLGGD (SEQ ID NO: 2 )
(subrayado sencillo: dominio HNH; subrayado doble: dominio RuvC)
En algunas realizaciones, Cas9 no mutante corresponde a, o comprende, SEQ ID NO: 3 (nucleótido) y/o SEQ ID NO: 4 (aminoácido):
ATGGATAAAAAGTATTCTATTGGTTTAGACATCGGCACTAATTCCGTTGGATGGGCTGTCATAACCGATGAATAC
AAAGTACCTTCAAAGAAATITAAGGTGTTGGGGAACACAGACCGTCATTCGATTAAAAAGAATCTTATCGGTGCC
CTCCTATTCGATAGTGGCGAAACGGCAGAGGCGACTCGCCTGAAACGAACCGCTCGGAGAAGGTATACACGTCGC
AAGAACCGAATATGTTACTTACAAGAAATTTTTAGCAATGAGATGGCCAAAGTTGACGATTCTTTCTTTCACCGT
TTGGAAGAGTCCTTCCTTGTCGAAGAGGACAAGAAACATGAACGGCACCCCATCTTTGGAAACATAGTAGATGAG
GTGGCATATCATGAAAAGTACCCAACGATTTATCACCTCAGAAAAAAGCTAGTTGACTCAACTGATAAAGCGGAC
CTGAGGTTAATCTACTTGGCTCTTGCCCATATGATAAAGTTCCGTGGGCACTTICTCATTGAGGGTGATCTAAAT
CCGGACAACTCGGATGTCGACAAACTGTTCATCCAGTTAGTACAAACCTATAATCAGTTGTTTGAAGAGAACCCT
ATAAATGCAAGTGGCGTGGATGCGAAGGCTATTCTTAGCGCCCGCCTCTCTAAATCCCGACGGCTAGAAAACCTG
AICGCACAATTACCCGGAGAGAAGAAAAATGGGTTGTTCGGTAACCTTATAGCGCTCICACTAGGCCTGACACCA
AATTTTAAGTCGAACTTCGACTTAGCTGAAGATGCCAAATTGCAGCTTAGIAAGGACACGTACGATGACGATCTC
GACAATCTACTGGCACAAATTGGAGATCAGTATGCGGACTTATTTTTGGCTGCCAAAAACCTTAGCGATGCAATC
CTCCTñTCTGACATACTGAGAGTTAATACTGAGATTACCAAGGCGCCGTTATCCGCTTCAATGATCAAAAGGTAC
GATGAACATCACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTCAGCAACTGCCTGAGAAATATAAGGAAATA
TTCTTTGATCAGTCGAAAAACGGGTACGCAGGTTATATTGACGGCGGAGCGAGTCAAGAGGAATTCTACAAGTTT
ATCAAACCCATATTAGAGAAGATGGATGGGACGGAAGAGTTGCTTGTAAAACTCAATCGCGAAGATCTACTGCGA
AAGCAGCGGACTTTCGACAACGGTAGCATTCCACATCAAATCCACTTAGGCGAATTGCATGCTATACTTAGAAGG
CAGGAGGATTTTTATCCGTTCCTCAAAGACAATCGTGAAAAGATTGAGAAAATCCTAfiCCTTTCGCATACCTTAC
TATGTGGGACCCCTGGCCCGAGGGAACTCTCGGTTCGCATGGATGACAAGAAAGTCCGAAGAAACGATTACTCCA
TGGAATTTTGAGGAAGTTGTCGATAAAGGTGCGTCAGCTCAATCGTTCATCGAGAGGATGACCAACTTTGACAAG
AATTTACCGAACGAAAAAGTATTGCCTAAGCACAGTTTACTTTACGAGTATTTCACAGTGTACAATGAACTCACG
AAAGTTAAGTATGTCACTGAGGGCATGCGTAAACCCGCCTTTCTAAGCGGAGAACAGAAGAAAGCAATAGTAGAT
CTGTTATTCAAGACCAACCGCAAAGTGACAGTTAAGCAATTGAAAGAGGACTACTTTAAGAAAATTGAATGCTTC
GATTCTGTCGAGATCTCCGGGGTAGAñGATCGATTTAATGCGTCACTTGGIACGTATCATGACCTCCTAAAGATA
ATTAAAGATAAGGACTTCCTGGATAACGAAGAGAATGAAGATATCTTAGAAGATATAGTGTTGACTCTTACCCTC
TTTGAAGATCGGGAAATGATTGAGGAAAGACTAAAAACATACGCTCACCTGTTCGACGATAAGGTTATGAAACAG
TTAAAGAGGCGTCGCTAIACGGGCTGGGGACGATTGTCGCGGAAACTTATCAACGGGATAAGAGACAAGCAAAGI
GGTAAAACTATTCTCGATTTTCTAAAGAGCGACGGCTTCGCCAATAGGAACTTTATGCAGCTGATCCATGATGAC
TCTTTAACCTTCAAAGAGGATATACAAAAGGCACAGGTTTCCGGACAAGGGGACTCATTGCACGAACATATTGCG
AATCTTGCTGGTTCGCCAGCCATCAAAAAGGGCATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTC
ATGGGACGTCACAAACCGGAAAACATTGTAATCGAGATGGCACGCGAAAATCAAACGACTCAGAAGGGGCAAAAA
AACAGTCGAGAGCGGATGAAGAGAATAGAAGAGGGTATTAAAGAACTGGGCAGCCAGATCTTAAAGGAGCATCCT
GTGGAAAATACCCAATTGCAGAACGAGAAACTTTACCTCTATTACCTACAAAATGGAAGGGACATGTATGTTGAT
CAGGAACTGGACATAAACCGTTTATCTGATTACGACGTCGATCACATTGTACCCCAATCCTTTTTGAAGGACGAT
TCAATCGACAATAAAGTGCTTACACGCTCGGATAAGAACCGAGGGAAAAGTGACAATGTTCCAAGCGAGGAAGTC
GTAAAGAAAATGAAGAACTATTGGCGGCAGCTCCTAAATGCGAAACTGATAACGCAAAGAAAGTTCGATAACTTA
ACTAAAGCTGAGAGGGGTGGCTTGTCTGAACTTGACAAGGCCGGATTTATTAAACGTCAGCTCGTGGAAACCCGC
CAAATCACAAAGCATGTTGCACAGATACTAGATTCCCGAATGAATACGAAATACGACGAGAACGATAAGCTGATT
CGGGAAGTCAAAGTAATCACTTTAAAGTCAAAATTGGTGTCGGACTTCAGAAAGGATTTTCAATTCTATAAAGTT
AGGGAGATAAATAACTACCACCATGCGCACGACGCTTATCTTAATGCCGTCGTAGGGACCGCACTCATTAAGAAA
TACCCGAAGCIAGAAAGIGAGTITGTGTATGGIGATTACAAAGTTTATGACGTCCGTAAGATGATCGCGAAAAGC
GAACAGGAGATAGGCAAGGCTACAGCCAAATACTTCTTTTATTCTAACATTATGAATTTCTTTAAGACGGAAATC
ACTCTGGCAAACGGAGAGATACGCAAfiCGACCTTTAATTGAAACCAATGGGGAGACAGGTGAAATCGTATGGGAT
AAGGGCCGGGACTTCGCGACGGTGAGAAAAGTTTTGTCCATGCCCCAAGTCAACATAGTAAAGAAAACTGAGGTG
CAGACCGGAGGGTTTTCAAAGGAATCGATTCTTCCAAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAAAGGAC
TGGGACCCGAAAAAGTACGGTGGCTTCGATAGCCCTACAGTTGCCTATTCTGTCCTAGTAGTGGCAAAAGTTGAG
AAGGGAAAATCCAAGAAACTGAAGTCAGTCAAAGAATTATTGGGGATAACGATTATGGAGCGCTCGTCTTTTGAA
AAGAACCCCATCGACTTCCTTGAGGCGAAAGGTTACAAGGAAGTAAAAAAGGATCTCATAATTAAACTACCAAAG
TATAGTCTGTTTGAGTTAGAAAATGGCCGAAAACGGATGTTGGCTAGCGCCGGAGAGCTTCAAAAGGGGAACGAA
CTCGCACTACCGTCIAAATACGIGAATTTCCTGTATTTAGCGTCCCATTACGAGAAGTTGAAAGGTTCACCIGAA
GATAACGAACAGAAGCAACTTTTTGTTGAGCAGCACAAACATTATCTCGACGAAATCATAGAGCAAATTTCGGAA
TTCAGTAAGAGAGTCATCCTAGCTGATGCCAATCTGGACAAAGTATTAAGCGCATACAACAAGCACAGGGATAAA
CCCATACGTGAGCAGGCGGAAAATATTATCCATTTGTTTACTCTTACCAACCTCGGCGCTCCAGCCGCATTCAAG
TATTTTGACACAACGATAGATCGCAAACGATACACTTCTACCAAGGAGGTGCTAGACGCGACACTGATTCACCAA
TCCATCACGGGATTATATGAAACTCGGATAGATTTGTCACAGCTTGGGGGTGACGGATCCCCCAAGAAGAAGAGG
AAAGTCTCGAGCGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGAC
AñGGCTGCAGGA (SEQ ID NO;3)
MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRR
KNRICYLQEIFSNEMAK7DDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEEWPINASGVDAKAILSARLSKSRRLENL
IAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKF
IKFILEKMDGTEELLVKLNREDLLRKQRTFDNGSIFHQ1HLGELHAILRRQEDFYPFLKDWREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEWDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELT
KVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS
GKTILDFLKSDGFANRNFMOL1HDDSLTFKEDIQKAOVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV
MGRHKPENIVIEMARENQT T QKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVD
QELDIMRLSDYDVDHIVPQSFLKDD5IDNKVLTRSDKNRGKSDMVPSEEVVKKMKNYWRQLLHAKLITQRKFDNL
TKAERGGLSELDKAGFIKROLVETRQITKHVAOILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFOFYKV
REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPOVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD
WDPKKYGGFDSPTVAYSVLWñKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK
YSLFELENGRKRMLASAGELQKGWELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE
FSKRVILADANLDKVLSAYNKHRDKPIREQAENI1HLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATL1HQ
SITGLYETRIDLSQLGGD (SEQ ID NO:4)
(subrayado sencillo: dominio HNH; subrayado doble: dominio RuvC)
En algunas realizaciones, dCas9 corresponde a, o comprende en parte o en total, una secuencia de aminoácidos de Cas9 que tiene una o más mutaciones que inactivan la actividad de la nucleasa Cas9. Por ejemplo, en algunas realizaciones, un dominio de dCas9 comprende la mutación D10A y/o H820A.
dCas9 (D10A y H840A):
MDKKYSIGLAIGTMSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRR
KNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD
LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENL
IAQLPGEKKWGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKWGYAGYIDGGASQEEFYKF
IKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQ1HLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEWDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELT
KVKYVTEGMRKPAFLSGEGKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEEKEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS
GKTILDFLKSDGFAHRMFMOL1HDDSLTFKEDIOKAOVSGOGDSLHEHIAHLAGSPAIKKGILOTVKWDELVKV
MGRHKPEMIVIEMAREMQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVEMTQLQNEKLYLYYLQNGRDMYVD
QELDINRLSDYDVDAIVPQSFLKDDSIDHKVLTRSDKNRGKSDHVPSEEVVKKMKHYWRQLLMAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDEMDKLIREVKVITLKSKLVSDFRKDFQFYKV
REINNYHHAHDAYLNAWG TALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQE IGKATAKY'FFYSHIMNFFKTEI
TLANGEIRKRPLIETMGETGEIVWDKGRDFATVRKVLSMPQVHIVKKTEVQTGGFSKESILPKRMSDKLIARKKD
WDPKKYGGFDSPTVAYSVLWAKVEKGKSKKLKSVKELLGITIMERSSFEKMPIDFLEAKGYKEVKKDLIIKLPK
YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE
FSKRVILADANLDKVLSAYNKHRDKPIREQAENI1HLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDA.TL1HQ
SITGLYETRIDLSQLGGD (SEQ ID NO: 34)
(subrayado sencillo: dominio HNH; subrayado doble: dominio RuvC)
En otras realizaciones, se proporcionan variantes de dCas9 que tienen mutaciones distintas de D10A y H820A, que, por ejemplo, dan como resultado Cas9 inactivada en nucleasa (dCas9). Dichas mutaciones, a modo de ejemplo, incluyen otras sustituciones de aminoácidos en D10 y H820, u otras sustituciones dentro de los dominios de nucleasa de Cas9 (por ejemplo, sustituciones en el subdominio de nucleasa HNH y/o el subdominio RuvC1). En algunas realizaciones, se proporcionan variantes u homólogos de dCas9 (por ejemplo, variantes de SEQ ID NO: 34) que son al menos aproximadamente 70 % idénticas, al menos aproximadamente 80 % idénticas, al menos aproximadamente 90 % idénticas, al menos aproximadamente 95 % idénticas, al menos aproximadamente 98 % idénticas, al menos aproximadamente 99 % idénticas, al menos aproximadamente 99,5 % idénticas, o al menos aproximadamente 99,9 % a SEQ ID NO: 34. En algunas realizaciones, se proporcionan variantes de dCas9 (por ejemplo, variantes de SEQ ID NO: 34) que tienen secuencias de aminoácidos que son más cortas, o más largas que SEQ ID NO: 34, por aproximadamente 5 aminoácidos, por aproximadamente 10 aminoácidos, por aproximadamente 15 aminoácidos, por aproximadamente 20 aminoácidos, por aproximadamente 25 aminoácidos, por aproximadamente 30 aminoácidos, por aproximadamente 40 aminoácidos, por aproximadamente 50 aminoácidos, por aproximadamente 75 aminoácidos, por aproximadamente 100 aminoácidos o más.
En algunas realizaciones, las proteínas de fusión de Cas9 como se proporcionan en el presente documento comprenden el aminoácido de longitud completa de una proteína Cas9, por ejemplo, una de las secuencias proporcionadas anteriormente. En otras realizaciones, sin embargo, las proteínas de fusión como se proporcionan en el presente documento no comprenden una secuencia de Cas9 de longitud completa, sino solo un fragmento de la misma. Por ejemplo, en algunas realizaciones, una proteína de fusión de Cas9 proporcionada en el presente documento comprende un fragmento de Cas9, en donde el fragmento se une a ARNcr y ARNcrtra o ARNgu, pero no comprende un dominio de nucleasa funcional, por ejemplo, en el que comprende solo una versión truncada de un dominio de nucleasa o dominio de no nucleasa en absoluto. Se proporcionan en el presente documento secuencias de aminoácidos a modo de ejemplo de dominios de Cas9 y fragmentos de Cas9 adecuados, y dominios y fragmentos de secuencias de Cas9 adecuados adicionales serán evidentes para los expertos en la técnica.
En algunas realizaciones, Cas9 se refiere a Cas9 de: Corynebacterium ulcerans (Ref. de NCBI: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (Ref. de NCBI: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (Ref. de NCBI: NC_021284.1); Prevotella intermedia (Ref. de NCBI: NC_017861.1); Spiroplasma taiwanense (Ref. de NCBI: NC_021846.1); Streptococcus iniae (Ref. de NCBI: NC_021314.1); Belliella baltica (Ref. de NCBI: NC_018010.1); Psychroflexus torquis (Ref. de NCBI: NC_018721.1); Streptococcus thermophilus (Ref. de NCBI: YP_820832.1); Listeria innocua (Ref. de NCBI: NP_472073.1); Campylobacter jejuni (Ref. de NCBI: YP_002344900.1); o Neisseria meningitidis (Ref. de NCBI: YP_002342100.1).
El término "desaminasa" se refiere a una enzima que cataliza una reacción de desaminación. En algunas realizaciones, la desaminasa es una citidina desaminasa, que cataliza la desaminación hidrolítica de citidina o desoxicitidina a uracilo o desoxiuracilo, respectivamente.
El término "cantidad eficaz", como se usa en el presente documento, se refiere a una cantidad de un agente biológicamente activo que es suficiente para provocar una respuesta biológica deseada. Por ejemplo, en algunas realizaciones, una cantidad eficaz de una nucleasa se puede referir a la cantidad de la nucleasa que es suficiente para inducir la escisión de un sitio diana específicamente unido y escindido por la nucleasa. En algunas realizaciones, una cantidad eficaz de una proteína de fusión proporcionada en el presente documento, por ejemplo, de una proteína de fusión que comprende un dominio de Cas9 de nucleasa inactiva y un dominio de edición de ácidos nucleicos (por ejemplo, un dominio de desaminasa) se puede referir a la cantidad de la proteína de fusión que es suficiente para inducir la edición de un sitio diana específicamente unido y editado por la proteína de fusión.
Como será apreciado por el experto, la cantidad eficaz de un agente, por ejemplo, una proteína de fusión, una nucleasa, una desaminasa, una recombinasa, una proteína híbrida, un dímero de proteína, un complejo de una proteína (o dímero de proteína) y un polinucleótido, o un polinucleótido, puede variar dependiendo de diversos factores como, por ejemplo, de la respuesta biológica deseada, por ejemplo, del alelo específico, genoma, o sitio diana a editar, en la célula o tejido que se dirige, y del agente que se usa.
El término "conector", como se usa en el presente documento, se refiere a un grupo químico o una molécula que une dos moléculas o restos, por ejemplo, dos dominios de una proteína de fusión, tales como, por ejemplo, un dominio de Cas9 de nucleasa inactiva y un dominio de edición de ácidos nucleicos (por ejemplo, un dominio de desaminasa). En algunas realizaciones, un conector une un dominio de unión de ARNg de una nucleasa programable por ARN, que incluye un dominio de nucleasa de Cas9, y el dominio catalítico de proteína de edición de ácidos nucleicos. En algunas realizaciones, un conector une una dCas9 y una proteína de edición de ácidos nucleicos. Normalmente, el conector está situado entre, o flanqueado por, dos grupos, moléculas, u otros restos y conectados entre sí por un enlace covalente, que conecta así los dos. En algunas realizaciones, el conector es un aminoácido o una pluralidad de aminoácidos (por ejemplo, un péptido o proteína). En algunas realizaciones, el conector es una molécula orgánica, grupo, polímero, o resto químico. En algunas realizaciones, el conector tiene 5-100 aminoácidos de longitud, por ejemplo, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 30­ 35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150 o 150-200 aminoácidos de longitud. También se contemplan conectores más largos o más cortos.
El término "mutación", como se usa en el presente documento, se refiere a una sustitución de un resto dentro de una secuencia, por ejemplo, una secuencia de ácidos nucleicos o de aminoácidos, con otro resto, o una deleción o inserción de uno o más restos dentro de una secuencia. Las mutaciones se describen normalmente en el presente documento identificando el resto original seguido por la posición del resto dentro de la secuencia y por la identidad del resto recién sustituido. Se conocen bien en la técnica diversos métodos de preparación de las sustituciones de aminoácidos (mutaciones) proporcionadas en el presente documento, y se proporcionan por, por ejemplo, Green y Sambrook, Molecular Cloning: A Laboratory Manual (4a ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).
Los términos "ácido nucleico" y "molécula de ácido nucleico", como se usa en el presente documento, se refieren a un compuesto que comprende una nucleobase y un resto ácido, por ejemplo, un nucleósido, un nucleótido, o un polímero de nucleótidos. Normalmente, los ácidos nucleicos poliméricos, por ejemplo, las moléculas de ácidos nucleicos que comprenden tres o más nucleótidos, son moléculas lineales, en las que nucleótidos adyacentes se unen entre sí por un enlace fosfodiéster. En algunas realizaciones, "ácido nucleico" se refiere a restos individuales de ácidos nucleicos (por ejemplo, nucleótidos y/o nucleósidos). En algunas realizaciones, "ácido nucleico" se refiere a una cadena de oligonucleótidos que comprende tres o más restos de nucleótidos individuales. Como se usa en el presente documento, los términos "oligonucleótido" y "polinucleótido" se pueden usar indistintamente para referirse a un polímero de nucleótidos (por ejemplo, una cadena de al menos tres nucleótidos). En algunas realizaciones, "ácido nucleico" engloba ARN, así como ADN de cadena sencilla y/o doble. Los ácidos nucleicos pueden existir de forma natural, por ejemplo, en el contexto de un genoma, un transcrito, un ARNm, ARNt, ARNr, ARNip, ARNnp, un plásmido, cósmido, cromosoma, cromátida, u otra molécula de ácido nucleico que existe de forma natural. Por otra parte, una molécula de ácido nucleico puede ser una molécula que no existe de forma natural, por ejemplo, un ADN o ARN recombinante, un cromosoma artificial, un genoma manipulado, o fragmento de los mismos, o un ADN sintético, ARN, híbrido ADN/ARN, o que incluye nucleótidos o nucleósidos que no existen de forma natural. Además, los términos "ácido nucleico", "ADN", "ARN" y/o términos similares incluyen análogos de ácido nucleico, por ejemplo, análogos que tienen aparte de esqueleto fosfodiéster. Los ácidos nucleicos se pueden purificar de fuentes naturales, producir usando sistemas de expresión recombinante y purificar opcionalmente, sintetizar químicamente, etc. Cuando corresponda, por ejemplo, en el caso de moléculas químicamente sintetizadas, los ácidos nucleicos pueden comprender análogos de nucleósido tales como análogos que tienen bases o azúcares químicamente modificados, y modificaciones de esqueleto. Una secuencia de ácidos nucleicos se presenta en la dirección 5' a 3', a menos que se indique lo contrario. En algunas realizaciones, un ácido nucleico es o comprende nucleósidos naturales (por ejemplo, adenosina, timidina, guanosina, citidina, uridina, desoxiadenosina, desoxitimidina, desoxiguanosina y desoxicitidina); análogos de nucleósidos (por ejemplo, 2-aminoadenosina, 2-tiotimidina, inosina, pirrolopirimidina, 3-metiladenosina, 5-metilcitidina, 2-aminoadenosina, C5-bromouridina, C5-fluorouridina, C5-yodouridina, C5-propinil-uridina, C5-propinil-citidina, C5-metilcitidina, 2-aminoadenosina, 7-deazaadenosina, 7-deazaguanosina, 8-oxoadenosina, 8-oxoguanosina, O(6)-metilguanina y 2-tiocitidina); bases químicamente modificadas; bases biológicamente modificadas (por ejemplo, bases metiladas); bases intercaladas; azúcares modificados (por ejemplo, 2'-fluororibosa, ribosa, 2'-desoxiribosa, arabinosa y hexosa); y/o grupos fosfato modificados (por ejemplo, fosforotioatos y enlaces 5'-N-fosforamidito).
El término "enfermedad proliferativa", como se usa en el presente documento, se refiere a cualquier enfermedad en la que la homeostasis de células o tejidos se perturba en que una célula o población de células presenta una velocidad de proliferación anormalmente elevada. Las enfermedades proliferativas incluyen enfermedades hiperproliferativas, tales como afecciones hiperplásicas pre-neoplásicas y enfermedades neoplásicas. Las enfermedades neoplásicas se caracterizan por una proliferación anormal de células e incluyen tanto neoplasias benignas como malignas. La neoplasia maligna también se denomina cáncer.
Los términos "proteína", "péptido" y "polipéptido" se usan indistintamente en el presente documento, y se refieren a un polímero de restos de aminoácidos unidos juntos por enlaces peptídicos (amida). Los términos se refieren a una proteína, péptido, o polipéptido de cualquier tamaño, estructura, o función. Normalmente, una proteína, péptido o polipéptido tendrá al menos tres aminoácidos de longitud. Una proteína, péptido o polipéptido se puede referir a una proteína individual o un conjunto de proteínas. Se pueden modificar uno o más de los aminoácidos en una proteína, péptido o polipéptido, por ejemplo, mediante la adición de una entidad química tal como un grupo hidrato de carbono, un grupo hidroxilo, un grupo fosfato, un grupo farnesilo, un grupo isofarnesilo, un grupo ácido graso, un conector para conjugación, funcionalización, u otra modificación, etc. Una proteína, péptido o polipéptido también puede ser una molécula individual o pueden ser un complejo multi-molecular. Una proteína, péptido o polipéptido puede ser solamente un fragmento de una proteína o péptido que existe de forma natural. Una proteína, péptido o polipéptido puede existir de forma natural, ser recombinante, o sintético, o cualquier combinación de los mismos. El término "proteína de fusión", como se usa en el presente documento, se refiere a un polipéptido híbrido que comprende dominios de proteína de al menos dos proteínas diferentes. Una proteína se puede localizar en la porción de extremo amino (extremo N) de la proteína de fusión o en la proteína de extremo carboxi (extremo C) formando así una "proteína de fusión de extremo amino" o una "proteína de fusión de extremo carboxi", respectivamente. Una proteína puede comprender diferentes dominios, por ejemplo, un dominio de unión de ácido nucleico (por ejemplo, el dominio de unión de ARNg de Cas9 que dirige la unión de la proteína a un sitio diana) y un dominio de escisión de ácido nucleico o un dominio catalítico de una proteína de edición de ácidos nucleicos. En algunas realizaciones, una proteína comprende una parte proteinácea, por ejemplo, una secuencia de aminoácidos que constituye un dominio de unión de ácido nucleico, y un compuesto orgánico, por ejemplo, un compuesto que puede actuar de agente de escisión de ácido nucleico. En algunas realizaciones, una proteína está en un complejo con, o está en asociación con, un ácido nucleico, por ejemplo, ARN. Cualquiera de las proteínas proporcionadas en el presente documento se puede producir por cualquier método conocido en la técnica. Por ejemplo, las proteínas proporcionadas en el presente documento se pueden producir por expresión y purificación de proteínas recombinantes, que es especialmente apta para proteínas de fusión que comprenden un conector peptídico. Se conocen bien los métodos de expresión y purificación de proteínas recombinantes, e incluyen los descritos por Green y Sambrook, Molecular Cloning: A Laboratory Manual (4a ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).
El término "nucleasa programable por ARN" y "nucleasa guiada por ARN" se usan indistintamente en el presente documento y se refieren a una nucleasa que forma un complejo con (por ejemplo, se une o se asocia con) uno o más ARN que no son una diana para la escisión. En algunas realizaciones, una nucleasa programable por ARN, cuando está en un complejo con un ARN, se puede denominar un complejo de nucleasa:ARN. Normalmente, el (los) ARN(s) unido(s) se denominan un ARN guía (ARNg). Los ARNg pueden existir como un complejo de dos o más ARNs, o como una molécula de ARN individual. Los ARNg que existen como una molécula de ARN única se pueden denominar ARN guía único (ARNgu), aunque "ARNg" se usa indistintamente para referirse a ARNs guía que existen como o moléculas individuales o como un complejo de dos o más moléculas. Normalmente, los ARNg que existen como especies de ARN únicas comprenden dos dominios: (1) un dominio que comparte homología con un ácido nucleico diana (por ejemplo, y dirige la unión de un complejo de Cas9 a la diana); y (2) un dominio que se une a la proteína Cas9. En algunas realizaciones, el dominio (2) corresponde a una secuencia conocida como una ARNcrtra, y comprende una estructura de tallo-bucle. Por ejemplo, en algunas realizaciones, el dominio (2) es homólogo a un ARNcrtra como se representa en la Figura 1E de Jinek et al., Science 337:816-821 (2012). Otros ejemplos de ARNg (por ejemplo, los que incluyen el dominio 2) se pueden encontrar en la solicitud de patente provisional de EE. UU. U.S.S.N. 61/874.682, presentada el 6 de septiembre de 2013, titulada "Switchable Cas9 Nucleases And Uses Thereof" y la solicitud de patente provisional de EE. UU. U.S.S.N. 61/874.746, presentada el 6 de septiembre de 2013, titulada "Delivery System For Functional Nucleases". En algunas realizaciones, un ARNg comprende dos o más de los dominios (1) y (2), y se puede denominar un "ARNg extendido". Por ejemplo, un ARNg extendido se unirá, por ejemplo, a dos o más proteínas Cas9 y se unirá a ácido nucleico diana en dos o más regiones distintas, como se describe en el presente documento. El ARNg comprende una secuencia de nucleótidos que complementa un sitio diana, que media en la unión del complejo de nucleasa/ARN a dicho sitio diana, proporcionando la especificidad de secuencia del complejo de nucleasa:ARN. En algunas realizaciones, la nucleasa programable por ARN es la endonucleasa Cas9 (sistema asociado a CRISPR), por ejemplo Cas9 (Csn1) de Streptococcus pyogenes (véanse, por ejemplo, "Complete genome sequence of an M1 strain of Streptococcus pyogenes." Ferretti J.J., McShan W.M., Ajdic D.J., Savic D.J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A.N., Kenton S., Lai H.S., Lin S.P., Qian Y., Jia H.G., Najar F.Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S.W., Roe B.A., McLaughlin R.E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III." Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E., Nature 471:602-607(2011); y "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity." Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. Science 337:816-821 (2012).
Debido a que las nucleasas programables por ARN (por ejemplo, Cas9) usan hibridación de ARN:ADN para dirigir sitios de escisión de ADN, estas proteínas son capaces de ser dirigidas, en principio, a cualquier secuencia especificada por el ARN guía. Se conocen en la técnica los métodos de uso de nucleasas programables por ARN, tales como Cas9, para escisión específica de sitio (por ejemplo, para modificar un genoma) (véanse, por ejemplo, Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J.E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31,233-239 (2013)).
El término "sujeto", como se usa en el presente documento, se refiere a un organismo individual, por ejemplo, un mamífero individual. En algunas realizaciones, el sujeto es un ser humano. En algunas realizaciones, el sujeto es un mamífero no humano. En algunas realizaciones, el sujeto es un primate no humano. En algunas realizaciones, el sujeto es un roedor. En algunas realizaciones, el sujeto es una oveja, una cabra, ganado vacuno, un gato o un perro. En algunas realizaciones, el sujeto es un vertebrado, un anfibio, un reptil, un pez, un insecto, una mosca, o un nematodo. En algunas realizaciones, el sujeto es un animal de investigación. En algunas realizaciones, el sujeto está genéticamente manipulado, por ejemplo, un sujeto no humano genéticamente manipulado. El sujeto puede ser de cualquier sexo y en cualquier estadio de desarrollo.
El término "sitio diana" se refiere a una secuencia dentro de una molécula de ácido nucleico que es desaminada por una desaminasa o una proteína de fusión que comprende una desaminasa (por ejemplo, una proteína de fusión de dCas9-desaminasa proporcionada en el presente documento).
Los términos "tratamiento", "tratar" y "tratando" se refieren a una intervención clínica que tiene por finalidad invertir, aliviar, retrasar la aparición de, o inhibir el progreso de una enfermedad o trastorno, o uno o más síntomas de la misma, como se describe en el presente documento. Como se usa en el presente documento, los términos "tratamiento", "tratar" y "tratando" se refieren a una intervención clínica que tiene por finalidad invertir, aliviar, retrasar la aparición de, o inhibir el progreso de una enfermedad o trastorno, o uno o más síntomas de la misma, como se describe en el presente documento. En algunas realizaciones, el tratamiento se puede administrar después de que se hayan desarrollado uno o más síntomas y/o después de que se haya diagnosticado una enfermedad. En otras realizaciones, el tratamiento se puede administrar en ausencia de síntomas, por ejemplo, para prevenir o retrasar la aparición de un síntoma o inhibir la aparición o progresión de una enfermedad. Por ejemplo, el tratamiento se puede administrar a un individuo susceptible antes de la aparición de síntomas (por ejemplo, en vista de una historia de síntomas y/o en vista de factores de susceptibilidad genéticos u otros). El tratamiento también puede continuar después de que se hayan resuelto los síntomas, por ejemplo, para prevenir o retrasar su reaparición.
DESCRIPCIÓN DETALLADA DE CIERTAS REALIZACIONES DE LA INVENCIÓN
Algunos aspectos de la presente divulgación proporcionan proteínas de fusión que comprenden un dominio de Cas9 que se une a un ARN guía (también denominado ARNg o ARNgu), que, a su vez, se une a la secuencia de ácidos nucleicos diana por hibridación de cadenas; y un dominio de edición de ADN, por ejemplo, un dominio de desaminasa que puede desaminar una nucleobase, tal como, por ejemplo, citidina. La desaminación de una nucleobase por una desaminasa puede conducir a una mutación puntual en el resto respectivo, que se denomina en el presente documento edición de ácidos nucleicos. Así, las proteínas de fusión que comprenden una variante o dominio de Cas9 y un dominio de edición de ADN se pueden usar para la edición dirigida de secuencias de ácidos nucleicos. Dichas proteínas de fusión son útiles para la edición dirigida de ADN in vitro, por ejemplo, para la generación de células o animales mutantes; para la introducción de mutaciones dirigidas, por ejemplo, para la corrección de defectos genéticos en células ex vivo, por ejemplo, en células obtenidas de un sujeto que son posteriormente reintroducidas en el mismo sujeto u otro sujeto; y para la introducción de mutaciones dirigidas, por ejemplo, la corrección de defectos genéticos o la introducción de mutaciones desactivantes en genes asociados a enfermedad en un sujeto. Normalmente, el dominio de Cas9 de las proteínas de fusión descritas en el presente documento no tiene ninguna actividad de nucleasa, pero en su lugar es un fragmento de Cas9 o una proteína o dominio dCas9. También se proporcionan métodos para el uso de proteínas de fusión Cas9 como se describen en el presente documento.
Se proporcionan en el presente documento dominios de Cas9 de nucleasa inactiva a modo de ejemplo no limitantes. Un dominio de Cas9 de nucleasa inactiva adecuado a modo de ejemplo es el mutante del dominio de Cas9 D10A/H840A:
MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRR KNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD LRLIYLALAHMIKFRGHFLIEGDLMPDNSDVDKLFIQLVQTYMQLFEEMPINASGVDAKAILSARLSKSRRLENL IAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKF IKPILEKMDGTEELLVKLNREDLLRKQRTFDMGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY YVGPLARGNSRFAWMTRKSEETITPWNFEEWDKGASAQSFIERMTNFDKNLPMEKVLPKHSLLYEYFTVYMELT KVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDREUASLGTYHDLLKI IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS GKTILDFLKSDGFANRNFMQL1HDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKWDELVKV MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVD QELDIMRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKMRGKSDMVPSEEVVKKMKMYWRQLLNAKLITQRKFDML TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMMTKYDEMDKLIREVKVITLKSKLVSDFRKDFQFYKV REIMNYHHAHDAYLNAWGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSMIMNFFKTEI TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD WDPKKYGGFDSPTVAYSVLWAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDL11KLPK YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE FSKRVILADANLDKVLSAYMKHRDKPIREQAENIIHLFTLTMLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQLGGD (SEQ ID NO: 37; véase, por ejemplo, Qi et al, Repurposing CRISP as
an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;
152(5): 1173-83).
Los dominios de Cas9 de nucleasa inactiva adecuados adicionales serán evidentes para los expertos en la técnica basándose en la presente divulgación. Dichos dominios de Cas9 de nucleasa inactiva adecuados a modo de ejemplo adicionales incluyen, pero no se limitan a, dominios de mutantes D10A, D10A/D839A/H840A y D10A/D839A/H840A/N863A (véase, por ejemplo, Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31 (9): 833-838).
Proteínas de fusión entre Cas9 y enzimas o dominios de edición de ácidos nucleicos
Algunos aspectos de la presente divulgación proporcionan proteínas de fusión que comprenden (i) una enzima o dominio Cas9 de nucleasa inactiva; y (ii) una enzima o dominio de edición de ácidos nucleicos. La enzima o dominio de edición de ácidos nucleicos de la proteína de fusión de la invención comprende o es un dominio de desaminasa. En algunas realizaciones, la desaminasa es una citidina desaminasa. En algunas realizaciones, la desaminasa es una desaminasa de la familia del complejo de edición de ARNm de apolipoproteína B (APOBEC). En algunas realizaciones, la desaminasa es una desaminasa de la familia APOBEC1. En algunas realizaciones, la desaminasa es una citidina desaminasa inducida por activación (AID). En algunas realizaciones, la desaminasa es una ACF1/ASE desaminasa. En algunas realizaciones, la desaminasa es una adenosina desaminasa. En algunas realizaciones, la desaminasa es una desaminasa de la familia ADAT. Algunas enzimas y dominios de edición de ácidos nucleicos, así como las proteínas de fusión de Cas9 que incluyen dichas enzimas o dominios, se describen con detalle en el presente documento. Las enzimas o dominios de edición de ácidos nucleicos adecuadas adicionales serán evidentes para el experto basándose en la presente divulgación.
La presente divulgación proporciona proteínas de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos de diversas configuraciones. En algunas realizaciones, la enzima o dominio de edición de ácidos nucleicos se fusiona con el extremo N del dominio de Cas9. En algunas realizaciones, la enzima o dominio de edición de ácidos nucleicos se fusiona con el extremo C del dominio de Cas9. En algunas realizaciones, el dominio de Cas9 y la enzima o dominio de edición de ácidos nucleicos se fusionan por un conector. En algunas realizaciones, el conector comprende un motivo (GGGGS)n (SEQ ID NO: 91), (G)n, (EAAAK)n (SEQ ID NO: 5), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 93) (véase, por ejemplo, Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82), o un motivo (XP)n, o una combinación de cualquiera de estos, en donde n es independientemente un número entero entre 1 y 30. En algunas realizaciones, n es independientemente 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 o 30, o, si está presente más de un conector o más de un motivo de conector, cualquier combinación de los mismos. Los motivos de conector y configuraciones de conector adecuados adicionales serán evidentes para los expertos en la técnica. En algunas realizaciones, motivos y configuraciones de conector adecuados incluyen los descritos en Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69. Las secuencias conectoras adecuadas adicionales serán evidentes para los expertos en la técnica basándose en la presente divulgación.
En algunas realizaciones, la arquitectura general de las proteínas de fusión de Cas9 a modo de ejemplo proporcionadas en el presente documento comprende la estructura:
[NH2]-[enzima o dominio de edición de ácidos nucleicos]-[Cas9]-[COOH] o
[NH2]-[Cas9]-[enzima o dominio de edición de ácidos nucleicos]-[COOH],
en donde NH2 es el extremo N de la proteína de fusión y COOH es el extremo C de la proteína de fusión.
Pueden estar presentes características adicionales, por ejemplo, una o más secuencias conectoras entre NLS y el resto de la proteína de fusión y/o entre la enzima o dominio de edición de ácidos nucleicos y Cas9. Otras características a modo de ejemplo que pueden estar presentes son las secuencias de localización, tales como secuencias de localización nuclear, secuencias de localización citoplásmica, secuencias de exportación, tales como secuencias de exportación nuclear, u otras secuencias de localización, así como marcas de secuencia que son útiles para solubilización, purificación o detección de las proteínas de fusión. Se proporcionan en el presente documento secuencias señal de localización y marcas de secuencias de proteína adecuadas, e incluyen, pero no se limitan a, marcas de proteína transportadora de biotina carboxilasa (BCCP), marcas myc, marcas de calmodulina, marcas FLAG, marcas de hemaglutinina (HA), marcas de polihistidina, también denominadas marcas de histidina o marcas His, marcas de proteína de unión a maltosa (MBP), marcas nus, marcas de glutatión-S-transferasa (GST), marcas de proteína verde fluorescente (GFP), marcas de tiorredoxina, marcas S, Softags (por ejemplo, Softag 1, Softag 3), marcas strep, marcas de biotina ligasa, marcas FlAsH, marcas V5 y marcas SBP. Las secuencias adecuadas adicionales serán evidentes para los expertos en la técnica.
La enzima o dominio de edición de ácidos nucleicos de la proteína de fusión de la invención es una desaminasa. Por ejemplo, en algunas realizaciones, la arquitectura general de proteínas de fusión de Cas9 a modo de ejemplo con una enzima o dominio de desaminasa comprende la estructura:
[NH2]-[NLS]-[Cas9]-[desaminasa]-[COOH],
[NH2]-[NLS]-[desaminasa]-[Cas9]-[COOH],
[NH2]-[Cas9]-[desaminasa]-[COOH], o
[NH2]-[desaminasa]-[Cas9]-[COOH]
en donde NLS es una señal de localización nuclear, NH2 es el extremo N de la proteína de fusión y COOH es el extremo C de la proteína de fusión. En algunas realizaciones, un conector se inserta entre Cas9 y la desaminasa. En algunas realizaciones, NLS se localiza en el extremo C de la desaminasa y/o el dominio de Cas9. En algunas realizaciones, NLS se localiza entre la desaminasa y el dominio de Cas9. También pueden estar presentes características adicionales, tales como marcas de secuencia.
Un tipo adecuado a modo de ejemplo de enzimas y dominios de edición de ácidos nucleicos son las citosina desaminasas, por ejemplo, de la familia APOBEC. La familia del complejo de edición de ARNm de apolipoproteína B (APOBEC) de enzimas citosina desaminasa engloba once proteínas que sirven para iniciar la mutagénesis en un modo controlado y beneficioso.29 Un miembro de la familia, la citidina desaminasa inducida por activación (AID), es responsable de la maduración de anticuerpos que convierten citosinas en ADNmc en uracilos en un modo dependiente de la transcripción de cadenas sesgadas.30 La enzima del complejo 3 de edición de apolipoproteína B (APOBEC3) proporciona protección a células humanas contra una cierta cepa del VIH-1 por la desaminación de citosinas en ADNmc viral transcrito de forma inversa.31 Estas proteínas requieren todas un motivo de coordinación de Zn2+ (His-X-Glu-X23-26-Pro-Cys-X2-4-Cys) y molécula de agua unida para actividad catalítica. El resto Glu actúa activando la molécula de agua para un hidróxido de cinc para el ataque nucleófilo en la reacción de desaminación. Cada miembro de la familia desamina preferencialmente en su propio "punto caliente" particular, que varía desde WRC (W es A o T, R es A o G) para hAID, hasta TTC para hAPOBEC3F.32 Una estructura cristalina reciente del dominio catalítico de APOBEC3G (Figura 2) reveló una estructura secundaria comprendida de un núcleo de lámina p de cinco cadenas flanqueado por seis hélices a, que se cree que se conservan a través de toda la familia.33 Se ha mostrado que los bucles de centro activo son responsables de tanto la unión de ADNmc como de la determinación de la identidad de "puntos calientes".34 La expresión en exceso de estas enzimas se ha asociado a inestabilidad genómica y cáncer, resaltando así la importancia del direccionamiento específico de secuencia.35
Otro tipo adecuado a modo de ejemplo de enzimas y dominios de edición de ácidos nucleicos son las adenosina desaminasas. Por ejemplo, se pueden fusionar una adenosina desaminasa de la familia ADAT con un dominio de Cas9, por ejemplo, un dominio de Cas9 de nucleasa inactiva, dando así una proteína de fusión de Cas9-ADAT. Algunos aspectos de la presente divulgación proporcionan una serie sistemática de fusiones entre Cas9 y enzimas desaminasas, por ejemplo, enzimas citosina desaminasas tales como enzimas APOBEC, o enzimas adenosina desaminasas tales como enzimas ADAT, que se han generado para dirigir las actividades enzimáticas de estas desaminasas a un sitio específico en ADN genómico. Las ventajas de uso de Cas9 como agente de reconocimiento son dobles: (1) la especificidad por secuencia de Cas9 puede ser fácilmente alterada simplemente cambiando la secuencia de ARNgu; y (2) Cas9 se une a su secuencia diana desnaturalizando el ADNbc, dando como resultado una extensión de ADN que es monocatenaria y, por tanto, un sustrato viable para la desaminasa. Se han generado proteínas de fusión satisfactorias con dominios humanos y de ratón de desaminasas, por ejemplo, dominios de AID. También se contempla una variedad de otras proteínas de fusión entre los dominios catalíticos de AID humana y de ratón y Cas9. Se entenderá que también se pueden usar otros dominios catalíticos, o dominios catalíticos de otras desaminasas, para generar proteínas de fusión con Cas9, y que la divulgación no está limitada a este respecto. En algunas realizaciones, se proporcionan proteínas de fusión de Cas9 y AID. En un esfuerzo por manipular las proteínas de fusión de Cas9 para aumentar las velocidades de mutación en ADNmc, se unieron tanto AID de ratón como humano al gen V de fago filamentoso (una proteína de unión de ADNmc no específico). Las proteínas de fusión resultantes presentaron actividades mutagénicas potenciadas en comparación con las enzimas no mutantes en un ensayo basado en células. Este trabajo demuestra que la actividad enzimática de estas proteínas se mantiene y puede ser satisfactoriamente dirigido a secuencias genéticas con proteínas de fusión.36
Aunque se ha informado de varias estructuras cristalinas de Cas9 (e incluso Cas9 en complejo con su ARNgu y ADN diana) (véanse, por ejemplo, Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014; 343(6176):1247997. PMID: 24505130; y Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014; 156(5):935-49. PMID: 24529477), es desconocida la porción de ADN que es monocatenaria en el complejo Cas9-ADN (el tamaño de la burbuja de Cas9-ADN). Sin embargo, se ha mostrado en un sistema de dCas9 con un ARNgu específicamente diseñado para el complejo para interferir con transcripción que la interferencia transcripcional solo ocurre cuando el ARNgu se une a la cadena no de molde. Este resultado sugiere que ciertas porciones del ADN en el complejo de ADN-Cas9 son expuestas por el Cas9, y podrían ser posiblemente dirigidas por una desaminasa en la proteína de fusión (véase Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequencespecific control of gene expression. Cell. 2013; 152(5):1173-83. PMID: 23452860). Soportando además está noción, experimentos de reconocimiento con exonucleasa III y nucleasa P1 (que solo actúa en ADNmc como sustrato) han revelado que al menos 26 bases en la cadena de no molde son susceptibles a digestión por estas enzimas (véase Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014; 343(6176):1247997. PMID: 24505130). También se ha informado que en ciertos casos, Cas9 induce mutaciones de sustitución de bases individuales en esta extensión susceptible de ADN a frecuencias de hasta 15 % (véase Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32(6):569-76. PMID: 24770325). Aunque el mecanismo de introducción de estas mutaciones es desconocido, en todos los casos, la base que se muta es una citosina, que podría indicar posiblemente la participación de una enzima citosina desaminasa. Tomados conjuntamente, estos datos están claramente de acuerdo con una porción del ADN diana que es monocatenario y susceptible a otras enzimas. Se ha mostrado en un sistema de dCas9 con un ARNgu específicamente diseñado para el complejo para interferir con la transcripción que la interferencia transcripcional solo ocurre cuando el ARNgu se une a la cadena no de molde. Este resultado sugiere que ciertas porciones del ADN en el complejo de ADN-Cas9 son expuestas por el Cas9, y podrían ser posiblemente dirigidas por AID en la proteína de fusión.16 Por consiguiente, tanto las fusiones del extremo N como del extremo C de Cas9 con un dominio de desaminasa son útiles según aspectos de la presente divulgación.
En algunas realizaciones, el dominio de desaminasa y el dominio de Cas9 se fusionan entre sí por un conector. Se pueden emplear diversas longitudes y flexibilidades de conector entre el dominio de desaminasa (por ejemplo, AID) y el dominio de Cas9 (por ejemplo, que varía desde conectores muy flexibles de la forma (GGGGS)n (SEQ ID NO: 91), (GGS)n y (G)n hasta conectores más rígidos de la forma (EAAAK)n (SEQ ID NO: 5), SGSeTpGTSESATPES (SEQ ID NO: 93) (véase, por ejemplo, Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82) y (XP)n)37 para lograr la longitud óptima para la actividad de desaminasa para la aplicación específica.
Se proporcionan a continuación algunas enzimas y dominios de edición de ácidos nucleicos adecuados a modo de ejemplo, por ejemplo, desaminasas y dominios de desaminasa, que se pueden fusionar a dominios de Cas9 según aspectos de la presente divulgación. Se entenderá que, en algunas realizaciones, se puede usar el dominio activo de la secuencia respectiva, por ejemplo, el dominio sin una señal de localización (señal de localización nuclear, sin señal de exportación nuclear, señal de localización citoplásmica).
AID humana:
MDSLLMNRRKFLYOFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC
HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTAR
LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHEN
SVRT SROT RRTT T PT YF.VDDT.RFtAFRTT GT. (SEQ ID NO: 6)
(subrayado: señal de localización nuclear; subrayado doble: señal de exportación nuclear) AID de ratón:
MD SLLMKOKKFLYHFKN VR W AKGRHETYLCYV VKRRDS ATSC SLDF GHLRNKSGC
HVELLFLRY1SDWDLDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSLRIFTAR
LYFCEDRKAEPEGLRRLHRAGVQIGIMTFKDYFYCWNTFVENRERTFKAWEGLHEN
SVRLTROLRRILLPLYEVDDLRDAFRMLGF (SEQ ID NO: 7)
(subrayado: señal de localización nuclear; subrayado doble: señal de exportación nuclear)
AID de perro:
MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKS GC
HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFAAR
LYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENREKTFKAWEGLHEN
SVRLSROLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 8)
(subrayado: señal de localización nuclear; subrayado doble: señal de exportación nuclear)
AID bovino:
MDSLLKKOROFLYOFKNVRWAKGRHETYLCYVVKRRDSPTSESLDFGHLRNKAGC
HVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGYPNLSLRIFTAR
LYFCDKERKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHE
NSVRLSROLRRILLPLYEVDDLRDAFRTLGL (SEQ ID NO: 9)
(subrayado: señal de localización nuclear; subrayado doble: señal de exportación nuclear) APOBEC-3 de ratón:
MGPFCLGCSHRKCYSPTRNLISQETFKFHFKNLGYAKGRKDTFLCYEVTRKDCDSPV
SIHHGVFKNKDNI/7.-Í/-7C/-'/. YlVh'H DKVIKVISI^RhKh'KII'WY MSHSPChEC ¡\V.Q\W\i. Kl
ATHHNLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDN
GGRRFRPWKRLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSN1CLTKGLPETRFCVEG
RRMDPLSEEEFY SQFYN QRVKHLC YYHRMKPY LC YQLEQFNGQAPLKGCLLSEKGK
Q HA Eli. FI. DKIRSMFLSQVTITCYl. TWSPCPNCAWQ] . A AFK RDR PDT TI .TITYTSR T YFT1W
KRPFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLE1ISRRTQRRL
RRIKESWGLQDLVNDFGNLQLGPPMS (SEQ ID NO: 10)
(cursiva: dominio de edición de ácidos nucleicos)
APOBEC-3 de rata:
MGPFCLGCSHRKCYSPIRNLISQETFKFHFKNLRYAIDRKDTFLCYEVTRKDCDSPVS
UmGWY¥msmHAEICFLYWFHDKVLKVLSPREEFKlTWYh4SWSPCFECAEQWmFl,A
THHNLSLDIFSSRLYNIRDPENQQNLCRLVQEGAQVAAMDLYEFKKCWKKFVDNGG
RRFRPWK.KLLTNFRYQDSKLQEILRPCYIPVPSSSSSTLSNICLTKGLPETRFCVERRR
VHLLSEEEF YSQFYN QRVKHLC YYHG VKPYLC YQLEQFNGQAPLKG CLLSEKGKQ//
/í£yZ.FZ,D/C/fl£M£Z.S0F//rCFZTJFS/3CEArCAWQLAAFKRDRPDLILH]YTSRLYFHWKR
PFQKGLCSLWQSGILVDVMDLPQFTDCWTNFVNPKRPFWPWKGLEIISRRTQRRLHR
IKESWGLQDLVNDFGNLQLGPPMS (SEQ ID NO: 11)
(cursiva: dominio de edición de ácidos nucleicos)
APOBEC-3G de macaco rhesus:
MVEPMDPRTFVSNFNNRP1LSGLNTVWLCCEVKTKDPSGPPLDAK1FOGKVYSKAKY
HPEMRFLRWFHKWROLHHDOEYKVTWYVSWSPCTRCANSV ATYLAKDPKVTLTIFV A
RLYYFWKPDYQQALRILCQKRGGPHATMKIMNYNEFQDCWNKFVDGRGKPFKPRN
NLPKF3YTLLQATLGELLRHLMDPGTFTSNFNNKPWVSGQHETYLCYKVERLHNDT
WVPLNQHRGFLRNQAPNIHGFPKGR/MEZ CFLDLIPFWKLDGQQYR VTCFTSWSPCFS
CAQEMAKF1SNNEHVSLC1FAAR1YDDQGRYQEGLRALHRDGAK1AMMNYSEFEYC
WDTFVDRQGRPFQPWDGLDEHSQALSGRLRAI (SEQ ID NO: 12)
(cursiva: dominio de edición de ácidos nucleicos; subrayado: señal de localización citoplásmica) APOBEC-3G de chimpancé:
MKPHFRNPVERMYODTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGO
YYSKLKY HPEMRFFHWFSKWRKLHRDOEYEVTP'YíSWSPCTKCFJUyV AJFLAEDPKW
TLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRE
LFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTSNFNNELWVRGRHETYLCYEVERL
I INDTWVLLNQRRGFLCNQAPIIKI \iyYL\LGKHAELCI'LDV¡PFWKLDLHQDYRVT('¡''TS fRS'ECFNCAQEMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTYSE
FKHCWDTFVDHQGCPFQPWDGLEEHSQALSGRLRAIFQNQGN (SEQ ID NO: 13)
(cursiva: dominio de edición de ácidos nucleicos; subrayado: señal de localización citoplásmica) APOBEC-3G de mono verde:
MNPOIRNMVEOMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFOGK
LYPEAKDHPEMKFLHWFRKWROLHRDOEYEVTWYVSWSPCTRCANSVXTFLAEDPKV
TLTIFVARLYYFWKPDYQQALRILCQERGGPHATMK1MNYNEFQHCWNEFVDGQG
KPFKPRKNLPKHYTLLHATLGELLRHVMDPGTFTSNFNNKPWVSGQRETYLCYKVE
RStiNDT'WVLLNQHRGFLKNQAPDKtlGFPK.GRHAELCFLDLlPFlVKLDDQQYRyTCFT
SWYF’CASCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNY
SEFEYCWDTFVDRQGRPFQPWDGLDEHSQALSGRLRAI (SEQ ID NO: 14) (cursiva: dominio de edición de ácidos nucleicos; subrayado: señal de localización citoplásmica) APOBEC-3G humana:
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGO
VYSELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCIRDMA1FLAEDPKY
TLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRE
LFEPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERM
HNDTWVLLNQRRGFLCNQAPHKHGFLEGR//^£¿CFID VIPFWKLDLDQD YR VTCFTS
ÍES'/’CGSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSE
FKHCWDTFVDHQGCPFQPWDGLDEHSQDLSGRLRAILQNQEN (SEQ ID NO: 15)
(cursiva: dominio de edición de ácidos nucleicos; subrayado: señal de localización citoplásmica) APOBEC-3F humana:
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPRLDAKIFRGQ
VYSQPEHHAEMCFLSWFCGNQLPAYKCFQITWFVSWTPCPDCVAKLAEFLAEHPNVJL
TTSAARLYYYWERDYRRALCRLSQAGARVKIMDDEEFAYCWENFVYSEGQPFMPW
YKFDDNYAFLHRTLKEILRNPMEAMYPH1FYFHFKNLRKAYGRNESWLCFTMEVVK
HHSP'VS'WKRGYFRUQVDPETHCHAERCFLSW'FCDDfLSPNTNYEPTI'VYTSWSPCPECA
GEVAEFLARHSNVNLTIFTARLYYFWDTDYQEGLRSLSQEGASVEIMGYKDFKYCW
ENFVYNDDEPFKPWKGLKYNFLFLDSKLQEILE (SEQ ID NO: 16)
(cursiva: dominio de edición de ácidos nucleicos)
APOBEC-3B humana:
MNPQTRNPMERMYRDTFYDNFENEPILY GRS YTWLC YEVKIKRGR SNLL WDTGVFR
GQVYFKPQYHAEMCFLSWFCGNQLPA YKCFQITWFVSWTPCPDCV AKLAEFLSEHPN
VTLTISAARLYYYWERDYRRALCRLSQAGARVTIMDYEEFAYCWENFVYNEGQQF
MPWYKFDENYAFLHRTLKEILRYLMDPDTFTFNFNNDPLVLRRRQTYLCYEVERLD
NGT W VLMDQHMGFLCNEAKNLLCGFY GRHAELRFLDL VPSL QLDPA QIYR VTWFISWS
PCGWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTY
DEFEYCWDTFVYRQGCPFQPWDGLEEHSQALSGRLRAILQNQGN (SEQ ID NO: 17)
(cursiva: dominio de edición de ácidos nucleicos)
APOBEC-3C humana:
MNPQIRNPMKAMYPGTFYFQFKNLWEANDRNETWLCFTVEGTKRRSVVSWKTGVF
RNQVDSETH CHA ERCFLSWFCDDILSPNTK YQ VTWYTSWSPCPDC AGE V A EF L A RH SN
VNLTIFTARLYYFQYPCYQEGLRSLSQEGVAVEIMDYEDFKYCWENFVYNDNEPFKP
WKGLKTNFRLLKRRLRESLQ (SEQ ID NO: 18)
(cursiva: dominio de edición de ácidos nucleicos)
APOBEC-3A humana:
MEASPASGPRHLMDPHIFTSNFNNGIGRHKTYLCYEVERLDNGTSVKMDQHRGFLH
NQAKNLLCGFYGRHAELRFLDLyPSLQLDPAQIYRVnVFISWSPCFSlVGCAGEVRAFLQ
ENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFKHCWDTFVDHQGC
PFQPWDGLDEHSQALSGRLRAILQNQGN (SEQ ID NO: 19)
(cursiva: dominio de edición de ácidos nucleicos)
APOBEC-3H humana:
MALLTAETFRLQFNNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKC////E/
CFINE1KSMGLDETQCYQ VTCYL TWSPCSSCA WELVDFIKAHDHLNLGIFASRLYYHWC
KPQQKGLRLLCGSQVPVEVMGFPKFADCWENFVDHEKPLSFNPYKMLEELDKNSRA
IKRRLERIKIPGVRAQGRYMDILCDAEV (SEQ ID NO: 20)
(cursiva: dominio de edición de ácidos nucleicos)
APOBEC-3D humana:
MNPQIRNPMERMYRDTFYDNFENEPILYGRSYTWLCYEVKIKRGRSNLLWDTGVFR
GPVLPKRQSNHRQEVYFRFENHAEMCFLSWFCGNRLPANRRFQITWFVSWNPCLPCVV
K.VTK.FLAEHPNVTLTISAARLYYYRDRDWRWVFLRFHK.AGARVK.IMDYEDFAYCW
ENFVCNEGQPFMPWYKFDDNYASLHRTLKEILRNPMEAMYPHIFYFHFKNLLKACG
KNESWLCFTMEVTKímSAVFRKRGVFÍLNQVDPETliCHAERCFLSIVFCDDILSPNTNY
AF7W7WSPCRACAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGAS
VKIMGYKDFVSCWKNFVYSDDEPFKPWKGLQTNFRLLKRRLREILQ (SEQ ID NO:
21)
(cursiva: dominio de edición de ácidos nucleicos)
APOBEC-1 humana:
MTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIWRSSGKN
TTNHVEVNFIKKFTSERDFHPSMSCSITWFLSWSPCWECSQAIREFLSRHPGVTLV1YV
ARLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQY
PPLWMMLYALELHC11LSLPPCLKISRRWQNHLTFFRLHLQNCHYQT1PPH1LLATGLI
HPSVAWR (SEQ ID NO: 22)
APOBEC-1 de ratón:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYETNWGGRHSVWRHTSQN
TSNHVEVNELEKETTERYFRPNTRCS1TWFLSWSPCGECSRA1TEFLSRHPYVTLEIY1A
RLYHHTDQRNRQGLRDLISSGVTIQIMTEQEYCYCWRNFVNYPPSNEAYWPRYPHL
WVKLYVLELYCIILGLPPCLKILRRKQPQLTFFTITLQTCHYQRIPPHLLWATGLK
(SEQ ID NO: 23)
APOBEC-1 de rata:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYETNWGGRHSIWRHTSQNT
NKHVEVNFIEKFTTERYFCPNTRCS1TWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW
VRLYVLELYCIILGLPPCLN1LRRKQPQLTFFTIALQSCHYQREPPHIEWATGLK (SEQ
ID NO: 24)
ADAT-2 humana:
MEAKAAPKPAASGACSVSAEETEKWMEEAMHMAKEALENTEVPVGCLMVYNNEV
VGKGRNEVNQTKNATRHAEMVA1DQVLDWCRQSGKSPSEVFEHTVLYVTVEPC1M
CAAALRLMKIPLVVYGCQNERFGGCGSVLNIASADLPNTGRPFQCIPGYRAEEAVEM
LKTFYKQENPNAPKSKVRKKECQKS (SEQ ID NO: 25)
ADAT-2 de ratón:
MEEKVESTTTPDGPCVVSVQETEKWMEEAMRMAKEALENIEVPVGCLMVYNNEVV
GKGRNEVNQTKNATRHAEMVAIDQVLDWCHQHGQSPSTVFEHTVLYVTVEPCIMC
AAALRLMKIPLVVYGCQNERFGGCGSVLNIASADLPNTGRPFQCIPGYRAEEAVELL
KTFYKQENPNAPKSKVRKKDCQKS (SEQ ID NO: 26)
ADAT-1 de ratón:
MWTADEIAQLCYAHYNVRLPKQGKPEPNREWTLLAAVVKIQASANQACDIPEKEVQ
YT K E V V AI i G IG 1 K Cl( ¡QSK MR ESC j DI L NDSHA FUA R RSFOR YLLHQLHLAAFLKEDSIFV PGTQRGLWRLRPDLSFVFFSSHTPCGDASUPMLEFEEQPCCPVfRSWANNSPVQETENLE
DSKDKRNCEDPASP VAKKMRLGTPARSLSNC VAHHGTQESCPVKPD VSSSDL TKEEPDAA
NGIA SGSFR VVD VYR TGAKCVPGE TGDLREPGAA YHO VGLLR VKPGRGDRTCSMSCSDK
MAR WNVL GCQGALLMHFLEKPIYLSA WIGKCPYSQEMÍRRALTGR CEE TL VLPR GFG VQ
ELEIQQSGLLFEQSRCA VHRKR GDSPGRL VPC GAA1SWSA VPQQPLD VTANGFPQGTTKK
EIGSPRARSR1SKVELFRSFQKLLSSIADDEQPDSIR VTKKLDTYQEYKDAASA YQEA WGAL
RR/QPFASWÍR.YPPDYHQFK (SEQ ID NO: 27)
(cursiva: dominio de edición de ácidos nucleicos)
ADAT-1 humana:
MWTADEIAQLCYEHYGIRLPKKGKPEPNHEWTLLAAVVKIQSPADKACDTPDKPVQ
VT K E V VSMG TGTKCICQSKMRKNCDILNDSHA E VIA RRSFQR YL L HQL OLA A TLKEDSIF
VPGTQKGmrKLRRDLIFVFFSSHTPCGDASIIPMLEFEDQPCCPVFRNWAHNSSVEASSNL
EAPGNERKCEDPDSPVTKKMRLEPGTAARE VTNGAAHHQSF GKOKSGPISPGIHSCDL TV
E GLA TVTRIAPGSAKVID VYR TGAKC VPGEA GDSGKPGAAFHQ VGLLR VKPGR GDR TRSM
SCSDKMAR^VLGCQGALLMHLLEEPIYLSAWIGKCPYSQEAMQRAUGRCQNVSALPK
GFGVQELKILQSDLLFEQSRSA VQAKRADSPGRL VPCGAAISWSA VPEQPLD VTANGFPQ
GTTKKTfGSL QA RSQISK VEL FRSFQKL LSRL4 RDK WPHSL R VQKLD TYQE YK EAASS YQEA WSTLRKQVFGSWIRNPPDYHQFK (SEQ ID NO: 28)
(cursiva: dominio de edición de ácidos nucleicos)
En algunas realizaciones, las proteínas de fusión como se proporcionan en el presente documento comprenden el aminoácido de longitud completa de una enzima de edición de ácidos nucleicos, por ejemplo, una de las secuencias proporcionadas anteriormente. En otras realizaciones, sin embargo, las proteínas de fusión como se proporcionan en el presente documento no comprenden una secuencia de longitud completa de una enzima de edición de ácidos nucleicos, sino solo un fragmento de la misma. Por ejemplo, en algunas realizaciones, una proteína de fusión proporcionada en el presente documento comprende un dominio de Cas9 y un fragmento de una enzima de edición de ácidos nucleicos, por ejemplo, en donde el fragmento comprende un dominio de edición de ácidos nucleicos. Las secuencias de aminoácidos a modo de ejemplo de dominios de edición de ácidos nucleicos se muestran en las secuencias anteriores como letras en cursiva, y secuencias adecuadas adicionales de dichos dominios serán evidentes para los expertos en la técnica.
Las secuencias de enzimas de edición de ácidos nucleicos adecuadas adicionales, por ejemplo, enzima desaminasa y secuencias de dominio, que se pueden usar según aspectos de la presente invención, por ejemplo, que se pueden fusionar con un dominio de Cas9 de nucleasa inactiva, serán evidentes para los expertos en la técnica basándose en la presente divulgación. En algunas realizaciones, dichas secuencias de enzima adicionales incluyen enzima desaminasa o secuencias de dominio de desaminasa que son al menos 70 %, al menos 75 %, al menos 80 %, al menos 85 %, al menos 90 %, al menos 95 %, al menos 96 %, al menos 97 %, al menos 98 %, o al menos 99 % similares a las secuencias proporcionadas en el presente documento. Dominios, variantes y secuencias de Cas9 adecuados adicionales también serán evidentes para los expertos en la técnica. Los ejemplos de dichos dominios de Cas9 adecuados adicionales incluyen, pero no se limitan a, dominios de mutantes D10A, D10A/D839A/H840A y D10A/D839A/H840A/N863A (véase, por ejemplo, Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31 (9): 833-838).
Las estrategias adecuadas adicionales para generar proteínas de fusión que comprenden un dominio de Cas9 y un dominio de desaminasa serán evidentes para los expertos en la técnica basándose en la presente divulgación en combinación con el conocimiento general en la técnica. Las estrategias adecuadas para generar proteínas de fusión según aspectos de la presente divulgación usando conectores o sin el uso de conectores también serán evidentes para los expertos en la técnica en vista de la presente divulgación y el conocimiento en la técnica. Por ejemplo, Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51, mostraron que las fusiones de extremo C de Cas9 con VP64 usando 2 n Ls como conector (SPKKKRKVEAS, SEQ ID NO: 29) se pueden emplear para activación transcripcional. Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8, informaron que las fusiones de extremo C con VP64 sin conector se pueden emplear para activación transcripcional. Y Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10: 977-979, informaron que las fusiones de extremo C con VP64 usando un conector Gly4Ser (SEQ ID NO: 91) se pueden usar como activadores transcripcionales. Recientemente, se han generado satisfactoriamente fusiones de nucleasa dCas9-FokI y presentan especificidad enzimática mejorada en comparación con la enzima Cas9 parental (en Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82, y en Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32(6):569-76. PMID: 24770325 Se usó un conector SGSETPGTs EsAt PES (SEQ ID NO: 93) o GGGGS (SEQ ID NO: 91) en proteínas de fusión de FokI-dCas9, respectivamente).
Uso de proteínas de fusión de edición de ADN de Cas9 para corregir mutaciones asociadas a enfermedad
Algunas realizaciones proporcionan métodos para usar las proteínas de fusión de edición de ADN de Cas9 proporcionadas en el presente documento. En algunas realizaciones, la proteína de fusión se usa para introducir una mutación puntual en un ácido nucleico por desaminación de una nucleobase diana, por ejemplo, un resto C. En algunas realizaciones, la desaminación de la nucleobase diana da como resultado la corrección de un defecto genético, por ejemplo, en la corrección de una mutación puntual que conduce a una pérdida de función en un producto génico. En algunas realizaciones, el defecto genético está asociado con una enfermedad o trastorno, por ejemplo, un trastorno de almacenamiento lisosómico o una enfermedad metabólica, tal como, por ejemplo, diabetes de tipo I. En algunas realizaciones, los métodos proporcionados en el presente documento se usan para introducir una mutación puntual desactivante en un gen o alelo que codifica un producto génico que está asociado con una enfermedad o trastorno. Por ejemplo, en algunas realizaciones, se proporcionan métodos en el presente documento que emplean una proteína de fusión de edición de ADN de Cas9 para introducir una mutación puntual desactivante en un oncogén (por ejemplo, en el tratamiento de una enfermedad proliferativa). Una mutación desactivante puede generar, en algunas realizaciones, un codón de terminación prematuro en una secuencia codificante, que da como resultado la expresión de un producto génico truncado, por ejemplo, una proteína truncada que carece de la función de la proteína de longitud completa.
En algunas realizaciones, el fin de los métodos proporcionados en el presente documento es restaurar la función de un gen disfuncional mediante edición del genoma. Las proteínas de fusión de Cas9-desaminasa proporcionadas en el presente documento pueden ser validadas para agentes terapéuticos humanos basados en edición génica in vitro, por ejemplo, corrigiendo una mutación asociada a enfermedad en cultivo celular humano. Se entenderá por el experto que las proteínas de fusión proporcionadas en el presente documento, por ejemplo, las proteínas de fusión que comprenden un dominio de Cas9 y un dominio de desaminasa de ácidos nucleicos se pueden usar para corregir cualquier mutación puntual individual T -> C o A -> G. En el primer caso, la desaminación de C mutante de nuevo a U corrige la mutación, y en el último caso, la desaminación de C que está apareada con base con G mutante, seguido por una ronda de replicación, corrige la mutación.
Una mutación relevante de enfermedad a modo de ejemplo que se puede corregir por las proteínas de fusión proporcionadas in vitro o in vivo es el polimorfismo H1047R (A3140G) en la proteína PI3KCA. La fosfoinositida-3-cinasa, proteína de subunidad alfa catalítica (PI3KCA), actúa fosforilando el grupo 3-OH del anillo inositol de fosfatidilinositol. Se ha encontrado que el gen PI3KCA se muta en muchos carcinomas diferentes, y así se considera que es un potente oncogén.50 En realidad, la mutación A3140G está presente en varias líneas NCI-60 de células cancerosas, tales como, por ejemplo, las líneas celulares HCT116, SKOV3 y T47D, que están fácilmente disponibles de la Colección Americana de Cultivos Tipo (ATCC).51
En algunas realizaciones, una célula que lleva una mutación a corregir, por ejemplo, una célula que lleva una mutación puntual, por ejemplo, una mutación puntual A3140G en el exón 20 del gen PI3KCA, dando como resultado una sustitución H1047R en la proteína PI3KCA, se pone en contacto con una construcción de expresión que codifica una proteína de fusión de Cas9-desaminasa y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación respectivo en el gen PI3KCA codificante. Se pueden realizar experimentos de control donde el ARNgu se diseña para dirigir las enzimas de fusión a restos distintos de C que están dentro del gen PI3KCA. Se puede extraer ADN genómico de las células tratadas, y amplificar y secuenciar la secuencia relevante de la PCR de genes PI3KCA para evaluar las actividades de las proteínas de fusión en cultivo de células humanas.
Se entenderá que el ejemplo de corregir mutaciones puntuales en PI3KCA se proporciona para fines de ilustración y no pretende limitar la presente divulgación. El experto entenderá que las proteínas de fusión de edición de ADN presentemente desveladas se pueden usar para corregir otras mutaciones puntuales y mutaciones asociadas a otros cánceres y con enfermedades distintas de cáncer que incluyen otras enfermedades proliferativas.
La satisfactoria corrección de mutaciones puntuales en genes y alelos asociados a enfermedad facilita nuevas estrategias de corrección génica con aplicaciones en agentes terapéuticos e investigación básica. Los sistemas de modificación de bases individuales específicos de sitio como las fusiones desveladas de Cas9 y enzimas o dominios desaminasa también tienen aplicaciones en terapia génica "inversa", donde ciertas funciones génicas son deliberadamente suprimidas o abolidas. En estos casos, se pueden usar restos Trp (TGG), Gln (CAA y CAG), o Arg (CGA) que mutan de manera específica de sitio a codones de terminación prematuros (TAA, TAG, TGA) para abolir la función de proteínas in vitro, ex vivo, o in vivo.
Las proteínas de fusión de la presente invención se pueden usar en métodos para el tratamiento de un sujeto diagnosticado con una enfermedad asociada a o provocada por una mutación puntual que se puede corregir por una proteína de fusión de edición de ADN de Cas9 proporcionada en el presente documento. Por ejemplo, en algunas realizaciones, el método comprende administrar a un sujeto que tiene dicha enfermedad, por ejemplo, un cáncer asociado a una mutación puntual de PI3KCA como se ha descrito anteriormente, una cantidad eficaz de una proteína de fusión de Cas9-desaminasa que corrige la mutación puntual o introduce una mutación desactivante en el gen asociado a enfermedad. En algunas realizaciones, la enfermedad es una enfermedad proliferativa. En algunas realizaciones, la enfermedad es una enfermedad genética. En algunas realizaciones, la enfermedad es una enfermedad neoplásica. En algunas realizaciones, la enfermedad es una enfermedad metabólica. En algunas realizaciones, la enfermedad es una enfermedad de almacenamiento lisosómico. Otras enfermedades que se pueden tratar corrigiendo una mutación puntual o introduciendo una mutación desactivante en un gen asociado a enfermedad serán conocidas por los expertos en la técnica, y la divulgación no está limitada a este respecto.
Las proteínas de fusión de la presente invención se pueden usar en métodos para el tratamiento de enfermedades o trastornos adicionales, por ejemplo, enfermedades o trastornos que están asociados o provocados por una mutación puntual que se puede corregir por edición de genes mediados por desaminasa. Algunas de tales enfermedades se describen en el presente documento, y enfermedades adecuadas adicionales que se pueden tratar con las estrategias y proteínas de fusión proporcionadas en el presente documento serán evidentes para los expertos en la técnica basándose en la presente divulgación. Las enfermedades y trastornos adecuados a modo de ejemplo se enumeran a continuación. Se entenderá que la numeración de las posiciones o restos específicos en las secuencias respectivas depende de la proteína particular y el esquema de numeración usado. La numeración podría ser diferente, por ejemplo, en precursores de una proteína madura y la propia proteína madura, y diferencias en secuencias de especie a especie pueden afectar la numeración. Un experto en la técnica será capaz de identificar el resto respectivo en cualquier proteína homóloga y en el ácido nucleico codificante respectivo por métodos bien conocidos en la técnica, por ejemplo, por alineamiento de secuencias y determinación de restos homólogos. Las enfermedades y trastornos adecuados a modo de ejemplo incluyen, sin limitación, fibrosis quística (véanse, por ejemplo, Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013; 13: 653-658; y Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13: 659-662, ninguno de los cuales usa una proteína de fusión de desaminasa para corregir el defecto genético); fenilcetonuria - por ejemplo, mutación de fenilalanina a serina en la posición 835 (ratón) o 240 (humano) o un resto homólogo en el gen fenilalanina hidroxilasa (mutación T>C) - véase, por ejemplo, McDonald et al., Genomics. 1997; 39:402-405; síndrome de Bernard-Soulier (BSS) - por ejemplo, mutación de fenilalanina a serina en la posición 55 o un resto homólogo, o cisteína a arginina en el resto 24 o un resto homólogo en la glucoproteína IX de la membrana plaquetaria (mutación T>C) - véase, por ejemplo, Noris et al., British Journal of Haematology. 1997; 97: 312-320, y Ali et al., Hematol. 2014; 93: 381-384; hiperqueratosis epidermolítica (EHK) -por ejemplo, mutación de leucina a prolina en la posición 160 o 161 (si se cuenta la metionina iniciadora) o un resto homólogo en queratina 1 (mutación T>C) - véase, por ejemplo, Chipev et al., Cell. 1992; 70: 821-828, véase también el número de acceso P04264 en la base de datos UNIPROT en www.uniprot.org; enfermedad pulmonar obstructiva crónica (EPOC) - por ejemplo, mutación de leucina a prolina en la posición 54 o 55 (si se cuenta la metionina iniciadora) o un resto homólogo en la forma procesada de a1-antitripsina o resto 78 en la forma no procesada o un resto homólogo (mutación T>C) - véase, por ejemplo, Poller et al., Genomics. 1993; 17: 740-743, véase también el número de acceso P01011 en la base de datos UNIPROT; enfermedad de Charcot-Marie-Toot tipo 4J - por ejemplo, mutación de isoleucina a treonina en la posición 41 o un resto homólogo en FIG4 (mutación T>C) - véase, por ejemplo, Lenk et al., PLoS Genetics. 2011; 7: e1002104; neuroblastoma (NB) - por ejemplo, mutación de leucina a prolina en la posición 197 o un resto homólogo en caspasa-9 (mutación T>C) - véase, por ejemplo, Kundu et al., 3 Biotech. 2013, 3:225-234; enfermedad de von Willebrand (vWD) - por ejemplo, mutación de cisteína a arginina en la posición 509 o un resto homólogo en la forma procesada de factor de von Willebrand, o en la posición 1272 o un resto homólogo en la forma no procesada de factor de von Willebrand (mutación T>C) - véase, por ejemplo, Lavergne et al., Br. J. Haematol. 1992, véase también el número de acceso P04275 en la base de datos UNIPROT; 82: 66-72; miotonía congénita - por ejemplo, mutación de cisteína a arginina en la posición 277 o un resto homólogo en el gel del canal de cloruro muscular CLCN1 (mutación T>C) - véase, por ejemplo, Weinberger et al., The J. of Physiology. 2012; 590: 3449-3464; amiloidosis renal hereditaria - por ejemplo, mutación de codón de terminación a arginina en la posición 78 o un resto homólogo en la forma procesada de apolipoproteína All o en la posición 101 o un resto homólogo en la forma no procesada (mutación T>C) - véase, por ejemplo, Yazaki et al., Kidney Int. 2003; 64: 11-16; cardiomiopatía dilatada (DCM) - por ejemplo, mutación de triptófano a arginina en la posición 148 o un resto homólogo en el gen FOXD4 (mutación T>C), véase, por ejemplo, Minoretti et. al., Int. J. of Mol. Med. 2007; 19: 369-372; linfedema hereditario - por ejemplo, mutación de histidina a arginina en la posición 1035 o un resto homólogo en tirosina cinasa de VEGFR3 (mutación A>G), véase, por ejemplo, Irrthum et al., Am. J. Hum. Genet.
2000; 67: 295-301; enfermedad de Alzheimer familiar - por ejemplo, mutación de isoleucina a valina en la posición 143 o un resto homólogo en presenilina 1 (mutación A>G), véase, por ejemplo, Gallo et. al., J. Alzheimer’s disease.
2011; 25: 425-431; enfermedad priónica - por ejemplo, mutación de metionina a valina en la posición 129 o un resto homólogo en la proteína priónica (mutación A>G) - véase, por ejemplo, Lewis et. al., J. of General Virology. 2006; 87: 2443-2449; síndrome crónico, infantil, neurológico, cutáneo, articular (CINCA) - por ejemplo, mutación de tirosina a cisteína en la posición 570 o un resto homólogo en criopirina (mutación A>G) - véase, por ejemplo, Fujisawa et al. Blood. 2007; 109: 2903-2911; y miopatía relacionada con desmina (DRM) - por ejemplo, mutación de arginina a glicina en la posición 120 o un resto homólogo en aB cristalina (mutación A>G) - véase, por ejemplo, Kumar et al., J. Biol. Chem. 1999; 274: 24137-24141.
Será evidente para los expertos en la técnica que para dirigir una proteína de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos como se desvela en el presente documento a un sitio diana, por ejemplo, un sitio que comprende una mutación puntual a editar, normalmente es necesario co-expresar la proteína de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos junto con un ARN guía, por ejemplo, un ARNgu. Como se explica con más detalle en cualquier parte en el presente documento, un ARN guía normalmente comprende una región estructural de ARNcrtra que permite la unión de Cas9, y una secuencia guía, que confiere especificidad de secuencia a la proteína de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos. En algunas realizaciones, el ARN guía comprende una estructura 5'-[secuencia guía]-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3'
(SEQ ID NO: 38), en donde la secuencia guía comprende una secuencia que es complementaria a la secuencia diana. La secuencia guía normalmente tiene 20 nucleótidos de longitud. Las secuencias de ARNs guía adecuados para dirigir las proteínas de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos a sitios diana genómicos específicos serán evidentes para los expertos en la técnica basándose en la presente divulgación. Dichas secuencias de ARN guía adecuadas normalmente comprenden secuencias guía que son complementarias a una secuencia nucleica dentro de 50 nucleótidos en la dirección 5' o en la dirección 3' del nucleótido diana a editar. Algunas secuencias guía de ARN adecuadas a modo de ejemplo para dirigir proteínas de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos a secuencias diana específicas se proporcionan a continuación.
Polimorfismo H1047R (A3140G) en la subunidad alfa catalítica de fosfoinositida-3-cinasa (PI3KCA o PIK3CA) (están subrayados la posición del nucleótido mutado y el codón respectivo):
gatgacattgcatacattcgaaagaccctagccttagataaaactgagcaagaggctttg
D D I A Y I R K T L A L D K T E Q E A L
gagtatttcatgaaacaaatgaatgatgcaccjtcatggtggctggacaacaaaaatggat
E Y F M K Q M N D A R H G G W T T K M D
tggatcttccacacaattaaacagcatgcattgaactgaaagataactgagaaaatgaaa
W I F H T I K Q H A L N - K I T E K M K
(Secuencia de nucleótidos - SEQ ID NO: 39; secuencia de proteínas - SEQ ID NO: 40).
Las secuencias guía adecuadas a modo de ejemplo para dirigir una proteína de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos al resto A3140G mutante incluyen, sin limitación: 5'-aucggaauctauuuugacuc-3' (SEQ ID NO: 41); 5'-ucggaaucuauuuugacucg-3' (SEQ ID NO: 42); 5'-cuuagauaaaacugagcaag-3' (SEQ ID NO: 43); 5'-aucuauuuugacucguucuc-3' (SEQ ID NO: 44); 5'-uaaaacugagcaagaggcuu-3' (SEQ ID NO: 45); 5'-ugguggcuggacaacaaaaa-3' (SEQ ID NO: 46); 5'-gcuggacaacaaaaauggau-3' (SEQ ID NO: 47); 5'-guguuaauuugucguacgua-3' (SEQ ID NO: 48). Las secuencias guía adecuadas adicionales para dirigir una proteína de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos a una secuencia de PI3KCA mutante, a cualquiera de las secuencias adicionales proporcionadas a continuación, o a secuencias mutantes adicionales asociadas a una enfermedad, serán evidentes para los expertos en la técnica basándose en la presente divulgación.
Fenilcetonuria - mutación de fenilalanina a serina en el resto 240 en el gen fenilalanina hidroxilasa (mutación T>C) (están subrayadas la posición del nucleótido mutado y el codón respectivo):
aatcacatttttccacttcttgaaaagtactgtggcttccatgaagataacattccccag
N H I F P L L E K Y C G F H E D N I P Q
ctggaagacgtttctcaattcctgcagacttgcactggtctccgcctccgacctgtggct
L E D V S Q F L Q T C T G S R L R P V A
ggcctgctttcctctcgggatttcttgggtggcctggccttccgagtcttccactgcaca
G L L S S R D F L G G L A F R V F H C T
(Secuencia de nucleótidos - SEQ ID NO: 49; secuencia de proteínas - SEQ ID NO: 50).
Síndrome de Bernard-Soulier (BSS) - cisteína a arginina en el resto 24 en la glucoproteína IX de la membrana plaquetaria (mutación T>C):
atgcctgcctggggagccctgttcctgctctgggccacagcagaggccaccaaggactgc
M P A W G A L F L L W A T A E A T K D C
cccagcccacgtacctgccgcgccctggaaaccatggggctgtgggtggactgcaggggc
P S P R T C R A L E T M G L W V D C R G
cacggactcacggccctgcctgccctgccggcccgcacccgccaccttctgctggccaac
H G L T A L P A L P A R T R H L L L A N
(Secuencia de nucleótidos - SEQ ID NO: 51; secuencia de proteínas - SEQ ID NO: 52).
Hiperqueratosis epidermolítica (EHK) - mutación de leucina a prolina en el resto 161 en queratina 1 (mutación T>C):
ggttatggtcctgtctgccctcctggtggcatacaagaagtcactatcaaccagagccct
G Y G P V C P P G G I Q E V T I N Q S P
cttcagcccctcaatgtggagattgaccctgagatccaaaaggtgaagtctcgagaaagg
L Q P L N V E I D P E I Q K V K S R E R
(Secuencia de nucleótidos - SEQ ID NO: 53; secuencia de proteínas - SEQ ID NO: 54).
Enfermedad pulmonar obstructiva crónica (EPOC) - mutación de leucina a prolina en el resto 54 en a1-antitripsina (mutación T>C):
gtctccctggctgaggatccccagggagatgctgcccagaagacagatacatcccaccat
V S L A E D P Q G D A A Q K T D T S H H
gatcaggatcacccaaccttcaacaagatcacccccaacccggctgagttcgccttcagc
D Q D H P T F N K I T P N P A E F A F S
ctataccgccagctggcacaccagtccaacagcaccaatatcttcttctccccagtgagc
L Y R Q L A H . Q S N S T N I F F S P V S
(Secuencia de nucleótidos - SEQ ID NO: 55; secuencia de proteínas - SEQ ID NO: 56).
Enfermedad pulmonar obstructiva crónica (EPOC) - mutación de leucina a prolina en el resto 78 en a1-antiquimiotripsina (mutación T>C):
gcctccgccaacgtggacttcgctttcagcctgtacaagcagttagtcctgaaggcccct
A S A N V D F A F S L Y K Q L V L K A P
gataagaatgtcatcttctccccaccgagcatctccaccgccttggccttcctgtctctg
D K N V I F S P P S I S T A L A F L S L
ggggcccataataccaccctgacagagattctcaaaggcctcaagttctacctcacggag
G A H N T T L T E I L K G L K F Y L T E
(Secuencia de nucleótidos - SEQ ID NO: 89; secuencia de proteínas - SEQ ID NO: 90).
Neuroblastoma (NB) - mutación de leucina a prolina en el resto 197 en caspasa-9 (mutación T>C):
ggccactgcctcattatcaacaatgtgaacttctgccgtgagtccgggctccgcacccgc
G H C L I I N N V N F C R E S G L R T R
actggctccaacatcgactgtgagaagttgcggcgtcgcttctcctcgccgcatttcatg
I G S N I D C E K L R R R F S S P H F M
gtggaggtgaagggcgacctgactgccaagaaaatggtgctggctttgctggagctggcg
V E V K G D L T A K K M V L A L L E L A
(Secuencia de nucleótidos - SEQ ID NO: 57; secuencia de proteínas - SEQ ID NO: 58).
Enfermedad de Charcot-Marie-Tooth tipo 4J - mutación de isoleucina a treonina en el resto 41 en FIG4 (mutación T>C):
actagagctagatactttctagttgggagcaataatgcagaaacgaaatatcgtgtcttg
T R A R Y F L V G S N N A E T K Y R V L
aagactgatagaacagaaccaaaagatttggtcataattgatgacaggcatgtctatact
K T D R T E P K D L V I I D D R H V Y T
caacaagaagtaagggaacttcttggccgcttggatcttggaaatagaacaaagatggga
Q Q E V R E L L G R L D L G N R T K M G
(Secuencia de nucleótidos - SEQ ID NO: 59; secuencia de proteínas - SEQ ID NO: 60).
Enfermedad de von Willebrand (vWD) - mutación de cisteína a arginina en el resto 1272 en factor de von Willebrand (mutación T>C):
acagatgccccggtgagccccaccactctgtatgtggaggacatctcggaaccgccgttg
T D A P V S P T T L Y V E D I S E P P L
cacgatttctaccgcagcaggctactggacctggtcttcctgctggatggctcctccagg
H D F Y R S R L L D L V F L L D G S S R
ctgtccgaggctgagtttgaagtgctgaaggcctttgtggtggacatgatggagcggctg
L S E A E F E V L K A F V V D M M E R L
(Secuencia de nucleótidos - SEQ ID NO: 61; secuencia de proteínas - SEQ ID NO: 62).
Miotonía congénita - mutación de cisteína a arginina en la posición 277 en el gel del canal de cloruro muscular CLCN1 (mutación T>C):
atctgtgctgctgtcctcagcaaattcatgtctgtgttctgcggggtatatgagcagcca
I C A A V L S K F M S V F C G V Y E Q P
tactactactctgatatcctgacggtgggctgtgctgtgggagtcggccgttgttttggg
Y Y Y S D I L T V G C A V G V G R C F G
acaccacttggaggagtgctatttagcatcgaggtcacctccacctactttgctgttcgg
T P L G G V L F S I E V T S T Y F A V R
(Secuencia de nucleótidos - SEQ ID NO: 63; secuencia de proteínas - SEQ ID NO: 64).
Amiloidosis renal hereditaria - mutación de codón de terminación a arginina en el resto 111 en apolipoproteína All (mutación T>C):
tactttgaaaagtcaaaggagcagctgacacccctgatcaagaaggctggaacggaactg
Y F E K S K E Q L T P L I K K A G T E L
gttaacttcttgagctatttcgtggaacttggaacacagcctgccacccagcgaagtgtc
V N F L S Y F V E L G I Q P A T Q R S V
cagcaccattgtcttccaaccccagctggcctctagaacacccactggccagtcctagag
Q H H C L P T P A G L - N T H W P V L E
(Secuencia de nucleótidos - SEQ ID NO: 65; secuencia de proteínas - SEQ ID NO: 66).
Cardiomiopatía dilatada (DCM) - mutación de triptófano a arginina en la posición 148 en el gen FOXD4 (mutación T>C):
ccgcacaagcgcctcacgctcagcggcatctgcgccttcattagtgaccgcttcccctac
P H K R L T L S G I C A F I S D R F P Y
taccgccgcaagttccccgcccggcagaacagcatccgccacaacctctcgctgaacgac
Y R R K F P A R Q N S I R H N L S L N D
tgcttcgtcaagatcccccgcgagccgggccgcccaggcaagggcaactactggagcctg
C F V K I P R E P G R P G K G N Y W S L
(Secuencia de nucleótidos - SEQ ID NO: 67; secuencia de proteínas - SEQ ID NO: 68).
Linfedema hereditario - mutación de histidina a arginina en el resto 1035 en tirosina cinasa de VEGFR3 (mutación A>G):
gctgaggacctgtggctgagcccgctgaccatggaagatcttgtctgctacagcttccag
A E D L W L S P L T M E D L V C Y S F Q
gtggccagagggatggagttcctggcttcccgaaagtgcatccgcagagacctggctgct
V A R G M E F L A S R K C I R R D L A A
cggaacattctgctgtcggaaagcgacgtggtgaagatctgtgactttggccttgcccgg
R N I L L S E S D V V K I C D F G L A R
(Secuencia de nucleótidos - SEQ ID NO: 69; secuencia de proteínas - SEQ ID NO: 70).
Enfermedad de Alzheimer familiar - mutación de isoleucina a valina en el resto 143 en presenilina 1 (mutación A>G):
gataccgagactgtgggccagagagccctgcactcaattctgaatgctgccatcatgatc
D T E T V G Q R A L H S I L N A A I M I
agtgtcgttgttgtcatgactatcctcctggtggttctgtataaatacaggtgctataag
Figure imgf000026_0001
gtcatccatgcctggcttattatatcatctctattgttgctgttctttttttcattcatt
V I H A W L I I S S L L L L F F F S F I
(Secuencia de nucleótidos - SEQ ID NO: 71; secuencia de proteínas - SEQ ID NO: 72).
Enfermedad priónica - mutación de metionina a valina en el resto 129 en proteína priónica (mutación A>G):
aagccgagtaagccaaaaaccaacatgaagcacatggctggtgctgcagcagctggggca
K P S K P K T N M K H M A G A A A A G A
gtggtggggggccttggcggctacgtgctgggaagtgccatgagcaggcccatcatacat
V V G G L G G Y V L G S A M S R P I I H
ttcggcagtgactatgaggaccgttactatcgtgaaaacatgcaccgttaccccaaccaa
F G S D Y E D R Y Y R E N M H R Y P N Q
(Secuencia de nucleótidos - SEQ ID NO: 73; secuencia de proteínas - SEQ ID NO: 74).
Síndrome crónico, infantil, neurológico, cutáneo, articular (CINCA) - mutación de tirosina a cisteína en el resto 570 en criopirina (mutación A>G):
cttcccagccgagacgtgacagtccttctggaaaactatggcaaattcgaaaaggggtgt
L P S R D V T V L L E N Y G K F E K G C
ttgatttttgttgtacgtttcctctttggcctggtaaaccaggagaggacctcctacttg
L I F V V R F L F G L V N Q E R T S Y L
(Secuencia de nucleótidos - SEQ ID NO: 75; secuencia de proteínas - SEQ ID NO: 76).
Miopatía relacionada con desmina (DRM) - mutación de arginina a glicina en el resto 120 en aB cristalina (mutación A>G):
gtgaagcacttctccccagaggaactcaaagttaaggtgttgggagatgtgattgaggtg
V K H F S P E E L K V K V L G D V I E V
catggaaaacatgaagagcgccaggatgaacatggtttcatctccagggagttccacggg
H G K H E E R Q D E H G F I S R E F H G
aaataccggatcccagctgatgtagaccctctcaccattacttcatccctgtcatctgat
K Y R I P A D V D P L T I T S S L S S D
(Secuencia de nucleótidos - SEQ ID NO: 77; secuencia de proteínas - SEQ ID NO: 78).
Beta-talasemia - un ejemplo es la mutación de leucina a prolina en el resto 115 en hemoglobina B.
gagctgcactgtgacaagctgcacgtggatcctgagaacttcaggctcctgggcaacgtg
E L H C D K L H V D P E N F R L L G N V
ctggtctgtgtgccggcccatcactttggcaaagaattcaccccaccagtgcaggctgcc
L V C V P A H H F G K E F T P P V Q A A
tatcagaaagtggtggctggtgtggctaatgccctggcccacaagtatcactaagctcgc
Y Q K V V A G V A N A L A H K Y H - A R
(Secuencia de nucleótidos - SEQ ID NO: 79; secuencia de proteínas - SEQ ID NO: 80).
Se debe entender que las secuencias proporcionadas anteriormente son a modo de ejemplo y no pretende ser limitantes del alcance de la presente divulgación. Las secuencias adecuadas adicionales de mutaciones puntuales que están asociadas con enfermedad y susceptibles a corrección por proteína de fusión de Cas9:enzima/dominio de edición de ácidos nucleicos, así como secuencias guía de ARN adecuadas, serán evidentes para los expertos en la técnica basándose en la presente divulgación.
Sistemas indicadores
Algunos aspectos de la presente divulgación proporcionan un sistema indicador que se puede usar para detectar actividad de desaminasa de las proteínas de fusión descritas en el presente documento. El sistema indicador puede ser un ensayo basado en luciferasa en el que la actividad de desaminasa conduce a la expresión de luciferasa. Para minimizar el impacto de la posible promiscuidad de sustrato del dominio de desaminasa (por ejemplo, el dominio de ayuda), se minimiza el número de restos que podrían ser involuntariamente dirigidos para la desaminación (por ejemplo, restos C inespecíficos que podrían residir posiblemente en el ADNmc dentro del sistema indicador). Un resto diana previsto se puede localizar en un codón de iniciación mutado de ACG del gen luciferasa que es incapaz de iniciar la traducción. La actividad de desaminasa deseada da como resultado una modificación ACG>AUG, permitiendo así la traducción de luciferasa y la detección y cuantificación de la actividad de desaminasa.
Para minimizar los restos de C monocatenarios, se puede insertar una secuencia conductora entre el codón de iniciación mutado y el inicio del gen luciferasa que consiste en una extensión de restos Lys (AAA), Asn (AAT), Leu (TTA), Ile (ATT, ATA), Tyr (TAT) o Phe (TTT). Los mutantes resultantes se pueden probar para garantizar que la secuencia conductora no afecte adversamente la expresión o actividad de luciferasa. También se puede determinar la actividad de luciferasa de fondo con el codón de iniciación mutado.
Se puede usar el sistema indicador para probar muchos ARNgu diferentes, por ejemplo, para determinar qué resto(s) con respecto a la secuencia de ADN diana dirigirán la desaminasa respectiva (por ejemplo, enzima AID) (Figura 3). Debido a que no se conoce el tamaño de la burbuja de Cas9-ADN, también se pueden probar ARNgu que dirigen la cadena no de molde para evaluar efectos inespecíficos de una proteína de fusión de Cas9-desaminasa específica. Dichos ARNgu se pueden diseñar de forma que el codón de iniciación mutado no aparee las bases con el ARNgu.
Una vez se han identificado las proteínas de fusión que son capaces de modificaciones de C a U específicas de sitio programables, sus actividades se pueden caracterizar adicionalmente. Los datos de los ensayos de luciferasa se pueden integrar, por ejemplo, en mapas de calor que describen qué nucleótidos, con respecto al ADN diana de ARNgu, están siendo dirigidos para la desaminación por una proteína de fusión específica. La posición que da como resultado la mayor actividad en el ensayo de luciferasa para cada fusión se puede considerar la posición "diana", mientras que todas las otras se consideran posiciones inespecíficas.
En algunas realizaciones, se proporcionan fusiones de Cas9 con diversas enzimas APOBEC3, o dominios de desaminasa de las mismas. En algunas realizaciones, se proporcionan proteínas de fusión de Cas9 con otras enzimas de edición de ácidos nucleicos o dominios catalíticos, que incluyen, por ejemplo, enzimas de edición de ARNmc, tales como las citidina desaminasas APOBEC1 y ACF1/ASF, así como la familia ADAT de adenosina desaminasas,38 que se puede usar para la actividad de edición de ADNmc cuando se fusiona con Cas9. La actividad de dichas proteínas de fusión se puede probar usando los mismos sistemas indicadores y ensayos descritos anteriormente.
Se proporciona un sistema indicador en el presente documento que incluye un gen indicador que comprende un codón de iniciación desactivado, por ejemplo, una mutación en la cadena de molde desde 3'-TAC-5' hasta 3'-CAC-5'. Tras la desaminación satisfactoria de C diana, el ARNm correspondiente se transcribirá como 5'-AUG-3' en lugar de 5'-GUG-3', que permite la traducción del gen indicador. Los genes indicadores adecuados serán evidentes para los expertos en la técnica.
La descripción de realizaciones a modo de ejemplo de los sistemas indicadores anteriores se proporciona para fines de ilustración solo y no pretende ser limitante. También están englobados por la presente divulgación sistemas indicadores adicionales, por ejemplo, variaciones de los sistemas descritos a modo de ejemplo en detalle anteriormente.
Ejemplos
Ejemplo 1: Proteínas de fusión
Se proporcionan a continuación proteínas de fusión de Cas9:desaminasa a modo de ejemplo:
Fusión de Cas9:AID humana (extremo C)
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFK
VLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDD
SFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLA
LAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKS
RRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQ
IGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL
PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTR
KSEETIIPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKY
VTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL
GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKR
RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG
QGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNS
RERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVD
AIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT
KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLV
SDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS
EQEIGKATAKYFFYSNIMNFFKIEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL
SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKV
EKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRK
RMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQI
SEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR
YTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGGGSGGGGSGGGGSYVVKRRDSATSFSL
DFGYLRNKNGCHVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSL
RIFTARLYFCEDRKAEPEGLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHEN
SVRLSRQLRRILLPLYEVDDLRDAFRTLGL (SEQIDNO:30)
(subrayado: señal de localización nuclear; subrayado doble: señal de exportación nuclear, negrita: secuencia conectora)
Fusión de Cas9:AID humana (extremo N)
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCHVELLFL
RYISDWDLDPGRCYRVTWFTSWSPCYDCARHVADFLRGNPNLSLRIFTARLYFCEDRKAEPE
GLRRLHRAGVQIAIMTFKDYFYCWNTFVENHERTFKAWEGLHENSVRLSRQLRRILLPGGGG
SGGGGSGGGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL
FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE
RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNP
DNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLF
GNLIALSLGLT PNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI
LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGY
IDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILR
RQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAI
VDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE
ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD
KQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIK
KGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQIL
KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLT
RSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQ
LVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYH
HAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMN
FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFS
KESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITI
MERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPS
KYVNFLYLASHYEKLKGS PEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLS
AYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITG
LYETRIDLSQLGGD (SEQIDN0:31)
(subrayado: señal de localización nuclear; negrita: secuencia conectora)
Fusión de Cas9:AID de ratón (extremo C)
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFK
VLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDD
5FFHRLEE5FLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLA
LAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKS
RRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQ
IGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL
PEKYKEIFFDQSKNGYAGYIDGGASGEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTR
KSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKY
VTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL
GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKR
RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG
QGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNS
RERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVD
AIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLI
KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLV
SDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS
EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL
SMPQVNIVKKTEVQTGGFSKES ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLWAKV
EKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRK
RMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQI
SEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR
YTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGGGSGGGGSGGGGSYVVKRRDSATSCSL
DFGHLRNKSGCHVELLFLRYISDWDLDPGRCYRVTWFTSWSPCYDCARHVAEFLRWNPNLSL
RIFTARLYFCEDRKAEPEGLRRLHRAGVQIGIMTFKDYFYCWNTFVENRERTFKAWEGLHEN
SVRLTROLRRILLPLYEVDDLRDAFRMLGF (SEQIDNO:32)
(subrayado: señal de localización nuclear; negrita: secuencia conectora; subrayado doble: señal de exportación nuclear)
Fusión de Cas9:APOBEC-3G humana (extremo N)
SPKKKRKVEASMELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAE
DPKVTLIIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKIMNYDEFQHCWSKFVYSQRELF
EPWNNLPKYYILLHIMLGEILRHSMDPPTFTFNFNNEPWVRGRHETYLCYEVERMHNDTWVL
LNQRRGFLCNQAPHKHGFLEGRHAELCFLDVIPFWKLDLDQDYRVTCFTSWSPCFSCAQEMA
KFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSEFKHCWDTFVDHQGCPF
QPWDGLDEHSQDLSGRLRAILQNQENSPKKKRECVEASSPKKBÍRKVEASKKYS IGLAIGTNSV
GWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNR
ICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK
KLVDS TDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPIN
ASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL
QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVWTEITKAPLSASMIKRYD
EHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEE
LLVKLNREDLLRKQRTFDNGSIPHQIHLGELHñILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPVJNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHS
LLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIEC
FDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL
KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH
DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIV
IEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDM
YVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWR
QLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDEN
DKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEF
VYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIEINGETG
EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYG
GFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDL
IIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQ
LFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNL
GAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD(SEQ ID N O :33)
(subrayado: señal de localización nuclear; negrita: conector (1 NLS),
Fusión de Cas9:APOBEC-1 humana (extremo N)
SPKKKRKVEASMTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIW
RSSGKNITNHVEVNFIKKFTSERDFHPSMSCSITWFLSWS PCWECSQAIREFLSRHPGVTLV
IYVARLFWHMDQQNRQGLRDLVNSGVTIQIMRASEYYHCWRNFVNYPPGDEAHWPQYPPLWM
MLYALELHCIILSLPPCLKISRRWQNHLTFFRLHLQNCHYQTIPPHILLATGLIHPSVAWRS
PKKKRKVEASSPKKKRKVEASDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHS
IKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEES
FLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRG
HFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQ
LPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLF
LAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFF
DQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQI
HLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPW
NFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPA
FLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI
IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRL
SRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHI
ANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE
GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLK
DDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSE
LDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQF
YKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGRATA
KYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVK
KTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDS PTVAYSVLVVAKVEKGKSKKLK
SVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGEL
QKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVIL
ADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLD
ATLIHQSITGLYETRIDLSQLGGD
(subrayado: señal de localización nuclear; negrita: conector (1 NLS), (SEQ ID NO: 92)
Fusión de Cas9:ADAT1 humana (extremo N)
m S L L m m K F L Y Q F m m m K G R R E T Y L C SMGTGTKCIGQSKMRKNGDILNDSHAEVIARR
SFQRYLLHQLQLAATLKEDSIFVPGTQKGVWKLRRDLIFVFFSSHTPCGDASIIPMLEFEDQ
PCCPVFRNWAHNSSVEASSNLEAPGNERKCEDPDSPVTKKMRLEPGTAAREVTNGAAHHQSF
GKQKSGPISPGIHSCDLTVEGLATVTRIAPGSAKVIDVYRTGAKCVPGEAGDSGKPGAAFHQ
VGLLRVKPGRGDRTRSMSCSDKMARWNVLGCQGALLMHLLEEPIYLSAVVIGKCPYSQEAMQ
RALIGRCQNVSALPKGFGVQELKILQSDLLFEQSRSAVQAKRADSPGRLVPCGAAISWSAVP
EQPLDVTANGFPQGTTKKTIGSLQARSQISKVELFRSFQKLLSRIARDKWPHSLRVQKLDTY
QEYKEAASSYQEAWSTLRKQVFGSWIRNPPDYHQFGGGGSGGGGSGGGGSDKKYSIGLAIGT
NSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRR
KNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERH.plFGNIVDEVAYHEKYPTIYH
LRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEEN
PINASGVDAKAILSARLSKSRRLENLLAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAED
AKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIK
RYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDG
TEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFR
IPYYVGPLARGNSRFAWMIRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLP
KHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKK
IECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIE
ERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQ
LIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPE
NIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNG
RDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKN
YWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKY
DENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLE
SEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNG
ETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPK
KYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVK
KDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGS PEDNE
QKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTL
TNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD (SEQ ID
NO: 35)
(subrayado: señal de localización nuclear; negrita: secuencia conectora)
Fusión de Cas9:ADAT1 humana (extremo)
MDSLLMNKRKFLYQFKNVRWAKGRKETYLCDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFK
VLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDD
SFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLA
LAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKS
RRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQ
IGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQL
PEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF
DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTR
KSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKY
VTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASL
GTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKR
RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG
QGDSLHEHIANLAGSPAIKKGILQTVKWDELVKVMGRHKPENIVIEMARENQTTQKGQKNS
RERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVD
AIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT
KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLV
SDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKS
EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL
SMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLWAKV
EKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRK
RMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQI
SEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKR
YTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGGGSGGGGSSMGTGrK'CXGQSKMRK'WGD
ILNDSHAEVIARRSFQRYLLHQLQLAATLKEDSIFVPGTQKGVWKLRRDLIFVFFSSHTPCG
DASIIPMLEFEDQPCCPVFRNWAHNSSVEASSNLEAPGNERKCEDPDSPVTKKMRLEPGTAA
REVTNGAAHHQSFGKQKSGPISPGIHSCDLTVEGLATVTRIAPGSAKVIDVYRTGAKCVPGE
AGDSGKPGAAFHQVGLLRVKPGRGDRTRSMSCSDKMARWNVLGCQGALLMHLLEEPIYLSAV
VIGKCPYSQEAMQRALIGRCQNVSALPKGFGVQELKILQSDLLFEQSRSAVQAKRADSPGRL
VPCGAAIS WSA VPEQPL D VTANGFPQGTTKKTIGSL QAR SQISKVEL FR S FQKLL SR IAR.DK
WPHSLRVQKLDTYQEYKEAASSYQEAWSTLRKQVFGSWIRNPPDYHQF (SEQ ID NO:
36)
(subrayado: señal de localización nuclear; negrita: secuencia conectora)
Ejemplo 2: Corrección de una mutación puntual PI3K por una proteína de fusión de Cas9
Se corrige una mutación puntual A3140G en el exón 20 del gen PI3KCA, que da como resultado una sustitución de aminoácidos H1047R en la proteína PI3K, poniendo en contacto un ácido nucleico que codifica la proteína mutante con una proteína de fusión de Cas9:AID (SEQ ID NO: 30) o Cas9:APOBEC1 (SEQ ID NO: 92) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en el gen PI3KCA codificante. La mutación puntual A3140G se confirma por PCR genómica de la secuencia respectiva del exón 20, por ejemplo, generación de un amplicón por PCR de los nucleótidos 3000-3250, y posterior secuenciación del amplicón PCT. Se ponen en contacto células que expresan una proteína PI3K mutante que comprende una mutación puntual A3140G en el exón 20 con una construcción de expresión que codifica la proteína de fusión Cas9:AID (SEQ ID NO: 30) o Cas9:APOBEC1 (SEQ ID NO: 92) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en la hebra no codificante de gen PI3KCA codificante. El ARNgu es de la secuencia 5'-aucggaauctauuuugacucguuuuagagcuagaaaua gcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3' (SEQ ID NO: 81); 5'-ucggaaucuauuuugacucgguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaa guggcaccgagucggugcuuuuu-3' (SEQ ID NO: 82); 5'-cuuagauaaaacugagcaagguuuuagagcuagaa auagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3' (SEQ ID NO: 83); 5'-aucuauuuugacucguucucguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuug aaaaaguggcaccgagucggugcuuuuu-3' (SEQ ID NO: 84); 5'-uaaaacugagcaagaggcuuguuuuagagcua gaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3' (SEQ ID NO: 85); 5'-ugguggcuggacaacaaaaaguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaa cuugaaaaaguggcaccgagucggugcuuuuu-3' (SEQ ID NO: 86); 5'-gcuggacaacaaaaauggauguuuua gagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3' (SEQ ID NO:87); o 5'-guguuaauuugucguacguaguuuuagagcuagaaauagcaaguuaaaauaaaggcua guccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu (SEQ ID NO: 88).
La actividad de citosina desaminasa de la proteína de fusión Cas9:AID o Cas9:APOBEC1 da como resultado la desaminación de la citosina que está apareada con base con G3140 mutante a uridina. Después de una ronda de replicación, se restaura A3140 no mutante. Se extrae el ADN genómico de las células tratadas y se amplifica un amplicón de PCR de nucleótidos 3000-3250 con cebadores de PCR adecuados. La corrección de la mutación puntual A3140G después del tratamiento de las células con la proteína de fusión se confirma por secuenciación del amplicón de PCR.
Ejemplo 3: Corrección de una mutación puntual de presenilina 1 por una proteína de fusión de Cas9
Se corrige una mutación puntual A->G en el codón 143 del gen presenilina 1 (PSEN1), dando como resultado una sustitución de aminoácidos I143V en la proteína PSEN1 poniendo en contacto un ácido nucleico que codifica la proteína PSEN1 muíante con una proteína de fusión Cas9:AID (SEQ ID NO: 30) o Cas9:APOBEC1 (SEQ ID NO: 92) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en el gen PSEN1 codificante. Véase, por ejemplo, Gallo et. al., J. Alzheimer’s disease. 2011; 25: 425-431 para una descripción de una mutación I143V en PSEN1 a modo de ejemplo asociada a enfermedad de Alzheimer familiar. La mutación puntual A->G se confirma por PCR genómica de la secuencia respectiva de PSEN1, por ejemplo, generación de un amplicón de PCR de aproximadamente 100-250 nucleótidos alrededor del exón 143, y posterior secuenciación del amplicón PCT.
Se ponen en contacto células que expresan la proteína PSEN1 mutante con una construcción de expresión que codifica la proteína de fusión de Cas9:AID (SEQ ID NO: 30) o Cas9:APOBEC1 (SEQ ID NO: 92) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en la cadena no codificante del gen PSEN1 codificante. La actividad de citosina desaminasa de la proteína de fusión de Cas9:AID o Cas9:APOBEC1 da como resultado la desaminación de la citosina que está apareada con base con G mutante en el codón 143 a uridina. Después de una ronda de replicación, se restaura A no mutante. Se extrae el ADN genómico de las células tratadas y se amplifica un amplicón de PCR de 100-250 nucleótidos con cebadores de PCR adecuados. Se confirma la corrección de la mutación puntual A->G después del tratamiento de las células con la proteína de fusión por secuenciación del amplicón de PCR.
Ejemplo 4: Corrección de una mutación de puntual ai-antitripsina por una proteína de fusión de Cas9
Se corrige una mutación puntual T->C en el codón 55 del gen a1-antitripsina, que da como resultado una sustitución de aminoácidos L55P en la proteína a1-antitripsina, poniendo en contacto un ácido nucleico que codifica la proteína a1-antitripsina mutante con una proteína de fusión de Cas9:ADAT1 (SEQ ID NO: 35 o 36) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en el gen a1-antitripsina codificante. Véase, por ejemplo, Poller et al., Genomics. 1993; 17: 740-743 para una descripción más detallada de una mutación T->C del codón 55 a modo de ejemplo asociada a enfermedad pulmonar obstructiva crónica (EPOC). La mutación puntual T->C se confirma por PCR genómica de la secuencia de a1-antitripsina respectiva que codifica el codón 55, por ejemplo, generación de un amplicón de PCR de aproximadamente 100-250 nucleótidos, y posterior secuenciación del amplicón de PCT.
Se ponen en contacto células que expresan la proteína a1-antitripsina mutante con una construcción de expresión que codifica la proteína de fusión de Cas9:AID (SEQ ID NO: 30) o Cas9:APOBEC1 (SEQ ID NO: 92) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al nucleótido mutado en el codón 55 en la cadena codificante en el gen a1-antitripsina codificante. La actividad de citosina desaminasa de la proteína de fusión Cas9:ADAT1 da como resultado la desaminación de la citosina mutante a uridina corrigiendo así la mutación. Se extrae el ADN genómico de las células tratadas y se amplifica un amplicón de PCR de 100-250 nucleótidos con cebadores de PCR adecuados. La corrección de la mutación puntual T->C en el codón 55 del gen a1-antitripsina después del tratamiento de las células con la proteína de fusión se confirma por secuenciación del amplicón de PCR.
Ejemplo 5: Corrección de una mutación puntual del factor de von Willebrand por una proteína de fusión de Cas9
Se corrige una mutación puntual T->C en el codón 509 del gen factor de von Willebrand, que da como resultado una sustitución de aminoácidos C509A en la proteína factor de von Willebrand, poniendo en contacto un ácido nucleico que codifica la proteína factor de von Willebrand mutante con una proteína de fusión de Cas9:ADAT1 (SEQ ID NO: 35 o 36) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en la cadena codificante del gen factor de von Willebrand codificante. Véase, por ejemplo, Lavergne et al., Br. J. Haematol. 1992; 82: 66-7, para una descripción de una mutación C509A de factor de von Willebrand a modo de ejemplo asociada a enfermedad de von Willebrand (vWD). La mutación puntual T->C se confirma por PCR genómica de la secuencia genómica respectiva del gen factor de von Willebrand, por ejemplo, generación de un amplicón de PCR de aproximadamente 100-250 nucleótidos alrededor del exón 509, y posterior secuenciación del amplicón PCT.
Se ponen en contacto células que expresan la proteína factor de von Willebrand mutante con una construcción de expresión que codifica la proteína de fusión de Cas9:ADAT1 (SEQ ID NO: 35 o 36) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en la cadena codificante del gen factor de von Willebrand codificante. La actividad de citosina desaminasa de la proteína de fusión de Cas9:ADAT1 da como resultado la desaminación de la citosina mutante en el codón 509 a uridina, corrigiendo así la mutación. Se extrae el ADN genómico de las células tratadas y se amplifica un amplicón de PCR de 100-250 nucleótidos con cebadores de PCR adecuados. La corrección de la mutación puntual T->C en el codón 509 del gen factor de von Willebrand después del tratamiento de las células con la proteína de fusión se confirma por secuenciación del amplicón de PCR.
Ejemplo 6: Corrección de una mutación puntual en caspasa 9 por una proteína de fusión de Cas9 -neuroblastoma
Se corrige una mutación puntual T->C en el codón 197 del gen caspasa-9, que da como resultado una sustitución de aminoácidos L197P en la proteína caspasa-9, poniendo en contacto un ácido nucleico que codifica la proteína caspasa-9 mutante con una proteína de fusión de Cas9:ADAT1 (SEQ ID NO: 35 o 36) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en la cadena codificante del gen de caspasa-9 codificante. Véase, por ejemplo, Lenk et al., PLoS Genetics. 2011; 7: e1002104, para una descripción de una mutación L197P de caspasa-9 a modo de ejemplo asociada a neuroblastoma (NB). La mutación puntual T->C se confirma por PCR genómica de la secuencia genómica de caspasa-9 respectiva, por ejemplo, generación de un amplicón de PCR de aproximadamente 100-250 nucleótidos alrededor del exón 197, y posterior secuenciación del amplicón PCT.
Se ponen en contacto células que expresan la proteína caspasa-9 mutante con una construcción de expresión que codifica la proteína de fusión de Cas9:ADAT1 (SEQ ID NO: 35 o 36) y un ARNgu apropiadamente diseñado que dirige la proteína de fusión al sitio de mutación en la cadena codificante del gen caspasa-9 codificante. La actividad de citosina desaminasa de la proteína de fusión de Cas9:ADAT1 da como resultado la desaminación de la citosina mutante en el codón 197 a uridina, corrigiendo así la mutación. Se extrae el ADN genómico de las células tratadas y se amplifica un amplicón de PCR de 100-250 nucleótidos con cebadores de PCR adecuados. La corrección de la mutación puntual T->C en el codón 197 del gen caspasa-9 después del tratamiento de las células con la proteína de fusión se confirma por secuenciación del amplicón de PCR.
Ejemplo 7: Actividad de desaminasa de dos proteínas de fusión de dCas9-APOBEC1
Se generaron dos proteínas de fusión de dCas9-APOBEC1 con diferentes conectores:
rAPOBEC1_GGS_dCas9:
M55ETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHV
EVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHAD
PRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCII
LGLPPCLMILRRKQPQLTFFTIALQ5CHYQRLPPHILWATGLKGGSMDKKYSIGLAIGTNSV
GWAVIT DEYKVP SKKFKVLGNT DRHSIKKNLIGALLFD SGETAEATRLKRTARRRYTRRKNR
ICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGHIVDEVAYHEKYPTIYHLRK
KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLHPDNSDVDKLFIQLVQTYHQLFEEHPIN
ASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL
OLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYD
EHHODLTLLKALVROOLPEKYKEIFFDOSKNGYAGYIDGGASOEEFYKFIKPILEKMDGTEE
LLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAOSFIERMTNFDKNLPNEKVLPKHS
LLYEYFTVYNELTKVKYVTEGMRKPAFL5GEOKKAIVDLLFKTNRKVTVKOLKEDYFKKIEC
FDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL
KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKOSGKTILDFLKSDGFANRNFMQLIH
DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPEMIV
IEMARENOTTOKGOKNSRERMKRIEEGIKELGSQILKEHPVENTOLONEKLYLYYLONGRDM
YVDQELDINRL5DYDVDAIVPQ5FLKDD5IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWR
OLLNAKLITORKFDNLTKAERGGLSELDKAGFIKROLVETROITKHVAQILDSRMNTKYDEN
DKLIREVKVITLKSKLVSDFRKDFQFYKVREIHNYHHAHDAYLNAVVGTALIKKYPKLESEF
VYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMMFFKTEITLAMGEIRKRPLIETMGETG
EIVWDKGRDFATVRKVL5MPOVMIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYG
GFDSPTVAYSVLWAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDL
IIKLPKYSLFELENGRKRMLASAGELOKGNELALPSKYVNFLYLASHYEKLKGSPEDNEOKO
LFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYHKHRDKPIREQAENIIHLFTLTHL
GAPAAFKYFDTTIDRKRYT5TKEVLDATLIHQSITGLYETRIDLSOLGGD(SEQ ID NO:
94);
subrayado = rAPOBEC1; subrayado doble = dCas9.
rAPOBEC1_(GGS)3_dCas9:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHV
EVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHAD
PRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCII
LGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKGGSGGSGGSMDKKYSIGLA
IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY
TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPT
IYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIOLVOTYNOLF
EENPINASGVDAKAILSARLSK5RRLENLIAOLPGEKKNGLFGNLIALSLGLTPNFK5NFDL
AEDAKLOLSKDTYDDDLDNLLAOIGDOYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHODLTLLKALVROOLPEKYKEIFFDOSKNGYAGYIDGGASOEEFYKFIKPILEK
MDGTEELLVKLWREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKIL
TFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGA5AOSFIERMTNFDKNLPNEK
VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEOKKAIVDLLFKTNRKVTVKOLKEDY
FKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRE
MIEERLKTYAHLFDDKVMKOLKRRRYTGWGRLSRKLINGIRDKOSGKTILDFLKSDGFANRN
FMOLIHDDSLTFKEDIOKAOVSGOGDSLHEHIANLAGSPAIKKGILOTVKVVDELVKVMGRH
KPENIVIEMARENOTTOKGOKNSRERMKRIEEGIKELGSOILKEHPVENTOLONEKLYLYYL
OMGRDMYVDOELDINRLSDYDVDAIVPOSFLKDDSIDMKVLTRSDKNRGKSDMVPSEEVVKK
MKNYWROLLNAKLITORKFDNLTKAERGGLSELDKAGFIKROLVETROITKHVAOILDSRMN
TKYDENDKLIREVKVITLKSKLVSDFRKDFOFYKVREINNYHHAHDAYLNAVVGTALIKKYP
KLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TMGETGEIVWDKGRDFATVRKVLSMPOVNIVKKTEVOTGGFSKE5ILPKRNSDKLIARKKDW
DPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYK
EVKKDLIIKLPKYSLFELENGRKRMLASAGELOKGNELALPSKYVNFLYLASHYEKLKGSPE
DNEOKOLFVEOHKHYLDEIIEOISEFSKRVILADANLDKVLSAYNKHRDKPIREOAENIIHL
FTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHOSITGLYETRIDLSOLGGD
(SEQ ID NO: 95); subrayado = rAPOBECI; subrayado doble = dCas9.
Se examinó la actividad de desaminasa de ambas proteínas de fusión. Se adaptó un ensayo de desaminasa de Nuc. Acids Res. 2014, 42, p. 1095; J. Biol. Chem. 2004, 279, p 53379; J. Virology 2014, 88, p. 3850; y J. Virology 2006, 80, p. 5992.
Se insertaron construcciones de expresión que codifican las proteínas de fusión en un plásmido de esqueleto de CMV (plásmido de Addgene 52970; véase Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to Fokl nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82). Se expresaron las proteínas de fusión usando un sistema de transcripción/traducción acoplada TNT Quick (Promega). Después de 90 min, se incubaron 5 gL de lisado con sustrato de ADNmc marcado en 5' (Cy3-ATTATTATTATTCCGCGGATTTATT TATTTATTTATTTATTT, SEQ ID NO: 96) y UDG (uracil-ADN glicosilasa) a 37 °C durante 3 h. Entonces se añadió una disolución 1 M de NaOH (10 gL) para escindir el ADN en el sitio abásico. Véase la Figura 4. Se resolvió el ADN en un gel al 10 % de TBE-PAGE (Figura 5). También se incluyeron un control negativo, donde pUC19 se incubó en el sistema TNT, y un control positivo, donde el ADN se ha sintetizado con un "U" en lugar de C diana. La Figura 5 ilustra que ambas proteínas de fusión presentan actividad de citosina desaminasa.
REFERENCIAS
1. Humbert O, Davis L, Maizels N. Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol.2012; 47(3):264-81. PMID: 22530743.
2. Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol. 2012;
16(3-4):268-77. PMID: 22819644.
3. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 11(9):636-46. PMID: 20717154.
4. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14(1 ):49-55. PMID: 23169466.
Charpentier E, Doudna JA. Biotechnology: Rewriting a genome. Nature. 2013; 495, (7439):50-1. PMID: 23467164.
Pan Y, Xia L, Li AS, Zhang X, Sirois P, Zhang J, Li K. Biological and biomedical applications of engineered nucleases. Mol Biotechnol. 2013; 55(1):54-62. PMID: 23089945.
De Souza, N. Primer: genome editing with engineered nucleases. Nat Methods. 2012; 9(1):27. PMID: 22312638. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN. Targeted gene knockout in mammalian cells by using engineered zincfinger nucleases. Proc Natl Acad Sci USA. 2008; 105(15):5809-14. PMID: 18359850.
Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES. Characterization of singlenucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999; 22(3):231-8. PMID: 10391209. Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002; 43(6):1565-75. PMID: 11952905.
Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013; 10(10) :957-63. PMID: 24076990.
Jore MM, Lundgren M, van Duijin E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Shou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. 2011; 18(5):529-36. PMID: 21460843.
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010; 327(5962):167-70. PMID: 20056882.
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012; 482(7385):331-8. PMID: 22337052.
Gasiunas G, Siksnys V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. 2013; 21 (11):562-7. PMID: 24095303.
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-83. PMID: 23452860. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013; 10(10):973-6. PMID: 23892895.
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31 (9):833-8. PMID: 23907171.
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51. PMID: 23849981.
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequencespecific control of gene expression. Nat Protoc. 2013; 8(11):2180-96. PMID: 24136345.
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121):823-6. PMID: 23287722.
Cole-Strauss A, Yoon K, Xiang Y, Byrne BC, Rice MC, Gryn J, Holloman WK, Kmiec EB. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. 1996; 273(5280):1386-9. PMID: 8703073.
Tagalakis AD, Owen JS, Simons JP. Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. 2005; 71 (2):140-4. PMID: 15791601.
Ray A, Langer M. Homologous recombination: ends as the means. Trends Plant Sci. 2002; 7(10):435-40. PMID 12399177.
Britt AB, May GD. Re-engineering plant gene targeting. Trends Plant Sci. 2003; 8(2):90-5. PMID: 12597876.
Vagner V, Ehrlich SD. Efficiency of homologous DNA recombination varíes along the Bacillus subtilis chromosome. J Bacteriol. 1988; 170(9):3978-82. PMID: 3137211.
Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004; 32(12):3683-8. PMID: 15252152.
Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L. Gene editing in human stem cells using zince finger nucleases and integrasedefective lentiviral vector delivery. Nat Biotechnol. 2007; 25(11):1298-306. PMID: 17965707.
Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008; 9(6):229. PMID: 18598372.
Reynaud CA, Aoufouchi S, Faili A, Weill JC. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. 2003; 4(7):631-8.
Bhagwat AS. DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair (Amst).
2004; 3(1):85-9. PMID: 14697763.
Navaratnam N, Sarwar R. An overview of cytidine deaminases. Int J Hematol. 2006; 83(3):195-200. PMID: 16720547.
Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. 2008; 456(7218):121 -4. PMID: 18849968.
Chelico L, Pham P, Petruska J, Goodman MF. Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem.
2009; 284(41). 27761-5. PMID: 19684020.
Pham P, Bransteitter R, Goodman MF. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry. 2005; 44(8):2703-15. PMID 15723516.
Barbas CF, Kim DH. Cytidine deaminase fusions and related methods. PCT Int Appl. 2010; WO 2010132092 A220101118.
Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69. PMID: 23026637.
Gerber AP, Keller W. RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. 2001; 26(6):376-84. PMID: 11406411.
Yuan L, Kurek I, English J, Keenan R. Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303.
Cobb RE, Sun N, Zhao H. Directed evolution as a powerful synthetic biology tool. Methods. 2013; 60(1 ):81 -90. PMID: 22465795.
Bershtein S, Tawfik DS. Advances in laboratory evolution of enzymes. Curr Opin Chem Biol. 2008; 12(2) :151 -8. PMID: 18284924.
Hida K, Hanes J, Ostermeier M. Directed evolution for drug and nucleic acid delivery. Adv Drug Deliv Rev. 2007; 59(15):1562-78. PMID: 17933418.
Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules. Nature. 2011; 472(7344):499-503. PMID: 21478873.
Husimi Y. Selection and evolution of bacteriophages in cellstat. Adv Biophys. 1989; 25:1-43. PMID: 2696338. Riechmann L, Holliger P. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID: 9244308.
Nelson FK, Friedman SM, Smith GP. Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2):338-50. PMID: 6258292.
Rakonjac J, Model P. Roles of pIII in filamentous phage assembly. J Mol Biol. 1998; 282(1):25-41.
Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228(4705):1315-7. PMID: 4001944.
49. Sheridan C. Gene therapy finds its niche. Nat Biotechnol. 2011; 29(2):121-8. PMID: 21301435.
50. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005; 24(8):1477-80. PMID: 15608678.
51. Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S, Santarius T, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Hunter C, Jenkinson A, Jones D, Kosmidou V, Lugg R, Menzies A, Mironenko T, Parker A, Perry J, Raine K, Richardson D, Shepherd R, Small A, Smith R, Solomon H, Stephens P, Teaque J, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Reinhold W, Weinstein JN, Stratton MR, Futreal PA, Wooster R. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. 2006; 5(11):2606-12. PMID: 17088437.
EQUIVALENTES Y ALCANCE
Los expertos en la técnica reconocerán, o serán capaces de determinar usando no más de experimentación rutinaria, muchos equivalentes de las realizaciones descritas en el presente documento. El alcance de la presente divulgación no pretende estar limitado a la descripción anterior, sino que es como se expone en las reivindicaciones adjuntas.
Artículos tales como "un", "una", "el" y "la" pueden significar uno o más de uno, a menos que se indique lo contrario o sea evidente de otro modo del contexto. Las reivindicaciones o descripciones que incluyen "o" entre dos o más miembros de un grupo se consideran satisfechas si uno, más de uno, o todos los miembros del grupo están presentes, a menos que se indique lo contrario o sea de otro modo evidente del contexto. La divulgación de un grupo que incluye "o" entre dos o más miembros del grupo proporciona realizaciones en las que exactamente un miembro del grupo está presente, realizaciones en las que más de un miembro del grupo está presente, y realizaciones en las que todos los miembros del grupo están presentes.
Donde los elementos se presenten como listas, por ejemplo, en formato de grupos de Markush, se debe entender que también se desvela cada subgrupo posible de los elementos, y que cualquier elemento o subgrupo de elementos se puede retirar del grupo. También se observa que el término "que comprende" pretende ser abierto y permite la inclusión de elementos o etapas adicionales. Se debe entender que, en general, donde se hace referencia a una realización, producto, o método que comprende elementos particulares, características, o etapas, también se proporcionan realizaciones, productos, o métodos que consisten, o consisten esencialmente en, dichos elementos, características, o etapas.
Donde se dan intervalos, se incluyen puntos extremos. Además, se debe entender que, a menos que se indique lo contrario o sea evidente de otro modo del contexto y/o el entendimiento de un experto habitual en la técnica, valores que se expresan como intervalos pueden asumir cualquier valor específico dentro de los intervalos establecidos en algunas realizaciones, al décimo de la unidad del límite inferior del intervalo, a menos que el contexto dicte claramente de otro modo. Para los fines de brevedad, los valores en cada intervalo no han sido individualmente explicados en detalle en el presente documento, pero se entenderá que cada uno de estos valores se proporciona en el presente documento y se puede reivindicar o renunciar a ellos específicamente. También se debe entender que, a menos que se indique lo contrario o sea de otro modo evidente del contexto y/o el entendimiento de un experto habitual en la técnica, los valores expresados como intervalos pueden asumir cualquier subintervalo dentro del intervalo dado, en donde los puntos extremos del subintervalo se expresan al mismo grado de exactitud que el décimo de la unidad del límite inferior del intervalo.

Claims (22)

REIVINDICACIONES
1. Una proteína de fusión que comprende
(i) un dominio de Cas9 de nucleasa inactiva; y
(ii) un dominio de desaminasa.
2. La proteína de fusión de la reivindicación 1, en donde el dominio de desaminasa es;
(i) una citidina desaminasa; o
(ii) una desaminasa de la familia del complejo de edición de ARNm de apolipoproteína B (APOBEC); o (iii) una desaminasa de la familia APOBEC 1; o
(iv) una citidina desaminasa inducida por activación (AID); o
(v) una ACF1/ASE desaminasa; o
(vi) una adenosina desaminasa; o
(vii) una desaminasa de la familia ADAT.
3. La proteína de fusión de la reivindicación 1 o la reivindicación 2, en donde el dominio de desaminasa se fusiona con el extremo N del dominio de Cas9, o en donde el dominio de desaminasa se fusiona con el extremo C del dominio de Cas9.
4. La proteína de fusión de una cualquiera de las reivindicaciones 1-3, en donde el dominio de Cas9 y el dominio de desaminasa se fusionan por un conector, opcionalmente en donde el conector comprende un motivo (GGGGS)n (SEQ ID NO: 91), (G)n, (EAAAK)n (SEQ ID NO: 5), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 93), o (XP)n, o una combinación de cualquiera de estos, en donde n es independientemente un número entero entre 1 y 30.
5. La proteína de fusión de la reivindicación 1 o 2, en donde el dominio de desaminasa es una desaminasa de APOBEC 1.
6. La proteína de fusión de la reivindicación 5, en donde la desaminasa de APOBEC 1 comprende la secuencia de aminoácidos de una cualquiera de SEQ ID NOs: 22-24.
7. La proteína de fusión de una cualquiera de las reivindicaciones 1-6, en donde el dominio de Cas9 de nucleasa inactiva comprende la secuencia de aminoácidos de SEQ ID NO: 34.
8. La proteína de fusión de una cualquiera de las reivindicaciones 1-7, en donde la proteína de fusión comprende la secuencia de aminoácidos de SEQ ID NO: 92.
9. Una proteína de fusión según cualquiera de las reivindicaciones 1 -8 para su uso en medicina.
10. Un método in vitro o ex vivo de edición de ADN, comprendiendo el método poner en contacto una molécula de ADN con
(a) la proteína de fusión de una de las reivindicaciones 1-8; y
(b) un ARN guía único (ARNgu) que dirige la proteína de fusión de (a) a una secuencia de ADN diana de la molécula de ADN; en donde la molécula de ADN se pone en contacto con la proteína de fusión y el ARNgu en una cantidad eficaz y en condiciones adecuadas para la desaminación de una base nucleotídica de la molécula de ADN.
11. El método de la reivindicación 10, en donde la secuencia de ADN diana comprende una secuencia asociada a una enfermedad o trastorno, y en donde la desaminación de la base nucleotídica da como resultado una secuencia que no se asocia a una enfermedad o trastorno, opcionalmente en donde la secuencia de ADN diana comprende una mutación puntual asociada a una enfermedad o trastorno, y en donde la desaminación corrige la mutación puntual.
12. El método de la reivindicación 10 o la reivindicación 11, en donde la secuencia de ADN diana comprende una mutación puntual T ^C o A ^G asociada a una enfermedad o trastorno, y en donde la desaminación de la base C o G mutante da como resultado una secuencia que no se asocia a una enfermedad o trastorno.
13. El método de la reivindicación 11 o la reivindicación 12, en donde la secuencia asociada a la enfermedad o trastorno codifica una proteína, y en donde la desaminación introduce un codón de terminación en la secuencia asociada a la enfermedad o trastorno, dando como resultado una truncación de la proteína codificada.
14. El método de una cualquiera de las reivindicaciones 11-13, en donde la enfermedad o trastorno es fibrosis quística, fenilcetonuria, hiperqueratosis epidermolítica (EHK), enfermedad de Charcot-Marie-Toot de tipo 4J, neuroblastoma (NB), enfermedad de von Willebrand (vWD), miotonía congénita, amiloidosis renal hereditaria, cardiomiopatía dilatada (DCM), linfedema hereditario, enfermedad de Alzheimer familiar, enfermedad priónica, síndrome crónico, infantil, neurológico, cutáneo, articular (CINCA), miopatía relacionada con desmina (DRM), o una enfermedad neoplásica asociada a una proteína PI3KCA mutante.
15. El método de una cualquiera de las reivindicaciones 10-14, en donde la secuencia de ADN diana comprende una mutación puntual T^-C y/o an A^-G que da como resultado:
(i) una mutación de secuencia de aminoácidos en la proteína PI3KCA en comparación con la proteína PI3K no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la mutación puntual es una mutación A3140G que da como resultado una sustitución H1047R; o (ii) una mutación de secuencia de aminoácidos en la proteína PSEN1 en comparación con la proteína PSEN1 no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la proteína PSEN1 comprende una sustitución I143V provocada por una mutación puntual A^-G en el codón 143 del gen PSEN1, opcionalmente en donde la mutación puntual en PSEN1 está asociada con enfermedad de Alzheimer, opcionalmente en donde el contacto da como resultado la desaminación del resto de citidina mutante en el codón 143 del gen PSEN1, corrigiendo así la mutación puntual A^G ; o
(iii) una mutación de secuencia de aminoácidos en la proteína a-antitripsina en comparación con la proteína aantitripsina no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la proteína a-antitripsina comprende una sustitución L55P provocada por una mutación puntual T^-C en el codón 55 del gen a-antitripsina, opcionalmente en donde la mutación puntual de a-antitripsina está asociada con enfermedad pulmonar obstructiva crónica (EPOC), opcionalmente en donde el contacto da como resultado la desaminación del resto de citidina mutante en el codón 55 del gen a-antitripsina, corrigiendo así la mutación puntual T^-C; o
(iv) una mutación de secuencia de aminoácidos en la proteína vWF en comparación con la proteína vWF no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la proteína vWF comprende una sustitución C509A provocada por una mutación puntual T ^C en el codón 509 del gen vWF, opcionalmente en donde la mutación puntual de vWF está asociada con enfermedad de von Willebrand, opcionalmente en donde el contacto da como resultado la desaminación del resto de citidina mutante en el codón 509 del gen vWF, corrigiendo así la mutación puntual T^C ; o
(v) una mutación de secuencia de aminoácidos en la proteína caspasa-9 en comparación con la proteína caspasa-9 no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la proteína caspasa-9 comprende una sustitución L197P provocada por una mutación puntual T ^C en el codón 197 del gen caspasa-9, opcionalmente en donde la mutación puntual de caspasa-9 está asociada con neuroblastoma, opcionalmente en donde el contacto da como resultado la desaminación del resto de citidina mutante en el codón 197 del gen caspasa-9, corrigiendo así la mutación puntual T^C .
16. El método de una cualquiera de las reivindicaciones 10-15, en donde el método comprende además detectar la desaminación de la base nucleotídica, opcionalmente en donde la detección es por PCR.
17. La proteína de fusión de una cualquiera de las reivindicaciones 1-8 para su uso en un método de tratamiento de una enfermedad o trastorno, comprendiendo el método poner en contacto una molécula de ADN con
(a) la proteína de fusión; y
(b) un ARNgu que dirige la proteína de fusión de (a) a una secuencia de ADN diana de la molécula de ADN; en donde la molécula de ADN se pone en contacto con la proteína de fusión y el ARNgu en una cantidad eficaz y en condiciones adecuadas para la desaminación de una base nucleotídica de la molécula de ADN, en donde la secuencia de ADN diana comprende una secuencia asociada a una enfermedad o trastorno, la desaminación de la base nucleotídica da como resultado una secuencia que no se asocia a una enfermedad o trastorno, y en donde el contacto es in vivo en un sujeto susceptible a tener, que tiene, o diagnosticado con una enfermedad o trastorno, opcionalmente en donde la secuencia de ADN diana comprende una mutación puntual asociada a una enfermedad o trastorno, y en donde la desaminación corrige la mutación puntual.
18. La proteína de fusión para su uso de la reivindicación 17, en donde la secuencia de ADN diana comprende una mutación puntual T ^C o A ^G asociada a una enfermedad o trastorno, y en donde la desaminación de la base C o G mutante da como resultado una secuencia que no se asocia a una enfermedad o trastorno.
19. La proteína de fusión para su uso de la reivindicación 17 o la reivindicación 18, en donde la secuencia asociada a la enfermedad o trastorno codifica una proteína, y en donde la desaminación introduce un codón de terminación en la secuencia asociada a la enfermedad o trastorno, dando como resultado una truncación de la proteína codificada.
20. La proteína de fusión para el uso de una cualquiera de las reivindicaciones 17-19, en donde la enfermedad o trastorno es fibrosis quística, fenilcetonuria, hiperqueratosis epidermolítica (EHK), enfermedad de Charcot-Marie-Toot de tipo 4J, neuroblastoma (NB), enfermedad de von Willebrand (vWD), miotonía congénita, amiloidosis renal hereditaria, cardiomiopatía dilatada (DCM), linfedema hereditario, enfermedad de Alzheimer familiar, enfermedad priónica, síndrome crónico, infantil, neurológico, cutáneo, articular (CINCA), miopatía relacionada con desmina (DRM), o una enfermedad neoplásica asociada a una proteína PI3KCA mutante.
21. La proteína de fusión para el uso de una cualquiera de las reivindicaciones 17-20, en donde la secuencia de ADN diana comprende una mutación puntual T^-C y/o A^-G que da como resultado:
(i) una mutación de secuencia de aminoácidos en la proteína PI3KCA en comparación con la proteína PI3K no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la mutación puntual es una mutación A3140G que da como resultado una sustitución H1047R; o (ii) una mutación de secuencia de aminoácidos en la proteína PSEN1 en comparación con la proteína PSEN1 no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la proteína PSEN1 comprende una sustitución I143V provocada por una mutación puntual A^-G en el codón 143 del gen PSEN1, opcionalmente en donde la mutación puntual en PSEN1 está asociada con enfermedad de Alzheimer, opcionalmente en donde el contacto da como resultado la desaminación del resto de citidina mutante en el codón 143 del gen PSEN1, corrigiendo así la mutación puntual A^G ; o
(iii) una mutación de secuencia de aminoácidos en la proteína a-antitripsina en comparación con la proteína aantitripsina no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la proteína a-antitripsina comprende una sustitución L55P provocada por una mutación puntual T ^C en el codón 55 del gen a-antitripsina, opcionalmente en donde la mutación puntual de a-antitripsina está asociada con enfermedad pulmonar obstructiva crónica (EPOC), opcionalmente en donde el contacto da como resultado la desaminación del resto de citidina mutante en el codón 55 del gen a-antitripsina, corrigiendo así la mutación puntual T^C ; o
(iv) una mutación de secuencia de aminoácidos en la proteína vWF en comparación con la proteína vWF no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la proteína vWF comprende una sustitución C509A provocada por una mutación puntual T ^C en el codón 509 del gen vWF, opcionalmente en donde la mutación puntual de vWF está asociada con enfermedad de von Willebrand, opcionalmente en donde el contacto da como resultado la desaminación del resto de citidina mutante en el codón 509 del gen vWF, corrigiendo así la mutación puntual T^C ; o
(v) una mutación de secuencia de aminoácidos en la proteína caspasa-9 en comparación con la proteína caspasa-9 no mutante, y en donde el método da como resultado la desaminación de la base C o G mutante, opcionalmente en donde la proteína caspasa-9 comprende una sustitución L197P provocada por una mutación puntual T ^C en el codón 197 del gen caspasa-9, opcionalmente en donde la mutación puntual de caspasa-9 está asociada con neuroblastoma, opcionalmente en donde el contacto da como resultado la desaminación del resto de citidina mutante en el codón 197 del gen caspasa-9, corrigiendo así la mutación puntual T^C .
22. La proteína de fusión para el uso de una cualquiera de las reivindicaciones 17-21, en donde el método comprende además detectar la desaminación de la base nucleotídica, opcionalmente en donde la detección es por PCR.
ES14825518T 2013-12-12 2014-12-12 Variantes de Cas para edición génica Active ES2754433T3 (es)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201361915386P 2013-12-12 2013-12-12
US201461980333P 2014-04-16 2014-04-16
US14/326,109 US9840699B2 (en) 2013-12-12 2014-07-08 Methods for nucleic acid editing
US14/326,318 US20150166985A1 (en) 2013-12-12 2014-07-08 Methods for correcting von willebrand factor point mutations
US14/326,140 US20150166982A1 (en) 2013-12-12 2014-07-08 Methods for correcting pi3k point mutations
US14/326,290 US20150166984A1 (en) 2013-12-12 2014-07-08 Methods for correcting alpha-antitrypsin point mutations
US14/325,815 US11053481B2 (en) 2013-12-12 2014-07-08 Fusions of Cas9 domains and nucleic acid-editing domains
US14/326,303 US20150165054A1 (en) 2013-12-12 2014-07-08 Methods for correcting caspase-9 point mutations
US14/326,269 US9068179B1 (en) 2013-12-12 2014-07-08 Methods for correcting presenilin point mutations
PCT/US2014/070038 WO2015089406A1 (en) 2013-12-12 2014-12-12 Cas variants for gene editing

Publications (1)

Publication Number Publication Date
ES2754433T3 true ES2754433T3 (es) 2020-04-17

Family

ID=53367126

Family Applications (1)

Application Number Title Priority Date Filing Date
ES14825518T Active ES2754433T3 (es) 2013-12-12 2014-12-12 Variantes de Cas para edición génica

Country Status (12)

Country Link
US (10) US9840699B2 (es)
EP (3) EP3604511B1 (es)
JP (4) JP2017500035A (es)
CN (2) CN105934516B (es)
AU (3) AU2014362208B2 (es)
CA (1) CA2933625C (es)
DK (2) DK3604511T3 (es)
ES (1) ES2754433T3 (es)
HU (1) HUE046398T2 (es)
PL (1) PL3080265T3 (es)
PT (1) PT3080265T (es)
WO (1) WO2015089406A1 (es)

Families Citing this family (297)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2734621B1 (en) 2011-07-22 2019-09-04 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
HUE038850T2 (hu) 2012-05-25 2018-11-28 Univ California Eljárások és kompozíciók cél-DNS RNS-irányított módosításához és transzkripció RNS-irányított modulálásához
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US11773400B2 (en) 2013-08-22 2023-10-03 E.I. Du Pont De Nemours And Company Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US10584358B2 (en) 2013-10-30 2020-03-10 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
PL3102722T3 (pl) 2014-02-04 2021-03-08 Jumpcode Genomics, Inc. Frakcjonowanie genomu
JP6206893B2 (ja) * 2014-03-05 2017-10-04 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
WO2015134812A1 (en) 2014-03-05 2015-09-11 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
EP3981876A1 (en) 2014-03-26 2022-04-13 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating sickle cell disease
CN106460003A (zh) 2014-04-08 2017-02-22 北卡罗来纳州立大学 用于使用crispr相关基因rna引导阻遏转录的方法和组合物
US10280419B2 (en) 2014-05-09 2019-05-07 UNIVERSITé LAVAL Reduction of amyloid beta peptide production via modification of the APP gene using the CRISPR/Cas system
CA2956224A1 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
JP6715419B2 (ja) * 2014-08-06 2020-07-01 トゥールジェン インコーポレイテッド カンピロバクター・ジェジュニcrispr/casシステムに由来するrgenを使用したゲノム編集
EP3186375A4 (en) 2014-08-28 2019-03-13 North Carolina State University NEW CAS9 PROTEINS AND GUIDING ELEMENTS FOR DNA TARGETING AND THE GENOME EDITION
EP3188763B1 (en) * 2014-09-02 2020-05-13 The Regents of The University of California Methods and compositions for rna-directed target dna modification
AU2015311706A1 (en) 2014-09-07 2017-02-02 Selecta Biosciences, Inc. Methods and compositions for attenuating gene therapy anti-viral transfer vector immune responses
WO2016077052A2 (en) 2014-10-22 2016-05-19 President And Fellows Of Harvard College Evolution of proteases
PT3216867T (pt) * 2014-11-04 2020-07-16 Univ Kobe Nat Univ Corp Método para modificar a sequência de genoma para introduzir mutação específica a sequência de adn alvo por reação de remoção de bases, e complexo molecular nele utilizado
EP4400584A3 (en) 2014-12-03 2024-10-16 Agilent Technologies, Inc. Guide rna with chemical modifications
CN107249318A (zh) 2014-12-10 2017-10-13 明尼苏达大学董事会 用于治疗疾病的遗传修饰的细胞、组织和器官
US20210395729A1 (en) * 2014-12-12 2021-12-23 Tod M. Woolf Compositions and methods for Editing Nucleic Acids in Cells Utilizing Oligonucleotides
EP3256487A4 (en) 2015-02-09 2018-07-18 Duke University Compositions and methods for epigenome editing
KR20240038141A (ko) 2015-04-06 2024-03-22 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Crispr/cas-매개 유전자 조절을 위한 화학적으로 변형된 가이드 rna
CN107690480B (zh) 2015-04-24 2022-03-22 爱迪塔斯医药公司 Cas9分子/指导rna分子复合物的评价
EP3303607A4 (en) 2015-05-29 2018-10-10 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using crispr nucleic acids
DK3307872T3 (da) 2015-06-15 2023-10-23 Univ North Carolina State Fremgangsmåder og sammensætninger til effektiv indgivelse af nukleinsyrer og rna-baserede antimikrober
CA2990699A1 (en) 2015-06-29 2017-01-05 Ionis Pharmaceuticals, Inc. Modified crispr rna and modified single crispr rna and uses thereof
CA2992580C (en) * 2015-07-15 2022-09-20 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
WO2017015637A1 (en) 2015-07-22 2017-01-26 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
IL257105B (en) 2015-07-31 2022-09-01 Univ Minnesota Adapted cells and treatment methods
WO2017024047A1 (en) * 2015-08-03 2017-02-09 Emendobio Inc. Compositions and methods for increasing nuclease induced recombination rate in cells
WO2017031483A1 (en) * 2015-08-20 2017-02-23 Applied Stemcell, Inc. Nuclease with enhanced efficiency of genome editing
CN108351350B (zh) 2015-08-25 2022-02-18 杜克大学 使用rna指导型内切核酸酶改善基因组工程特异性的组合物和方法
US20190024098A1 (en) * 2015-09-09 2019-01-24 National University Corporation Kobe University Method for modifying genome sequence that specifically converts nucleobase of targeted dna sequence, and molecular complex used in said method
BR112018004636A2 (pt) * 2015-09-09 2018-10-30 National University Corporation Kobe University método para modificação de um sítio alvejado em um dna de fita dupla de uma bactéria gram-positiva, complexo de enzima modificadora de ácido nucleico, e, ácido nucleico
JP6940262B2 (ja) * 2015-09-09 2021-09-22 株式会社日本触媒 ゲノム配列が特異的に変換された遺伝子改変クロストリジウム・サッカロパーブチルアセトニカム種微生物、その製造方法およびその用途
WO2017058751A1 (en) 2015-09-28 2017-04-06 North Carolina State University Methods and compositions for sequence specific antimicrobials
EP3362571A4 (en) 2015-10-13 2019-07-10 Duke University GENOMIC ENGINEERING WITH TYPE I CRISPRISMS IN EUKARYOTIC CELLS
GB2559922A (en) * 2015-10-23 2018-08-22 Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
JP2019500899A (ja) 2015-11-23 2019-01-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア CRISPR/Cas9の核送達を通じた細胞RNAの追跡と操作
WO2017090761A1 (ja) * 2015-11-27 2017-06-01 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換する、単子葉植物のゲノム配列の変換方法、及びそれに用いる分子複合体
US11851653B2 (en) 2015-12-01 2023-12-26 Crispr Therapeutics Ag Materials and methods for treatment of alpha-1 antitrypsin deficiency
US11542466B2 (en) 2015-12-22 2023-01-03 North Carolina State University Methods and compositions for delivery of CRISPR based antimicrobials
US11339427B2 (en) 2016-02-12 2022-05-24 Jumpcode Genomics, Inc. Method for target specific RNA transcription of DNA sequences
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
CA3018978A1 (en) 2016-03-30 2017-10-05 Intellia Therapeutics, Inc. Lipid nanoparticle formulations for crispr/cas components
WO2017180915A2 (en) * 2016-04-13 2017-10-19 Duke University Crispr/cas9-based repressors for silencing gene targets in vivo and methods of use
EP4023228A1 (en) * 2016-05-06 2022-07-06 Tod M. Woolf Genome editing oligonucleotide without programmable nucleases
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
WO2017215619A1 (zh) * 2016-06-15 2017-12-21 中国科学院上海生命科学研究院 在细胞内产生点突变的融合蛋白、其制备及用途
EP3455357A1 (en) * 2016-06-17 2019-03-20 The Broad Institute Inc. Type vi crispr orthologs and systems
WO2017220751A1 (en) * 2016-06-22 2017-12-28 Proqr Therapeutics Ii B.V. Single-stranded rna-editing oligonucleotides
MX2019000088A (es) 2016-06-27 2019-08-29 Broad Inst Inc Composiciones y metodos para detectar y tratar la diabetes.
WO2018010516A1 (zh) * 2016-07-13 2018-01-18 陈奇涵 一种基因组dna特异性编辑方法和应用
BR112019001887A2 (pt) 2016-08-02 2019-07-09 Editas Medicine Inc composições e métodos para o tratamento de doença associada a cep290
SG11201900907YA (en) * 2016-08-03 2019-02-27 Harvard College Adenosine nucleobase editors and uses thereof
CN109804066A (zh) 2016-08-09 2019-05-24 哈佛大学的校长及成员们 可编程cas9-重组酶融合蛋白及其用途
WO2018035377A1 (en) * 2016-08-17 2018-02-22 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11920151B2 (en) 2016-09-13 2024-03-05 Toolgen Incorporated Method for identifying DNA base editing by means of cytosine deaminase
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
EP3529359B1 (en) 2016-10-18 2023-12-13 Regents of the University of Minnesota Tumor infiltrating lymphocytes for use in therapy
WO2018083606A1 (en) 2016-11-01 2018-05-11 Novartis Ag Methods and compositions for enhancing gene editing
AR110075A1 (es) * 2016-11-14 2019-02-20 Inst Genetics & Developmental Biology Cas Un método para edición basal en plantas
CN107043779B (zh) * 2016-12-01 2020-05-12 中国农业科学院作物科学研究所 一种CRISPR/nCas9介导的定点碱基替换在植物中的应用
CN106609282A (zh) * 2016-12-02 2017-05-03 中国科学院上海生命科学研究院 一种用于植物基因组定点碱基替换的载体
US11192929B2 (en) 2016-12-08 2021-12-07 Regents Of The University Of Minnesota Site-specific DNA base editing using modified APOBEC enzymes
AU2017378431A1 (en) 2016-12-14 2019-06-20 Ligandal, Inc. Compositions and methods for nucleic acid and/or protein payload delivery
KR102551664B1 (ko) 2016-12-22 2023-07-05 인텔리아 테라퓨틱스, 인크. 알파-1 항트립신 결핍을 치료하기 위한 조성물 및 방법
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
CA3048479A1 (en) * 2016-12-23 2018-06-28 President And Fellows Of Harvard College Gene editing of pcsk9
WO2018117746A1 (ko) * 2016-12-23 2018-06-28 기초과학연구원 동물 배아의 염기 교정용 조성물 및 염기 교정 방법
EP3565608A4 (en) * 2017-01-05 2020-12-16 Rutgers, The State University of New Jersey TARGETED GENEDITATION PLATFORM INDEPENDENT OF DNA DOUBLE STRAND BREAKAGE AND USES THEREOF
EP3568476A1 (en) * 2017-01-11 2019-11-20 Oxford University Innovation Limited Crispr rna
JP2020505062A (ja) * 2017-01-17 2020-02-20 インスティテュート フォー ベーシック サイエンスInstitute For Basic Science Dna一本鎖切断による塩基編集非標的位置確認方法
TW201839136A (zh) 2017-02-06 2018-11-01 瑞士商諾華公司 治療血色素異常症之組合物及方法
WO2018145041A1 (en) * 2017-02-06 2018-08-09 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
KR20190117536A (ko) * 2017-02-15 2019-10-16 키진 엔.브이. 식물 세포에서 표적 유전적 변형 방법
BR112019017138A2 (pt) * 2017-02-20 2020-04-14 Inst Genetics & Developmental Biology Cas sistema e método de edição de genoma
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
JP2020510038A (ja) * 2017-03-09 2020-04-02 プレジデント アンド フェローズ オブ ハーバード カレッジ がんワクチン
WO2018165629A1 (en) 2017-03-10 2018-09-13 President And Fellows Of Harvard College Cytosine to guanine base editor
WO2018170184A1 (en) 2017-03-14 2018-09-20 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
EP3622070A2 (en) 2017-05-10 2020-03-18 Editas Medicine, Inc. Crispr/rna-guided nuclease systems and methods
CN110869498A (zh) 2017-05-10 2020-03-06 加利福尼亚大学董事会 经由核递送crispr/cas9导向编辑细胞rna
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
US11866697B2 (en) 2017-05-18 2024-01-09 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
WO2018213726A1 (en) * 2017-05-18 2018-11-22 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
CN107177625B (zh) * 2017-05-26 2021-05-25 中国农业科学院植物保护研究所 一种定点突变的人工载体系统及定点突变方法
JP7454494B2 (ja) * 2017-06-26 2024-03-22 ザ・ブロード・インスティテュート・インコーポレイテッド 標的化された核酸編集のためのcrispr/cas-アデニンデアミナーゼ系の組成物、系及び方法
WO2019003193A1 (en) 2017-06-30 2019-01-03 Novartis Ag METHODS FOR TREATING DISEASES USING GENE EDITING SYSTEMS
EP3645021A4 (en) 2017-06-30 2021-04-21 Intima Bioscience, Inc. ADENO-ASSOCIATED VIRAL VECTORS FOR GENE THERAPY
US20210355508A1 (en) * 2017-07-25 2021-11-18 Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences Method for Modulating RNA Splicing by Inducing Base Mutation at Splice Site or Base Substitution in Polypyrimidine Region
EP3658573A1 (en) * 2017-07-28 2020-06-03 President and Fellows of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace)
EP3585160A2 (en) 2017-07-31 2020-01-01 Regeneron Pharmaceuticals, Inc. Crispr reporter non-human animals and uses thereof
BR112020001364A2 (pt) 2017-07-31 2020-08-11 Regeneron Pharmaceuticals, Inc. métodos para testar e modificar a capacidade de uma crispr/cas nuclease.
US20210054404A1 (en) 2017-08-22 2021-02-25 Napigen, Inc. Organelle genome modification using polynucleotide guided endonuclease
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
WO2019041296A1 (zh) * 2017-09-01 2019-03-07 上海科技大学 一种碱基编辑系统及方法
US11649442B2 (en) 2017-09-08 2023-05-16 The Regents Of The University Of California RNA-guided endonuclease fusion polypeptides and methods of use thereof
CN107557373A (zh) * 2017-09-19 2018-01-09 安徽大学 一种基于I‑B型CRISPR‑Cas系统基因cas3的基因编辑方法
HRP20240627T1 (hr) 2017-09-29 2024-08-02 Intellia Therapeutics, Inc. Formulacije
KR20200058508A (ko) 2017-09-29 2020-05-27 인텔리아 테라퓨틱스, 인크. 게놈 편집을 위한 폴리뉴클레오티드, 조성물 및 방법
US20200308603A1 (en) 2017-09-29 2020-10-01 Intellia Therapeutics, Inc. In vitro method of mrna delivery using lipid nanoparticles
MX2020003608A (es) 2017-09-29 2020-09-25 Intellia Therapeutics Inc Composiciones y métodos para la edición del gen ttr y el tratamiento de la amiloidosis attr.
CN111727247A (zh) * 2017-10-04 2020-09-29 博德研究所 用于靶向核酸编辑的系统、方法和组合物
EP3694543A1 (en) 2017-10-13 2020-08-19 Selecta Biosciences, Inc. Methods and compositions for attenuating anti-viral transfer vector igm responses
CN111757937A (zh) * 2017-10-16 2020-10-09 布罗德研究所股份有限公司 腺苷碱基编辑器的用途
CA3080454A1 (en) 2017-10-31 2019-05-09 Vilmorin & Cie Wheat comprising male fertility restorer alleles
EP3704245A1 (en) 2017-11-01 2020-09-09 Novartis AG Synthetic rnas and methods of use
WO2019104094A2 (en) 2017-11-21 2019-05-31 The Regents Of The University Of California Fusion proteins and methods for site-directed genome editing
AU2018385697B2 (en) 2017-12-15 2023-11-09 Dana-Farber Cancer Institute, Inc. Stabilized peptide-mediated targeted protein degradation
CN110157727A (zh) * 2017-12-21 2019-08-23 中国科学院遗传与发育生物学研究所 植物碱基编辑方法
WO2019126716A1 (en) * 2017-12-22 2019-06-27 The Broad Institute, Inc. Cas12b systems, methods, and compositions for targeted rna base editing
EP3728575A4 (en) * 2017-12-22 2021-11-24 The Broad Institute, Inc. CAS12B SYSTEMS, METHODS AND COMPOSITIONS FOR SPECIFIC EDITING OF DNA BASES
CN108165543B (zh) * 2017-12-26 2021-01-22 山东省农业科学院生物技术研究中心 水稻腺苷脱氨酶OsAD1及其编码基因在叶绿体基因RNA编辑中的应用
AU2019207409B2 (en) 2018-01-12 2023-02-23 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
WO2019147014A1 (ko) * 2018-01-23 2019-08-01 기초과학연구원 연장된 단일 가이드 rna 및 그 용도
KR102210700B1 (ko) * 2018-01-25 2021-02-02 주식회사 툴젠 아데노신 디아미나아제를 이용한 염기 교정 확인 방법
US20190233816A1 (en) 2018-01-26 2019-08-01 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
CA3087715A1 (en) 2018-02-08 2019-08-15 Zymergen Inc. Genome editing using crispr in corynebacterium
CN112020554B (zh) * 2018-02-23 2024-10-22 先锋国际良种公司 新颖cas9直系同源物
CN109021111B (zh) * 2018-02-23 2021-12-07 上海科技大学 一种基因碱基编辑器
JP2021515037A (ja) 2018-02-26 2021-06-17 アントルクス,インコーポレーテッド 寛容原性リポソーム及びその使用方法
SG11202008956XA (en) 2018-03-14 2020-10-29 Editas Medicine Inc Systems and methods for the treatment of hemoglobinopathies
KR20200141470A (ko) 2018-04-06 2020-12-18 칠드런'즈 메디컬 센터 코포레이션 체세포 재프로그래밍 및 각인의 조정을 위한 조성물 및 방법
GB201805865D0 (en) 2018-04-09 2018-05-23 Innes John Centre Genes
WO2019217941A1 (en) * 2018-05-11 2019-11-14 Beam Therapeutics Inc. Methods of suppressing pathogenic mutations using programmable base editor systems
KR20210010555A (ko) * 2018-05-17 2021-01-27 리젠츠 오브 더 유니버시티 오브 미네소타 약물 저항성 면역 세포 및 그의 사용 방법
EP3797160A1 (en) 2018-05-23 2021-03-31 The Broad Institute Inc. Base editors and uses thereof
JP2021526853A (ja) 2018-06-05 2021-10-11 ライフエディット,インコーポレイティド Rna誘導型ヌクレアーゼ、その活性な断片とバリアント、ならびに利用法
WO2019234132A1 (en) 2018-06-05 2019-12-12 KWS SAAT SE & Co. KGaA Base editing in polymerase theta deficient plants
WO2020006112A1 (en) 2018-06-26 2020-01-02 Regents Of The University Of Minnesota Delivery of developmental regulators to plants for the induction of meristematic tissue with genetic alterations
CN113348245A (zh) * 2018-07-31 2021-09-03 博德研究所 新型crispr酶和系统
CN112867795A (zh) 2018-07-31 2021-05-28 因特利亚治疗公司 用于执行羟基酸氧化酶1(hao1)基因编辑以治疗1型原发性高草酸尿症(ph1)的组合物和方法
EP3841203A4 (en) * 2018-08-23 2022-11-02 The Broad Institute Inc. CAS9 VARIANTS WITH NON-CANONICAL PAM SPECIFICITIES AND USES OF THEM
WO2020047498A1 (en) * 2018-08-31 2020-03-05 The Regents Of The University Of California Directed modification of rna
US20240173430A1 (en) 2018-09-05 2024-05-30 The Broad Institute, Inc. Base editing for treating hutchinson-gilford progeria syndrome
US20210317436A1 (en) * 2018-09-08 2021-10-14 Blueallele, Llc Methods and compositions for modifying the von willebrand factor gene
CA3114425A1 (en) 2018-09-28 2020-04-02 Intellia Therapeutics, Inc. Compositions and methods for lactate dehydrogenase (ldha) gene editing
EP3861120A4 (en) 2018-10-01 2023-08-16 North Carolina State University RECOMBINANT TYPE I CRISPR-CAS SYSTEM
SG11202103722TA (en) 2018-10-15 2021-05-28 Univ Massachusetts Programmable dna base editing by nme2cas9-deaminase fusion proteins
BR112021007025A2 (pt) 2018-10-16 2021-08-03 Intellia Therapeutics, Inc. composições e métodos para imunoterapia
CA3116762A1 (en) * 2018-10-19 2020-04-23 Board Of Regents, The University Of Texas System Engineered long interspersed element (line) transposons and methods of use thereof
WO2020092453A1 (en) 2018-10-29 2020-05-07 The Broad Institute, Inc. Nucleobase editors comprising geocas9 and uses thereof
CN113874501B (zh) 2018-11-01 2024-10-18 苏州齐禾生科生物科技有限公司 使用碱基编辑器进行靶向诱变
US20220282275A1 (en) 2018-11-15 2022-09-08 The Broad Institute, Inc. G-to-t base editors and uses thereof
EP3894550A4 (en) * 2018-12-14 2023-01-04 Pioneer Hi-Bred International, Inc. NEW CRISPR-CAS SYSTEMS FOR GENOME EDITING
JP7572360B2 (ja) 2018-12-27 2024-10-23 ライフエディット セラピューティクス,インコーポレイティド 遺伝子編集に有用なポリペプチドと利用方法
GB2616539B (en) * 2019-01-07 2023-12-20 Crisp Hr Therapeutics Inc A non-toxic cas9 enzyme and application thereof
WO2020157164A1 (en) 2019-01-30 2020-08-06 Enobraq Modified plant with improved rubisco activity
JP2022519507A (ja) * 2019-01-31 2022-03-24 ビーム セラピューティクス インク. 低減された非標的脱アミノ化を有する核酸塩基エディターおよび核酸塩基エディターの特徴づけのためのアッセイ
JP2022521460A (ja) * 2019-01-31 2022-04-08 ビーム セラピューティクス インク. 低減されたオフターゲット脱アミノ化を有する核酸塩基エディターおよび核酸塩基標的配列を改変するためのその使用方法
AU2020214090B2 (en) * 2019-02-02 2022-09-15 Shanghaitech University Inhibition of unintended mutations in gene editing
WO2020163856A1 (en) 2019-02-10 2020-08-13 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Modified mitochondrion and methods of use thereof
EP3924481A4 (en) 2019-02-13 2023-01-25 Beam Therapeutics Inc. COMPOSITIONS AND METHODS FOR THE TREATMENT OF HEMOGLOBINOPATHIES
CA3129158A1 (en) * 2019-02-13 2020-08-20 Beam Therapeutics Inc. Adenosine deaminase base editors and methods of using same to modify a nucleobase in a target sequence
WO2020181195A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through adenine excision
WO2020181202A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to t:a base editing through adenine deamination and oxidation
US20220170013A1 (en) 2019-03-06 2022-06-02 The Broad Institute, Inc. T:a to a:t base editing through adenosine methylation
WO2020181178A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through thymine alkylation
WO2020181180A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to c:g base editors and uses thereof
WO2020209959A1 (en) 2019-03-08 2020-10-15 Crispr Therapeutics Ag Nucleobase-editing fusion protein systems, compositions, and uses thereof
BR112021018607A2 (pt) 2019-03-19 2021-11-23 Massachusetts Inst Technology Métodos e composições para editar sequências de nucleotídeos
SG11202110135YA (en) 2019-03-28 2021-10-28 Intellia Therapeutics Inc Polynucleotides, compositions, and methods for polypeptide expression
EP3946285A1 (en) 2019-03-28 2022-02-09 Intellia Therapeutics, Inc. Compositions and methods for ttr gene editing and treating attr amyloidosis comprising a corticosteroid or use thereof
KR20220004648A (ko) 2019-03-28 2022-01-11 인텔리아 테라퓨틱스, 인크. Ttr 가이드 rna, 및 rna-가이드 dna 결합제를 암호화하는 폴리뉴클레오티드를 포함하는 조성물 및 방법
EP3947663A4 (en) * 2019-04-05 2023-01-11 The Broad Institute, Inc. PSEUDO RANDOM DNA EDITOR FOR EFFICIENT AND CONTINUOUS NUCLEOTIDE DIVERSIFICATION IN HUMAN CELLS
JP2022528722A (ja) 2019-04-12 2022-06-15 アストラゼネカ・アクチエボラーグ 改善された遺伝子編集のための組成物及び方法
US20220307003A1 (en) 2019-04-17 2022-09-29 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
AU2020274594A1 (en) 2019-05-10 2022-01-20 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
EP3973054A1 (en) 2019-05-20 2022-03-30 The Broad Institute Inc. Aav delivery of nucleobase editors
EP3976802A1 (en) 2019-05-28 2022-04-06 Selecta Biosciences, Inc. Methods and compositions for attenuated anti-viral transfer vector immune response
EP4010474A1 (en) 2019-08-08 2022-06-15 The Broad Institute, Inc. Base editors with diversified targeting scope
AU2020329912A1 (en) 2019-08-12 2022-03-24 LifeEDIT Therapeutics, Inc. RNA-guided nucleases and active fragments and variants thereof and methods of use
WO2021030666A1 (en) 2019-08-15 2021-02-18 The Broad Institute, Inc. Base editing by transglycosylation
TW202118873A (zh) 2019-08-27 2021-05-16 美商維泰克斯製藥公司 用於治療與重複性dna有關之病症之組合物及方法
WO2021048316A1 (en) 2019-09-12 2021-03-18 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
WO2021069387A1 (en) 2019-10-07 2021-04-15 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
US20230086199A1 (en) 2019-11-26 2023-03-23 The Broad Institute, Inc. Systems and methods for evaluating cas9-independent off-target editing of nucleic acids
CN115038789A (zh) 2019-12-02 2022-09-09 塑造治疗公司 治疗性编辑
AU2020396138A1 (en) 2019-12-03 2022-06-16 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
CN112979823B (zh) * 2019-12-18 2022-04-08 华东师范大学 一种用于治疗和/或预防β血红蛋白病的产品及融合蛋白
US20230203463A1 (en) 2019-12-30 2023-06-29 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
US11584781B2 (en) 2019-12-30 2023-02-21 Eligo Bioscience Chimeric receptor binding proteins resistant to proteolytic degradation
US11746352B2 (en) 2019-12-30 2023-09-05 Eligo Bioscience Microbiome modulation of a host by delivery of DNA payloads with minimized spread
US12098372B2 (en) 2019-12-30 2024-09-24 Eligo Bioscience Microbiome modulation of a host by delivery of DNA payloads with minimized spread
EP4090760A4 (en) * 2020-01-17 2024-01-24 Jumpcode Genomics, Inc. METHOD FOR SAMPLE NORMALIZATION
WO2021148447A1 (en) 2020-01-21 2021-07-29 Limagrain Europe Wheat haploid inducer plant and uses
CA3166153A1 (en) 2020-01-28 2021-08-05 The Broad Institute, Inc. Base editors, compositions, and methods for modifying the mitochondrial genome
US20230108687A1 (en) 2020-02-05 2023-04-06 The Broad Institute, Inc. Gene editing methods for treating spinal muscular atrophy
US20230123669A1 (en) 2020-02-05 2023-04-20 The Broad Institute, Inc. Base editor predictive algorithm and method of use
US20230235309A1 (en) 2020-02-05 2023-07-27 The Broad Institute, Inc. Adenine base editors and uses thereof
WO2021173984A2 (en) * 2020-02-28 2021-09-02 University Of Massachusetts Oligonucleotides for prnp modulation
US20230127008A1 (en) 2020-03-11 2023-04-27 The Broad Institute, Inc. Stat3-targeted base editor therapeutics for the treatment of melanoma and other cancers
EP4118195A1 (en) * 2020-03-12 2023-01-18 Novozymes A/S Crispr-aid using catalytically inactive rna-guided endonuclease
EP4121522A4 (en) 2020-03-19 2024-06-19 Intellia Therapeutics, Inc. METHODS AND COMPOSITIONS FOR DIRECTED GENOMIC EDITING
US11617773B2 (en) 2020-04-08 2023-04-04 Eligo Bioscience Elimination of colonic bacterial driving lethal inflammatory cardiomyopathy
TW202208626A (zh) 2020-04-24 2022-03-01 美商生命編輯公司 Rna引導核酸酶及其活性片段與變體,以及使用方法
US20230159913A1 (en) 2020-04-28 2023-05-25 The Broad Institute, Inc. Targeted base editing of the ush2a gene
WO2021222287A2 (en) 2020-04-28 2021-11-04 Intellia Therapeutics, Inc. Methods of in vitro cell delivery
US20230193212A1 (en) 2020-05-06 2023-06-22 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
JP2023525304A (ja) 2020-05-08 2023-06-15 ザ ブロード インスティテュート,インコーポレーテッド 標的二本鎖ヌクレオチド配列の両鎖同時編集のための方法および組成物
WO2021231437A1 (en) 2020-05-11 2021-11-18 LifeEDIT Therapeutics, Inc. Rna-guided nucleic acid binding proteins and active fragments and variants thereof and methods of use
US20230175010A1 (en) * 2020-05-12 2023-06-08 City Of Hope Compositions and methods for base specific mitochondrial gene editing
US20220096606A1 (en) 2020-09-09 2022-03-31 Vertex Pharmaceuticals Incorporated Compositions and Methods for Treatment of Duchenne Muscular Dystrophy
US20230414648A1 (en) 2020-11-06 2023-12-28 Vertex Pharmaceuticals Incorporated Compositions and Methods for Treatment of DM1 with SLUCAS9 and SACAS9
JP2023553935A (ja) 2020-12-11 2023-12-26 インテリア セラピューティクス,インコーポレイテッド 脱アミノ化を伴うゲノム編集のためのポリヌクレオチド、組成物、及び方法
CA3204997A1 (en) 2020-12-11 2022-06-16 Intellia Therapeutics, Inc. Compositions and methods for reducing mhc class ii in a cell
CA3205042A1 (en) 2020-12-23 2022-06-30 Intellia Therapeutics, Inc. Compositions and methods for genetically modifying ciita in a cell
CA3206284A1 (en) 2020-12-23 2022-06-30 Intellia Therapeutics, Inc. Compositions and methods for reducing hla-a in a cell
WO2022144381A1 (en) 2020-12-30 2022-07-07 Eligo Bioscience Microbiome modulation of a host by delivery of dna payloads with minimized spread
CN114686454B (zh) * 2020-12-31 2024-04-26 北京市农林科学院 Pe-p3引导编辑系统及其在基因组碱基编辑中的应用
AU2022210313A1 (en) 2021-01-20 2023-06-29 Beam Therapeutics Inc. Nanomaterials
EP4288525A1 (en) 2021-02-08 2023-12-13 Intellia Therapeutics, Inc. Natural killer cell receptor 2b4 compositions and methods for immunotherapy
WO2022170194A2 (en) 2021-02-08 2022-08-11 Intellia Therapeutics, Inc. Lymphocyte activation gene 3 (lag3) compositions and methods for immunotherapy
EP4288089A2 (en) 2021-02-08 2023-12-13 Intellia Therapeutics, Inc. T-cell immunoglobulin and mucin domain 3 (tim3) compositions and methods for immunotherapy
TW202302848A (zh) 2021-02-26 2023-01-16 美商維泰克斯製藥公司 以crispr/sacas9治療第1型肌強直性營養不良之組合物及方法
EP4298221A1 (en) 2021-02-26 2024-01-03 Vertex Pharmaceuticals Incorporated Compositions and methods for treatment of myotonic dystrophy type 1 with crispr/slucas9
CN117940426A (zh) 2021-04-17 2024-04-26 英特利亚治疗股份有限公司 Dna依赖性蛋白质激酶抑制剂以及其组合物和用途
MX2023012237A (es) 2021-04-17 2024-01-23 Intellia Therapeutics Inc Composiciones de nanoparticulas lipidicas.
JP2024515650A (ja) 2021-04-17 2024-04-10 インテリア セラピューティクス,インコーポレーテッド 脂質ナノ粒子組成物
WO2022229851A1 (en) 2021-04-26 2022-11-03 Crispr Therapeutics Ag Compositions and methods for using slucas9 scaffold sequences
WO2022234519A1 (en) 2021-05-05 2022-11-10 Crispr Therapeutics Ag Compositions and methods for using sacas9 scaffold sequences
IL308147A (en) 2021-05-12 2023-12-01 Eligo Bioscience Production of bacterial cells and their use in production methods
CA3173953A1 (en) 2021-06-11 2023-12-10 Tyson D. BOWEN Rna polymerase iii promoters and methods of use
US20240287487A1 (en) 2021-06-11 2024-08-29 The Broad Institute, Inc. Improved cytosine to guanine base editors
WO2023018637A1 (en) 2021-08-09 2023-02-16 Vertex Pharmaceuticals Incorporated Gene editing of regulatory elements
JP2024534114A (ja) 2021-08-24 2024-09-18 インテリア セラピューティクス,インコーポレイテッド 細胞療法用のプログラム細胞死タンパク質1(pd1)組成物及び方法
EP4399302A2 (en) 2021-09-08 2024-07-17 Vertex Pharmaceuticals Incorporated Precise excisions of portions of exon 51 for treatment of duchenne muscular dystrophy
MX2024002927A (es) 2021-09-08 2024-05-29 Flagship Pioneering Innovations Vi Llc Metodos y composiciones para modular un genoma.
WO2023039586A1 (en) 2021-09-10 2023-03-16 Agilent Technologies, Inc. Guide rnas with chemical modification for prime editing
US20230141563A1 (en) 2021-10-12 2023-05-11 Selecta Biosciences, Inc. Methods and compositions for attenuating anti-viral transfer vector igm responses
IL312452A (en) 2021-11-01 2024-06-01 Tome Biosciences Inc A transformant has a single structure for the simultaneous transfer of a gene editing mechanism and a nucleic acid cargo
CA3236778A1 (en) 2021-11-02 2023-05-11 Erik SONTHEIMER Nme2cas9 inlaid domain fusion proteins
IL312508A (en) 2021-11-03 2024-07-01 Intellia Therapeutics Inc Polynucleotides, compounds and methods for genome editing
CN118369110A (zh) 2021-11-03 2024-07-19 英特利亚治疗股份有限公司 用于免疫疗法的cd38组合物和方法
EP4430206A1 (en) 2021-11-10 2024-09-18 Encodia, Inc. Methods for barcoding macromolecules in individual cells
WO2023086973A1 (en) * 2021-11-12 2023-05-19 Arbor Biotechnologies, Inc. Type ii nucleases
EP4441073A2 (en) 2021-12-03 2024-10-09 The Broad Institute, Inc. Self-assembling virus-like particles for delivery of nucleic acid programmable fusion proteins and methods of making and using same
WO2023107902A1 (en) 2021-12-06 2023-06-15 Napigen, Inc. Phosphite dehydrogenase as a selectable marker for mitochondrial transformation
EP4452925A1 (en) 2021-12-20 2024-10-30 Beam Therapeutics Inc. Nanomaterial comprising diamines
WO2023121970A1 (en) 2021-12-20 2023-06-29 Beam Therapeutics Inc. Ionizable amine and ester lipids and lipid nanoparticles
WO2023121971A1 (en) 2021-12-20 2023-06-29 Beam Therapeutics Inc. Nanomaterials comprising tetravalent lipid compounds
CA3241488A1 (en) 2021-12-20 2023-06-29 Beam Therapeutics Inc. Ionizable amine lipids and lipid nanoparticles
WO2023121964A1 (en) 2021-12-20 2023-06-29 Beam Therapeutics Inc. Nanomaterials comprising disulfides
EP4452335A1 (en) 2021-12-22 2024-10-30 Tome Biosciences, Inc. Co-delivery of a gene editor construct and a donor template
WO2023139557A1 (en) 2022-01-24 2023-07-27 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2023155901A1 (en) * 2022-02-17 2023-08-24 Correctsequence Therapeutics Mutant cytidine deaminases with improved editing precision
TW202345911A (zh) 2022-03-08 2023-12-01 美商維泰克斯製藥公司 用於治療杜興氏肌肉失養症(duchenne muscular dystrophy)之部分外顯子44、50及53之精確切除
WO2023172926A1 (en) 2022-03-08 2023-09-14 Vertex Pharmaceuticals Incorporated Precise excisions of portions of exons for treatment of duchenne muscular dystrophy
WO2023172624A1 (en) 2022-03-09 2023-09-14 Selecta Biosciences, Inc. Immunosuppressants in combination with anti-igm agents and related dosing
AU2023248451A1 (en) 2022-04-04 2024-10-17 President And Fellows Of Harvard College Cas9 variants having non-canonical pam specificities and uses thereof
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
WO2023212715A1 (en) 2022-04-28 2023-11-02 The Broad Institute, Inc. Aav vectors encoding base editors and uses thereof
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
WO2023230613A1 (en) 2022-05-27 2023-11-30 The Broad Institute, Inc. Improved mitochondrial base editors and methods for editing mitochondrial dna
WO2023240137A1 (en) 2022-06-08 2023-12-14 The Board Institute, Inc. Evolved cas14a1 variants, compositions, and methods of making and using same in genome editing
TW202408595A (zh) 2022-06-16 2024-03-01 美商英特利亞醫療公司 用於對細胞進行遺傳修飾之方法及組合物
WO2023250511A2 (en) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression
WO2024020346A2 (en) 2022-07-18 2024-01-25 Renagade Therapeutics Management Inc. Gene editing components, systems, and methods of use
WO2024020352A1 (en) 2022-07-18 2024-01-25 Vertex Pharmaceuticals Incorporated Tandem guide rnas (tg-rnas) and their use in genome editing
WO2024019936A1 (en) 2022-07-20 2024-01-25 Beam Therapeutics Inc. Nanomaterials comprising triols
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion
WO2024033901A1 (en) 2022-08-12 2024-02-15 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2024040083A1 (en) 2022-08-16 2024-02-22 The Broad Institute, Inc. Evolved cytosine deaminases and methods of editing dna using same
WO2024044723A1 (en) 2022-08-25 2024-02-29 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2024052681A1 (en) 2022-09-08 2024-03-14 The University Court Of The University Of Edinburgh Rett syndrome therapy
WO2024077247A1 (en) 2022-10-07 2024-04-11 The Broad Institute, Inc. Base editing methods and compositions for treating triplet repeat disorders
WO2024083579A1 (en) 2022-10-20 2024-04-25 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
WO2024102434A1 (en) 2022-11-10 2024-05-16 Senda Biosciences, Inc. Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs
TW202426646A (zh) 2022-12-21 2024-07-01 美商英特利亞醫療公司 用於前蛋白轉化酶枯草桿菌蛋白酶kexin9(pcsk9)編輯之組合物及方法
WO2024138194A1 (en) 2022-12-22 2024-06-27 Tome Biosciences, Inc. Platforms, compositions, and methods for in vivo programmable gene insertion
WO2024138115A1 (en) 2022-12-23 2024-06-27 Intellia Theraperutics, Inc. Systems and methods for genomic editing
WO2024148206A1 (en) 2023-01-06 2024-07-11 Bristol-Myers Squibb Company Methods and systems for engineering cells and for target validation
WO2024155745A1 (en) 2023-01-18 2024-07-25 The Broad Institute, Inc. Base editing-mediated readthrough of premature termination codons (bert)
WO2024163862A2 (en) 2023-02-03 2024-08-08 The Broad Institute, Inc. Gene editing methods, systems, and compositions for treating spinal muscular atrophy
WO2024186890A1 (en) 2023-03-06 2024-09-12 Intellia Therapeutics, Inc. Compositions and methods for hepatitis b virus (hbv) genome editing
WO2024186971A1 (en) 2023-03-07 2024-09-12 Intellia Therapeutics, Inc. Cish compositions and methods for immunotherapy
WO2024192291A1 (en) 2023-03-15 2024-09-19 Renagade Therapeutics Management Inc. Delivery of gene editing systems and methods of use thereof
WO2024192277A2 (en) 2023-03-15 2024-09-19 Renagade Therapeutics Management Inc. Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents
WO2024215652A2 (en) 2023-04-10 2024-10-17 The Broad Institute, Inc. Directed evolution of engineered virus-like particles (evlps)
CN117821462B (zh) * 2024-03-04 2024-05-07 上海贝斯昂科生物科技有限公司 基因编辑修复阿尔兹海默症相关psen1位点突变

Family Cites Families (1589)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4182449A (en) 1978-04-18 1980-01-08 Kozlow William J Adhesive bandage and package
US4501728A (en) 1983-01-06 1985-02-26 Technology Unlimited, Inc. Masking of liposomes from RES recognition
US4880635B1 (en) 1984-08-08 1996-07-02 Liposome Company Dehydrated liposomes
US4921757A (en) 1985-04-26 1990-05-01 Massachusetts Institute Of Technology System for delayed and pulsed release of biologically active substances
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US4837028A (en) 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US4920016A (en) 1986-12-24 1990-04-24 Linear Technology, Inc. Liposomes with enhanced circulation time
JPH0825869B2 (ja) 1987-02-09 1996-03-13 株式会社ビタミン研究所 抗腫瘍剤包埋リポソ−ム製剤
US4911928A (en) 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US4917951A (en) 1987-07-28 1990-04-17 Micro-Pak, Inc. Lipid vesicles formed of surfactants and steroids
ATE80604T1 (de) 1987-04-23 1992-10-15 Fmc Corp Insektizide cyclopropyl-substituierte di(aryl)verbindungen.
US5580737A (en) 1990-06-11 1996-12-03 Nexstar Pharmaceuticals, Inc. High-affinity nucleic acid ligands that discriminate between theophylline and caffeine
US6872816B1 (en) 1996-01-24 2005-03-29 Third Wave Technologies, Inc. Nucleic acid detection kits
JPH05274181A (ja) 1992-03-25 1993-10-22 Nec Corp ブレークポイント設定・解除方式
US5651981A (en) 1994-03-29 1997-07-29 Northwestern University Cationic phospholipids for transfection
US5449639A (en) 1994-10-24 1995-09-12 Taiwan Semiconductor Manufacturing Company Ltd. Disposable metal anti-reflection coating process used together with metal dry/wet etch
US5767099A (en) 1994-12-09 1998-06-16 Genzyme Corporation Cationic amphiphiles containing amino acid or dervatized amino acid groups for intracellular delivery of therapeutic molecules
US6057153A (en) 1995-01-13 2000-05-02 Yale University Stabilized external guide sequences
US5795587A (en) 1995-01-23 1998-08-18 University Of Pittsburgh Stable lipid-comprising drug delivery complexes and methods for their production
US5830430A (en) 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
US5851548A (en) 1995-06-07 1998-12-22 Gen-Probe Incorporated Liposomes containing cationic lipids and vitamin D
US5962313A (en) 1996-01-18 1999-10-05 Avigen, Inc. Adeno-associated virus vectors comprising a gene encoding a lyosomal enzyme
US5981182A (en) 1997-03-13 1999-11-09 Albert Einstein College Of Medicine Of Yeshiva University Vector constructs for the selection and identification of open reading frames
US8097648B2 (en) 1998-06-17 2012-01-17 Eisai R&D Management Co., Ltd. Methods and compositions for use in treating cancer
JP4854853B2 (ja) 1998-11-12 2012-01-18 ライフ テクノロジーズ コーポレーション トランスフェクション薬剤
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6599692B1 (en) 1999-09-14 2003-07-29 Sangamo Bioscience, Inc. Functional genomics using zinc finger proteins
US7013219B2 (en) 1999-01-12 2006-03-14 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6503717B2 (en) 1999-12-06 2003-01-07 Sangamo Biosciences, Inc. Methods of using randomized libraries of zinc finger proteins for the identification of gene function
US6453242B1 (en) 1999-01-12 2002-09-17 Sangamo Biosciences, Inc. Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites
US20090130718A1 (en) 1999-02-04 2009-05-21 Diversa Corporation Gene site saturation mutagenesis
WO2000058480A1 (fr) 1999-03-29 2000-10-05 Kansai Technology Licensing Organization Co., Ltd. Nouvelle cytidine desaminase
JP4776131B2 (ja) 1999-11-18 2011-09-21 エピミューン インコーポレイテッド ヘテロクリティックアナログおよび関連方法
EP1235914A2 (en) 1999-11-24 2002-09-04 Joseph Rosenecker Polypeptides comprising multimers of nuclear localization signals or of protein transduction domains and their use for transferring molecules into cells
ATE483970T1 (de) 2000-02-08 2010-10-15 Sangamo Biosciences Inc Zellen zur entdeckung von medikamenten
EP2189473A3 (en) 2000-10-27 2010-08-11 Novartis Vaccines and Diagnostics S.r.l. Nucleic and proteins from streptococcus groups A & B
EP2283829A1 (en) 2000-10-30 2011-02-16 Euro-Celtique S.A. Controlled release hydrocodone formulations
US20040003420A1 (en) 2000-11-10 2004-01-01 Ralf Kuhn Modified recombinase
WO2002059296A2 (en) 2001-01-25 2002-08-01 Evolva Biotech A/S Concatemers of differentially expressed multiple genes
US20050222030A1 (en) 2001-02-21 2005-10-06 Anthony Allison Modified annexin proteins and methods for preventing thrombosis
WO2002068676A2 (en) * 2001-02-27 2002-09-06 University Of Rochester METHODS AND COMPOSITIONS FOR MODIFYING APOLIPOPROTEIN B mRNA EDITING
IL158418A0 (en) 2001-04-19 2004-05-12 Scripps Research Inst In vivo incorporation of unnatural amino acids
EP1446757A2 (en) 2001-05-30 2004-08-18 Biomedical Center In silico screening for phenotype-associated expressed sequences
WO2004007684A2 (en) 2002-07-12 2004-01-22 Affymetrix, Inc. Synthetic tag genes
EP1546170A4 (en) 2002-09-20 2007-08-29 Univ Yale RIBOSWITCHS, METHODS OF USE, AND COMPOSITIONS FOR USE WITH RIBOSWITCHES
US9766216B2 (en) 2003-04-14 2017-09-19 Wako Pure Chemical Industries, Ltd. Reduction of migration shift assay interference
EP1649004A4 (en) 2003-07-07 2008-04-09 Scripps Research Inst COMPOSITIONS WITH PAIRS OF ORTHOGONAL LYSYL-TRNA AND AMINOACYL-TRNA-SYNTHETASE AND USES THEREOF
KR20060039019A (ko) 2003-08-08 2006-05-04 상가모 바이오사이언스 인코포레이티드 표적화된 절단과 재조합을 위한 방법 및 그 조성물
WO2005098043A2 (en) 2004-03-30 2005-10-20 The President And Fellows Of Harvard College Ligand-dependent protein splicing
US7919277B2 (en) 2004-04-28 2011-04-05 Danisco A/S Detection and typing of bacterial strains
EP1814896A4 (en) 2004-07-06 2008-07-30 Commercialisation Des Produits TARGET-RELATED NUCLEIC ACID ADAPTER
US8728526B2 (en) 2004-08-19 2014-05-20 The United States of America, Represented by Secretary of Department of Health and Human Services, NIH Coacervate microparticles useful for the sustained release administration of therapeutic agents
ATE514776T1 (de) 2004-10-05 2011-07-15 California Inst Of Techn Aptamer-regulierte nukleinsäuren und verwendungen davon
JP2006248978A (ja) 2005-03-10 2006-09-21 Mebiopharm Co Ltd 新規なリポソーム製剤
AU2012244264B2 (en) 2005-08-26 2015-08-06 Dupont Nutrition Biosciences Aps Use
EP3284833B1 (en) 2005-08-26 2021-12-01 DuPont Nutrition Biosciences ApS Use of crispr associated genes (cas)
AU2015252023B2 (en) 2005-08-26 2017-06-29 Dupont Nutrition Biosciences Aps Use
US20080051317A1 (en) 2005-12-15 2008-02-28 George Church Polypeptides comprising unnatural amino acids, methods for their production and uses therefor
EP2015780B1 (en) 2006-05-05 2012-12-12 Molecular Transfer, Inc. Novel reagents for transfection of eukaryotic cells
PL2426220T3 (pl) 2006-05-19 2017-01-31 Dupont Nutrition Biosciences Aps Wyznakowane mikroorganizmy i sposoby wyznakowania
EP2492684B1 (en) 2006-06-02 2016-12-28 President and Fellows of Harvard College Protein surface remodeling
ES2541693T3 (es) 2007-03-02 2015-07-23 Dupont Nutrition Biosciences Aps Cultivos con resistencia mejorada a fagos
WO2009033027A2 (en) 2007-09-05 2009-03-12 Medtronic, Inc. Suppression of scn9a gene expression and/or function for the treatment of pain
EP2188384B1 (en) 2007-09-27 2015-07-15 Sangamo BioSciences, Inc. Rapid in vivo identification of biologically active nucleases
US9029524B2 (en) 2007-12-10 2015-05-12 California Institute Of Technology Signal activated RNA interference
US20090215878A1 (en) 2008-02-08 2009-08-27 Sangamo Biosciences, Inc. Treatment of chronic pain with zinc finger proteins
WO2009146179A1 (en) 2008-04-15 2009-12-03 University Of Iowa Research Foundation Zinc finger nuclease for the cftr gene and methods of use thereof
AU2009243187C1 (en) 2008-04-28 2015-12-24 President And Fellows Of Harvard College Supercharged proteins for cell penetration
WO2009132455A1 (en) 2008-04-30 2009-11-05 Paul Xiang-Qin Liu Protein splicing using short terminal split inteins
US9400597B2 (en) 2008-07-23 2016-07-26 Microsoft Technology Licensing, Llc Presenting dynamic grids
US8546553B2 (en) 2008-07-25 2013-10-01 University Of Georgia Research Foundation, Inc. Prokaryotic RNAi-like system and methods of use
EP2159286A1 (en) 2008-09-01 2010-03-03 Consiglio Nazionale Delle Ricerche Method for obtaining oligonucleotide aptamers and uses thereof
US8790664B2 (en) 2008-09-05 2014-07-29 Institut National De La Sante Et De La Recherche Medicale (Inserm) Multimodular assembly useful for intracellular delivery
US8636884B2 (en) 2008-09-15 2014-01-28 Abbott Diabetes Care Inc. Cationic polymer based wired enzyme formulations for use in analyte sensors
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2010054108A2 (en) 2008-11-06 2010-05-14 University Of Georgia Research Foundation, Inc. Cas6 polypeptides and methods of use
RU2570562C2 (ru) 2008-11-07 2015-12-10 ДюПон НЬЮТРИШН БАЙОСАЙЕНСИЗ АпС Последовательности crispr бифидобактерий
US9175338B2 (en) 2008-12-11 2015-11-03 Pacific Biosciences Of California, Inc. Methods for identifying nucleic acid modifications
AU2009325069B2 (en) 2008-12-11 2015-03-19 Pacific Biosciences Of California, Inc. Classification of nucleic acid templates
WO2010075424A2 (en) 2008-12-22 2010-07-01 The Regents Of University Of California Compositions and methods for downregulating prokaryotic genes
WO2010091294A2 (en) 2009-02-05 2010-08-12 The Regents Of The University Of California New targeted antimicrobial moieties
SG10201400436PA (en) 2009-03-06 2014-06-27 Synthetic Genomics Inc Methods For Cloning And Manipulating Genomes
CA2760155A1 (en) 2009-04-27 2010-11-11 Pacific Biosciences Of California, Inc. Real-time sequencing methods and systems
EP2424877A4 (en) 2009-04-28 2013-01-02 Harvard College SUPERCHARGED PROTEINS FOR CELL PENETRATION
WO2010132092A2 (en) 2009-05-12 2010-11-18 The Scripps Research Institute Cytidine deaminase fusions and related methods
US9063156B2 (en) 2009-06-12 2015-06-23 Pacific Biosciences Of California, Inc. Real-time analytical methods and systems
EP2449135B1 (en) 2009-06-30 2016-01-06 Sangamo BioSciences, Inc. Rapid screening of biologically active nucleases and isolation of nuclease-modified cells
US8569256B2 (en) 2009-07-01 2013-10-29 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
WO2011017315A2 (en) 2009-08-03 2011-02-10 Recombinetics, Inc. Methods and compositions for targeted gene modification
US20120178647A1 (en) 2009-08-03 2012-07-12 The General Hospital Corporation Engineering of zinc finger arrays by context-dependent assembly
GB0913681D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
WO2011053868A1 (en) 2009-10-30 2011-05-05 Synthetic Genomics, Inc. Encoding text into nucleic acid sequences
CA3091939A1 (en) 2009-11-02 2011-05-05 University Of Washington Therapeutic nuclease compositions and methods
US20110104787A1 (en) 2009-11-05 2011-05-05 President And Fellows Of Harvard College Fusion Peptides That Bind to and Modify Target Nucleic Acid Sequences
US20110142886A1 (en) 2009-12-01 2011-06-16 Intezyne Technologies, Incorporated Pegylated polyplexes for polynucleotide delivery
US20130011380A1 (en) * 2009-12-18 2013-01-10 Blau Helen M Use of Cytidine Deaminase-Related Agents to Promote Demethylation and Cell Reprogramming
EA031356B1 (ru) 2010-01-22 2018-12-28 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Вырезание трансгенов в генетически измененных организмах
CN102939380A (zh) 2010-03-05 2013-02-20 合成基因组股份有限公司 用于克隆和操作基因组的方法
WO2011123830A2 (en) 2010-04-02 2011-10-06 Amunix Operating Inc. Alpha 1-antitrypsin compositions and methods of making and using same
WO2011143124A2 (en) 2010-05-10 2011-11-17 The Regents Of The University Of California Endoribonuclease compositions and methods of use thereof
CN103025344B (zh) 2010-05-17 2016-06-29 桑格摩生物科学股份有限公司 新型dna-结合蛋白及其用途
GB201008267D0 (en) 2010-05-18 2010-06-30 Univ Edinburgh Cationic lipids
WO2011153120A1 (en) 2010-06-04 2011-12-08 Merck Sharp & Dohme Corp. Novel low molecular weight cationic lipids for oligonucleotide delivery
JP2013534417A (ja) 2010-06-14 2013-09-05 アイオワ ステート ユニバーシティ リサーチ ファウンデーション,インコーポレーティッド Talエフェクターとfokiの融合タンパク質のヌクレアーゼ活性
JP6173912B2 (ja) 2010-09-20 2017-08-02 エスピーアイ ファーマ,インコーポレイテッド マイクロカプセル化プロセスおよび製品
CN103261213A (zh) 2010-10-20 2013-08-21 杜邦营养生物科学有限公司 乳球菌CRISPR-Cas序列
CN103327970A (zh) 2010-11-26 2013-09-25 约翰内斯堡威特沃特斯兰德大学 聚合物-脂质纳米粒子的聚合基质作为药物剂型
KR101255338B1 (ko) 2010-12-15 2013-04-16 포항공과대학교 산학협력단 표적 세포에 대한 폴리뉴클레오티드 전달체
CA2821805A1 (en) 2010-12-16 2012-06-21 Celgene Corporation Controlled release oral dosage forms of poorly soluble drugs and uses thereof
US9499592B2 (en) 2011-01-26 2016-11-22 President And Fellows Of Harvard College Transcription activator-like effectors
US9528124B2 (en) 2013-08-27 2016-12-27 Recombinetics, Inc. Efficient non-meiotic allele introgression
US9200045B2 (en) 2011-03-11 2015-12-01 President And Fellows Of Harvard College Small molecule-dependent inteins and uses thereof
US9164079B2 (en) 2011-03-17 2015-10-20 Greyledge Technologies Llc Systems for autologous biological therapeutics
US20120244601A1 (en) 2011-03-22 2012-09-27 Bertozzi Carolyn R Riboswitch based inducible gene expression platform
US8709466B2 (en) 2011-03-31 2014-04-29 International Business Machines Corporation Cationic polymers for antimicrobial applications and delivery of bioactive materials
WO2012138939A1 (en) 2011-04-05 2012-10-11 Philippe Duchateau New tale-protein scaffolds and uses thereof
WO2012148953A1 (en) 2011-04-25 2012-11-01 Stc.Unm Solid compositions for pharmaceutical use
JP6158170B2 (ja) 2011-04-27 2017-07-12 アミリス, インコーポレイテッド ゲノム修飾のための方法
WO2012158985A2 (en) 2011-05-17 2012-11-22 Transposagen Biopharmaceuticals, Inc. Methods for site-specific genetic modification in spermatogonial stem cells using zinc finger nuclease (zfn) for the creation of model organisms
US8691750B2 (en) 2011-05-17 2014-04-08 Axolabs Gmbh Lipids and compositions for intracellular delivery of biologically active compounds
WO2012158986A2 (en) 2011-05-17 2012-11-22 Transposagen Biopharmaceuticals, Inc. Methods for site-specific genetic modification in stem cells using xanthomonas tal nucleases (xtn) for the creation of model organisms
US20140113376A1 (en) 2011-06-01 2014-04-24 Rotem Sorek Compositions and methods for downregulating prokaryotic genes
WO2013012674A1 (en) 2011-07-15 2013-01-24 The General Hospital Corporation Methods of transcription activator like effector assembly
EP2734622B1 (en) 2011-07-19 2018-09-05 Vivoscript, Inc. Compositions and methods for re-programming cells without genetic modification for repairing cartilage damage
EP2734621B1 (en) 2011-07-22 2019-09-04 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9567589B2 (en) 2011-09-28 2017-02-14 Ribomic Inc. NGF aptamer and application thereof
GB2496687A (en) 2011-11-21 2013-05-22 Gw Pharma Ltd Tetrahydrocannabivarin (THCV) in the protection of pancreatic islet cells
PL2791160T3 (pl) 2011-12-16 2022-06-20 Modernatx, Inc. Kompozycje zmodyfikowanego mrna
US11458157B2 (en) 2011-12-16 2022-10-04 Targetgene Biotechnologies Ltd. Compositions and methods for modifying a predetermined target nucleic acid sequence
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
WO2013119602A1 (en) 2012-02-06 2013-08-15 President And Fellows Of Harvard College Arrdc1-mediated microvesicles (armms) and uses thereof
RU2650811C2 (ru) 2012-02-24 2018-04-17 Фред Хатчинсон Кэнсер Рисерч Сентер Композиции и способы лечения гемоглобинопатии
US8841260B2 (en) 2012-02-29 2014-09-23 Sangamo Biosciences, Inc. Methods and compositions for treating Huntington's Disease
SG11201405783VA (en) 2012-03-17 2014-10-30 Univ California Fast diagnosis and personalized treatments for acne
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
WO2013152359A1 (en) 2012-04-06 2013-10-10 The Regents Of The University Of California Novel tetrazines and method of synthesizing the same
CA2871008C (en) 2012-04-23 2022-11-22 Bayer Cropscience Nv Targeted genome engineering in plants
AU2013256240B2 (en) 2012-05-02 2018-09-20 Corteva Agriscience Llc Targeted modification of malate dehydrogenase
CA2871524C (en) 2012-05-07 2021-07-27 Sangamo Biosciences, Inc. Methods and compositions for nuclease-mediated targeted integration of transgenes
US11120889B2 (en) 2012-05-09 2021-09-14 Georgia Tech Research Corporation Method for synthesizing a nuclease with reduced off-site cleavage
EA201492222A1 (ru) 2012-05-25 2015-05-29 Селлектис Способы конструирования неаллореактивной и устойчивой к иммуносупрессии т-клетки для иммунотерапии
US20150017136A1 (en) 2013-07-15 2015-01-15 Cellectis Methods for engineering allogeneic and highly active t cell for immunotherapy
HUE038850T2 (hu) 2012-05-25 2018-11-28 Univ California Eljárások és kompozíciók cél-DNS RNS-irányított módosításához és transzkripció RNS-irányított modulálásához
KR20150027756A (ko) 2012-05-30 2015-03-12 베일러 칼리지 오브 메디신 Dna 수복, 변경 및 대체를 위한 도구로서의 초나선 미니벡터
US9102936B2 (en) 2012-06-11 2015-08-11 Agilent Technologies, Inc. Method of adaptor-dimer subtraction using a CRISPR CAS6 protein
US20150128300A1 (en) 2012-06-12 2015-05-07 Genentech, Inc. Methods and compositions for generating conditional knock-out alleles
EP2674501A1 (en) 2012-06-14 2013-12-18 Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail Method for detecting and identifying enterohemorrhagic Escherichia coli
US9688971B2 (en) 2012-06-15 2017-06-27 The Regents Of The University Of California Endoribonuclease and methods of use thereof
US20150225734A1 (en) 2012-06-19 2015-08-13 Regents Of The University Of Minnesota Gene targeting in plants using dna viruses
PL2867361T3 (pl) 2012-06-29 2018-07-31 Massachusetts Institute Of Technology Masowo równoległa genetyka kombinatoryczna
US9125508B2 (en) 2012-06-30 2015-09-08 Seasons 4, Inc. Collapsible tree system
HUE051612T2 (hu) 2012-07-11 2021-03-01 Sangamo Therapeutics Inc Eljárások és készítmények lizoszomális tárolási betegségek kezelésére
JP6329537B2 (ja) 2012-07-11 2018-05-23 サンガモ セラピューティクス, インコーポレイテッド 生物学的薬剤の送達のための方法および組成物
AU2013293270B2 (en) 2012-07-25 2018-08-16 Massachusetts Institute Of Technology Inducible DNA binding proteins and genome perturbation tools and applications thereof
US10058078B2 (en) 2012-07-31 2018-08-28 Recombinetics, Inc. Production of FMDV-resistant livestock by allele substitution
CN104684558A (zh) 2012-07-31 2015-06-03 耶达研究及发展有限公司 诊断和治疗运动神经元疾病的方法
WO2014022702A2 (en) 2012-08-03 2014-02-06 The Regents Of The University Of California Methods and compositions for controlling gene expression by rna processing
EP2890780B8 (en) 2012-08-29 2020-08-19 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
SG11201501525QA (en) 2012-09-04 2015-03-30 Scripps Research Inst Chimeric polypeptides having targeted binding specificity
WO2014039513A2 (en) 2012-09-04 2014-03-13 The Trustees Of The University Of Pennsylvania Inhibition of diacylglycerol kinase to augment adoptive t cell transfer
BR112015004522A2 (pt) 2012-09-04 2017-11-21 Cellectis receptor de antígeno quimérico multicadeia e usos destes
AU2013312538B2 (en) 2012-09-07 2019-01-24 Corteva Agriscience Llc FAD3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
UA119135C2 (uk) 2012-09-07 2019-05-10 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб отримання трансгенної рослини
AR092482A1 (es) 2012-09-07 2015-04-22 Dow Agrosciences Llc Enriquecimiento de la clasificacion de las celulas activadas por fluorescencia (facs) para generar plantas
UA118090C2 (uk) 2012-09-07 2018-11-26 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб інтегрування послідовності нуклеїнової кислоти, що представляє інтерес, у ген fad2 у клітині сої та специфічний для локусу fad2 білок, що зв'язується, здатний індукувати спрямований розрив
WO2014043143A1 (en) 2012-09-11 2014-03-20 Life Technologies Corporation Nucleic acid amplification
GB201216564D0 (en) 2012-09-17 2012-10-31 Univ Edinburgh Genetically edited animal
WO2014047103A2 (en) 2012-09-18 2014-03-27 The Translational Genomics Research Institute Isolated genes and transgenic organisms for producing biofuels
ES2824024T3 (es) 2012-10-10 2021-05-11 Sangamo Therapeutics Inc Compuestos modificadores de células T y usos de los mismos
EP2906602B1 (en) 2012-10-12 2019-01-16 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
CN110066775B (zh) 2012-10-23 2024-03-19 基因工具股份有限公司 用于切割靶dna的组合物及其用途
US20140115728A1 (en) 2012-10-24 2014-04-24 A. Joseph Tector Double knockout (gt/cmah-ko) pigs, organs and tissues
MX2015005255A (es) 2012-10-30 2015-10-29 Recombinetics Inc Control de la maduracion sexual en animales.
US20150291967A1 (en) 2012-10-31 2015-10-15 Luc Mathis Coupling herbicide resistance with targeted insertion of transgenes in plants
US11041165B2 (en) 2012-10-31 2021-06-22 Two Blades Foundation Identification of a Xanthomonas euvesicatoria resistance gene from pepper (Capsicum annuum) and method for generating plants with resistance
BR122019025678B1 (pt) 2012-11-01 2023-04-18 Factor Bioscience Inc Composições que compreendem ácido nucleico que codifica uma proteína de edição gênica
US20150315576A1 (en) 2012-11-01 2015-11-05 Massachusetts Institute Of Technology Genetic device for the controlled destruction of dna
US20140127752A1 (en) 2012-11-07 2014-05-08 Zhaohui Zhou Method, composition, and reagent kit for targeted genomic enrichment
CA2890824A1 (en) 2012-11-09 2014-05-15 Marco Archetti Diffusible factors and cancer cells
CN104884626A (zh) 2012-11-20 2015-09-02 杰.尔.辛普洛公司 Tal介导的转移dna插入
WO2014081855A1 (en) 2012-11-20 2014-05-30 Universite De Montreal Methods and compositions for muscular dystrophies
WO2014081730A1 (en) 2012-11-20 2014-05-30 Cold Spring Harbor Laboratory Mutations in solanaceae plants that modulate shoot architecture and enhance yield-related phenotypes
WO2014085593A1 (en) 2012-11-27 2014-06-05 Children's Medical Center Corporation Targeting bcl11a distal regulatory elements for fetal hemoglobin reinduction
CA2892551A1 (en) 2012-11-29 2014-06-05 North Carolina State University Synthetic pathway for biological carbon dioxide sequestration
DK2925866T3 (en) 2012-11-30 2018-10-29 Univ Aarhus CIRCULAR RNA FOR INHIBITING MICRO-RNA
US20160010154A1 (en) 2012-11-30 2016-01-14 The Parkinson's Institute Screening assays for therapeutics for parkinson's disease
US9255250B2 (en) 2012-12-05 2016-02-09 Sangamo Bioscience, Inc. Isolated mouse or human cell having an exogenous transgene in an endogenous albumin gene
WO2014089513A1 (en) 2012-12-06 2014-06-12 Synthetic Genomics, Inc. Autonomous replication sequences and episomal dna molecules
PT3401388T (pt) 2012-12-06 2019-08-29 Synthetic Genomics Inc Mutantes de algas com um fenótipo de aclimatação à luminosidade elevada bloqueado
KR101844123B1 (ko) 2012-12-06 2018-04-02 시그마-알드리치 컴퍼니., 엘엘씨 Crispr-기초된 유전체 변형과 조절
WO2014089348A1 (en) 2012-12-07 2014-06-12 Synthetic Genomics, Inc. Nannochloropsis spliced leader sequences and uses therefor
US10272163B2 (en) 2012-12-07 2019-04-30 The Regents Of The University Of California Factor VIII mutation repair and tolerance induction
WO2014093479A1 (en) 2012-12-11 2014-06-19 Montana State University Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
DK2825654T3 (en) 2012-12-12 2017-08-21 Broad Inst Inc SYSTEMS, PROCEDURES, AND COMPOSITIONS WITH CRISPR-CAS COMPONENTS FOR SEQUENCE MANIPULATION.
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
PT2896697E (pt) 2012-12-12 2015-12-31 Massachusetts Inst Technology Engenharia de sistemas, métodos e composições guia otimizadas para a manipulação de sequências
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
ES2786193T3 (es) 2012-12-12 2020-10-09 Broad Inst Inc Modificación por tecnología genética y optimización de sistemas, métodos y composiciones enzimáticas mejorados para la manipulación de secuencias
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
AU2013359262C1 (en) 2012-12-12 2021-05-13 Massachusetts Institute Of Technology CRISPR-Cas component systems, methods and compositions for sequence manipulation
EP3064585B1 (en) 2012-12-12 2020-02-05 The Broad Institute, Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
PL2931898T3 (pl) 2012-12-12 2016-09-30 Le Cong Projektowanie i optymalizacja systemów, sposoby i kompozycje do manipulacji sekwencją z domenami funkcjonalnymi
CN110872583A (zh) 2012-12-12 2020-03-10 布罗德研究所有限公司 用于序列操纵和治疗应用的系统、方法和组合物的递送、工程化和优化
RU2678001C2 (ru) 2012-12-13 2019-01-22 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Способы обнаружения днк для сайт-специфической нуклеазной активности
JP2016500268A (ja) 2012-12-13 2016-01-12 ダウ アグロサイエンシィズ エルエルシー トウモロコシにおける特定の遺伝子座に対する精密な遺伝子標的化
CN105144204B (zh) 2012-12-13 2018-02-27 麻省理工学院 基于重组酶的逻辑与存储系统
CA2895155C (en) 2012-12-17 2021-07-06 President And Fellows Of Harvard College Rna-guided human genome engineering
PL2934097T3 (pl) 2012-12-21 2018-11-30 Cellectis Ziemniaki o ograniczonej słodkości indukowanej chłodem
JP6583918B2 (ja) 2012-12-27 2019-10-02 キージーン ナムローゼ フェンノートシャップ 植物における遺伝連鎖を解消するための方法
EP2943579B1 (en) 2013-01-10 2018-09-12 Dharmacon, Inc. Libraries and methods for generating molecules
JP2016507228A (ja) 2013-01-14 2016-03-10 リコンビネティクス・インコーポレイテッドRecombinetics,Inc. 無角家畜
US10544405B2 (en) 2013-01-16 2020-01-28 Emory University Cas9-nucleic acid complexes and uses related thereto
CN103233028B (zh) 2013-01-25 2015-05-13 南京徇齐生物技术有限公司 一种无物种限制无生物安全性问题的真核生物基因打靶方法及螺旋结构dna序列
WO2014123967A2 (en) 2013-02-05 2014-08-14 University Of Georgia Research Foundation, Inc. Cell lines for virus production and methods of use
WO2014124226A1 (en) 2013-02-07 2014-08-14 The Rockefeller University Sequence specific antimicrobials
DK2963113T3 (da) 2013-02-14 2020-02-17 Univ Osaka Fremgangsmåde til isolering af specifik genomregion under anvendelse af molekyle, der binder specifikt til endogen dna-sekvens
WO2014127287A1 (en) 2013-02-14 2014-08-21 Massachusetts Institute Of Technology Method for in vivo tergated mutagenesis
WO2014130706A1 (en) 2013-02-20 2014-08-28 Regeneron Pharmaceuticals, Inc. Genetic modification of rats
US20150353885A1 (en) 2013-02-21 2015-12-10 Cellectis Method to counter-select cells or organisms by linking loci to nuclease components
ES2522765B2 (es) 2013-02-22 2015-03-18 Universidad De Alicante Método para dectectar inserciones de espaciadores en estructuras CRISPR
JP6491113B2 (ja) 2013-02-25 2019-03-27 サンガモ セラピューティクス, インコーポレイテッド ヌクレアーゼ媒介性遺伝子破壊を増強するための方法および組成物
JP2016507244A (ja) 2013-02-27 2016-03-10 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) Cas9ヌクレアーゼによる卵母細胞における遺伝子編集
US10047366B2 (en) 2013-03-06 2018-08-14 The Johns Hopkins University Telomerator-a tool for chromosome engineering
WO2014143381A1 (en) 2013-03-09 2014-09-18 Agilent Technologies, Inc. Methods of in vivo engineering of large sequences using multiple crispr/cas selections of recombineering events
WO2014164466A1 (en) 2013-03-12 2014-10-09 E. I. Du Pont De Nemours And Company Methods for the identification of variant recognition sites for rare-cutting engineered double-strand-break-inducing agents and compositions and uses thereof
CA2904210C (en) 2013-03-12 2022-07-19 Sangamo Biosciences, Inc. Methods and compositions for modification of hla
US20160138027A1 (en) 2013-03-14 2016-05-19 The Board Of Trustees Of The Leland Stanford Junior University Treatment of diseases and conditions associated with dysregulation of mammalian target of rapamycin complex 1 (mtorc1)
CN105980575A (zh) 2013-03-14 2016-09-28 卡里布生物科学公司 以核酸为靶的核酸的组合物和方法
IL307456A (en) 2013-03-15 2023-12-01 Cibus Us Llc Methods and compositions for increasing the efficiency of targeted gene modification using oligonucleotide-mediated gene repair
EP2970997A1 (en) 2013-03-15 2016-01-20 Regents of the University of Minnesota Engineering plant genomes using crispr/cas systems
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US20140349400A1 (en) 2013-03-15 2014-11-27 Massachusetts Institute Of Technology Programmable Modification of DNA
WO2014144094A1 (en) 2013-03-15 2014-09-18 J.R. Simplot Company Tal-mediated transfer dna insertion
WO2014204578A1 (en) 2013-06-21 2014-12-24 The General Hospital Corporation Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US20160046959A1 (en) 2013-03-15 2016-02-18 Carlisle P. Landel Reproducible method for testis-mediated genetic modification (tgm) and sperm-mediated genetic modification (sgm)
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
EP3467125B1 (en) 2013-03-15 2023-08-30 The General Hospital Corporation Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
US9937207B2 (en) 2013-03-21 2018-04-10 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using talens
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
PT2981607T (pt) 2013-04-03 2020-11-20 Memorial Sloan Kettering Cancer Center Geração eficaz de células t direcionadas a tumores, derivadas de células estaminais pluripotentes
WO2014165349A1 (en) 2013-04-04 2014-10-09 Trustees Of Dartmouth College Compositions and methods for in vivo excision of hiv-1 proviral dna
CN115261411A (zh) 2013-04-04 2022-11-01 哈佛学院校长同事会 利用CRISPR/Cas系统的基因组编辑的治疗性用途
UA121197C2 (uk) 2013-04-05 2020-04-27 Доу Агросайенсіс Ллс Нуклеаза "цинкові пальці" для модифікацїї гена ahas та спосіб її використання
US20150056629A1 (en) 2013-04-14 2015-02-26 Katriona Guthrie-Honea Compositions, systems, and methods for detecting a DNA sequence
US20160040155A1 (en) 2013-04-16 2016-02-11 University Of Washington Through Its Center For Commercialization Activating an alternative pathway for homology-directed repair to stimulate targeted gene correction and genome engineering
WO2014172470A2 (en) 2013-04-16 2014-10-23 Whitehead Institute For Biomedical Research Methods of mutating, modifying or modulating nucleic acid in a cell or nonhuman mammal
SI3456831T1 (sl) 2013-04-16 2021-11-30 Regeneron Pharmaceuticals, Inc., Ciljna modifikacija podganjega genoma
EP2796558A1 (en) 2013-04-23 2014-10-29 Rheinische Friedrich-Wilhelms-Universität Bonn Improved gene targeting and nucleic acid carrier molecule, in particular for use in plants
CN103224947B (zh) 2013-04-28 2015-06-10 陕西师范大学 一种基因打靶系统
ES2901383T3 (es) 2013-05-10 2022-03-22 Whitehead Inst Biomedical Res Producción in vitro de glóbulos rojos con proteínas marcables con sortasa
CA2910427C (en) 2013-05-10 2024-02-20 Sangamo Biosciences, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
RS63798B1 (sr) 2013-05-13 2022-12-30 Cellectis Cd19 specifični himerni antigenski receptor i njegove primene
JP2016524464A (ja) 2013-05-13 2016-08-18 セレクティスCellectis 免疫療法のために高活性t細胞を操作するための方法
JP2016521975A (ja) 2013-05-15 2016-07-28 サンガモ バイオサイエンシーズ, インコーポレイテッド 遺伝的状態の処置のための方法および組成物
WO2014186686A2 (en) 2013-05-17 2014-11-20 Two Blades Foundation Targeted mutagenesis and genome engineering in plants using rna-guided cas nucleases
US20140349405A1 (en) 2013-05-22 2014-11-27 Wisconsin Alumni Research Foundation Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis
CA2913865C (en) 2013-05-29 2022-07-19 Cellectis A method for producing precise dna cleavage using cas9 nickase activity
EP3004339B1 (en) 2013-05-29 2021-07-07 Cellectis New compact scaffold of cas9 in the type ii crispr system
AU2014273490B2 (en) 2013-05-29 2019-05-09 Cellectis Methods for engineering T cells for immunotherapy by using RNA-guided Cas nuclease system
US11414695B2 (en) 2013-05-29 2022-08-16 Agilent Technologies, Inc. Nucleic acid enrichment using Cas9
US20150067922A1 (en) 2013-05-30 2015-03-05 The Penn State Research Foundation Gene targeting and genetic modification of plants via rna-guided genome editing
WO2014191525A1 (en) 2013-05-31 2014-12-04 Cellectis A laglidadg homing endonuclease cleaving the c-c chemokine receptor type-5 (ccr5) gene and uses thereof
US20140359796A1 (en) 2013-05-31 2014-12-04 Recombinetics, Inc. Genetically sterile animals
US10000746B2 (en) 2013-05-31 2018-06-19 Cellectis LAGLIDADG homing endonuclease cleaving the T cell receptor alpha gene and uses thereof
US9267135B2 (en) 2013-06-04 2016-02-23 President And Fellows Of Harvard College RNA-guided transcriptional regulation
EP3603679B1 (en) 2013-06-04 2022-08-10 President and Fellows of Harvard College Rna-guided transcriptional regulation
US10704060B2 (en) 2013-06-05 2020-07-07 Duke University RNA-guided gene editing and gene regulation
WO2014201015A2 (en) 2013-06-11 2014-12-18 The Regents Of The University Of California Methods and compositions for target dna modification
CN105283553B (zh) 2013-06-11 2021-06-25 克隆技术实验室有限公司 蛋白质富集的微泡及其制备和使用方法
US20150315252A1 (en) 2013-06-11 2015-11-05 Clontech Laboratories, Inc. Protein enriched microvesicles and methods of making and using the same
EP3008186B1 (en) 2013-06-14 2018-11-28 Cellectis Methods for non-transgenic genome editing in plants
JP6625971B2 (ja) 2013-06-17 2019-12-25 ザ・ブロード・インスティテュート・インコーポレイテッド 配列操作のためのタンデムガイド系、方法および組成物の送達、エンジニアリングおよび最適化
SG11201510286QA (en) 2013-06-17 2016-01-28 Broad Inst Inc Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
KR20160030187A (ko) 2013-06-17 2016-03-16 더 브로드 인스티튜트, 인코퍼레이티드 간의 표적화 및 치료를 위한 CRISPR­Cas 시스템, 벡터 및 조성물의 전달 및 용도
CN105683379A (zh) 2013-06-17 2016-06-15 布罗德研究所有限公司 用于对有丝分裂后细胞的疾病和障碍进行靶向和建模的系统、方法和组合物的递送、工程化和优化
EP3011035B1 (en) 2013-06-17 2020-05-13 The Broad Institute, Inc. Assay for quantitative evaluation of target site cleavage by one or more crispr-cas guide sequences
AU2014281027A1 (en) 2013-06-17 2016-01-28 Massachusetts Institute Of Technology Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
EP3725885A1 (en) 2013-06-17 2020-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
AU2014281472A1 (en) 2013-06-19 2016-01-21 Sigma-Aldrich Co. Llc. Targeted integration
CA2915779A1 (en) 2013-06-25 2014-12-31 Cellectis Modified diatoms for biofuel production
WO2015002780A1 (en) 2013-07-01 2015-01-08 The Board Of Regents Of The University Of Texas System Transcription activator-like effector (tale) libraries and methods of synthesis and use
WO2015006498A2 (en) 2013-07-09 2015-01-15 President And Fellows Of Harvard College Therapeutic uses of genome editing with crispr/cas systems
CN116042726A (zh) 2013-07-09 2023-05-02 哈佛大学校长及研究员协会 多重rna向导的基因组工程
WO2015006294A2 (en) 2013-07-10 2015-01-15 President And Fellows Of Harvard College Orthogonal cas9 proteins for rna-guided gene regulation and editing
RU2016104064A (ru) 2013-07-10 2017-08-15 Новартис Аг Клетки мицелиальных грибов с множественной недостаточностью протеаз и способы их использования
CA2917961A1 (en) 2013-07-10 2015-01-15 Joseph A. Majzoub Mrap2 knockouts
SI3019619T1 (sl) 2013-07-11 2021-12-31 Modernatx, Inc. Sestave, ki zajemajo sintetične polinukleotide, ki kodirajo proteine, pozvezane s crispr, in sintetične sgrna, ter metode uporabe
CN104293828B (zh) 2013-07-16 2017-07-21 中国科学院上海生命科学研究院 植物基因组定点修饰方法
US9663782B2 (en) 2013-07-19 2017-05-30 Larix Bioscience Llc Methods and compositions for producing double allele knock outs
GB201313235D0 (en) 2013-07-24 2013-09-04 Univ Edinburgh Antiviral Compositions Methods and Animals
US11306328B2 (en) 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
CN103388006B (zh) 2013-07-26 2015-10-28 华东师范大学 一种基因定点突变的构建方法
US10421957B2 (en) 2013-07-29 2019-09-24 Agilent Technologies, Inc. DNA assembly using an RNA-programmable nickase
US9944925B2 (en) 2013-08-02 2018-04-17 Enevolv, Inc. Processes and host cells for genome, pathway, and biomolecular engineering
ITTO20130669A1 (it) 2013-08-05 2015-02-06 Consiglio Nazionale Ricerche Vettore adeno-associato ricombinante muscolo-specifico e suo impiego nel trattamento di patologie muscolari
WO2015021426A1 (en) 2013-08-09 2015-02-12 Sage Labs, Inc. A crispr/cas system-based novel fusion protein and its application in genome editing
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
WO2015024017A2 (en) 2013-08-16 2015-02-19 President And Fellows Of Harvard College Rna polymerase, methods of purification and methods of use
WO2015021990A1 (en) 2013-08-16 2015-02-19 University Of Copenhagen Rna probing method and reagents
DK3036326T3 (en) 2013-08-20 2018-01-08 Vib Vzw INHIBITION OF A LNCRNA FOR TREATMENT OF MELANOMES
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11773400B2 (en) 2013-08-22 2023-10-03 E.I. Du Pont De Nemours And Company Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
GB201315321D0 (en) 2013-08-28 2013-10-09 Koninklijke Nederlandse Akademie Van Wetenschappen Transduction Buffer
CA3131284C (en) 2013-08-28 2023-09-19 David Paschon Compositions for linking dna-binding domains and cleavage domains
EP3038661B1 (en) 2013-08-29 2023-12-27 Temple University Of The Commonwealth System Of Higher Education Methods and compositions for rna-guided treatment of hiv infection
EP3041344A4 (en) 2013-09-04 2017-04-19 Dow AgroSciences LLC Rapid targeting analysis in crops for determining donor insertion
US10167466B2 (en) 2013-09-04 2019-01-01 Csir Site-specific nuclease single-cell assay targeting gene regulatory elements to silence gene expression
CA2923223C (en) 2013-09-04 2021-11-16 Kws Saat Se Helminthosporium turcicum-resistant plant
EP3041498B1 (en) 2013-09-05 2022-02-16 Massachusetts Institute of Technology Tuning microbial populations with programmable nucleases
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
WO2015040075A1 (en) 2013-09-18 2015-03-26 Genome Research Limited Genomic screening methods using rna-guided endonucleases
EP2877571B1 (en) 2013-09-18 2018-05-30 Kymab Limited Methods, cells and organisms
KR20160060133A (ko) 2013-09-23 2016-05-27 렌슬러 폴리테크닉 인스티튜트 다양한 세포 집단에서 나노입자-매개된 유전자 전달, 게놈 편집 및 리간드-표적화된 변형
US10822606B2 (en) 2013-09-27 2020-11-03 The Regents Of The University Of California Optimized small guide RNAs and methods of use
US20160237455A1 (en) 2013-09-27 2016-08-18 Editas Medicine, Inc. Crispr-related methods and compositions
CA2925050A1 (en) 2013-09-30 2015-04-02 The Regents Of The University Of California Identification of cxcr8, a novel chemokine receptor
US20160237451A1 (en) 2013-09-30 2016-08-18 Regents Of The University Of Minnesota Conferring resistance to geminiviruses in plants using crispr/cas systems
EP3052110A4 (en) 2013-10-02 2017-07-12 Northeastern University Methods and compositions for generation of developmentally-incompetent eggs in recipients of nuclear genetic transfer
JP5774657B2 (ja) 2013-10-04 2015-09-09 国立大学法人京都大学 エレクトロポレーションを利用した哺乳類の遺伝子改変方法
CA2932581A1 (en) 2013-10-07 2015-04-16 Northeastern University Methods and compositions for ex vivo generation of developmentally competent eggs from germ line cells using autologous cell systems
US20150098954A1 (en) 2013-10-08 2015-04-09 Elwha Llc Compositions and Methods Related to CRISPR Targeting
DE102013111099B4 (de) 2013-10-08 2023-11-30 Eberhard Karls Universität Tübingen Medizinische Fakultät Permanente Genkorrektur mittels nukleotidmodifizierter messenger RNA
WO2015052231A2 (en) 2013-10-08 2015-04-16 Technical University Of Denmark Multiplex editing system
EP3055423B1 (en) 2013-10-11 2019-12-25 Cellectis Method for detecting nucleic acid sequences of interest using talen protein
WO2015057671A1 (en) 2013-10-14 2015-04-23 The Broad Institute, Inc. Artificial transcription factors comprising a sliding domain and uses thereof
ES2741308T3 (es) 2013-10-15 2020-02-10 Scripps Research Inst Interruptores de células T con receptores de antígenos quiméricos y usos de los mismos
AU2014337367B2 (en) 2013-10-15 2020-04-30 The Scripps Research Institute Peptidic chimeric antigen receptor T cell switches and uses thereof
ES2881473T3 (es) 2013-10-17 2021-11-29 Sangamo Therapeutics Inc Métodos de suministro y composiciones para la modificación por ingeniería genética del genoma mediada por nucleasas
EP3057432B1 (en) 2013-10-17 2018-11-21 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering in hematopoietic stem cells
WO2015059265A1 (en) 2013-10-25 2015-04-30 Cellectis Design of rare-cutting endonucleases for efficient and specific targeting dna sequences comprising highly repetitive motives
WO2015065964A1 (en) 2013-10-28 2015-05-07 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof
US10584358B2 (en) 2013-10-30 2020-03-10 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
JP6634022B2 (ja) 2013-11-04 2020-01-22 ダウ アグロサイエンシィズ エルエルシー 最適なダイズ遺伝子座
UA120502C2 (uk) 2013-11-04 2019-12-26 Дау Агросайєнсиз Елелсі Спосіб отримання трансгенної рослини маїсу
RU2687369C2 (ru) 2013-11-04 2019-05-13 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Универсальная донорная система для направленного воздействия на гены
RU2019128647A (ru) 2013-11-04 2019-11-05 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Оптимальные локусы кукурузы
EP3066202B1 (en) 2013-11-04 2021-03-03 Dow AgroSciences LLC Optimal soybean loci
US10752906B2 (en) 2013-11-05 2020-08-25 President And Fellows Of Harvard College Precise microbiota engineering at the cellular level
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
WO2015077058A2 (en) 2013-11-08 2015-05-28 The Broad Institute, Inc. Compositions and methods for selecting a treatment for b-cell neoplasias
CA2929179A1 (en) 2013-11-11 2015-05-14 Sangamo Biosciences, Inc. Htt genetic repressor, viral vector, and uses thereof
US20150132263A1 (en) 2013-11-11 2015-05-14 Radiant Genomics, Inc. Compositions and methods for targeted gene disruption in prokaryotes
HUE044540T2 (hu) 2013-11-13 2019-10-28 Childrens Medical Center Nukleáz közvetítette génexpresszió-szabályozás
CA2930590C (en) 2013-11-15 2021-02-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Engineering neural stem cells using homologous recombination
CA2930877A1 (en) 2013-11-18 2015-05-21 Crispr Therapeutics Ag Crispr-cas system materials and methods
US10407734B2 (en) 2013-11-18 2019-09-10 Yale University Compositions and methods of using transposons
WO2015075056A1 (en) 2013-11-19 2015-05-28 Thermo Fisher Scientific Baltics Uab Programmable enzymes for isolation of specific dna fragments
US10787684B2 (en) 2013-11-19 2020-09-29 President And Fellows Of Harvard College Large gene excision and insertion
US9074199B1 (en) 2013-11-19 2015-07-07 President And Fellows Of Harvard College Mutant Cas9 proteins
CN105960413B (zh) 2013-11-20 2020-03-27 泰莱托恩基金会 人工dna-结合蛋白及其用途
DK3071696T3 (da) 2013-11-22 2019-10-07 Mina Therapeutics Ltd C/ebp alfa kort aktiverings-rna-sammensætninger og fremgangsmåder til anvendelse
KR102348577B1 (ko) 2013-11-22 2022-01-06 셀렉티스 면역요법을 위한 화학요법 약물 저항성 t―세포들의 조작 방법
US10357515B2 (en) 2013-11-22 2019-07-23 Cellectis Method for generating batches of allogeneic T-cells with averaged potency
CN103642836A (zh) 2013-11-26 2014-03-19 苏州同善生物科技有限公司 一种基于crispr基因敲除技术建立脆性x综合症灵长类动物模型的方法
CN103614415A (zh) 2013-11-27 2014-03-05 苏州同善生物科技有限公司 一种基于crispr基因敲除技术建立肥胖症大鼠动物模型的方法
JP2016538001A (ja) 2013-11-28 2016-12-08 ホライズン・ジェノミクス・ゲーエムベーハー 体細胞半数体ヒト細胞株
EP3757116A1 (en) 2013-12-09 2020-12-30 Sangamo Therapeutics, Inc. Methods and compositions for genome engineering
RU2685914C1 (ru) 2013-12-11 2019-04-23 Регенерон Фармасьютикалс, Инк. Способы и композиции для направленной модификации генома
WO2015089277A1 (en) 2013-12-12 2015-06-18 The Regents Of The University Of California Methods and compositions for modifying a single stranded target nucleic acid
CA2932472A1 (en) 2013-12-12 2015-06-18 Massachusetts Institute Of Technology Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
JP2017527256A (ja) 2013-12-12 2017-09-21 ザ・ブロード・インスティテュート・インコーポレイテッド HBV及びウイルス性疾患及び障害のためのCRISPR−Cas系及び組成物の送達、使用及び治療適用
MX2016007328A (es) 2013-12-12 2017-07-19 Broad Inst Inc Suministro, uso y aplicaciones terapeuticas de sistemas y composiciones crispr-cas para edicion del genoma.
EP3080259B1 (en) 2013-12-12 2023-02-01 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
MX2016007327A (es) 2013-12-12 2017-03-06 Broad Inst Inc Suministro, uso y aplicaciones terapeuticas de sistemas y composiciones crispr-cas para dirigirlos a trastornos y enfermedades usando componentes para suministro de particulas.
EP3080260B1 (en) 2013-12-12 2019-03-06 The Broad Institute, Inc. Crispr-cas systems and methods for altering expression of gene products, structural information and inducible modular cas enzymes
EP3080271B1 (en) 2013-12-12 2020-02-12 The Broad Institute, Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
WO2015086798A2 (en) 2013-12-13 2015-06-18 Cellectis New method of selection of algal-transformed cells using nuclease
WO2015086795A1 (en) 2013-12-13 2015-06-18 Cellectis Cas9 nuclease platform for microalgae genome engineering
US20150191744A1 (en) 2013-12-17 2015-07-09 University Of Massachusetts Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling
WO2015095804A1 (en) 2013-12-19 2015-06-25 Amyris, Inc. Methods for genomic integration
AU2014370416B2 (en) 2013-12-26 2021-03-11 The General Hospital Corporation Multiplex guide RNAs
EP3090062B1 (en) 2013-12-30 2020-08-26 University of Pittsburgh - of the Commonwealth System of Higher Education Fusion genes associated with progressive prostate cancer
CN103668472B (zh) 2013-12-31 2014-12-24 北京大学 利用CRISPR/Cas9系统构建真核基因敲除文库的方法
WO2015103153A1 (en) 2013-12-31 2015-07-09 The Regents Of The University Of California Cas9 crystals and methods of use thereof
EP3092310B1 (en) 2014-01-08 2019-12-25 President and Fellows of Harvard College Rna-guided gene drives
AU2015206510A1 (en) 2014-01-14 2016-08-04 Lam Therapeutics, Inc. Mutagenesis methods
US10774338B2 (en) 2014-01-16 2020-09-15 The Regents Of The University Of California Generation of heritable chimeric plant traits
GB201400962D0 (en) 2014-01-21 2014-03-05 Kloehn Peter C Screening for target-specific affinity binders using RNA interference
CA2937429A1 (en) 2014-01-21 2015-07-30 Caixia Gao Modified plants
WO2015112896A2 (en) 2014-01-24 2015-07-30 North Carolina State University Methods and compositions for sequences guiding cas9 targeting
WO2015112790A2 (en) 2014-01-24 2015-07-30 Children's Medical Center Corporation High-throughput mouse model for optimizing antibody affinities
US10354746B2 (en) 2014-01-27 2019-07-16 Georgia Tech Research Corporation Methods and systems for identifying CRISPR/Cas off-target sites
CN104805078A (zh) 2014-01-28 2015-07-29 北京大学 用于高效基因组编辑的rna分子的设计、合成及其应用
US9850525B2 (en) 2014-01-29 2017-12-26 Agilent Technologies, Inc. CAS9-based isothermal method of detection of specific DNA sequence
WO2015117041A1 (en) 2014-01-30 2015-08-06 Nair Ramesh B Gene modification-mediated methods and compositions for generating dominant traits in eukaryotic systems
WO2015116969A2 (en) 2014-01-30 2015-08-06 The Board Of Trustees Of The University Of Arkansas Method, vectors, cells, seeds and kits for stacking genes into a single genomic site
CN105940110A (zh) 2014-01-31 2016-09-14 菲克特生物科学股份有限公司 用于核酸产生和递送的方法和产品
GB201401707D0 (en) 2014-01-31 2014-03-19 Sec Dep For Health The Adeno-associated viral vectors
PT3102673T (pt) 2014-02-03 2020-05-21 Sangamo Biosciences Inc Métodos e composições para tratamento de beta-talassemia
WO2015115903A1 (en) 2014-02-03 2015-08-06 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Site-specific dna break-induced genome editing using engineered nucleases
PL3102722T3 (pl) 2014-02-04 2021-03-08 Jumpcode Genomics, Inc. Frakcjonowanie genomu
CN105960459B (zh) 2014-02-07 2021-04-20 非营利性组织佛兰芒综合大学生物技术研究所 抑制neat1用于治疗实体肿瘤
CA3075047C (en) 2014-02-11 2022-02-01 The Regents Of The University Of Colorado, A Body Corporate Crispr enable method for multiplex genome editing
CN106232814B (zh) 2014-02-13 2021-05-11 宝生物工程(美国)有限公司 从核酸的初始集合中耗尽靶分子的方法、以及用于实践其的组合物和试剂盒
AU2015216875B2 (en) 2014-02-14 2021-02-25 Cellectis Cells for immunotherapy engineered for targeting antigen present both on immune cells and pathological cells
KR20160130392A (ko) 2014-02-18 2016-11-11 듀크 유니버시티 바이러스 복제의 불활성화를 위한 조성물 및 그의 제조 및 사용 방법
US10041135B2 (en) 2014-02-20 2018-08-07 Dsm Ip Assets B.V. Phage insensitive Streptococcus thermophilus
AU2015220762B2 (en) 2014-02-21 2019-05-02 Cellectis Method for in situ inhibition of regulatory T cells
WO2015127428A1 (en) 2014-02-24 2015-08-27 Massachusetts Institute Of Technology Methods for in vivo genome editing
AU2015218576B2 (en) 2014-02-24 2020-02-27 Sangamo Therapeutics, Inc. Methods and compositions for nuclease-mediated targeted integration
JP6521669B2 (ja) 2014-02-25 2019-05-29 国立研究開発法人農業・食品産業技術総合研究機構 標的dnaに変異が導入された植物細胞、及びその製造方法
EP3971283A1 (en) 2014-02-27 2022-03-23 Monsanto Technology LLC Compositions and methods for site directed genomic modification
CN103820441B (zh) 2014-03-04 2017-05-17 黄行许 CRISPR‑Cas9特异性敲除人CTLA4基因的方法以及用于特异性靶向CTLA4基因的sgRNA
CN103820454B (zh) 2014-03-04 2016-03-30 上海金卫生物技术有限公司 CRISPR-Cas9特异性敲除人PD1基因的方法以及用于特异性靶向PD1基因的sgRNA
WO2015134812A1 (en) 2014-03-05 2015-09-11 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
JP6206893B2 (ja) 2014-03-05 2017-10-04 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
DK3116902T3 (da) 2014-03-11 2020-04-06 Cellectis Fremgangsmåde til generering af T-celler kompatible for allogen transplantation
WO2015138739A2 (en) 2014-03-12 2015-09-17 Precision Biosciences, Inc. Dystrophin gene oxon deletion using engineered nucleases
WO2015138870A2 (en) 2014-03-13 2015-09-17 The Trustees Of The University Of Pennsylvania Compositions and methods for targeted epigenetic modification
FI3116305T3 (fi) 2014-03-14 2024-02-08 Cibus Us Llc Menetelmät ja koostumukset kohdennetun geenimuunnoksen tehokkuuden lisäämiseksi käyttämällä oligonukleotidivälitteistä geeninkorjausta
WO2015138855A1 (en) 2014-03-14 2015-09-17 The Regents Of The University Of California Vectors and methods for fungal genome engineering by crispr-cas9
EP3929279A1 (en) 2014-03-18 2021-12-29 Sangamo Therapeutics, Inc. Methods and compositions for regulation of zinc finger protein expression
JP2017514513A (ja) 2014-03-20 2017-06-08 ユニベルシテ ラバル フラタキシンレベルを増加させるためのcrispr系の方法及び生成物、ならびにそれらの使用
JP2017509328A (ja) 2014-03-21 2017-04-06 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー ヌクレアーゼを使用しないゲノム編集
CN112964883A (zh) 2014-03-24 2021-06-15 艾摩科诊断公司 用于全身性和非全身性自身免疫紊乱的改进的抗核抗体检测和诊断
US20170173086A1 (en) 2014-03-25 2017-06-22 Ginkgo Bioworks, Inc. Methods and Genetic Systems for Cell Engineering
CA2943622A1 (en) 2014-03-25 2015-10-01 Editas Medicine Inc. Crispr/cas-related methods and compositions for treating hiv infection and aids
US9609415B2 (en) 2014-03-26 2017-03-28 Bose Corporation Headphones with cable management
US10349639B2 (en) 2014-03-26 2019-07-16 University Of Maryland, College Park Targeted genome editing in zygotes of domestic large animals
WO2015148860A1 (en) 2014-03-26 2015-10-01 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating beta-thalassemia
EP3981876A1 (en) 2014-03-26 2022-04-13 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating sickle cell disease
US9993563B2 (en) 2014-03-28 2018-06-12 Aposense Ltd. Compounds and methods for trans-membrane delivery of molecules
BR112016022553A2 (pt) 2014-03-28 2017-08-15 Aposense Ltd Compostos e métodos para entrega transmembrana de moléculas?
WO2015153791A1 (en) 2014-04-01 2015-10-08 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating herpes simplex virus type 2 (hsv-2)
WO2015153789A1 (en) 2014-04-01 2015-10-08 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating herpes simplex virus type 1 (hsv-1)
WO2015153760A2 (en) 2014-04-01 2015-10-08 Sangamo Biosciences, Inc. Methods and compositions for prevention or treatment of a nervous system disorder
WO2015153780A1 (en) 2014-04-02 2015-10-08 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating primary open angle glaucoma
WO2015153889A2 (en) 2014-04-02 2015-10-08 University Of Florida Research Foundation, Incorporated Materials and methods for the treatment of latent viral infection
WO2015153940A1 (en) 2014-04-03 2015-10-08 Massachusetts Institute Of Technology Methods and compositions for the production of guide rna
CN103911376B (zh) 2014-04-03 2017-02-15 黄行许 CRISPR‑Cas9靶向敲除乙肝病毒cccDNA及其特异性sgRNA
CN106460003A (zh) 2014-04-08 2017-02-22 北卡罗来纳州立大学 用于使用crispr相关基因rna引导阻遏转录的方法和组合物
EP3556858A3 (en) 2014-04-09 2020-01-22 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating cystic fibrosis
US10253311B2 (en) 2014-04-10 2019-04-09 The Regents Of The University Of California Methods and compositions for using argonaute to modify a single stranded target nucleic acid
AU2015245469B2 (en) 2014-04-11 2020-11-12 Cellectis Method for generating immune cells resistant to arginine and/or tryptophan depleted microenvironment
JP2017513477A (ja) 2014-04-14 2017-06-01 マックスサイト インコーポレーティッド ゲノムdnaを改変するための方法および組成物
PT3132034T (pt) 2014-04-14 2020-11-12 Nemesis Bioscience Ltd Terapêutica
CN103923911B (zh) 2014-04-14 2016-06-08 上海金卫生物技术有限公司 CRISPR-Cas9特异性敲除人CCR5基因的方法以及用于特异性靶向CCR5基因的sgRNA
GB201406968D0 (en) 2014-04-17 2014-06-04 Green Biologics Ltd Deletion mutants
GB201406970D0 (en) 2014-04-17 2014-06-04 Green Biologics Ltd Targeted mutations
KR102595473B1 (ko) 2014-04-18 2023-10-30 에디타스 메디신, 인코포레이티드 암 면역요법을 위한 crispr-cas-관련 방법, 조성물 및 구성성분
CN105039399A (zh) 2014-04-23 2015-11-11 复旦大学 多能干细胞-遗传性心肌病心肌细胞及其制备方法
US20170076039A1 (en) 2014-04-24 2017-03-16 Institute For Basic Science A Method of Selecting a Nuclease Target Sequence for Gene Knockout Based on Microhomology
WO2015164748A1 (en) 2014-04-24 2015-10-29 Sangamo Biosciences, Inc. Engineered transcription activator like effector (tale) proteins
KR20200138445A (ko) 2014-04-24 2020-12-09 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 입양 세포 요법 생성물을 생성하기 위한 유도 만능 줄기 세포의 응용
CN111647627A (zh) 2014-04-28 2020-09-11 重组股份有限公司 多重基因编辑
WO2015168158A1 (en) 2014-04-28 2015-11-05 Fredy Altpeter Targeted genome editing to modify lignin biosynthesis and cell wall composition
US20150307889A1 (en) 2014-04-28 2015-10-29 Dow Agrosciences Llc Haploid maize transformation
GB2540694A (en) 2014-04-29 2017-01-25 Seattle Children's Hospital (Dba Seattle Children's Res Institute) CCR5 disruption of cells expressing anti-hiv chimeric antigen receptor (CAR) derived from broadly neutralizing antibodies
CN104178506B (zh) 2014-04-30 2017-03-01 清华大学 Taler蛋白通过空间位阻发挥转录抑制作用及其应用
WO2015168404A1 (en) 2014-04-30 2015-11-05 Massachusetts Institute Of Technology Toehold-gated guide rna for programmable cas9 circuitry with rna input
WO2015165276A1 (zh) 2014-04-30 2015-11-05 清华大学 利用tale转录抑制子在哺乳动物细胞中模块化构建合成基因线路的试剂盒
EP3156493B1 (en) 2014-04-30 2020-05-06 Tsinghua University Use of tale transcriptional repressor for modular construction of synthetic gene line in mammalian cell
US20170037431A1 (en) 2014-05-01 2017-02-09 University Of Washington In vivo Gene Engineering with Adenoviral Vectors
GB201407852D0 (en) 2014-05-02 2014-06-18 Iontas Ltd Preparation of libraries od protein variants expressed in eukaryotic cells and use for selecting binding molecules
WO2015171603A1 (en) 2014-05-06 2015-11-12 Two Blades Foundation Methods for producing plants with enhanced resistance to oomycete pathogens
KR102380324B1 (ko) 2014-05-08 2022-03-30 상가모 테라퓨틱스, 인코포레이티드 헌팅턴병을 치료하기 위한 방법 및 조성물
WO2015171894A1 (en) 2014-05-09 2015-11-12 The Regents Of The University Of California Methods for selecting plants after genome editing
AU2015255656A1 (en) 2014-05-09 2016-11-10 Assembly Biosciences, Inc. Methods and compositions for treating hepatitis B virus infections
US10280419B2 (en) 2014-05-09 2019-05-07 UNIVERSITé LAVAL Reduction of amyloid beta peptide production via modification of the APP gene using the CRISPR/Cas system
CA2947622A1 (en) 2014-05-13 2015-11-19 Sangamo Biosciences, Inc. Genome editing methods and compositions for prevention or treatment of a disease
US20170088819A1 (en) 2014-05-16 2017-03-30 Vrije Universiteit Brussel Genetic correction of myotonic dystrophy type 1
CN103981211B (zh) 2014-05-16 2016-07-06 安徽省农业科学院水稻研究所 一种创制闭颖授粉水稻材料的育种方法
CN104004782B (zh) 2014-05-16 2016-06-08 安徽省农业科学院水稻研究所 一种延长水稻生育期的育种方法
CN104017821B (zh) 2014-05-16 2016-07-06 安徽省农业科学院水稻研究所 定向编辑颖壳颜色决定基因OsCHI创制褐壳水稻材料的方法
CN103981212B (zh) 2014-05-16 2016-06-01 安徽省农业科学院水稻研究所 将黄色颖壳的水稻品种的颖壳颜色改为褐色的育种方法
EP3152221A4 (en) 2014-05-20 2018-01-24 Regents of the University of Minnesota Method for editing a genetic sequence
CA2852593A1 (en) 2014-05-23 2015-11-23 Universite Laval Methods for producing dopaminergic neurons and uses thereof
US10653123B2 (en) 2014-05-27 2020-05-19 Dana-Farber Cancer Institute, Inc. Methods and compositions for perturbing gene expression in hematopoietic stem cell lineages in vivo
WO2015183026A1 (ko) 2014-05-28 2015-12-03 주식회사 툴젠 불활성화된 표적 특이적 뉴클레아제를 이용한 표적 dna의 분리 방법
KR20170005494A (ko) 2014-05-30 2017-01-13 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 잠복 바이러스 감염에 대한 치료제를 전달하는 조성물 및 방법
WO2015188065A1 (en) 2014-06-05 2015-12-10 Sangamo Biosciences, Inc. Methods and compositions for nuclease design
WO2015188094A1 (en) 2014-06-06 2015-12-10 President And Fellows Of Harvard College Methods for targeted modification of genomic dna
CN104004778B (zh) 2014-06-06 2016-03-02 重庆高圣生物医药有限责任公司 含有CRISPR/Cas9系统的靶向敲除载体及其腺病毒和应用
WO2015188191A1 (en) 2014-06-06 2015-12-10 Wong Wilson W Dna recombinase circuits for logical control of gene expression
BR112016028564A2 (pt) 2014-06-06 2018-01-30 Regeneron Pharma método para modificar um locus-alvo em uma célula.
US20170327577A1 (en) 2014-06-06 2017-11-16 The California Institute For Biomedical Research Methods of constructing amino terminal immunoglobulin fusion proteins and compositions thereof
EP3155018A4 (en) 2014-06-06 2018-01-10 The California Institute for Biomedical Research Constant region antibody fusion proteins and compositions thereof
US11274302B2 (en) 2016-08-17 2022-03-15 Diacarta Ltd Specific synthetic chimeric Xenonucleic acid guide RNA; s(XNA-gRNA) for enhancing CRISPR mediated genome editing efficiency
EP3155116A4 (en) 2014-06-10 2017-12-27 Massachusetts Institute Of Technology Method for gene editing
WO2015191899A1 (en) 2014-06-11 2015-12-17 Howard Tom E FACTOR VIII MUTATION REPAIR AND TOLERANCE INDUCTION AND RELATED CDNAs, COMPOSITIONS, METHODS AND SYSTEMS
GB2528177B (en) 2014-06-11 2019-08-28 Univ Duke Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves
WO2015191911A2 (en) 2014-06-12 2015-12-17 Clontech Laboratories, Inc. Protein enriched microvesicles and methods of making and using the same
US11584936B2 (en) 2014-06-12 2023-02-21 King Abdullah University Of Science And Technology Targeted viral-mediated plant genome editing using CRISPR /Cas9
AU2015277369B2 (en) 2014-06-16 2021-08-19 The Johns Hopkins University Compositions and methods for the expression of CRISPR guide RNAs using the H1 promoter
WO2015195547A1 (en) 2014-06-16 2015-12-23 University Of Washington Methods for controlling stem cell potential and for gene editing in stem cells
CA2952613A1 (en) 2014-06-17 2015-12-23 Poseida Therapeutics, Inc. A method for directing proteins to specific loci in the genome and uses thereof
US10301637B2 (en) 2014-06-20 2019-05-28 Cellectis Potatoes with reduced granule-bound starch synthase
PT3354732T (pt) 2014-06-23 2020-04-02 Regeneron Pharma Montagem de dna mediada por nuclease
JP6784601B2 (ja) 2014-06-23 2020-11-11 ザ ジェネラル ホスピタル コーポレイション シークエンシングによって評価されるゲノムワイドでバイアスのないDSBの同定(GUIDE−Seq)
WO2015200555A2 (en) 2014-06-25 2015-12-30 Caribou Biosciences, Inc. Rna modification to engineer cas9 activity
GB201411344D0 (en) 2014-06-26 2014-08-13 Univ Leicester Cloning
TR201816074T4 (tr) 2014-06-26 2018-11-21 Regeneron Pharma Hedeflenen genetik modifikasyonlara yönelik yöntemler ve bileşimler ve kullanım yöntemleri.
US11311412B2 (en) 2014-06-30 2022-04-26 Kao Corporation Adhesive sheet for cooling
CN106662033B (zh) 2014-06-30 2019-01-18 日产自动车株式会社 内燃机
US20180187172A1 (en) 2014-07-01 2018-07-05 Board Of Regents, The University Of Texas System Regulated gene expression from viral vectors
US20170198268A1 (en) 2014-07-09 2017-07-13 Gen9, Inc. Compositions and Methods for Site-Directed DNA Nicking and Cleaving
EP2966170A1 (en) 2014-07-10 2016-01-13 Heinrich-Pette-Institut Leibniz-Institut für experimentelle Virologie-Stiftung bürgerlichen Rechts - HBV inactivation
AU2015288157A1 (en) 2014-07-11 2017-01-19 E. I. Du Pont De Nemours And Company Compositions and methods for producing plants resistant to glyphosate herbicide
WO2016007948A1 (en) 2014-07-11 2016-01-14 Pioneer Hi-Bred International, Inc. Agronomic trait modification using guide rna/cas endonuclease systems and methods of use
WO2016011080A2 (en) 2014-07-14 2016-01-21 The Regents Of The University Of California Crispr/cas transcriptional modulation
CN104109687A (zh) 2014-07-14 2014-10-22 四川大学 运动发酵单胞菌CRISPR-Cas9系统的构建与应用
EP3169773B1 (en) 2014-07-15 2023-07-12 Juno Therapeutics, Inc. Engineered cells for adoptive cell therapy
EP3193944B1 (en) 2014-07-17 2021-04-07 University of Pittsburgh - Of the Commonwealth System of Higher Education Methods of treating cells containing fusion genes
US9944933B2 (en) 2014-07-17 2018-04-17 Georgia Tech Research Corporation Aptamer-guided gene targeting
US10975406B2 (en) 2014-07-18 2021-04-13 Massachusetts Institute Of Technology Directed endonucleases for repeatable nucleic acid cleavage
US20160053304A1 (en) 2014-07-18 2016-02-25 Whitehead Institute For Biomedical Research Methods Of Depleting Target Sequences Using CRISPR
US20160053272A1 (en) 2014-07-18 2016-02-25 Whitehead Institute For Biomedical Research Methods Of Modifying A Sequence Using CRISPR
WO2016014565A2 (en) 2014-07-21 2016-01-28 Novartis Ag Treatment of cancer using humanized anti-bcma chimeric antigen receptor
CA3176503A1 (en) 2014-07-21 2016-01-28 Illumina, Inc Polynucleotide enrichment using crispr-cas systems
US10210987B2 (en) 2014-07-22 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic material, coil component using same, and composite magnetic material manufacturing method
ES2838074T3 (es) 2014-07-24 2021-07-01 Dsm Ip Assets Bv Bacterias de ácido láctico resistentes a los fagos
WO2016014837A1 (en) 2014-07-25 2016-01-28 Sangamo Biosciences, Inc. Gene editing for hiv gene therapy
WO2016014794A1 (en) 2014-07-25 2016-01-28 Sangamo Biosciences, Inc. Methods and compositions for modulating nuclease-mediated genome engineering in hematopoietic stem cells
CA2956108A1 (en) 2014-07-25 2016-01-28 Boehringer Ingelheim International Gmbh Enhanced reprogramming to ips cells
EP3194600B1 (en) 2014-07-26 2019-08-28 Consiglio Nazionale Delle Ricerche Compositions and methods for treatment of muscular dystrophy
CA2956224A1 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
WO2016019144A2 (en) 2014-07-30 2016-02-04 Sangamo Biosciences, Inc. Gene correction of scid-related genes in hematopoietic stem and progenitor cells
FR3024464A1 (fr) 2014-07-30 2016-02-05 Centre Nat Rech Scient Ciblage de vecteurs integratifs non-viraux dans les sequences d'adn nucleolaires chez les eucaryotes
US9850521B2 (en) 2014-08-01 2017-12-26 Agilent Technologies, Inc. In vitro assay buffer for Cas9
US20160076093A1 (en) 2014-08-04 2016-03-17 University Of Washington Multiplex homology-directed repair
EP2982758A1 (en) 2014-08-04 2016-02-10 Centre Hospitalier Universitaire Vaudois (CHUV) Genome editing for the treatment of huntington's disease
EP3194578B1 (en) 2014-08-06 2021-03-10 College of Medicine Pochon Cha University Industry-Academic Cooperation Foundation Immune-compatible cells created by nuclease-mediated editing of genes encoding hla
JP6715419B2 (ja) 2014-08-06 2020-07-01 トゥールジェン インコーポレイテッド カンピロバクター・ジェジュニcrispr/casシステムに由来するrgenを使用したゲノム編集
US9932566B2 (en) 2014-08-07 2018-04-03 Agilent Technologies, Inc. CIS-blocked guide RNA
WO2016022931A1 (en) 2014-08-07 2016-02-11 The Rockefeller University Compositions and methods for transcription-based crispr-cas dna editing
CN106714845A (zh) 2014-08-11 2017-05-24 得克萨斯州大学系统董事会 通过crispr/cas9介导的基因编辑预防肌营养不良
US10513711B2 (en) 2014-08-13 2019-12-24 Dupont Us Holding, Llc Genetic targeting in non-conventional yeast using an RNA-guided endonuclease
CN104178461B (zh) 2014-08-14 2017-02-01 北京蛋白质组研究中心 携带cas9的重组腺病毒及其应用
US11071289B2 (en) 2014-08-14 2021-07-27 Biocytogen Boston Corp DNA knock-in system
US9879270B2 (en) 2014-08-15 2018-01-30 Wisconsin Alumni Research Foundation Constructs and methods for genome editing and genetic engineering of fungi and protists
WO2016028682A1 (en) 2014-08-17 2016-02-25 The Broad Institute Inc. Genome editing using cas9 nickases
WO2016028843A2 (en) 2014-08-19 2016-02-25 President And Fellows Of Harvard College Rna-guided systems for probing and mapping of nucleic acids
EP3633047B1 (en) 2014-08-19 2022-12-28 Pacific Biosciences of California, Inc. Method of sequencing nucleic acids based on an enrichment of nucleic acids
WO2016026444A1 (en) 2014-08-20 2016-02-25 Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences Biomarker and therapeutic target for triple negative breast cancer
JP2017525377A (ja) 2014-08-25 2017-09-07 ジーンウィーブ バイオサイエンシズ,インコーポレイティド 非複製的形質導入粒子及び形質導入粒子に基づくレポーターシステム
BR112017003528A2 (pt) 2014-08-26 2018-07-10 Univ California receptores de aba hipersensíveis.
GB2544001A (en) 2014-08-27 2017-05-03 Caribou Biosciences Inc Methods for increasing Cas9-mediated engineering efficiency
EP3186375A4 (en) 2014-08-28 2019-03-13 North Carolina State University NEW CAS9 PROTEINS AND GUIDING ELEMENTS FOR DNA TARGETING AND THE GENOME EDITION
EP3188763B1 (en) 2014-09-02 2020-05-13 The Regents of The University of California Methods and compositions for rna-directed target dna modification
DK3189140T3 (en) 2014-09-05 2020-02-03 Univ Vilnius Programmerbar RNA-fragmentering ved hjælp af TYPE III-A CRISPR-Cas-systemet af Streptococcus thermophilus
WO2016037157A2 (en) 2014-09-05 2016-03-10 The Johns Hopkins University Targeting capn9/capns2 activity as a therapeutic strategy for the treatment of myofibroblast differentiation and associated pathologies
US20170298450A1 (en) 2014-09-10 2017-10-19 The Regents Of The University Of California Reconstruction of ancestral cells by enzymatic recording
WO2016040030A1 (en) 2014-09-12 2016-03-17 E. I. Du Pont De Nemours And Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
ES2886012T3 (es) 2014-09-16 2021-12-16 Sangamo Therapeutics Inc Métodos y composiciones para la ingeniería y corrección de genomas mediadas por nucleasas en células madre hematopoyéticas
CN110305133A (zh) 2014-09-16 2019-10-08 吉利德科学公司 Toll样受体调节剂的固体形式
SG10201902574RA (en) 2014-09-24 2019-04-29 Hope City Adeno-associated virus vector variants for high efficiency genome editing and methods thereof
WO2016049024A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo
WO2016049163A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder
WO2016049251A1 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes
WO2016049258A2 (en) 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems
WO2016046635A1 (en) 2014-09-25 2016-03-31 Institut Pasteur Methods for characterizing human papillomavirus associated cervical lesions
WO2016054225A1 (en) 2014-09-30 2016-04-07 Stc.Unm Plasmid delivery in the treatment of cancer and other disease states
KR102630014B1 (ko) 2014-10-01 2024-01-25 더 제너럴 하스피탈 코포레이션 뉴클레아제-유도 상동성-지정 복구의 효율 증가 방법
CN113930455A (zh) 2014-10-09 2022-01-14 生命技术公司 Crispr寡核苷酸和基因剪辑
WO2016057850A1 (en) 2014-10-09 2016-04-14 Seattle Children' S Hospital (Dba Seattle Children' S Research Institute) Long poly (a) plasmids and methods for introduction of long poly (a) sequences into the plasmid
CA2964234A1 (en) 2014-10-10 2016-04-14 Massachusetts Eye And Ear Infirmary Efficient delivery of therapeutic molecules in vitro and in vivo
AU2015330699B2 (en) 2014-10-10 2021-12-02 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
WO2016061073A1 (en) 2014-10-14 2016-04-21 Memorial Sloan-Kettering Cancer Center Composition and method for in vivo engineering of chromosomal rearrangements
WO2016061374A1 (en) 2014-10-15 2016-04-21 Regeneron Pharmaceuticals, Inc. Methods and compositions for generating or maintaining pluripotent cells
CN104342457A (zh) 2014-10-17 2015-02-11 杭州师范大学 一种将外源基因定点整合到靶标基因的方法
US10308947B2 (en) 2014-10-17 2019-06-04 The Penn State Research Foundation Methods and compositions for multiplex RNA guided genome editing and other RNA technologies
WO2016061523A1 (en) 2014-10-17 2016-04-21 Howard Hughes Medical Institute Genomic probes
JP2017536813A (ja) 2014-10-20 2017-12-14 エンバイロロジックス インコーポレイテッド Rnaウイルスを検出するための組成物及び方法
US20170247762A1 (en) 2014-10-27 2017-08-31 The Board Institute Inc. Compositions, methods and use of synthetic lethal screening
EP3212221B1 (en) 2014-10-29 2023-12-06 Massachusetts Eye & Ear Infirmary Efficient delivery of therapeutic molecules in vitro and in vivo
EP3212165B1 (en) 2014-10-30 2024-02-28 President and Fellows of Harvard College Delivery of negatively charged proteins using cationic lipids
MA40880A (fr) 2014-10-30 2017-09-05 Temple Univ Of The Commonwealth Éradication guidée par l'arn du virus jc humain et d'autres polyomavirus
ES2983094T3 (es) 2014-10-31 2024-10-21 Univ Pennsylvania Alteración de la expresión génica en células CAR-T y usos de los mismos
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
EP3708155A1 (en) 2014-10-31 2020-09-16 Massachusetts Institute Of Technology Massively parallel combinatorial genetics for crispr
CN104404036B (zh) 2014-11-03 2017-12-01 赛业(苏州)生物科技有限公司 基于CRISPR/Cas9技术的条件性基因敲除方法
CN104504304B (zh) 2014-11-03 2017-08-25 深圳先进技术研究院 一种成簇的规律间隔的短回文重复序列识别方法及装置
US10435697B2 (en) 2014-11-03 2019-10-08 Nanyang Technological University Recombinant expression system that senses pathogenic microorganisms
PT3216867T (pt) 2014-11-04 2020-07-16 Univ Kobe Nat Univ Corp Método para modificar a sequência de genoma para introduzir mutação específica a sequência de adn alvo por reação de remoção de bases, e complexo molecular nele utilizado
WO2016073559A1 (en) 2014-11-05 2016-05-12 The Regents Of The University Of California Methods for autocatalytic genome editing and neutralizing autocatalytic genome editing
DK3215611T3 (da) 2014-11-06 2019-11-25 Du Pont Peptid-medieret indgivelse af rna-guidet endonuklease i celler
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
WO2016077273A1 (en) 2014-11-11 2016-05-19 Q Therapeutics, Inc. Engineering mesenchymal stem cells using homologous recombination
SG11201703779VA (en) 2014-11-11 2017-06-29 Illumina Inc Polynucleotide amplification using crispr-cas systems
JP6621820B2 (ja) 2014-11-14 2019-12-18 インスティチュート フォー ベーシック サイエンスInstitute For Basic Science ゲノムでプログラマブルヌクレアーゼの非標的位置を検出する方法
WO2016075662A2 (en) 2014-11-15 2016-05-19 Zumutor Biologics, Inc. Dna-binding domain, non-fucosylated and partially fucosylated proteins, and methods thereof
US11470826B2 (en) 2014-11-17 2022-10-18 National University Corporation Tokyo Medical And Dental University Method of conveniently producing genetically modified non-human mammal with high efficiency
CN107109422B (zh) 2014-11-19 2021-08-13 基础科学研究院 使用由两个载体表达的拆分的Cas9的基因组编辑
WO2016081924A1 (en) 2014-11-20 2016-05-26 Duke University Compositions, systems and methods for cell therapy
PT3221457T (pt) 2014-11-21 2019-06-27 Regeneron Pharma Métodos e composições para modificação genética visada através da utilização de arn guia emparelhados
US10227661B2 (en) 2014-11-21 2019-03-12 GeneWeave Biosciences, Inc. Sequence-specific detection and phenotype determination
US20180334732A1 (en) 2014-11-25 2018-11-22 Drexel University Compositions and methods for hiv quasi-species excision from hiv-1-infected patients
JP6860483B2 (ja) 2014-11-26 2021-04-14 テクノロジー イノベーション モメンタム ファンド(イスラエル)リミテッド パートナーシップTechnology Innovation Momentum Fund(israel)Limited Partnership 細菌遺伝子の標的化削減
US20180105834A1 (en) 2014-11-27 2018-04-19 Institute Of Animal Sciences, Chinese Academy Of Agrigultural Sciences A method of site-directed insertion to h11 locus in pigs by using site-directed cutting system
EP3224363B1 (en) 2014-11-27 2021-11-03 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Nucleic acid constructs for genome editing
CN105695485B (zh) 2014-11-27 2020-02-21 中国科学院上海生命科学研究院 一种用于丝状真菌Crispr-Cas系统的Cas9编码基因及其应用
GB201421096D0 (en) 2014-11-27 2015-01-14 Imp Innovations Ltd Genome editing methods
WO2016089866A1 (en) 2014-12-01 2016-06-09 President And Fellows Of Harvard College Rna-guided systems for in vivo gene editing
US10479997B2 (en) 2014-12-01 2019-11-19 Novartis Ag Compositions and methods for diagnosis and treatment of prostate cancer
EP4400584A3 (en) 2014-12-03 2024-10-16 Agilent Technologies, Inc. Guide rna with chemical modifications
CN104450774A (zh) 2014-12-04 2015-03-25 中国农业科学院作物科学研究所 一种大豆CRISPR/Cas9体系的构建及其在大豆基因修饰中的应用
CN107208079B (zh) 2014-12-05 2021-06-29 应用干细胞有限公司 整合转基因的位点定向crispr/重组酶组合物和方法
CN104531704B (zh) 2014-12-09 2019-05-21 中国农业大学 利用CRISPR-Cas9系统敲除动物FGF5基因的方法
CN104531705A (zh) 2014-12-09 2015-04-22 中国农业大学 利用CRISPR-Cas9系统敲除动物myostatin基因的方法
CN107249318A (zh) 2014-12-10 2017-10-13 明尼苏达大学董事会 用于治疗疾病的遗传修饰的细胞、组织和器官
EP3985115A1 (en) 2014-12-12 2022-04-20 The Broad Institute, Inc. Protected guide rnas (pgrnas)
EP4372091A3 (en) 2014-12-12 2024-07-31 Tod M. Woolf Compositions and methods for editing nucleic acids in cells utilizing oligonucleotides
EP3230452A1 (en) 2014-12-12 2017-10-18 The Broad Institute Inc. Dead guides for crispr transcription factors
WO2016094880A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs)
CN104480144B (zh) 2014-12-12 2017-04-12 武汉大学 用于艾滋病基因治疗的CRISPR/Cas9重组慢病毒载体及其慢病毒
WO2016094874A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Escorted and functionalized guides for crispr-cas systems
CN107249645A (zh) 2014-12-12 2017-10-13 朱坚 用于选择性消除所关注细胞的方法和组合物
EA038595B1 (ru) 2014-12-16 2021-09-21 Си3Джей ТЕРАПЬЮТИКС, ИНК. Композиции и способы для конструирования вирусного генома in vitro
CN107667171A (zh) 2014-12-16 2018-02-06 丹尼斯科美国公司 真菌基因组修饰系统及使用方法
BR112017012765A2 (pt) 2014-12-17 2018-01-16 Du Pont ?métodos para editar uma sequência de nucleotídeos, célula e linhagem de e. coli e método para produzir uma célula de e. coli?
US10676737B2 (en) 2014-12-17 2020-06-09 Proqr Therapeutics Ii B.V. Targeted RNA editing
WO2016097231A2 (en) 2014-12-17 2016-06-23 Cellectis INHIBITORY CHIMERIC ANTIGEN RECEPTOR (iCAR OR N-CAR) EXPRESSING NON-T CELL TRANSDUCTION DOMAIN
WO2016097751A1 (en) 2014-12-18 2016-06-23 The University Of Bath Method of cas9 mediated genome engineering
US9840702B2 (en) 2014-12-18 2017-12-12 Integrated Dna Technologies, Inc. CRISPR-based compositions and methods of use
CN104745626B (zh) 2014-12-19 2018-05-01 中国航天员科研训练中心 一种条件性基因敲除动物模型的快速构建方法及应用
EP3234192B1 (en) 2014-12-19 2021-07-14 The Broad Institute, Inc. Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing
AU2015364286B2 (en) 2014-12-20 2021-11-04 Arc Bio, Llc Compositions and methods for targeted depletion, enrichment, and partitioning of nucleic acids using CRISPR/Cas system proteins
CN104560864B (zh) 2014-12-22 2017-08-11 中国科学院微生物研究所 利用CRISPR‑Cas9系统构建的敲除IFN‑β基因的293T细胞系
US10190106B2 (en) 2014-12-22 2019-01-29 Univesity Of Massachusetts Cas9-DNA targeting unit chimeras
US11053271B2 (en) 2014-12-23 2021-07-06 The Regents Of The University Of California Methods and compositions for nucleic acid integration
WO2016106236A1 (en) 2014-12-23 2016-06-30 The Broad Institute Inc. Rna-targeting system
CA2970370A1 (en) 2014-12-24 2016-06-30 Massachusetts Institute Of Technology Crispr having or associated with destabilization domains
AU2015101792A4 (en) 2014-12-24 2016-01-28 Massachusetts Institute Of Technology Engineering of systems, methods and optimized enzyme and guide scaffolds for sequence manipulation
WO2016103233A2 (en) 2014-12-24 2016-06-30 Dana-Farber Cancer Institute, Inc. Systems and methods for genome modification and regulation
CN104651398A (zh) 2014-12-24 2015-05-27 杭州师范大学 利用CRISPR-Cas9特异敲出microRNA基因家族的方法
WO2016104716A1 (ja) 2014-12-26 2016-06-30 国立研究開発法人理化学研究所 遺伝子のノックアウト方法
WO2016108926A1 (en) 2014-12-30 2016-07-07 The Broad Institute Inc. Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis
CN104498493B (zh) 2014-12-30 2017-12-26 武汉大学 CRISPR/Cas9特异性敲除乙型肝炎病毒的方法以及用于特异性靶向HBV DNA的gRNA
WO2016109255A1 (en) 2014-12-30 2016-07-07 University Of South Florida Methods and compositions for cloning into large vectors
US11339399B2 (en) 2014-12-31 2022-05-24 Viridos, Inc. Compositions and methods for high efficiency in vivo genome editing
CN104651399B (zh) 2014-12-31 2018-11-16 广西大学 一种利用CRISPR/Cas系统在猪胚胎细胞中实现基因敲除的方法
US10619170B2 (en) 2015-01-06 2020-04-14 Dsm Ip Assets B.V. CRISPR-CAS system for a yeast host cell
CN108064287A (zh) 2015-01-06 2018-05-22 帝斯曼知识产权资产管理有限公司 用于解脂酵母宿主细胞的crispr-cas系统
DK3242950T3 (da) 2015-01-06 2021-12-20 Dsm Ip Assets Bv Crispr-cas-system til en trådformet svampeværtscelle
EP3243529B1 (en) 2015-01-06 2020-09-23 Industry-Academic Cooperation Foundation Yonsei University Endonuclease targeting blood coagulation factor viii gene and composition for treating hemophilia comprising same
CN104651392B (zh) 2015-01-06 2018-07-31 华南农业大学 一种利用CRISPR/Cas9系统定点突变P/TMS12-1获得温敏不育系的方法
CN104593422A (zh) 2015-01-08 2015-05-06 中国农业大学 一种抗蓝耳病克隆猪的制备方法
WO2016112242A1 (en) 2015-01-08 2016-07-14 President And Fellows Of Harvard College Split cas9 proteins
US10280451B2 (en) 2015-01-09 2019-05-07 Bio-Rad Laboratories, Inc. Detection of genome editing
WO2016114972A1 (en) 2015-01-12 2016-07-21 The Regents Of The University Of California Heterodimeric cas9 and methods of use thereof
US11125739B2 (en) 2015-01-12 2021-09-21 Massachusetts Institute Of Technology Gene editing through microfluidic delivery
WO2016112963A1 (en) 2015-01-13 2016-07-21 Riboxx Gmbh Delivery of biomolecules into cells
MA41349A (fr) 2015-01-14 2017-11-21 Univ Temple Éradication de l'herpès simplex de type i et d'autres virus de l'herpès associés guidée par arn
CN107429263A (zh) 2015-01-15 2017-12-01 斯坦福大学托管董事会 调控基因组编辑的方法
CN104611370A (zh) 2015-01-16 2015-05-13 深圳市科晖瑞生物医药有限公司 一种剔除β2-微球蛋白基因片段的方法
CN105802991B (zh) 2015-01-19 2021-06-29 中国科学院遗传与发育生物学研究所 一种通过基因瞬时表达对植物定点改造的方法
CN104725626B (zh) 2015-01-22 2016-06-29 漳州亚邦化学有限公司 一种适用于人造石英石的不饱和树脂的制备方法
CN105821072A (zh) 2015-01-23 2016-08-03 深圳华大基因研究院 用于DNA组装的CRISPR-Cas9系统及DNA组装方法
WO2016123071A1 (en) 2015-01-26 2016-08-04 Cold Spring Harbor Laboratory Methods of identifying essential protein domains
CN104561095B (zh) 2015-01-27 2017-08-22 深圳市国创纳米抗体技术有限公司 一种能够生产人神经生长因子的转基因小鼠的制备方法
US10059940B2 (en) 2015-01-27 2018-08-28 Minghong Zhong Chemically ligated RNAs for CRISPR/Cas9-lgRNA complexes as antiviral therapeutic agents
WO2016123243A1 (en) 2015-01-28 2016-08-04 The Regents Of The University Of California Methods and compositions for labeling a single-stranded target nucleic acid
CN107810270A (zh) 2015-01-28 2018-03-16 先锋国际良种公司 Crispr杂合dna/rna多核苷酸及使用方法
CA2974681A1 (fr) 2015-01-29 2016-08-04 Meiogenix Procede pour induire des recombinaisons meiotiques ciblees
EP3250693B2 (en) 2015-01-30 2023-12-20 The Regents of The University of California Protein delivery in primary hematopoietic cells
LT3265563T (lt) 2015-02-02 2021-06-25 Meiragtx Uk Ii Limited Genų raiškos reguliavimas aptamerų sąlygotu alternatyvaus splaisingo moduliavimu
CN104593418A (zh) 2015-02-06 2015-05-06 中国医学科学院医学实验动物研究所 一种人源化大鼠药物评价动物模型建立的方法
EP3256487A4 (en) 2015-02-09 2018-07-18 Duke University Compositions and methods for epigenome editing
KR101584933B1 (ko) 2015-02-10 2016-01-13 성균관대학교산학협력단 항생제 내성 억제용 재조합 벡터 및 이의 용도
WO2016130697A1 (en) 2015-02-11 2016-08-18 Memorial Sloan Kettering Cancer Center Methods and kits for generating vectors that co-express multiple target molecules
CN104928321B (zh) 2015-02-12 2018-06-01 中国科学院西北高原生物研究所 一种由Crispr/Cas9诱导的鳞片缺失斑马鱼模式及建立方法
CN104726494B (zh) 2015-02-12 2018-10-23 中国人民解放军第二军医大学 CRISPR-Cas9技术构建染色体易位干细胞及动物模型的方法
WO2016131009A1 (en) 2015-02-13 2016-08-18 University Of Massachusetts Compositions and methods for transient delivery of nucleases
US20160244784A1 (en) 2015-02-15 2016-08-25 Massachusetts Institute Of Technology Population-Hastened Assembly Genetic Engineering
WO2016132122A1 (en) 2015-02-17 2016-08-25 University Of Edinburgh Assay construct
JP6354100B2 (ja) 2015-02-19 2018-07-11 国立大学法人徳島大学 Cas9 mRNAを哺乳動物の受精卵にエレクトロポレーションにより導入する方法
US20180245073A1 (en) 2015-02-23 2018-08-30 Voyager Therapeutics, Inc. Regulatable expression using adeno-associated virus (aav)
WO2016135559A2 (en) 2015-02-23 2016-09-01 Crispr Therapeutics Ag Materials and methods for treatment of human genetic diseases including hemoglobinopathies
EP3262172A2 (en) 2015-02-23 2018-01-03 Crispr Therapeutics AG Materials and methods for treatment of hemoglobinopathies
KR20160103953A (ko) 2015-02-25 2016-09-02 연세대학교 산학협력단 Crispr 시스템을 이용한 다중 위치 염기서열의 동시 포획 방법
US20180002715A1 (en) 2015-02-25 2018-01-04 Pioneer Hi-Bred International, Inc. Composition and methods for regulated expression of a guide rna/cas endonuclease complex
WO2016135507A1 (en) 2015-02-27 2016-09-01 University Of Edinburgh Nucleic acid editing systems
CN104805099B (zh) 2015-03-02 2018-04-13 中国人民解放军第二军医大学 一种安全编码Cas9蛋白的核酸分子及其表达载体
CA2978314A1 (en) 2015-03-03 2016-09-09 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
CN104651401B (zh) 2015-03-05 2019-03-08 东华大学 一种mir-505双等位基因敲除的方法
CN104673816A (zh) 2015-03-05 2015-06-03 广东医学院 一种pCr-NHEJ载体及其构建方法及其用于细菌基因定点敲除的应用
EP3268044A2 (en) 2015-03-11 2018-01-17 The Broad Institute Inc. Prmt5 inhibitors for the treatment of cancer with reduced mtap activty
GB201504223D0 (en) 2015-03-12 2015-04-29 Genome Res Ltd Biallelic genetic modification
EP3309255A4 (en) 2015-03-12 2018-08-01 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for increasing ability of plant to resist invading dna virus
CA2979567C (en) 2015-03-13 2020-10-13 The Jackson Laboratory A three-component crispr/cas complex system and uses thereof
CN106032540B (zh) 2015-03-16 2019-10-25 中国科学院上海生命科学研究院 CRISPR/Cas9核酸内切酶体系的腺相关病毒载体构建及其用途
JP2018508221A (ja) 2015-03-16 2018-03-29 中国科学院遺▲伝▼与▲発▼育生物学研究所Institute of Genetics and Developmental Biology, Chinese Academy of Sciences 植物ゲノムの部位特異的改変の実施に非遺伝物質を適用する方法
WO2016149547A1 (en) 2015-03-17 2016-09-22 Bio-Rad Laboratories, Inc. Detection of genome editing
WO2016149484A2 (en) 2015-03-17 2016-09-22 Temple University Of The Commonwealth System Of Higher Education Compositions and methods for specific reactivation of hiv latent reservoir
US20180163196A1 (en) 2015-03-20 2018-06-14 Danmarks Tekniske Universitet Crispr/cas9 based engineering of actinomycetal genomes
MA41382A (fr) 2015-03-20 2017-11-28 Univ Temple Édition génique basée sur le système crispr/endonucléase à induction par tat
CN104726449A (zh) 2015-03-23 2015-06-24 国家纳米科学中心 一种用于预防和/或治疗HIV的CRISPR-Cas9系统及其制备方法和用途
CN106148416B (zh) 2015-03-24 2019-12-17 华东师范大学 Cyp基因敲除大鼠的培育方法及其肝微粒体的制备方法
US20180112213A1 (en) 2015-03-25 2018-04-26 Editas Medicine, Inc. Crispr/cas-related methods, compositions and components
EP3274453B1 (en) 2015-03-26 2021-01-27 Editas Medicine, Inc. Crispr/cas-mediated gene conversion
WO2016161004A1 (en) 2015-03-30 2016-10-06 The Board Of Regents Of The Nevada System Of Higher Educ. On Behalf Of The University Of Nevada, La Compositions comprising talens and methods of treating hiv
EP3277805A1 (en) 2015-03-31 2018-02-07 Exeligen Scientific, Inc. Cas 9 retroviral integrase and cas 9 recombinase systems for targeted incorporation of a dna sequence into a genome of a cell or organism
AU2016244033A1 (en) 2015-04-01 2017-10-19 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Duchenne Muscular Dystrophy and Becker Muscular Dystrophy
CA3000187A1 (en) 2015-04-02 2016-10-06 Agenovir Corporation Gene delivery methods and compositions
US20170166928A1 (en) 2015-04-03 2017-06-15 Whitehead Institute For Biomedical Research Compositions And Methods For Genetically Modifying Yeast
CN106434737A (zh) 2015-04-03 2017-02-22 内蒙古中科正标生物科技有限责任公司 基于CRISPR/Cas9技术的单子叶植物基因敲除载体及其应用
EP3277823B1 (en) 2015-04-03 2023-09-13 Dana-Farber Cancer Institute, Inc. Composition and methods of genome editing of b-cells
KR20240038141A (ko) 2015-04-06 2024-03-22 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Crispr/cas-매개 유전자 조절을 위한 화학적으로 변형된 가이드 rna
WO2016164797A1 (en) 2015-04-08 2016-10-13 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Activatable crispr/cas9 for spatial and temporal control of genome editing
WO2016167300A1 (ja) 2015-04-13 2016-10-20 国立大学法人東京大学 光依存的に又は薬物存在下でヌクレアーゼ活性若しくはニッカーゼ活性を示す、又は標的遺伝子の発現を抑制若しくは活性化するポリペプチドのセット
US10155938B2 (en) 2015-04-14 2018-12-18 City Of Hope Coexpression of CAS9 and TREX2 for targeted mutagenesis
GB201506509D0 (en) 2015-04-16 2015-06-03 Univ Wageningen Nuclease-mediated genome editing
EP3286322A1 (en) 2015-04-21 2018-02-28 Novartis AG Rna-guided gene editing system and uses thereof
CN104805118A (zh) 2015-04-22 2015-07-29 扬州大学 一种苏禽黄鸡胚胎干细胞特定基因进行靶向敲除方法
CN104762321A (zh) 2015-04-22 2015-07-08 东北林业大学 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件
US11268158B2 (en) 2015-04-24 2022-03-08 St. Jude Children's Research Hospital, Inc. Assay for safety assessment of therapeutic genetic manipulations, gene therapy vectors and compounds
CN107690480B (zh) 2015-04-24 2022-03-22 爱迪塔斯医药公司 Cas9分子/指导rna分子复合物的评价
CN107614012A (zh) 2015-04-24 2018-01-19 加利福尼亚大学董事会 使用工程化的细胞检测、监测或治疗疾病或病况的系统及制备和使用它们的方法
JP6851319B2 (ja) 2015-04-27 2021-03-31 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア ヒト疾患のCRISPR/Cas9媒介性の修正のためのデュアルAAVベクター系
EP3289081B1 (en) 2015-04-27 2019-03-27 Genethon Compositions and methods for the treatment of nucleotide repeat expansion disorders
EP3087974A1 (en) 2015-04-29 2016-11-02 Rodos BioTarget GmbH Targeted nanocarriers for targeted drug delivery of gene therapeutics
PT3289080T (pt) 2015-04-30 2021-11-19 Univ Columbia Terapia genética para doenças autossómicas dominantes
US20190002920A1 (en) 2015-04-30 2019-01-03 The Brigham And Women's Hospital, Inc. Methods and kits for cloning-free genome editing
ES2905181T3 (es) 2015-05-01 2022-04-07 Prec Biosciences Inc Deleción precisa de secuencias cromosómicas in vivo
US20160346359A1 (en) 2015-05-01 2016-12-01 Spark Therapeutics, Inc. Adeno-associated Virus-Mediated CRISPR-Cas9 Treatment of Ocular Disease
EP3292219B9 (en) 2015-05-04 2022-05-18 Ramot at Tel-Aviv University Ltd. Methods and kits for fragmenting dna
CN104894068A (zh) 2015-05-04 2015-09-09 南京凯地生物科技有限公司 一种利用CRISPR/Cas9制备CAR-T细胞的方法
GB2531454A (en) 2016-01-10 2016-04-20 Snipr Technologies Ltd Recombinogenic nucleic acid strands in situ
NZ738068A (en) 2015-05-06 2019-07-26 Snipr Tech Ltd Altering microbial populations & modifying microbiota
WO2016182893A1 (en) 2015-05-08 2016-11-17 Teh Broad Institute Inc. Functional genomics using crispr-cas systems for saturating mutagenesis of non-coding elements, compositions, methods, libraries and applications thereof
ES2835861T3 (es) 2015-05-08 2021-06-23 Childrens Medical Ct Corp Direccionamiento de regiones funcionales del potenciador de BCL11A para la reinducción de hemoglobina fetal
EP3294888A1 (en) 2015-05-11 2018-03-21 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating hiv infection and aids
WO2016182959A1 (en) 2015-05-11 2016-11-17 Editas Medicine, Inc. Optimized crispr/cas9 systems and methods for gene editing in stem cells
KR101785847B1 (ko) 2015-05-12 2017-10-17 연세대학교 산학협력단 선형 이중가닥 DNA를 활용한 CRISPR/Cas9 시스템을 이용한 표적 유전체 교정
KR20170141217A (ko) 2015-05-12 2017-12-22 상가모 테라퓨틱스, 인코포레이티드 유전자 발현의 뉴클레아제-매개된 조절
CN105886498A (zh) 2015-05-13 2016-08-24 沈志荣 CRISPR-Cas9特异性敲除人PCSK9基因的方法以及用于特异性靶向PCSK9基因的sgRNA
US11267899B2 (en) 2015-05-13 2022-03-08 Zumutor Biologics Inc. Afucosylated protein, cell expressing said protein and associated methods
WO2016183402A2 (en) 2015-05-13 2016-11-17 President And Fellows Of Harvard College Methods of making and using guide rna for use with cas9 systems
JP2018520648A (ja) 2015-05-13 2018-08-02 シアトル チルドレンズ ホスピタル, ディービーエー シアトル チルドレンズ リサーチ インスティテュート 初代細胞におけるエンドヌクレアーゼに基づいた遺伝子編集の向上
CN107614680A (zh) 2015-05-14 2018-01-19 南加利福尼亚大学 利用重组核酸内切酶系统的最佳化基因编辑
WO2016183438A1 (en) 2015-05-14 2016-11-17 Massachusetts Institute Of Technology Self-targeting genome editing system
AU2016263026A1 (en) 2015-05-15 2017-11-09 Pioneer Hi-Bred International, Inc. Guide RNA/Cas endonuclease systems
JP2018515142A (ja) 2015-05-15 2018-06-14 ダーマコン,インコーポレイテッド. Cas9介在遺伝子編集用の合成シングルガイドrna
AU2016265255B2 (en) 2015-05-16 2022-03-17 Genzyme Corporation Gene editing of deep intronic mutations
CN104846010B (zh) 2015-05-18 2018-07-06 安徽省农业科学院水稻研究所 一种删除转基因水稻筛选标记基因的方法
WO2016185411A1 (en) 2015-05-18 2016-11-24 King Abdullah University Of Science And Technology Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference
EP3095870A1 (en) 2015-05-19 2016-11-23 Kws Saat Se Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom
CN106011104B (zh) 2015-05-21 2019-09-27 清华大学 利用拆分Cas系统进行基因编辑和表达调控方法
CN105518135B (zh) 2015-05-22 2020-11-24 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA
WO2016187904A1 (zh) 2015-05-22 2016-12-01 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA
WO2016187717A1 (en) 2015-05-26 2016-12-01 Exerkine Corporation Exosomes useful for genome editing
CN105624146B (zh) 2015-05-28 2019-02-15 中国科学院微生物研究所 基于CRISPR/Cas9和酿酒酵母细胞内源的同源重组的分子克隆方法
WO2016191684A1 (en) 2015-05-28 2016-12-01 Finer Mitchell H Genome editing vectors
CN104894075B (zh) 2015-05-28 2019-08-06 华中农业大学 CRISPR/Cas9和Cre/lox系统编辑伪狂犬病毒基因组制备疫苗方法和应用
EP3303607A4 (en) 2015-05-29 2018-10-10 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using crispr nucleic acids
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
JP2018516597A (ja) 2015-05-29 2018-06-28 アジェノビア コーポレーション 移植のために細胞を処置する方法および組成物
JP2018516983A (ja) 2015-05-29 2018-06-28 アジェノビア コーポレーション ウイルス感染を処置するための組成物および方法
US20160350476A1 (en) 2015-05-29 2016-12-01 Agenovir Corporation Antiviral methods and compositions
US20160346362A1 (en) 2015-05-29 2016-12-01 Agenovir Corporation Methods and compositions for treating cytomegalovirus infections
EP3302556A4 (en) 2015-05-29 2018-12-05 Clark Atlanta University Human cell lines mutant for zic2
WO2016196282A1 (en) 2015-05-29 2016-12-08 Agenovir Corporation Compositions and methods for cell targeted hpv treatment
WO2016191869A1 (en) 2015-06-01 2016-12-08 The Hospital For Sick Children Delivery of structurally diverse polypeptide cargo into mammalian cells by a bacterial toxin
CA2987927C (en) 2015-06-01 2024-03-19 Temple University - Of The Commonwealth System Of Higher Education Methods and compositions for rna-guided treatment of hiv infection
CN105112445B (zh) 2015-06-02 2018-08-10 广州辉园苑医药科技有限公司 一种基于CRISPR-Cas9基因敲除技术的miR-205基因敲除试剂盒
EP3303585A4 (en) 2015-06-03 2018-10-31 Board of Regents of the University of Nebraska Dna editing using single-stranded dna
EP3303634B1 (en) 2015-06-03 2023-08-30 The Regents of The University of California Cas9 variants and methods of use thereof
US10626393B2 (en) 2015-06-04 2020-04-21 Arbutus Biopharma Corporation Delivering CRISPR therapeutics with lipid nanoparticles
US20180245074A1 (en) 2015-06-04 2018-08-30 Protiva Biotherapeutics, Inc. Treating hepatitis b virus infection using crispr
CN105039339B (zh) 2015-06-05 2017-12-19 新疆畜牧科学院生物技术研究所 一种以RNA介导的特异性敲除绵羊FecB基因的方法及其专用sgRNA
US11279926B2 (en) 2015-06-05 2022-03-22 The Regents Of The University Of California Methods and compositions for generating CRISPR/Cas guide RNAs
CN108026526B (zh) 2015-06-09 2023-05-12 爱迪塔斯医药公司 用于改善移植的crispr/cas相关方法和组合物
WO2016201153A1 (en) 2015-06-10 2016-12-15 Firmenich Sa Cell lines for screening odorant and aroma receptors
WO2016198500A1 (en) 2015-06-10 2016-12-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for rna-guided treatment of human cytomegalovirus (hcmv) infection
JP7085841B2 (ja) 2015-06-10 2022-06-17 フイルメニツヒ ソシエテ アノニム ムスク化合物の同定方法
US20160362667A1 (en) 2015-06-10 2016-12-15 Caribou Biosciences, Inc. CRISPR-Cas Compositions and Methods
CN105518139B (zh) 2015-06-11 2021-02-02 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪FGL2基因的方法及用于特异性靶向FGL2基因的sgRNA
WO2016197355A1 (zh) 2015-06-11 2016-12-15 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪SALL1基因的方法及用于特异性靶向SALL1基因的sgRNA
CN105492608B (zh) 2015-06-11 2021-07-23 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪PDX1基因的方法及用于特异性靶向PDX1基因的sgRNA
WO2016197360A1 (zh) 2015-06-11 2016-12-15 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪GFRA1基因的方法及用于特异性靶向GFRA1基因的sgRNA
CN105593367A (zh) 2015-06-11 2016-05-18 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA
CN105492609A (zh) 2015-06-11 2016-04-13 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪GGTA1基因的方法及用于特异性靶向GGTA1基因的sgRNA
WO2016197357A1 (zh) 2015-06-11 2016-12-15 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪SLA-3基因的方法及用于特异性靶向SLA-3基因的sgRNA
WO2016197356A1 (zh) 2015-06-11 2016-12-15 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪SLA-2基因的方法及用于特异性靶向SLA-2基因的sgRNA
CN105518140A (zh) 2015-06-11 2016-04-20 深圳市第二人民医院 CRISPR-Cas9特异性敲除猪vWF基因的方法及用于特异性靶向vWF基因的sgRNA
WO2016201138A1 (en) 2015-06-12 2016-12-15 The Regents Of The University Of California Reporter cas9 variants and methods of use thereof
WO2016200263A1 (en) 2015-06-12 2016-12-15 Erasmus University Medical Center Rotterdam New crispr assays
GB201510296D0 (en) 2015-06-12 2015-07-29 Univ Wageningen Thermostable CAS9 nucleases
DK3307872T3 (da) 2015-06-15 2023-10-23 Univ North Carolina State Fremgangsmåder og sammensætninger til effektiv indgivelse af nukleinsyrer og rna-baserede antimikrober
WO2016205680A1 (en) 2015-06-17 2016-12-22 The Uab Research Foundation Crispr/cas9 complex for introducing a functional polypeptide into cells of blood cell lineage
AU2016278982A1 (en) 2015-06-17 2018-01-18 The Uab Research Foundation CRISPR/Cas9 complex for genomic editing
WO2016205728A1 (en) 2015-06-17 2016-12-22 Massachusetts Institute Of Technology Crispr mediated recording of cellular events
WO2016205623A1 (en) 2015-06-17 2016-12-22 North Carolina State University Methods and compositions for genome editing in bacteria using crispr-cas9 systems
WO2016205745A2 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Cell sorting
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
EP3310395A4 (en) 2015-06-18 2019-05-22 Robert D. Bowles REGULATION OF RNA GUIDED TRANSCRIPTION AND METHODS OF USE THEREOF FOR THE TREATMENT OF LOMBALGIA
US9957501B2 (en) 2015-06-18 2018-05-01 Sangamo Therapeutics, Inc. Nuclease-mediated regulation of gene expression
IL293323B2 (en) 2015-06-18 2024-01-01 Massachusetts Inst Technology CRISPR enzyme mutations that reduce unintended effects
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
WO2016205749A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
EP3666895A1 (en) 2015-06-18 2020-06-17 The Broad Institute, Inc. Novel crispr enzymes and systems
CA2990699A1 (en) 2015-06-29 2017-01-05 Ionis Pharmaceuticals, Inc. Modified crispr rna and modified single crispr rna and uses thereof
US11279928B2 (en) 2015-06-29 2022-03-22 Massachusetts Institute Of Technology Compositions comprising nucleic acids and methods of using the same
GB201511376D0 (en) 2015-06-29 2015-08-12 Ecolab Usa Inc Process for the treatment of produced water from chemical enhanced oil recovery
CA2986314C (en) 2015-06-30 2024-04-23 Cellectis Methods for improving functionality in nk cell by gene inactivation using specific endonuclease
MX2017016921A (es) 2015-07-02 2018-04-10 Univ Johns Hopkins Tratamientos basados en crispr / cas9.
US20170009242A1 (en) 2015-07-06 2017-01-12 Whitehead Institute For Biomedical Research CRISPR-Mediated Genome Engineering for Protein Depletion
US20190055544A1 (en) 2015-07-06 2019-02-21 Dsm Ip Assets B.V. Guide rna assembly vector
CN105132451B (zh) 2015-07-08 2019-07-23 电子科技大学 一种CRISPR/Cas9单一转录单元定向修饰骨架载体及其应用
WO2017009399A1 (en) 2015-07-13 2017-01-19 Institut Pasteur Improving sequence-specific antimicrobials by blocking dna repair
US20170014449A1 (en) 2015-07-13 2017-01-19 Elwha LLC, a limited liability company of the State of Delaware Site-specific epigenetic editing
US10450585B2 (en) 2015-07-13 2019-10-22 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
EP3323890A4 (en) 2015-07-14 2019-01-30 Fukuoka University METHOD FOR INDUCING SITE SPECIFIC RNA MUTATIONS, TARGET EDITION GUIDING RNA-GUIDE USED IN THE METHOD, AND TARGET EDITING GUID-RNA TARGET RNA COMPLEX
MA42895A (fr) 2015-07-15 2018-05-23 Juno Therapeutics Inc Cellules modifiées pour thérapie cellulaire adoptive
CA2992580C (en) 2015-07-15 2022-09-20 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
US20170020922A1 (en) 2015-07-16 2017-01-26 Batu Biologics Inc. Gene editing for immunological destruction of neoplasia
WO2017015101A1 (en) 2015-07-17 2017-01-26 University Of Washington Methods for maximizing the efficiency of targeted gene correction
WO2017015015A1 (en) 2015-07-17 2017-01-26 Emory University Crispr-associated protein from francisella and uses related thereto
WO2017015545A1 (en) 2015-07-22 2017-01-26 President And Fellows Of Harvard College Evolution of site-specific recombinases
WO2017015637A1 (en) 2015-07-22 2017-01-26 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
US20190024073A1 (en) 2015-07-23 2019-01-24 Mayo Foundation For Medical Education And Research Editing mitochondrial dna
WO2017017016A1 (en) 2015-07-25 2017-02-02 Frost Habib A system, device and a method for providing a therapy or a cure for cancer and other pathological states
CN106399360A (zh) 2015-07-27 2017-02-15 上海药明生物技术有限公司 基于crispr技术敲除fut8基因的方法
DK3329001T3 (da) 2015-07-28 2021-12-20 Danisco Us Inc Genomredigeringssystemer og anvendelsesfremgangsmåder
CN105063061B (zh) 2015-07-28 2018-10-30 华南农业大学 一种水稻千粒重基因tgw6突变体及其制备方法与应用
CN106701808A (zh) 2015-07-29 2017-05-24 深圳华大基因研究院 Dna聚合酶i缺陷型菌株及其构建方法
WO2017019895A1 (en) 2015-07-30 2017-02-02 President And Fellows Of Harvard College Evolution of talens
US20200123533A1 (en) 2015-07-31 2020-04-23 The Trustees Of Columbia University In The City Of New York High-throughput strategy for dissecting mammalian genetic interactions
IL257105B (en) 2015-07-31 2022-09-01 Univ Minnesota Adapted cells and treatment methods
WO2017023974A1 (en) 2015-08-03 2017-02-09 President And Fellows Of Harvard College Cas9 genome editing and transcriptional regulation
WO2017024047A1 (en) 2015-08-03 2017-02-09 Emendobio Inc. Compositions and methods for increasing nuclease induced recombination rate in cells
CA2995036A1 (en) 2015-08-06 2017-02-09 Dana-Farber Cancer Institute, Inc. Tunable endogenous protein degradation
EP3332014A4 (en) 2015-08-07 2019-01-23 Commonwealth Scientific and Industrial Research Organisation METHOD FOR PRODUCING ANIMAL WITH GENETIC GLAND CARBON MODIFICATION
CN104962523B (zh) 2015-08-07 2018-05-25 苏州大学 一种测定非同源末端连接修复活性的方法
US9580727B1 (en) 2015-08-07 2017-02-28 Caribou Biosciences, Inc. Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides
US10709775B2 (en) 2015-08-11 2020-07-14 Cellectis Cells for immunotherapy engineered for targeting CD38 antigen and for CD38 gene inactivation
CA2994883A1 (en) 2015-08-14 2017-02-23 Institute Of Genetics And Developmental Biology, Chinese Academy Of Scnces Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution
CN105255937A (zh) 2015-08-14 2016-01-20 西北农林科技大学 一种真核细胞III型启动子表达CRISPR sgRNA的方法及其应用
US10538758B2 (en) 2015-08-19 2020-01-21 Arc Bio, Llc Capture of nucleic acids using a nucleic acid-guided nuclease-based system
CN105112519A (zh) 2015-08-20 2015-12-02 郑州大学 一种基于crispr的大肠杆菌o157:h7菌株检测试剂盒及检测方法
WO2017031483A1 (en) 2015-08-20 2017-02-23 Applied Stemcell, Inc. Nuclease with enhanced efficiency of genome editing
CN105177126B (zh) 2015-08-21 2018-12-04 东华大学 一种利用荧光pcr技术对小鼠的分型鉴定方法
CN108351350B (zh) 2015-08-25 2022-02-18 杜克大学 使用rna指导型内切核酸酶改善基因组工程特异性的组合物和方法
CN106480083B (zh) 2015-08-26 2021-12-14 中国科学院分子植物科学卓越创新中心 CRISPR/Cas9介导的大片段DNA拼接方法
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
KR20240090567A (ko) 2015-08-28 2024-06-21 더 제너럴 하스피탈 코포레이션 조작된 crispr-cas9 뉴클레아제
CN105087620B (zh) 2015-08-31 2017-12-29 中国农业大学 一种过表达猪共刺激受体4‑1bb载体及其应用
KR102691636B1 (ko) 2015-08-31 2024-08-02 애질런트 테크놀로지스, 인크. 상동 재조합에 의한 crispr/cas-기반 게놈 편집을 위한 화합물 및 방법
WO2017040709A1 (en) 2015-08-31 2017-03-09 Caribou Biosciences, Inc. Directed nucleic acid repair
CA2996599A1 (en) 2015-09-01 2017-03-09 Dana-Farber Cancer Institute Inc. Systems and methods for selection of grna targeting strands for cas9 localization
CA3035810A1 (en) 2015-09-02 2017-03-09 University Of Massachusetts Detection of gene loci with crispr arrayed repeats and/or polychromatic single guide ribonucleic acids
US20180251789A1 (en) 2015-09-04 2018-09-06 Massachusetts Institute Of Technology Multilayer genetic safety kill circuits based on single cas9 protein and multiple engineered grna in mammalian cells
CN105400810B (zh) 2015-09-06 2019-05-07 吉林大学 采用敲除技术建立低磷性佝偻病模型的方法
EP3347464B1 (en) 2015-09-08 2024-01-24 University of Massachusetts Dnase h activity of neisseria meningitidis cas9
BR112018004636A2 (pt) 2015-09-09 2018-10-30 National University Corporation Kobe University método para modificação de um sítio alvejado em um dna de fita dupla de uma bactéria gram-positiva, complexo de enzima modificadora de ácido nucleico, e, ácido nucleico
US20190024098A1 (en) 2015-09-09 2019-01-24 National University Corporation Kobe University Method for modifying genome sequence that specifically converts nucleobase of targeted dna sequence, and molecular complex used in said method
EP3347469A4 (en) 2015-09-10 2019-02-27 Youhealth Biotech, Limited METHOD AND COMPOSITIONS FOR TREATING GLAUCOMA
WO2017044776A1 (en) 2015-09-10 2017-03-16 Texas Tech University System Single-guide rna (sgrna) with improved knockout efficiency
CN105274144A (zh) 2015-09-14 2016-01-27 徐又佳 通过CRISPR/Cas9技术得到敲除铁调素基因斑马鱼的制备方法
US10301613B2 (en) 2015-09-15 2019-05-28 Arizona Board Of Regents On Behalf Of Arizona State University Targeted remodeling of prokaryotic genomes using CRISPR-nickases
CN105210981B (zh) 2015-09-15 2018-09-28 中国科学院生物物理研究所 建立可应用于人类疾病研究的雪貂模型的方法及其应用
CN105112422B (zh) 2015-09-16 2019-11-08 中山大学 基因miR408和UCL在培育高产水稻中的应用
US11261439B2 (en) 2015-09-18 2022-03-01 President And Fellows Of Harvard College Methods of making guide RNA
WO2017053431A2 (en) 2015-09-21 2017-03-30 Arcturus Therapeutics, Inc. Allele selective gene editing and uses thereof
CN105132427B (zh) 2015-09-21 2019-01-08 新疆畜牧科学院生物技术研究所 一种以RNA介导的特异性敲除双基因获得基因编辑绵羊的方法及其专用sgRNA
US20180237800A1 (en) 2015-09-21 2018-08-23 The Regents Of The University Of California Compositions and methods for target nucleic acid modification
CA2998500A1 (en) 2015-09-23 2017-03-30 Sangamo Therapeutics, Inc. Htt repressors and uses thereof
WO2017053762A1 (en) 2015-09-24 2017-03-30 Sigma-Aldrich Co. Llc Methods and reagents for molecular proximity detection using rna-guided nucleic acid binding proteins
WO2017064546A1 (en) 2015-09-24 2017-04-20 Crispr Therapeutics Ag Novel family of rna-programmable endonucleases and their uses in genome editing and other applications
EP3353296B1 (en) 2015-09-24 2020-11-04 Editas Medicine, Inc. Use of exonucleases to improve crispr/cas-mediated genome editing
KR101745863B1 (ko) 2015-09-25 2017-06-12 전남대학교산학협력단 Crispr/cas9 시스템을 이용한 프로히비틴2 유전자 제거용 시발체
KR101795999B1 (ko) 2015-09-25 2017-11-09 전남대학교산학협력단 Crispr/cas9 시스템을 이용한 베타2-마이크로글로불린 유전자 제거용 시발체
US20180258411A1 (en) 2015-09-25 2018-09-13 Tarveda Therapeutics, Inc. Compositions and methods for genome editing
WO2017053729A1 (en) 2015-09-25 2017-03-30 The Board Of Trustees Of The Leland Stanford Junior University Nuclease-mediated genome editing of primary cells and enrichment thereof
EP3147363B1 (en) 2015-09-26 2019-10-16 B.R.A.I.N. Ag Activation of taste receptor genes in mammalian cells using crispr-cas-9
CN108779447A (zh) 2015-09-28 2018-11-09 天普大学-联邦高等教育系统 用于hiv感染的rna引导治疗的方法和组合物
US20170088828A1 (en) 2015-09-29 2017-03-30 Agenovir Corporation Compositions and methods for treatment of latent viral infections
CN105177038B (zh) 2015-09-29 2018-08-24 中国科学院遗传与发育生物学研究所 一种高效定点编辑植物基因组的CRISPR/Cas9系统
WO2017058796A1 (en) 2015-09-29 2017-04-06 Agenovir Corporation Antiviral fusion proteins and genes
AU2016332704A1 (en) 2015-09-29 2018-04-19 Agenovir Corporation Delivery methods and compositions
US20170087225A1 (en) 2015-09-29 2017-03-30 Agenovir Corporation Compositions and methods for latent viral transcription regulation
CN105331627B (zh) 2015-09-30 2019-04-02 华中农业大学 一种利用内源CRISPR-Cas系统进行原核生物基因组编辑的方法
EP3356520B1 (en) 2015-10-02 2022-03-23 The U.S.A. as represented by the Secretary, Department of Health and Human Services Lentiviral protein delivery system for rna-guided genome editing
US11497816B2 (en) 2015-10-06 2022-11-15 The Children's Hospital Of Philadelphia Compositions and methods for treating fragile X syndrome and related syndromes
WO2017062754A1 (en) 2015-10-07 2017-04-13 New York University Compositions and methods for enhancing crispr activity by polq inhibition
CN108513580A (zh) 2015-10-08 2018-09-07 哈佛学院董事及会员团体 多重基因组编辑
WO2017062886A1 (en) 2015-10-08 2017-04-13 Cellink Corporation Battery interconnects
AU2016335572B2 (en) 2015-10-09 2022-12-08 The Children's Hospital Of Philadelphia Compositions and methods for treating Huntington's disease and related disorders
EP3359644B1 (en) 2015-10-09 2024-05-29 Monsanto Technology LLC Novel rna-guided nucleases and uses thereof
AU2016338785B2 (en) 2015-10-12 2022-07-14 E. I. Du Pont De Nemours And Company Protected DNA templates for gene modification and increased homologous recombination in cells and methods of use
EP3362571A4 (en) 2015-10-13 2019-07-10 Duke University GENOMIC ENGINEERING WITH TYPE I CRISPRISMS IN EUKARYOTIC CELLS
WO2017066707A1 (en) 2015-10-14 2017-04-20 Life Technologies Corporation Ribonucleoprotein transfection agents
CN105400779A (zh) 2015-10-15 2016-03-16 芜湖医诺生物技术有限公司 嗜热链球菌CRISPR-Cas9系统识别的人CCR5基因的靶序列和sgRNA及其应用
JP2018531261A (ja) 2015-10-16 2018-10-25 テンプル ユニバーシティー オブ ザ コモンウェルス システム オブ ハイヤー エデュケーション Cpf1を用いた、rnaガイド遺伝子編集方法および組成物
JP6936952B2 (ja) 2015-10-16 2021-09-22 アストラゼネカ アクチボラグ 細胞ゲノムの誘導性改変
FR3042506B1 (fr) 2015-10-16 2018-11-30 IFP Energies Nouvelles Outil genetique de transformation de bacteries clostridium
WO2017070169A1 (en) 2015-10-19 2017-04-27 The Methodist Hospital Crispr-cas9 delivery to hard-to-transfect cells via membrane deformation
CN105331607A (zh) 2015-10-19 2016-02-17 芜湖医诺生物技术有限公司 嗜热链球菌CRISPR-Cas9系统识别的人CCR5基因的靶序列和sgRNA及其应用
CN105331608A (zh) 2015-10-20 2016-02-17 芜湖医诺生物技术有限公司 脑膜炎双球菌CRISPR-Cas9系统识别的人CXCR4基因的靶序列和sgRNA及其应用
WO2017068077A1 (en) 2015-10-20 2017-04-27 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods and products for genetic engineering
US20180282763A1 (en) 2015-10-20 2018-10-04 Pioneer Hi-Bred International, Inc. Restoring function to a non-functional gene product via guided cas systems and methods of use
CN105331609A (zh) 2015-10-20 2016-02-17 芜湖医诺生物技术有限公司 脑膜炎双球菌CRISPR-Cas9系统识别的人CCR5基因的靶序列和sgRNA及其应用
CN105316337A (zh) 2015-10-20 2016-02-10 芜湖医诺生物技术有限公司 嗜热链球菌CRISPR-Cas9系统识别的人CXCR4基因的靶序列和sgRNA及其应用
CN105316324A (zh) 2015-10-20 2016-02-10 芜湖医诺生物技术有限公司 嗜热链球菌CRISPR-Cas9系统识别的人CXCR4基因的靶序列和sgRNA及其应用
AU2016341919A1 (en) 2015-10-21 2018-04-19 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating hepatitis b virus
CN105219799A (zh) 2015-10-22 2016-01-06 天津吉诺沃生物科技有限公司 一种基于CRISPR/Cas系统的多年生黑麦草的育种方法
EP3365441A1 (en) 2015-10-22 2018-08-29 The Broad Institute Inc. Type vi-b crispr enzymes and systems
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
WO2017070598A1 (en) 2015-10-23 2017-04-27 Caribou Biosciences, Inc. Engineered crispr class 2 cross-type nucleic-acid targeting nucleic acids
EP3159407A1 (en) 2015-10-23 2017-04-26 Silence Therapeutics (London) Ltd Guide rnas, methods and uses
TW201715041A (zh) 2015-10-26 2017-05-01 國立清華大學 細菌基因編輯方法
US9988637B2 (en) 2015-10-26 2018-06-05 National Tsing Hua Univeristy Cas9 plasmid, genome editing system and method of Escherichia coli
EP3367788A4 (en) 2015-10-27 2019-07-31 Recombinetics, Inc. ENGINEERING OF HUMANIZED PLAQUETTES AND LYMPHOCYTES BY GENETIC COMPLEMENTATION
US10280411B2 (en) 2015-10-27 2019-05-07 Pacific Biosciences of California, In.c Methods, systems, and reagents for direct RNA sequencing
BR112018008519A2 (pt) 2015-10-28 2018-11-06 Sangamo Therapeutics Inc construtos específicos de fígado, cassetes de expressão de fator viii e métodos de uso dos mesmos
EP3368054A4 (en) 2015-10-28 2019-07-03 Voyager Therapeutics, Inc. REGULATORY EXPRESSION USING THE ADENO-ASSOCIATED VIRUS (AAV)
EP4279084A1 (en) 2015-10-28 2023-11-22 Vertex Pharmaceuticals Inc. Materials and methods for treatment of duchenne muscular dystrophy
US11111508B2 (en) 2015-10-30 2021-09-07 Brandeis University Modified CAS9 compositions and methods of use
AU2016343991B2 (en) 2015-10-30 2022-12-01 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating herpes simplex virus
CN105238806B (zh) 2015-11-02 2018-11-27 中国科学院天津工业生物技术研究所 一种用于微生物的CRISPR/Cas9基因编辑载体的构建及其应用
CN105316327B (zh) 2015-11-03 2019-01-29 中国农业科学院作物科学研究所 小麦TaAGO4a基因CRISPR/Cas9载体及其应用
WO2017079428A1 (en) 2015-11-04 2017-05-11 President And Fellows Of Harvard College Site specific germline modification
MY185961A (en) 2015-11-04 2021-06-14 Univ Pennsylvania Methods and compositions for gene editing in hematopoietic stem cells
AU2016349504B2 (en) 2015-11-04 2023-02-09 Fate Therapeutics, Inc. Genomic engineering of pluripotent cells
WO2017077135A1 (en) 2015-11-05 2017-05-11 Centro De Investigación Biomédica En Red Process of gene-editing of cells isolated from a subject suffering from a metabolic disease affecting the erythroid lineage, cells obtained by said process and uses thereof.
GB2544270A (en) 2015-11-05 2017-05-17 Fundació Centre De Regulació Genòmica Nucleic acids, peptides and methods
WO2017079724A1 (en) 2015-11-06 2017-05-11 The Jackson Laboratory Large genomic dna knock-in and uses thereof
WO2017078751A1 (en) 2015-11-06 2017-05-11 The Methodist Hospital Micoluidic cell deomailiy assay for enabling rapid and efficient kinase screening via the crispr-cas9 system
US20180340176A1 (en) 2015-11-09 2018-11-29 Ifom Fondazione Istituto Firc Di Oncologia Molecolare Crispr-cas sgrna library
EP3374501B1 (en) 2015-11-11 2023-07-12 Lonza Ltd Crispr-associated (cas) proteins with reduced immunogenicity
WO2017083722A1 (en) 2015-11-11 2017-05-18 Greenberg Kenneth P Crispr compositions and methods of using the same for gene therapy
CA2947904A1 (en) 2015-11-12 2017-05-12 Pfizer Inc. Tissue-specific genome engineering using crispr-cas9
US20170191047A1 (en) 2015-11-13 2017-07-06 University Of Georgia Research Foundation, Inc. Adenosine-specific rnase and methods of use
KR101885901B1 (ko) 2015-11-13 2018-08-07 기초과학연구원 5' 말단의 인산기가 제거된 rna를 포함하는 리보핵산단백질 전달용 조성물
WO2017083766A1 (en) 2015-11-13 2017-05-18 Massachusetts Institute Of Technology High-throughput crispr-based library screening
WO2017087395A1 (en) 2015-11-16 2017-05-26 Research Institute At Nationwide Children's Hospital Materials and methods for treatment of titin-based myopathies and other titinopaties
CN106893739A (zh) 2015-11-17 2017-06-27 香港中文大学 用于靶向基因操作的新方法和系统
CN105602987A (zh) 2015-11-23 2016-05-25 深圳市默赛尔生物医学科技发展有限公司 一种高效的dc细胞xbp1基因敲除方法
JP2019500899A (ja) 2015-11-23 2019-01-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア CRISPR/Cas9の核送達を通じた細胞RNAの追跡と操作
US20170145438A1 (en) 2015-11-24 2017-05-25 University Of South Carolina Viral Vectors for Gene Editing
US10612044B2 (en) 2015-11-25 2020-04-07 National University Corporation Gunma University DNA methylation editing kit and DNA methylation editing method
US10240145B2 (en) 2015-11-25 2019-03-26 The Board Of Trustees Of The Leland Stanford Junior University CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer
US20180346940A1 (en) 2015-11-27 2018-12-06 The Regents Of The University Of California Compositions and methods for the production of hydrocarbons, hydrogen and carbon monoxide using engineered azotobacter strains
CN105505979A (zh) 2015-11-28 2016-04-20 湖北大学 一种以CRISPR/Cas9基因编辑技术打靶Badh2基因获得香稻品系的方法
CN106811479B (zh) 2015-11-30 2019-10-25 中国农业科学院作物科学研究所 利用CRISPR/Cas9系统定点修饰ALS基因获得抗除草剂水稻的系统及其应用
WO2017095111A1 (ko) 2015-11-30 2017-06-08 기초과학연구원 F. novicida 유래 Cas9을 포함하는 유전체 교정용 조성물
CN105296518A (zh) 2015-12-01 2016-02-03 中国农业大学 一种用于CRISPR/Cas9技术的同源臂载体构建方法
RU2634395C1 (ru) 2015-12-01 2017-10-26 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Балтийский Федеральный Университет имени Иммануила Канта" (БФУ им. И. Канта) Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, специфически импортируемую в митохондрии клеток человека
US11085057B2 (en) 2015-12-02 2021-08-10 The Regents Of The University Of California Compositions and methods for modifying a target nucleic acid
WO2017096237A1 (en) 2015-12-02 2017-06-08 Ceres, Inc. Methods for genetic modification of plants
WO2017093370A1 (en) 2015-12-03 2017-06-08 Technische Universität München T-cell specific genome editing
CN105779448B (zh) 2015-12-04 2018-11-27 新疆农业大学 一种棉花启动子GbU6-7PS及应用
CN105779449B (zh) 2015-12-04 2018-11-27 新疆农业大学 一种棉花启动子GbU6-5PS及应用
CN106845151B (zh) 2015-12-07 2019-03-26 中国农业大学 CRISPR-Cas9系统sgRNA作用靶点的筛选方法及装置
CN105462968B (zh) 2015-12-07 2018-10-16 北京信生元生物医学科技有限公司 一种靶向apoCⅢ的CRISPR-Cas9系统及其应用
CA3006305A1 (en) 2015-12-09 2017-06-15 Excision Biotherapeutics, Inc. Gene editing methods and compositions for eliminating risk of jc virus activation and pml (progressive multifocal leukoencephalopathy) during immunosuppressive therapy
CN105463003A (zh) 2015-12-11 2016-04-06 扬州大学 一种消除卡那霉素耐药基因活性的重组载体及其构建方法
WO2017100158A1 (en) 2015-12-11 2017-06-15 Danisco Us Inc. Methods and compositions for enhanced nuclease-mediated genome modification and reduced off-target site effects
CN105296537A (zh) 2015-12-12 2016-02-03 西南大学 一种基于睾丸内注射的基因定点编辑技术
CN105400773B (zh) 2015-12-14 2018-06-26 同济大学 应用于大规模筛选癌症基因的CRISPR/Cas9富集测序方法
WO2017105350A1 (en) 2015-12-14 2017-06-22 Cellresearch Corporation Pte Ltd A method of generating a mammalian stem cell carrying a transgene, a mammalian stem cell generated by the method and pharmaceuticals uses of the mammalian stem cell
NO343153B1 (en) 2015-12-17 2018-11-19 Hydra Systems As A method of assessing the integrity status of a barrier plug
WO2017106616A1 (en) 2015-12-17 2017-06-22 The Regents Of The University Of Colorado, A Body Corporate Varicella zoster virus encoding regulatable cas9 nuclease
CN105463027A (zh) 2015-12-17 2016-04-06 中国农业大学 一种高肌肉量及肥厚型心肌病模型克隆猪的制备方法
WO2017106414A1 (en) 2015-12-18 2017-06-22 Danisco Us Inc. Methods and compositions for polymerase ii (pol-ii) based guide rna expression
JP7128741B2 (ja) 2015-12-18 2022-08-31 サンガモ セラピューティクス, インコーポレイテッド T細胞受容体の標的化破壊
EP3390631B1 (en) 2015-12-18 2020-04-08 Danisco US Inc. Methods and compositions for t-rna based guide rna expression
EP3390624A4 (en) 2015-12-18 2019-07-10 The Regents of The University of California MODIFIED POLYPEPTIDES AND METHOD OF USE THEREOF
WO2017106767A1 (en) 2015-12-18 2017-06-22 The Scripps Research Institute Production of unnatural nucleotides using a crispr/cas9 system
NZ743429A (en) 2015-12-18 2022-02-25 Sangamo Therapeutics Inc Targeted disruption of the mhc cell receptor
US12110490B2 (en) 2015-12-18 2024-10-08 The Broad Institute, Inc. CRISPR enzymes and systems
WO2017104404A1 (ja) 2015-12-18 2017-06-22 国立研究開発法人科学技術振興機構 遺伝子改変非ヒト生物、卵細胞、受精卵、及び標的遺伝子の改変方法
US11542466B2 (en) 2015-12-22 2023-01-03 North Carolina State University Methods and compositions for delivery of CRISPR based antimicrobials
AU2016375021B2 (en) 2015-12-22 2022-02-03 CureVac SE Method for producing RNA molecule compositions
WO2017109757A1 (en) 2015-12-23 2017-06-29 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration
CN105543270A (zh) 2015-12-24 2016-05-04 中国农业科学院作物科学研究所 双抗性CRISPR/Cas9载体及应用
CN105543266A (zh) 2015-12-25 2016-05-04 安徽大学 一种维吉尼亚链霉菌IBL14中的CRISPR-Cas系统及应用其进行基因编辑的方法
CN105505976A (zh) 2015-12-25 2016-04-20 安徽大学 一种维吉尼亚链霉菌ibl14产青霉素重组菌株的构建方法
IL308706A (en) 2015-12-28 2024-01-01 Novartis Ag Preparations and methods for the treatment of hemoglobinopathies
AU2016380351B2 (en) 2015-12-29 2023-04-06 Monsanto Technology Llc Novel CRISPR-associated transposases and uses thereof
CN105441451B (zh) 2015-12-31 2019-03-22 暨南大学 一种特异靶向人ABCB1基因的sgRNA导向序列及应用
CN105567735A (zh) 2016-01-05 2016-05-11 华东师范大学 一种凝血因子基因突变的定点修复载体系统及方法
CN108473986A (zh) 2016-01-08 2018-08-31 诺维信公司 芽孢杆菌宿主细胞的基因组编辑
US11441146B2 (en) 2016-01-11 2022-09-13 Christiana Care Health Services, Inc. Compositions and methods for improving homogeneity of DNA generated using a CRISPR/Cas9 cleavage system
CN105647922A (zh) 2016-01-11 2016-06-08 中国人民解放军疾病预防控制所 基于一种新gRNA序列的CRISPR-Cas9系统在制备乙肝治疗药物中的应用
WO2017123609A1 (en) 2016-01-12 2017-07-20 The Regents Of The University Of California Compositions and methods for enhanced genome editing
MX2018008733A (es) 2016-01-14 2019-01-28 Memphis Meats Inc Metodos para extender la capacidad replicativa de las celulas somaticas durante un proceso de cultivo ex vivo.
CA3011458A1 (en) 2016-01-14 2017-07-20 The Brigham And Women's Hospital, Inc. Genome editing for treating glioblastoma
CA3011481A1 (en) 2016-01-15 2017-07-20 The Jackson Laboratory Genetically modified non-human mammals by multi-cycle electroporation of cas9 protein
CN105567738A (zh) 2016-01-18 2016-05-11 南开大学 使用基因组编辑技术CRISPR-Cas9诱导CCR5Δ32缺失的方法
WO2017126987A1 (ru) 2016-01-18 2017-07-27 Анатолий Викторович ЗАЗУЛЯ Эритроциты для направленного транспорта лекарственного средства
CN105567734A (zh) 2016-01-18 2016-05-11 丹弥优生物技术(湖北)有限公司 一种基因组dna序列精准编辑方法
US20190264186A1 (en) 2016-01-22 2019-08-29 The Broad Institute Inc. Crystal structure of crispr cpf1
CN105567689B (zh) 2016-01-25 2019-04-09 重庆威斯腾生物医药科技有限责任公司 CRISPR/Cas9靶向敲除人TCAB1基因及其特异性gRNA
CA3011270A1 (en) 2016-01-25 2018-06-14 Temple University Of The Commonwealth System Of Higher Education Rna guided eradication of human jc virus and other polyomaviruses
CN108883201A (zh) 2016-01-25 2018-11-23 切除生物治疗公司 Rna指导的治疗hiv感染的方法和组合物
CN105543228A (zh) 2016-01-25 2016-05-04 宁夏农林科学院 一种快速将水稻转化为香稻的方法
EP3199632A1 (en) 2016-01-26 2017-08-02 ACIB GmbH Temperature-inducible crispr/cas system
CN105567688A (zh) 2016-01-27 2016-05-11 武汉大学 一种可用于艾滋病基因治疗的CRISPR/SaCas9系统
AU2017211395B2 (en) 2016-01-29 2024-04-18 The Trustees Of Princeton University Split inteins with exceptional splicing activity
WO2017131237A1 (ja) 2016-01-30 2017-08-03 株式会社ボナック 人工単一ガイドrna及びその用途
CN105647968B (zh) 2016-02-02 2019-07-23 浙江大学 一种CRISPR/Cas9工作效率快速测试系统及其应用
CN107022562B (zh) 2016-02-02 2020-07-17 中国种子集团有限公司 利用CRISPR/Cas9系统对玉米基因定点突变的方法
WO2017136794A1 (en) 2016-02-03 2017-08-10 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
CN105671083B (zh) 2016-02-03 2017-09-29 安徽柯顿生物科技有限公司 PD‑1基因重组病毒质粒及构建、重组逆转录病毒Lenti‑PD‑1‑Puro及包装与应用
US11208652B2 (en) 2016-02-04 2021-12-28 President And Fellows Of Harvard College Mitochondrial genome editing and regulation
WO2017136629A1 (en) 2016-02-05 2017-08-10 Regents Of The University Of Minnesota Vectors and system for modulating gene expression
WO2017139264A1 (en) 2016-02-09 2017-08-17 President And Fellows Of Harvard College Dna-guided gene editing and regulation
RU2016104674A (ru) 2016-02-11 2017-08-16 Анатолий Викторович Зазуля Устройство модификации эритроцита с механизмом направленного транспорта лекарственного средства для функций генной терапии crispr/cas9
CA3048963A1 (en) 2016-02-11 2017-08-17 The Regents Of The University Of California Methods and compositions for modifying a mutant dystrophin gene in a cell's genome
CN105647962A (zh) 2016-02-15 2016-06-08 浙江大学 运用CRISPR-Cas9系统敲除水稻MIRNA393b茎环序列的基因编辑方法
AU2017219605B2 (en) 2016-02-15 2023-04-13 Temple University - Of The Commonwealth System Of Higher Education Excision of retroviral nucleic acid sequences
US9896696B2 (en) 2016-02-15 2018-02-20 Benson Hill Biosystems, Inc. Compositions and methods for modifying genomes
EP3416976A2 (en) 2016-02-16 2018-12-26 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
CN105594664B (zh) 2016-02-16 2018-10-02 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN105647969B (zh) 2016-02-16 2020-12-15 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN105624187A (zh) 2016-02-17 2016-06-01 天津大学 酿酒酵母基因组定点突变的方法
EP3417065A4 (en) 2016-02-18 2019-07-17 President and Fellows of Harvard College METHOD AND SYSTEMS FOR MOLECULAR RECORDING BY CRISPR-CAS SYSTEM
CN105646719B (zh) 2016-02-24 2019-12-20 无锡市妇幼保健院 一种高效定点转基因的工具及其应用
US20170247703A1 (en) 2016-02-25 2017-08-31 Agenovir Corporation Antiviral nuclease methods
CA3015353A1 (en) 2016-02-25 2017-08-31 Agenovir Corporation Viral and oncoviral nuclease treatment
US20170246260A1 (en) 2016-02-25 2017-08-31 Agenovir Corporation Modified antiviral nuclease
US11530253B2 (en) 2016-02-25 2022-12-20 The Children's Medical Center Corporation Customized class switch of immunoglobulin genes in lymphoma and hybridoma by CRISPR/CAS9 technology
WO2017147555A1 (en) 2016-02-26 2017-08-31 Lanzatech New Zealand Limited Crispr/cas systems for c-1 fixing bacteria
US10538750B2 (en) 2016-02-29 2020-01-21 Agilent Technologies, Inc. Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins
CN105671070B (zh) 2016-03-03 2019-03-19 江南大学 一种用于枯草芽孢杆菌基因组编辑的CRISPRCas9系统及其构建方法
WO2017152015A1 (en) 2016-03-04 2017-09-08 Editas Medicine, Inc. Crispr-cpf1-related methods, compositions and components for cancer immunotherapy
CN105821040B (zh) 2016-03-09 2018-12-14 李旭 联合免疫基因抑制高危型HPV表达的sgRNA、基因敲除载体及其应用
CN105821039B (zh) 2016-03-09 2020-02-07 李旭 联合免疫基因抑制HBV复制的特异性sgRNA、表达载体及其应用
CN107177591A (zh) 2016-03-09 2017-09-19 北京大学 利用CRISPR技术编辑CCR5基因的sgRNA序列及其用途
CN105861547A (zh) 2016-03-10 2016-08-17 黄捷 身份证号码永久嵌入基因组的方法
EP3699280A3 (en) 2016-03-11 2020-11-18 Pioneer Hi-Bred International, Inc. Novel cas9 systems and methods of use
US20200255857A1 (en) 2016-03-14 2020-08-13 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating beta hemoglobinopathies
US20180112234A9 (en) 2016-03-14 2018-04-26 Intellia Therapeutics, Inc. Methods and compositions for gene editing
EP3430332B1 (en) 2016-03-15 2020-01-01 Carrier Corporation Refrigerated sales cabinet
CA3029735A1 (en) 2016-03-15 2017-09-21 University Of Massachusetts Anti-crispr compounds and methods of use
EP3219799A1 (en) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Conditional crispr sgrna expression
WO2017161068A1 (en) 2016-03-18 2017-09-21 President And Fellows Of Harvard College Mutant cas proteins
WO2017165826A1 (en) 2016-03-25 2017-09-28 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
CN106047803A (zh) 2016-03-28 2016-10-26 青岛市胶州中心医院 CRISPR/Cas9靶向敲除兔BMP2基因的细胞模型及其应用
EP3436592A2 (en) 2016-03-28 2019-02-06 The Charles Stark Draper Laboratory, Inc. Bacteriophage engineering methods
CA3018978A1 (en) 2016-03-30 2017-10-05 Intellia Therapeutics, Inc. Lipid nanoparticle formulations for crispr/cas components
WO2017173004A1 (en) 2016-03-30 2017-10-05 Mikuni Takayasu A method for in vivo precise genome editing
WO2017173092A1 (en) 2016-03-31 2017-10-05 The Regents Of The University Of California Methods for genome editing in zygotes
GB2565461B (en) 2016-03-31 2022-04-13 Harvard College Methods and compositions for the single tube preparation of sequencing libraries using Cas9
CN106167525B (zh) 2016-04-01 2019-03-19 北京康明百奥新药研发有限公司 筛选超低岩藻糖细胞系的方法和应用
US10301619B2 (en) 2016-04-01 2019-05-28 New England Biolabs, Inc. Compositions and methods relating to synthetic RNA polynucleotides created from synthetic DNA oligonucleotides
EP3440194A1 (en) 2016-04-04 2019-02-13 ETH Zurich Mammalian cell line for protein production and library generation
US20190093091A1 (en) 2016-04-06 2019-03-28 Temple University - Of The Commonwealth System Of Higher Education Compositions for eradicating flavivirus infections in subjects
CN105802980A (zh) 2016-04-08 2016-07-27 北京大学 Gateway兼容性CRISPR/Cas9系统及其应用
CN106399306B (zh) 2016-04-12 2019-11-05 西安交通大学第一附属医院 靶向人lncRNA-UCA1抑制膀胱癌的sgRNA、基因载体及其应用
EP3443088B1 (en) 2016-04-13 2024-09-18 Editas Medicine, Inc. Grna fusion molecules, gene editing systems, and methods of use thereof
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
WO2017180915A2 (en) 2016-04-13 2017-10-19 Duke University Crispr/cas9-based repressors for silencing gene targets in vivo and methods of use
EP3442596A1 (en) 2016-04-14 2019-02-20 Université de Lausanne Treatment and/or prevention of dna-triplet repeat diseases or disorders
CN109312308A (zh) 2016-04-14 2019-02-05 亿阳集团美国硅谷公司 通过使用核酸酶来进行人神经干细胞的基因组编辑
CN105821116A (zh) 2016-04-15 2016-08-03 扬州大学 一种绵羊mstn基因定向敲除及其影响成肌分化的检测方法
US12065667B2 (en) 2016-04-16 2024-08-20 Ohio State Innovation Foundation Modified Cpf1 MRNA, modified guide RNA, and uses thereof
US20190134227A1 (en) 2016-04-18 2019-05-09 The Board Of Regents Of The University Of Texas System Generation of genetically engineered animals by crispr/cas9 genome editing in spermatogonial stem cells
WO2017182468A1 (en) 2016-04-18 2017-10-26 Ruprecht-Karls-Universität Heidelberg Means and methods for inactivating therapeutic dna in a cell
SG11201810179RA (en) 2016-04-19 2018-12-28 Broad Inst Inc Novel crispr enzymes and systems
CN106086062A (zh) 2016-04-19 2016-11-09 上海市农业科学院 一种获得番茄基因组定点敲除突变体的方法
EP3445856A1 (en) 2016-04-19 2019-02-27 The Broad Institute Inc. Novel crispr enzymes and systems
CA3026112A1 (en) 2016-04-19 2017-10-26 The Broad Institute, Inc. Cpf1 complexes with reduced indel activity
CN105886616B (zh) 2016-04-20 2020-08-07 广东省农业科学院农业生物基因研究中心 一种用于猪基因编辑的高效特异性sgRNA识别位点引导序列及其筛选方法
CN107304435A (zh) 2016-04-22 2017-10-31 中国科学院青岛生物能源与过程研究所 一种Cas9/RNA系统及其应用
CN105821075B (zh) 2016-04-22 2017-09-12 湖南农业大学 一种茶树咖啡因合成酶CRISPR/Cas9基因组编辑载体的构建方法
US11248216B2 (en) 2016-04-25 2022-02-15 The Regents Of The University Of California Methods and compositions for genomic editing
CN105861552B (zh) 2016-04-25 2019-10-11 西北农林科技大学 一种T7 RNA聚合酶介导的CRISPR/Cas9基因编辑系统的构建方法
CN107326046A (zh) 2016-04-28 2017-11-07 上海邦耀生物科技有限公司 一种提高外源基因同源重组效率的方法
CN105886534A (zh) 2016-04-29 2016-08-24 苏州溯源精微生物科技有限公司 一种抑制肿瘤转移的方法
CN105821049B (zh) 2016-04-29 2019-06-04 中国农业大学 一种Fbxo40基因敲除猪的制备方法
EP3448990B1 (en) 2016-04-29 2021-06-09 BASF Plant Science Company GmbH Methods for modification of target nucleic acids using a fusion molecule of guide and donor rna, fusion rna molecule and vector systems encoding the fusion rna molecule
WO2017190257A1 (en) 2016-05-01 2017-11-09 Neemo Inc Harnessing heterologous and endogenous crispr-cas machineries for efficient markerless genome editing in clostridium
US20170362609A1 (en) 2016-05-02 2017-12-21 Massachusetts Institute Of Technology AMPHIPHILIC NANOPARTICLES FOR CODELIVERY OF WATER-INSOLUBLE SMALL MOLECULES AND RNAi
CN105950639A (zh) 2016-05-04 2016-09-21 广州美格生物科技有限公司 金黄色葡萄球菌CRISPR/Cas9系统的制备及其在构建小鼠模型中的应用
WO2017191210A1 (en) 2016-05-04 2017-11-09 Novozymes A/S Genome editing by crispr-cas9 in filamentous fungal host cells
WO2017190664A1 (zh) 2016-05-05 2017-11-09 苏州吉玛基因股份有限公司 化学合成的crRNA和修饰crRNA在CRISPR/Cpf1基因编辑系统中的应用
EP3452498B1 (en) 2016-05-05 2023-07-05 Duke University Crispr/cas-related compositions for treating duchenne muscular dystrophy
CN105907785B (zh) 2016-05-05 2020-02-07 苏州吉玛基因股份有限公司 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用
US20190093092A1 (en) 2016-05-05 2019-03-28 Temple University - Of The Commonwealth System Of Higher Education Rna guided eradication of varicella zoster virus
CN106244591A (zh) 2016-08-23 2016-12-21 苏州吉玛基因股份有限公司 修饰crRNA在CRISPR/Cpf1基因编辑系统中的应用
CN105985985B (zh) 2016-05-06 2019-12-31 苏州大学 Crispr技术编辑并用igf优化的异体间充质干细胞的制备方法及在治疗心梗中应用
EP4023228A1 (en) 2016-05-06 2022-07-06 Tod M. Woolf Genome editing oligonucleotide without programmable nucleases
US20190161743A1 (en) 2016-05-09 2019-05-30 President And Fellows Of Harvard College Self-Targeting Guide RNAs in CRISPR System
CN105861554B (zh) 2016-05-10 2020-01-31 华南农业大学 一种基于对Rbmy基因进行编辑来实现动物性别控制的方法和应用
JP2019519250A (ja) 2016-05-10 2019-07-11 ユナイテッド ステイツ ガバメント アズ リプレゼンテッド バイ ザ デパートメント オブ ベテランズ アフェアーズUnited States Government As Represented By The Department Of Veterans Affairs Hiv−1感染と複製に必須な遺伝子を切断するcrispr/casの構築物のレンチウィルスによる送達
JP2019519501A (ja) 2016-05-12 2019-07-11 ブライアン ピー. ハンリーBrian P. HANLEY ヒトおよび動物における体細胞の大部分へのcrisprおよび他の遺伝子治療薬の安全な送達
WO2017197238A1 (en) 2016-05-12 2017-11-16 President And Fellows Of Harvard College Aav split cas9 genome editing and transcriptional regulation
CN107365786A (zh) 2016-05-12 2017-11-21 中国科学院微生物研究所 一种将spacer序列克隆至CRISPR-Cas9系统中的方法及其应用
CN106011171B (zh) 2016-05-18 2019-10-11 西北农林科技大学 一种利用CRISPR/Cas9技术基于SSA修复的基因无缝编辑方法
CN105907758B (zh) 2016-05-18 2020-06-05 世翱(上海)生物医药科技有限公司 CRISPR-Cas9引导序列及其引物、转基因表达载体及其构建方法
CN105838733A (zh) 2016-05-18 2016-08-10 云南省农业科学院花卉研究所 Cas9 介导的香石竹基因编辑载体和应用
CN106446600B (zh) 2016-05-20 2019-10-18 同济大学 一种基于CRISPR/Cas9的sgRNA的设计方法
BR112018073750A2 (pt) 2016-05-20 2019-02-26 Regeneron Pharmaceuticals, Inc. métodos para gerar proteínas de ligação ao antígeno contra um antígeno estranho de interesse e para produzir um animal não humano geneticamente modificado com tolerância reduzida de um antígeno estranho de interesse
US20190300867A1 (en) 2016-05-23 2019-10-03 The Trustees Of Columbia University In The City Of New York Bypassing the pam requirement of the crispr-cas system
US20190201551A1 (en) 2016-05-23 2019-07-04 Washington University Pulmonary targeted cas9/crispr for in vivo editing of disease genes
CN105950560B (zh) 2016-05-24 2019-07-23 苏州系统医学研究所 人源化pd-l1肿瘤细胞系及具有该细胞系的动物模型与应用
CN106011167B (zh) 2016-05-27 2019-11-01 上海交通大学 雄性不育基因OsDPW2的应用及水稻育性恢复的方法
BR112018074494A2 (pt) 2016-06-01 2019-03-19 Kws Saat Se & Co Kgaa sequências de ácidos nucleicos híbridas para engenharia genômica
US20190100732A1 (en) 2016-06-02 2019-04-04 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Assay for the removal of methyl-cytosine residues from dna
GB2582731B8 (en) 2016-06-02 2021-10-27 Sigma Aldrich Co Llc Using programmable DNA binding proteins to enhance targeted genome modification
CA3026332A1 (en) 2016-06-03 2017-12-14 Temple University - Of The Commonwealth System Of Higher Education Negative feedback regulation of hiv-1 by gene editing strategy
US11140883B2 (en) 2016-06-03 2021-10-12 Auburn University Gene editing of reproductive hormones to sterilize aquatic animals
US20190256844A1 (en) 2016-06-07 2019-08-22 Temple University - Of The Commonwealth System Of Higher Education Rna guided compositions for preventing and treating hepatitis b virus infections
CN106119275A (zh) 2016-06-07 2016-11-16 湖北大学 基于CRISPR/Cas9技术将非糯性水稻株系改造成糯性株系的打靶载体和方法
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
CN106086008B (zh) 2016-06-10 2019-03-12 中国农业科学院植物保护研究所 烟粉虱MED隐种TRP基因的CRISPR/cas9系统及其应用
US11779657B2 (en) 2016-06-10 2023-10-10 City Of Hope Compositions and methods for mitochondrial genome editing
CN106434752A (zh) 2016-06-14 2017-02-22 南通大学附属医院 敲除Wnt3a基因的过程及其验证方法
BR112018076027A2 (pt) 2016-06-14 2019-03-26 Pioneer Hi-Bred International, Inc. método para modificar uma sequência-alvo no genoma de uma célula vegetal; método para editar uma sequência de nucleotídeos no genoma de uma célula vegetal; método para modificar simultaneamente múltiplas sequências-alvo no genoma de uma célula vegetal; método para modificar uma sequênciaalvo de dna no genoma de uma célula vegetal e modelo de modificação de polinucleotídeo
CN105950633B (zh) 2016-06-16 2019-05-03 复旦大学 基因OsARF4在控制水稻粒长和千粒重中的应用
CN106167821A (zh) 2016-06-16 2016-11-30 郑州大学 一种金黄色葡萄球菌crispr位点检测试剂盒及检测方法
CN106167808A (zh) 2016-06-16 2016-11-30 郑州大学 一种基于CRISPR/Cas9技术消除mecA质粒的方法
EP3455357A1 (en) 2016-06-17 2019-03-20 The Broad Institute Inc. Type vi crispr orthologs and systems
WO2017219033A1 (en) 2016-06-17 2017-12-21 Montana State University Bidirectional targeting for genome editing
CN105950626B (zh) 2016-06-17 2018-09-28 新疆畜牧科学院生物技术研究所 基于CRISPR/Cas9获得不同毛色绵羊的方法及靶向ASIP基因的sgRNA
WO2017216771A2 (en) 2016-06-17 2017-12-21 Genesis Technologies Limited Crispr-cas system, materials and methods
WO2017223107A1 (en) 2016-06-20 2017-12-28 Unity Biotechnology, Inc. Genome modifying enzyme therapy for diseases modulated by senescent cells
AU2017282623B2 (en) 2016-06-20 2023-09-21 Keygene N.V. Method for targeted DNA alteration in plant cells
CA3018430A1 (en) 2016-06-20 2017-12-28 Pioneer Hi-Bred International, Inc. Novel cas systems and methods of use
US20170362635A1 (en) 2016-06-20 2017-12-21 University Of Washington Muscle-specific crispr/cas9 editing of genes
CN106148370A (zh) 2016-06-21 2016-11-23 苏州瑞奇生物医药科技有限公司 肥胖症大鼠动物模型和构建方法
EP3475416A4 (en) 2016-06-22 2020-04-29 Icahn School of Medicine at Mount Sinai VIRAL DELIVERY OF RNA USING SELF-CLeavING RIBOZYMES AND CRISPR-BASED APPLICATIONS
WO2017220751A1 (en) 2016-06-22 2017-12-28 Proqr Therapeutics Ii B.V. Single-stranded rna-editing oligonucleotides
CN105925608A (zh) 2016-06-24 2016-09-07 广西壮族自治区水牛研究所 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法
CN106119283A (zh) 2016-06-24 2016-11-16 广西壮族自治区水牛研究所 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法
CN106047877B (zh) 2016-06-24 2019-01-11 中山大学附属第一医院 一种靶向敲除FTO基因的sgRNA及CRISPR/Cas9慢病毒系统与应用
CN106148286B (zh) 2016-06-29 2019-10-29 牛刚 一种用于检测热原的细胞模型的构建方法和细胞模型及热原检测试剂盒
AU2017286835B2 (en) 2016-06-29 2023-12-14 Crispr Therapeutics Ag Compositions and methods for gene editing
US11913017B2 (en) 2016-06-29 2024-02-27 The Regents Of The University Of California Efficient genetic screening method
US20210222164A1 (en) 2016-06-29 2021-07-22 The Broad Institute, Inc. Crispr-cas systems having destabilization domain
US10927383B2 (en) 2016-06-30 2021-02-23 Ethris Gmbh Cas9 mRNAs
US10669558B2 (en) 2016-07-01 2020-06-02 Microsoft Technology Licensing, Llc Storage through iterative DNA editing
US20180004537A1 (en) 2016-07-01 2018-01-04 Microsoft Technology Licensing, Llc Molecular State Machines
US10892034B2 (en) 2016-07-01 2021-01-12 Microsoft Technology Licensing, Llc Use of homology direct repair to record timing of a molecular event
EP3481434A4 (en) 2016-07-05 2020-06-24 The Johns Hopkins University CRISPR / CAS9 COMPOSITIONS AND METHODS FOR TREATING RETINE DEGENERENCES
US20190185847A1 (en) 2016-07-06 2019-06-20 Novozymes A/S Improving a Microorganism by CRISPR-Inhibition
CN106191057B (zh) 2016-07-06 2018-12-25 中山大学 一种用于敲除人CYP2E1基因的sgRNA序列、CYP2E1基因缺失细胞株的构建方法及其应用
CN106051058A (zh) 2016-07-07 2016-10-26 上海格昆机电科技有限公司 用于航天贮箱和粒子治疗仪的旋转机架及其传动机构
CN107586777A (zh) 2016-07-08 2018-01-16 上海吉倍生物技术有限公司 人PDCD1基因sgRNA的用途及其相关药物
WO2018009822A1 (en) 2016-07-08 2018-01-11 Ohio State Innovation Foundation Modified nucleic acids, hybrid guide rnas, and uses thereof
CN106047930B (zh) 2016-07-12 2020-05-19 北京百奥赛图基因生物技术有限公司 一种PS1基因条件性敲除flox大鼠的制备方法
JP2019520069A (ja) 2016-07-13 2019-07-18 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. 藻類宿主細胞用のcrispr−casシステム
US20190330659A1 (en) 2016-07-15 2019-10-31 Zymergen Inc. Scarless dna assembly and genome editing using crispr/cpf1 and dna ligase
CN106191061B (zh) 2016-07-18 2019-06-18 暨南大学 一种特异靶向人ABCG2基因的sgRNA导向序列及其应用
CN106191062B (zh) 2016-07-18 2019-06-14 广东华南疫苗股份有限公司 一种tcr-/pd-1-双阴性t细胞及其构建方法
CN106190903B (zh) 2016-07-18 2019-04-02 华中农业大学 鸭疫里氏杆菌Cas9基因缺失突变株及其应用
CN106434651B (zh) 2016-07-19 2021-05-18 广西大学 根癌农杆菌和CRISPR-Cas9介导的基因定点插入失活方法及其应用
EP3487523B1 (en) 2016-07-19 2023-09-06 Duke University Therapeutic applications of cpf1-based genome editing
JP2019520844A (ja) 2016-07-21 2019-07-25 マックスサイト インコーポレーティッド ゲノムdnaを改変するための方法および組成物
WO2018015444A1 (en) 2016-07-22 2018-01-25 Novozymes A/S Crispr-cas9 genome editing with multiple guide rnas in filamentous fungi
CN106191107B (zh) 2016-07-22 2020-03-20 湖南农业大学 一种降低水稻籽粒落粒性的分子改良方法
CN106191064B (zh) 2016-07-22 2019-06-07 中国农业大学 一种制备mc4r基因敲除猪的方法
WO2018022480A1 (en) 2016-07-25 2018-02-01 Mayo Foundation For Medical Education And Research Treating cancer
WO2018018979A1 (zh) 2016-07-26 2018-02-01 浙江大学 植物重组载体及无转基因成分的基因编辑植株的筛选方法
CN106222193B (zh) 2016-07-26 2019-09-20 浙江大学 一种重组载体及无转基因基因编辑植株的筛选方法
EP3491133A4 (en) 2016-07-26 2020-05-06 The General Hospital Corporation VARIANTS OF CRISPR OF PREVOTELLA AND FRANCISELLA 1 (CPF1)
CN106191099A (zh) 2016-07-27 2016-12-07 苏州泓迅生物科技有限公司 一种基于CRISPR‑Cas9系统的酿酒酵母基因组并行多重编辑载体及其应用
CN106086061A (zh) 2016-07-27 2016-11-09 苏州泓迅生物科技有限公司 一种基于CRISPR‑Cas9系统的酿酒酵母基因组编辑载体及其应用
CN106191113B (zh) 2016-07-29 2020-01-14 中国农业大学 一种mc3r基因敲除猪的制备方法
CN106191114B (zh) 2016-07-29 2020-02-11 中国科学院重庆绿色智能技术研究院 利用CRISPR-Cas9系统敲除鱼类MC4R基因的育种方法
CN106434748A (zh) 2016-07-29 2017-02-22 中国科学院重庆绿色智能技术研究院 一种热激诱导型 Cas9 酶转基因斑马鱼的研制及应用
CN106191124B (zh) 2016-07-29 2019-10-11 中国科学院重庆绿色智能技术研究院 一种利用鱼卵保存液提高CRISPR-Cas9基因编辑和传代效率的鱼类育种方法
GB201613135D0 (en) 2016-07-29 2016-09-14 Medical Res Council Genome editing
CN106011150A (zh) 2016-08-01 2016-10-12 云南纳博生物科技有限公司 一种水稻穗粒数Gn1a基因人工定点突变体及其应用
US11866733B2 (en) 2016-08-01 2024-01-09 University of Pittsburgh—of the Commonwealth System of Higher Education Human induced pluripotent stem cells for high efficiency genetic engineering
CN106434688A (zh) 2016-08-01 2017-02-22 云南纳博生物科技有限公司 一种水稻直立密穗dep1基因人工定点突变体及其应用
BR112019001887A2 (pt) 2016-08-02 2019-07-09 Editas Medicine Inc composições e métodos para o tratamento de doença associada a cep290
JP7184364B2 (ja) 2016-08-02 2022-12-06 国立大学法人京都大学 ゲノム編集のための方法
SG11201900907YA (en) 2016-08-03 2019-02-27 Harvard College Adenosine nucleobase editors and uses thereof
CN106282241A (zh) 2016-08-05 2017-01-04 无锡市第二人民医院 通过CRISPR/Cas9得到敲除bmp2a基因的斑马鱼的方法
CN109804066A (zh) 2016-08-09 2019-05-24 哈佛大学的校长及成员们 可编程cas9-重组酶融合蛋白及其用途
KR101710026B1 (ko) 2016-08-10 2017-02-27 주식회사 무진메디 Cas9 단백질 및 가이드 RNA의 혼성체를 함유하는 나노 리포좀 전달체 조성물
CN106222203A (zh) 2016-08-10 2016-12-14 云南纳博生物科技有限公司 利用CRISPR/Cas技术获得家蚕丝素重链基因突变体及突变方法和应用
CN106172238B (zh) 2016-08-12 2019-01-22 中南大学 miR-124基因敲除小鼠动物模型的构建方法和应用
CN106222177B (zh) 2016-08-13 2018-06-26 江苏集萃药康生物科技有限公司 一种靶向人STAT6的CRISPR-Cas9系统及其用于治疗过敏性疾病的应用
US11810649B2 (en) 2016-08-17 2023-11-07 The Broad Institute, Inc. Methods for identifying novel gene editing elements
US20210000091A1 (en) 2016-08-17 2021-01-07 The Regents Of The University Of California Split Trans-Complementing Gene-Drive System for Suppressing Aedes Aegypti Mosquitos
WO2018035250A1 (en) 2016-08-17 2018-02-22 The Broad Institute, Inc. Methods for identifying class 2 crispr-cas systems
CA3034089A1 (en) 2016-08-18 2018-02-22 The Regents Of The University Of California Crispr-cas genome engineering via a modular aav delivery system
MA46018A (fr) 2016-08-19 2019-06-26 Bluebird Bio Inc Activateurs d'édition du génome
EP3500677A4 (en) 2016-08-20 2020-04-01 Avellino Lab USA, Inc. UNIQUE GUIDE RNA, CRISPR / CAS9 SYSTEMS AND METHODS OF USE
CN106191071B (zh) 2016-08-22 2018-09-04 广州资生生物科技有限公司 一种CRISPR-Cas9系统及其用于治疗乳腺癌疾病的应用
CN106191116B (zh) 2016-08-22 2019-10-08 西北农林科技大学 基于CRISPR/Cas9的外源基因敲入整合系统及其建立方法和应用
CN106244555A (zh) 2016-08-23 2016-12-21 广州医科大学附属第三医院 一种提高基因打靶的效率的方法及β‑球蛋白基因位点的碱基原位修复方法
CN106086028B (zh) 2016-08-23 2019-04-23 中国农业科学院作物科学研究所 一种通过基因组编辑提高水稻抗性淀粉含量的方法及其专用sgRNA
KR101856345B1 (ko) 2016-08-24 2018-06-20 경상대학교산학협력단 CRISPR/Cas9 시스템을 이용하여 APOBEC3H 및 APOBEC3CH 이중-넉아웃 고양이를 제조하는 방법
IL264639B2 (en) 2016-08-24 2024-01-01 Sangamo Therapeutics Inc Regulation of globulin gene expression using transgenic nucleases with zinc neurites
CN106244609A (zh) 2016-08-24 2016-12-21 浙江理工大学 一种调节pi3k‑akt信号通路的非编码基因的筛选系统及筛选方法
CN106109417A (zh) 2016-08-24 2016-11-16 李因传 一种肝细胞膜仿生脂质体药物载体、制作方法及其应用
SG10201913948PA (en) 2016-08-24 2020-03-30 Sangamo Therapeutics Inc Engineered target specific nucleases
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CN106544357B (zh) 2016-08-25 2018-08-21 湖南杂交水稻研究中心 一种培育镉低积累籼稻品种的方法
CN106318973B (zh) 2016-08-26 2019-09-13 深圳市第二人民医院 一种基于CRISPR-Cas9的基因调控装置及基因调控方法
CN106350540A (zh) 2016-08-26 2017-01-25 苏州系统医学研究所 一种由慢病毒介导的高效可诱导型CRISPR/Cas9基因敲除载体及其应用
CN107784200B (zh) 2016-08-26 2020-11-06 深圳华大生命科学研究院 一种筛选新型CRISPR-Cas系统的方法和装置
CN106399375A (zh) 2016-08-31 2017-02-15 南京凯地生物科技有限公司 利用CRISPR/Cas9敲除人PD‑1基因构建靶向CD19CAR‑T细胞的方法
CN106399367A (zh) 2016-08-31 2017-02-15 深圳市卫光生物制品股份有限公司 提高crispr介导的同源重组效率的方法
CN106480097A (zh) 2016-10-13 2017-03-08 南京凯地生物科技有限公司 利用CRISPR/Cas9技术敲除人PD‑1基因构建可靶向MSLN新型CAR‑T细胞的方法及其应用
CN107794272B (zh) 2016-09-06 2021-10-12 中国科学院上海营养与健康研究所 一种高特异性的crispr基因组编辑体系
CN106367435B (zh) 2016-09-07 2019-11-08 电子科技大学 一种水稻miRNA定向敲除的方法
CN106399377A (zh) 2016-09-07 2017-02-15 同济大学 一种基于CRISPR/Cas9高通量技术筛选药物靶点基因的方法
WO2018048827A1 (en) 2016-09-07 2018-03-15 Massachusetts Institute Of Technology Rna-guided endonuclease-based dna assembly
CN106399311A (zh) 2016-09-07 2017-02-15 同济大学 用于Chip‑seq全基因组结合谱的内源蛋白标记的方法
EP3510151B1 (en) 2016-09-09 2024-07-03 The Board of Trustees of the Leland Stanford Junior University High-throughput precision genome editing
CN107574179B (zh) 2016-09-09 2018-07-10 康码(上海)生物科技有限公司 一种为克鲁维酵母优化的CRISPR/Cas9高效基因编辑系统
EP3512943B1 (en) 2016-09-14 2023-04-12 Yeda Research and Development Co. Ltd. Crisp-seq, an integrated method for massively parallel single cell rna-seq and crispr pooled screens
CN106318934B (zh) 2016-09-21 2020-06-05 上海交通大学 胡萝卜β(1,2)木糖转移酶的基因全序列及用于转染双子叶植物的CRISPR/CAS9的质粒构建
US20180127786A1 (en) 2016-09-23 2018-05-10 Casebia Therapeutics Limited Liability Partnership Compositions and methods for gene editing
CN106957858A (zh) 2016-09-23 2017-07-18 西北农林科技大学 一种利用CRISPR/Cas9系统共同敲除绵羊MSTN、ASIP、BCO2基因的方法
WO2017216392A1 (en) 2016-09-23 2017-12-21 Dsm Ip Assets B.V. A guide-rna expression system for a host cell
EP3497215B1 (en) 2016-09-28 2024-01-10 Cellivery Therapeutics, Inc. Cell-permeable (cp)-cas9 recombinant protein and uses thereof
WO2018064516A1 (en) 2016-09-30 2018-04-05 Monsanto Technology Llc Method for selecting target sites for site-specific genome modification in plants
CN107880132B (zh) 2016-09-30 2022-06-17 北京大学 一种融合蛋白及使用其进行同源重组的方法
EP3523426A4 (en) 2016-09-30 2020-01-22 The Regents of The University of California RNA GUIDED NUCLEIC ACID MODIFYING ENZYMES AND METHOD FOR USE THEREOF
CN106480027A (zh) 2016-09-30 2017-03-08 重庆高圣生物医药有限责任公司 CRISPR/Cas9 靶向敲除人PD‑1基因及其特异性gRNA
CN107881184B (zh) 2016-09-30 2021-08-27 中国科学院分子植物科学卓越创新中心 一种基于Cpf1的DNA体外拼接方法
AU2017335883B2 (en) 2016-09-30 2024-06-13 The Regents Of The University Of California RNA-guided nucleic acid modifying enzymes and methods of use thereof
WO2018067546A1 (en) 2016-10-03 2018-04-12 President And Fellows Of Harvard College Delivery of therapeutic rnas via arrdc1-mediated microvesicles
WO2018067846A1 (en) 2016-10-05 2018-04-12 President And Fellows Of Harvard College Methods of crispr mediated genome modulation in v. natriegens
US10669539B2 (en) 2016-10-06 2020-06-02 Pioneer Biolabs, Llc Methods and compositions for generating CRISPR guide RNA libraries
CA3039409A1 (en) 2016-10-07 2018-04-12 Integrated Dna Technologies, Inc. S. pyogenes cas9 mutant genes and polypeptides encoded by same
CN106479985A (zh) 2016-10-09 2017-03-08 上海吉玛制药技术有限公司 病毒介导的Cpf1蛋白在CRISPR/Cpf1基因编辑系统中的应用
IT201600102542A1 (it) 2016-10-12 2018-04-12 Univ Degli Studi Di Trento Plasmide e sistema lentivirale contenente un circuito autolimitante della Cas9 che ne incrementa la sicurezza.
US20190365862A1 (en) 2016-10-12 2019-12-05 Temple University - Of The Commonwealth System Of Higher Education Combination therapies for eradicating flavivirus infections in subjects
CN106434663A (zh) 2016-10-12 2017-02-22 遵义医学院 CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA
CN106434782B (zh) 2016-10-14 2020-01-10 南京工业大学 一种产顺式-4-羟脯氨酸的方法
US20190330620A1 (en) 2016-10-14 2019-10-31 Emendobio Inc. Rna compositions for genome editing
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
AU2017341926B2 (en) 2016-10-14 2022-06-30 The General Hospital Corporation Epigenetically regulated site-specific nucleases
WO2018074979A1 (en) 2016-10-17 2018-04-26 Nanyang Technological University Truncated crispr-cas proteins for dna targeting
US10640810B2 (en) 2016-10-19 2020-05-05 Drexel University Methods of specifically labeling nucleic acids using CRISPR/Cas
US20180119141A1 (en) 2016-10-28 2018-05-03 Massachusetts Institute Of Technology Crispr/cas global regulator screening platform
US20180127759A1 (en) 2016-10-28 2018-05-10 Massachusetts Institute Of Technology Dynamic genome engineering
WO2018081504A1 (en) 2016-10-28 2018-05-03 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating herpes simplex virus
WO2018079134A1 (ja) 2016-10-31 2018-05-03 株式会社江口高周波 リアクトル
US11795453B2 (en) 2016-10-31 2023-10-24 Emendobio, Inc. Compositions for genome editing
US11787795B2 (en) 2016-11-01 2023-10-17 President And Fellows Of Harvard College Inhibitors of RNA guided nucleases and uses thereof
WO2018083606A1 (en) 2016-11-01 2018-05-11 Novartis Ag Methods and compositions for enhancing gene editing
GB201618507D0 (en) 2016-11-02 2016-12-14 Stichting Voor De Technische Wetenschappen And Wageningen Univ Microbial genome editing
CN106544353A (zh) 2016-11-08 2017-03-29 宁夏医科大学总医院 一种利用CRISPR‑Cas9清除鲍曼不动杆菌耐药性基因的方法
CN106755088A (zh) 2016-11-11 2017-05-31 广东万海细胞生物科技有限公司 一种自体car‑t细胞制备方法及应用
WO2018089664A1 (en) 2016-11-11 2018-05-17 The Regents Of The University Of California Variant rna-guided polypeptides and methods of use
CN106566838B (zh) 2016-11-14 2019-11-01 上海伯豪生物技术有限公司 一种基于CRISPR-Cas9技术的miR-126全长基因敲除试剂盒及其应用
AR110075A1 (es) 2016-11-14 2019-02-20 Inst Genetics & Developmental Biology Cas Un método para edición basal en plantas
CN106554969A (zh) 2016-11-15 2017-04-05 陕西理工学院 基于抑菌杀菌的多靶点CRISPR/Cas9表达载体
JP7210029B2 (ja) 2016-11-16 2023-01-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア CRISPR-Cas9の阻害因子
CN106754912B (zh) 2016-11-16 2019-11-08 上海交通大学 一类定向清除肝细胞中HBVcccDNA的质粒及制剂
US20180282722A1 (en) 2016-11-21 2018-10-04 Massachusetts Institute Of Technology Chimeric DNA:RNA Guide for High Accuracy Cas9 Genome Editing
CN106480067A (zh) 2016-11-21 2017-03-08 中国农业科学院烟草研究所 烟草NtNAC096基因控制烟草衰老的应用
CA3044101A1 (en) 2016-11-22 2018-05-31 Integrated Dna Technologies, Inc. Crispr/cpf1 systems and methods
CN110382695A (zh) 2016-11-28 2019-10-25 得克萨斯州大学系统董事会 通过crispr/cpf1介导的基因编辑来预防肌营养不良
CN106755091A (zh) 2016-11-28 2017-05-31 中国人民解放军第三军医大学第附属医院 基因敲除载体,mh7a细胞nlrp1基因敲除方法
CN106480036B (zh) 2016-11-30 2019-04-09 华南理工大学 一种具有启动子功能的dna片段及其应用
CA3045335A1 (en) 2016-12-01 2018-06-07 Universite Laval Crispr-based treatment of friedreich ataxia
CN107043779B (zh) 2016-12-01 2020-05-12 中国农业科学院作物科学研究所 一种CRISPR/nCas9介导的定点碱基替换在植物中的应用
CN106834323A (zh) 2016-12-01 2017-06-13 安徽大学 一种基于维吉尼亚链霉菌IBL14基因cas7‑5‑3的基因编辑方法
US9816093B1 (en) 2016-12-06 2017-11-14 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
WO2018103686A1 (zh) 2016-12-07 2018-06-14 中国科学院上海生命科学研究院 叶绿体基因组编辑方法
CN106701830B (zh) 2016-12-07 2020-01-03 湖南人文科技学院 一种敲除猪胚胎p66shc基因的方法
US11192929B2 (en) 2016-12-08 2021-12-07 Regents Of The University Of Minnesota Site-specific DNA base editing using modified APOBEC enzymes
CN106544351B (zh) 2016-12-08 2019-09-10 江苏省农业科学院 CRISPR-Cas9体外敲除耐药基因mcr-1的方法及其专用细胞穿透肽
BR112019011509A2 (pt) 2016-12-08 2020-01-28 Intellia Therapeutics Inc rnas guias modificados
WO2018107103A1 (en) 2016-12-09 2018-06-14 The Broad Institute, Inc. Crispr-systems for modifying a trait of interest in a plant
EP3551753B1 (en) 2016-12-09 2022-06-29 The Broad Institute, Inc. Crispr effector system based diagnostics
US20190032131A1 (en) 2016-12-12 2019-01-31 Integrated Dna Technologies, Inc. Genome editing detection
US11293022B2 (en) 2016-12-12 2022-04-05 Integrated Dna Technologies, Inc. Genome editing enhancement
CN107893074A (zh) 2016-12-13 2018-04-10 广东赤萌医疗科技有限公司 一种用于敲除CXCR4基因的gRNA、表达载体、敲除系统、试剂盒
US11242513B2 (en) 2016-12-14 2022-02-08 Wageningen Universiteit Thermostable Cas9 nucleases
WO2018109101A1 (en) 2016-12-14 2018-06-21 Wageningen Universiteit Thermostable cas9 nucleases
WO2018112336A1 (en) 2016-12-16 2018-06-21 Ohio State Innovation Foundation Systems and methods for dna-guided rna cleavage
KR101748575B1 (ko) 2016-12-16 2017-06-20 주식회사 엠젠플러스 Ins 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법
WO2018112446A2 (en) 2016-12-18 2018-06-21 Selonterra, Inc. Use of apoe4 motif-mediated genes for diagnosis and treatment of alzheimer's disease
CN106755026A (zh) 2016-12-18 2017-05-31 吉林大学 sgRNA表达载体的构建及牙釉质钙化不全模型的建立
CA3048479A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Gene editing of pcsk9
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
CN106755424B (zh) 2016-12-26 2020-11-06 郑州大学 一种基于crispr的大肠杆菌st131系菌株检测引物、试剂盒及检测方法
CN107354173A (zh) 2016-12-26 2017-11-17 浙江省医学科学院 基于crispr技术和水动力尾静脉注射建立肝脏特异性敲除小鼠模型的方法
CN106834347A (zh) 2016-12-27 2017-06-13 安徽省农业科学院畜牧兽医研究所 一种山羊cdk2基因敲除载体及其构建方法
CN106755097A (zh) 2016-12-27 2017-05-31 安徽省农业科学院畜牧兽医研究所 一种山羊tlr4基因敲除载体及其构建方法
CN106834341B (zh) 2016-12-30 2020-06-16 中国农业大学 一种基因定点突变载体及其构建方法和应用
CN106701763B (zh) 2016-12-30 2019-07-19 重庆高圣生物医药有限责任公司 CRISPR/Cas9靶向敲除人乙肝病毒P基因及其特异性gRNA
CN106868008A (zh) 2016-12-30 2017-06-20 重庆高圣生物医药有限责任公司 CRISPR/Cas9靶向敲除人Lin28A基因及其特异性gRNA
CN106755077A (zh) 2016-12-30 2017-05-31 华智水稻生物技术有限公司 利用crispr‑cas9技术对水稻cenh3基因定点突变的方法
CN106701818B (zh) 2017-01-09 2020-04-24 湖南杂交水稻研究中心 一种培育水稻普通核不育系的方法
EP3568476A1 (en) 2017-01-11 2019-11-20 Oxford University Innovation Limited Crispr rna
CN107012164B (zh) 2017-01-11 2023-03-03 电子科技大学 CRISPR/Cpf1植物基因组定向修饰功能单元、包含该功能单元的载体及其应用
JP2020505062A (ja) 2017-01-17 2020-02-20 インスティテュート フォー ベーシック サイエンスInstitute For Basic Science Dna一本鎖切断による塩基編集非標的位置確認方法
CN107058372A (zh) 2017-01-18 2017-08-18 四川农业大学 一种应用于植物上的CRISPR/Cas9载体的构建方法
CN106701823A (zh) 2017-01-18 2017-05-24 上海交通大学 生产无岩藻糖单克隆抗体的cho细胞系建立及其应用
WO2018136396A2 (en) 2017-01-18 2018-07-26 Excision Biotherapeutics, Inc. Crisprs
CN106801056A (zh) 2017-01-24 2017-06-06 中国科学院广州生物医药与健康研究院 一种sgRNA及其构建的慢病毒载体和应用
ES2950676T3 (es) 2017-01-30 2023-10-11 Kws Saat Se & Co Kgaa Reparación de enlace de plantillas a endonucleasas para modificación de genes
TWI608100B (zh) 2017-02-03 2017-12-11 國立清華大學 Cas9表達質體、大腸桿菌基因剪輯系統及其方法
US20190345501A1 (en) 2017-02-07 2019-11-14 Massachusetts Institute Of Technology Methods and compositions for rna-guided genetic circuits
EP3579858A4 (en) 2017-02-07 2020-12-23 The Regents of The University of California GENE THERAPY AGAINST HAPLOINSUFFICIENCY
WO2018148647A2 (en) 2017-02-10 2018-08-16 Lajoie Marc Joseph Genome editing reagents and their use
IT201700016321A1 (it) 2017-02-14 2018-08-14 Univ Degli Studi Di Trento Mutanti di cas9 ad alta specificita' e loro applicazioni.
US20200063127A1 (en) 2017-02-15 2020-02-27 Massachusetts Institute Of Technology Dna writers, molecular recorders and uses thereof
CN106957855B (zh) 2017-02-16 2020-04-17 上海市农业科学院 使用CRISPR/Cas9技术靶向敲除水稻矮杆基因SD1的方法
WO2018152418A1 (en) 2017-02-17 2018-08-23 Temple University - Of The Commonwealth System Of Higher Education Gene editing therapy for hiv infection via dual targeting of hiv genome and ccr5
BR112019017138A2 (pt) 2017-02-20 2020-04-14 Inst Genetics & Developmental Biology Cas sistema e método de edição de genoma
US11407997B2 (en) 2017-02-22 2022-08-09 Crispr Therapeutics Ag Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders
CA3054031A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Compositions and methods for gene editing
EP3585900B1 (en) 2017-02-22 2022-12-21 CRISPR Therapeutics AG Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders
EP3585894A1 (en) 2017-02-22 2020-01-01 CRISPR Therapeutics AG Compositions and methods for treatment of proprotein convertase subtilisin/kexin type 9 (pcsk9)-related disorders
WO2018154412A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Materials and methods for treatment of merosin-deficient cogenital muscular dystrophy (mdcmd) and other laminin, alpha 2 (lama2) gene related conditions or disorders
US20200040061A1 (en) 2017-02-22 2020-02-06 Crispr Therapeutics Ag Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders
US11559588B2 (en) 2017-02-22 2023-01-24 Crispr Therapeutics Ag Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders
US20190365929A1 (en) 2017-02-22 2019-12-05 Crispr Therapeutics Ag Materials and methods for treatment of dystrophic epidermolysis bullosa (deb) and other collagen type vii alpha 1 chain (col7a1) gene related conditions or disorders
WO2018156372A1 (en) 2017-02-22 2018-08-30 The Regents Of The University Of California Genetically modified non-human animals and products thereof
CN106868031A (zh) 2017-02-24 2017-06-20 北京大学 一种基于分级组装的多个sgRNA串联并行表达的克隆方法及应用
US20200010903A1 (en) 2017-03-03 2020-01-09 Yale University AAV-Mediated Direct In vivo CRISPR Screen in Glioblastoma
US11111492B2 (en) 2017-03-06 2021-09-07 Florida State University Research Foundation, Inc. Genome engineering methods using a cytosine-specific Cas9
WO2018165504A1 (en) 2017-03-09 2018-09-13 President And Fellows Of Harvard College Suppression of pain by gene editing
WO2018165629A1 (en) 2017-03-10 2018-09-13 President And Fellows Of Harvard College Cytosine to guanine base editor
CN110913881A (zh) 2017-03-14 2020-03-24 加利福尼亚大学董事会 工程化crispr cas9免疫隐身
BR112019019087A2 (pt) 2017-03-15 2020-05-12 The Broad Institute, Inc. Diagnóstico baseado em sistema efetor de crispr para detecção de vírus
CN106978428A (zh) 2017-03-15 2017-07-25 上海吐露港生物科技有限公司 一种Cas蛋白特异结合靶标DNA、调控靶标基因转录的方法及试剂盒
CN106906242A (zh) 2017-03-16 2017-06-30 重庆高圣生物医药有限责任公司 一种提高CRIPSR/Cas9靶向敲除基因产生非同源性末端接合效率的方法
US20180271954A1 (en) 2017-03-21 2018-09-27 Anthony P. Shuber Treating cancer with cas endonuclease complexes
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
CN107012213A (zh) 2017-03-24 2017-08-04 南开大学 结直肠癌的生物标记物
CA3084252A1 (en) 2017-03-28 2018-10-04 Caribou Biosciences, Inc. Crispr-associated (cas) protein
CN106947780A (zh) 2017-03-28 2017-07-14 扬州大学 一种兔mstn基因的编辑方法
CN106906240A (zh) 2017-03-29 2017-06-30 浙江大学 运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法
KR20190134673A (ko) 2017-03-30 2019-12-04 고쿠리츠 다이가쿠 호진 교토 다이가쿠 게놈 편집에 의한 엑손 스키핑 유도 방법
CN108660161B (zh) 2017-03-31 2023-05-09 中国科学院脑科学与智能技术卓越创新中心 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
CN107058358B (zh) 2017-04-01 2020-06-09 中国科学院微生物研究所 一种双spacer序列识别切割CRISPR-Cas9载体构建及其在疣孢菌中的应用
CN106967726B (zh) 2017-04-05 2020-12-29 华南农业大学 一种创建亚洲栽培稻与非洲栽培稻种间杂种亲和系的方法和应用
US9938288B1 (en) 2017-04-05 2018-04-10 President And Fellows Of Harvard College Macrocyclic compound and uses thereof
CN107142282A (zh) 2017-04-06 2017-09-08 中山大学 一种利用CRISPR/Cas9在哺乳动物细胞中实现大片段DNA定点整合的方法
CN107034229A (zh) 2017-04-07 2017-08-11 江苏贝瑞利生物科技有限公司 一种植物中高效筛选CRISPR/CAS9基因编辑系统候选sgRNA系统及应用
CN107058320B (zh) 2017-04-12 2019-08-02 南开大学 Il7r基因缺失斑马鱼突变体的制备及其应用
CN106916852B (zh) 2017-04-13 2020-12-04 上海科技大学 一种碱基编辑系统及其构建和应用方法
CN108728476A (zh) 2017-04-14 2018-11-02 复旦大学 一种利用crispr系统产生多样性抗体文库的方法
CN107298701B (zh) 2017-04-18 2020-10-30 上海大学 玉米转录因子ZmbZIP22及其应用
WO2018195402A1 (en) 2017-04-20 2018-10-25 Egenesis, Inc. Methods for generating genetically modified animals
CN106957844A (zh) 2017-04-20 2017-07-18 华侨大学 一种能有效敲除HTLV‑1病毒基因组的CRISPR/Cas9的gRNA序列
US11773409B2 (en) 2017-04-21 2023-10-03 The Board Of Trustees Of The Leland Stanford Junior University CRISPR/Cas 9-mediated integration of polynucleotides by sequential homologous recombination of AAV donor vectors
BR112019021719A2 (pt) 2017-04-21 2020-06-16 The General Hospital Corporation Variantes de cpf1 (cas12a) com especificidade para pam alterada
US11530405B2 (en) 2017-04-24 2022-12-20 Dupont Nutrition Biosciences Aps Anti-CRISPR genes and proteins and methods of use
CN107043775B (zh) 2017-04-24 2020-06-16 中国农业科学院生物技术研究所 一种能促进棉花侧根发育的sgRNA及其应用
CN206970581U (zh) 2017-04-26 2018-02-06 重庆威斯腾生物医药科技有限责任公司 一种用于辅助CRISPR/cas9基因敲除的试剂盒
WO2018197020A1 (en) 2017-04-27 2018-11-01 Novozymes A/S Genome editing by crispr-cas9 using short donor oligonucleotides
US20200407737A1 (en) 2017-05-03 2020-12-31 KWS SAAT SE & Co. KGaA Use of crispr-cas endonucleases for plant genome engineering
CN107012174A (zh) 2017-05-04 2017-08-04 昆明理工大学 CRISPR/Cas9技术在获得家蚕锌指蛋白基因突变体中的应用
EP3619302A4 (en) 2017-05-04 2021-01-20 The Trustees of The University of Pennsylvania COMPOSITIONS AND METHODS OF GENEDITATION IN T CELLS USING CRISPR / CPF1
CN107254485A (zh) 2017-05-08 2017-10-17 南京农业大学 一种能够快速构建植物基因定点敲除载体的新反应体系
CN107129999A (zh) 2017-05-09 2017-09-05 福建省农业科学院畜牧兽医研究所 利用稳转CRISPR/Cas9系统对病毒基因组进行靶向编辑的方法
WO2018208755A1 (en) 2017-05-09 2018-11-15 The Regents Of The University Of California Compositions and methods for tagging target proteins in proximity to a nucleotide sequence of interest
EP3622070A2 (en) 2017-05-10 2020-03-18 Editas Medicine, Inc. Crispr/rna-guided nuclease systems and methods
CN110869498A (zh) 2017-05-10 2020-03-06 加利福尼亚大学董事会 经由核递送crispr/cas9导向编辑细胞rna
CN107130000B (zh) 2017-05-12 2019-12-17 浙江卫未生物医药科技有限公司 一种同时敲除KRAS基因和EGFR基因的CRISPR-Cas9系统及其应用
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
CN106967697B (zh) 2017-05-16 2021-03-26 上海交通大学 一种Cas9核酸酶G915F及其用途
CN106987570A (zh) 2017-05-16 2017-07-28 上海交通大学 一种Cas9核酸酶R780A及其用途
CN106957831B (zh) 2017-05-16 2021-03-12 上海交通大学 一种Cas9核酸酶K918A及其用途
CN106957830B (zh) 2017-05-16 2020-12-25 上海交通大学 一种Cas9核酸酶ΔF916及其用途
CN107326042A (zh) 2017-05-16 2017-11-07 上海交通大学 水稻tms10基因的定点敲除系统及其应用
CN106947750B (zh) 2017-05-16 2020-12-08 上海交通大学 一种Cas9核酸酶Q920P及其用途
CN107012250B (zh) 2017-05-16 2021-01-29 上海交通大学 一种适用于CRISPR/Cas9系统的基因组DNA片段编辑精准度的分析方法及应用
CN106916820B (zh) 2017-05-16 2019-09-27 吉林大学 能有效编辑猪ROSA26基因的sgRNA及其应用
CN106939303B (zh) 2017-05-16 2021-02-23 上海交通大学 一种Cas9核酸酶R919P及其用途
US11866697B2 (en) 2017-05-18 2024-01-09 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
EP3625340A4 (en) 2017-05-18 2021-02-24 Cargill, Incorporated GENOME EDITING SYSTEM
US20200171068A1 (en) 2017-05-18 2020-06-04 Children's National Medical Center Compositions comprising aptamers and nucleic acid payloads and methods of using the same
WO2018213726A1 (en) 2017-05-18 2018-11-22 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
CN107043787B (zh) 2017-05-19 2017-12-26 南京医科大学 一种基于CRISPR/Cas9获得MARF1定点突变小鼠模型的构建方法和应用
CN107236737A (zh) 2017-05-19 2017-10-10 上海交通大学 特异靶向拟南芥ILK2基因的sgRNA序列及其应用
WO2018217852A1 (en) 2017-05-23 2018-11-29 Gettysburg College Crispr based tool for characterizing bacterial serovar diversity
CN107034188B (zh) 2017-05-24 2018-07-24 中山大学附属口腔医院 一种靶向骨的外泌体载体、CRISPR/Cas9基因编辑系统及应用
AU2018273968A1 (en) 2017-05-25 2019-11-28 The General Hospital Corporation Using split deaminases to limit unwanted off-target base editor deamination
WO2018217981A1 (en) 2017-05-26 2018-11-29 North Carolina State University Altered guide rnas for modulating cas9 activity and methods of use
CN107287245B (zh) 2017-05-27 2020-03-17 南京农业大学 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法
CN107142272A (zh) 2017-06-05 2017-09-08 南京金斯瑞生物科技有限公司 一种控制大肠杆菌中质粒复制的方法
CN107034218A (zh) 2017-06-07 2017-08-11 浙江大学 用于猪APN基因编辑的靶向sgRNA、修饰载体及其制备方法和应用
CN107177595A (zh) 2017-06-07 2017-09-19 浙江大学 用于猪CD163基因编辑的靶向sgRNA、修饰载体及其制备方法和应用
CN107119071A (zh) 2017-06-07 2017-09-01 江苏三黍生物科技有限公司 一种降低植物直链淀粉含量的方法及应用
CN106987757A (zh) 2017-06-12 2017-07-28 苏州双金实业有限公司 一种耐腐蚀型奥氏体镍基合金
CN107236739A (zh) 2017-06-12 2017-10-10 上海捷易生物科技有限公司 CRISPR/SaCas9特异性敲除人CXCR4基因的方法
CN107227352A (zh) 2017-06-13 2017-10-03 西安医学院 基于eGFP的GPR120基因表达的检测方法及应用
CN107083392B (zh) 2017-06-13 2020-09-08 中国医学科学院病原生物学研究所 一种CRISPR/Cpf1基因编辑系统及其在分枝杆菌中的应用
CN107245502B (zh) 2017-06-14 2020-11-03 中国科学院武汉病毒研究所 Cd2结合蛋白(cd2ap)和其相互作用蛋白
CN107312798B (zh) 2017-06-16 2020-06-23 武汉大学 含特异靶向CCR5基因的gRNA序列的CRISPR/Cas9重组慢病毒载体及应用
CN107099850B (zh) 2017-06-19 2018-05-04 东北农业大学 一种通过酶切基因组构建CRISPR/Cas9基因组敲除文库的方法
CN107446951B (zh) 2017-06-20 2021-01-08 温氏食品集团股份有限公司 一种通过CRISPR/Cas9系统快速筛选重组鸡痘病毒的方法及其应用
CN107266541B (zh) 2017-06-20 2021-06-04 上海大学 玉米转录因子ZmbHLH167及其应用
CN107058328A (zh) 2017-06-22 2017-08-18 江苏三黍生物科技有限公司 一种提高植物直链淀粉含量的方法及应用
CN107227307A (zh) 2017-06-23 2017-10-03 东北农业大学 一种特异靶向猪IRS1基因的sgRNA导向序列及其应用
CN107119053A (zh) 2017-06-23 2017-09-01 东北农业大学 一种特异靶向猪MC4R基因的sgRNA导向序列及其应用
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
CN107099533A (zh) 2017-06-23 2017-08-29 东北农业大学 一种特异靶向猪IGFBP3基因的sgRNA导向序列及应用
CN107177631B (zh) 2017-06-26 2020-11-24 中国农业大学 利用CRISPR-CAS9技术敲除NRK细胞Slc22a2基因的方法
US20200248169A1 (en) 2017-06-26 2020-08-06 The Broad Institute, Inc. Crispr/cas-cytidine deaminase based compositions, systems, and methods for targeted nucleic acid editing
CN107217075B (zh) 2017-06-28 2021-07-02 西安交通大学医学院第一附属医院 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法
CN107356793A (zh) 2017-07-01 2017-11-17 合肥东玖电气有限公司 一种防火电表箱
CN107312793A (zh) 2017-07-05 2017-11-03 新疆农业科学院园艺作物研究所 Cas9介导的番茄基因编辑载体及其应用
CN107190006A (zh) 2017-07-07 2017-09-22 南通大学附属医院 一种靶向IGF‑IR基因的sgRNA及其应用
CN107236741A (zh) 2017-07-19 2017-10-10 广州医科大学附属第五医院 一种敲除野生型T细胞TCR alpha链的gRNA及方法
CN107190008A (zh) 2017-07-19 2017-09-22 苏州吉赛基因测序科技有限公司 一种基于Crispr/cas9的捕获基因组目标序列的方法及其在高通量测序中的应用
CN107400677B (zh) 2017-07-19 2020-05-22 江南大学 一种基于CRISPR-Cas9系统的地衣芽孢杆菌基因组编辑载体及其制备方法
CN107354156B (zh) 2017-07-19 2021-02-09 广州医科大学附属第五医院 一种敲除野生型T细胞TCR beta链的gRNA及方法
CN107446954A (zh) 2017-07-28 2017-12-08 新乡医学院 一种sd大鼠t细胞缺失遗传模型的制备方法
CN107435051B (zh) 2017-07-28 2020-06-02 新乡医学院 一种通过CRISPR/Cas9系统快速获得大片段缺失的细胞系基因敲除方法
CN107435069A (zh) 2017-07-28 2017-12-05 新乡医学院 一种细胞系CRISPR/Cas9基因敲除的快速检测方法
CN107384922A (zh) 2017-07-28 2017-11-24 重庆医科大学附属儿童医院 CRISPR/Cas9靶向敲除人CNE9基因及其特异性gRNA
CN107267515B (zh) 2017-07-28 2020-08-25 重庆医科大学附属儿童医院 CRISPR/Cas9靶向敲除人CNE10基因及其特异性gRNA
CN107418974A (zh) 2017-07-28 2017-12-01 新乡医学院 一种利用单克隆细胞分选快速获得CRISPR/Cas9基因敲除稳定细胞株的方法
EP3658573A1 (en) 2017-07-28 2020-06-03 President and Fellows of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace)
CN107217042B (zh) 2017-07-31 2020-03-06 江苏东抗生物医药科技有限公司 一种生产无岩藻糖基化蛋白的基因工程细胞系及其建立方法
CN107446922A (zh) 2017-08-03 2017-12-08 无锡市第二人民医院 一种敲除人成骨细胞株中hepcidin基因的gRNA序列及其使用方法
CN107502618B (zh) 2017-08-08 2021-03-12 中国科学院微生物研究所 可控载体消除方法及易用型CRISPR-Cas9工具
CN107312785B (zh) 2017-08-09 2019-12-06 四川农业大学 OsKTN80b基因在降低水稻株高方面的应用
CN107384926B (zh) 2017-08-13 2020-06-26 中国人民解放军疾病预防控制所 一种靶向清除细菌耐药性质粒的CRISPR-Cas9系统及应用
CN107365804B (zh) 2017-08-13 2019-12-20 中国人民解放军疾病预防控制所 一种使用温和噬菌体载体包装CRISPR-Cas9系统的方法
CN107446923B (zh) 2017-08-13 2019-12-31 中国人民解放军疾病预防控制所 rAAV8-CRISPR-SaCas9系统及在制备乙肝治疗药物中的应用
CN107815463A (zh) 2017-08-15 2018-03-20 西南大学 CRISPR/Cas9技术介导miR167前体序列编辑体系的建立方法
CN108034656A (zh) 2017-08-16 2018-05-15 四川省农业科学院生物技术核技术研究所 与水稻红褐色颖壳性状有关的sgRNA、CRISPR/Cas9载体、载体构建、应用
CN107446924B (zh) 2017-08-16 2020-01-14 中国科学院华南植物园 一种基于CRISPR-Cas9的猕猴桃基因AcPDS编辑载体及其构建方法和应用
CN107384894B (zh) 2017-08-21 2019-10-22 华南师范大学 功能化氧化石墨烯高效运载CRISPR/Cas9用于基因编辑的方法
CN107557393B (zh) 2017-08-23 2020-05-08 中国科学院上海应用物理研究所 一种磁性纳米材料介导的CRISPR/Cas9 T细胞内递送系统及其制备方法和应用
CN107299114B (zh) 2017-08-23 2021-08-27 中国科学院分子植物科学卓越创新中心 一种高效的酵母菌染色体融合方法
CN107312795A (zh) 2017-08-24 2017-11-03 浙江省农业科学院 运用CRISPR/Cas9系统创制粉色果实番茄的基因编辑方法
CN107488649A (zh) 2017-08-25 2017-12-19 南方医科大学 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用
CN107460196A (zh) 2017-08-25 2017-12-12 同济大学 一种免疫缺陷小鼠动物模型的构建方法及应用
CN107541525B (zh) 2017-08-26 2021-12-10 内蒙古大学 一种基于CRISPR/Cas9技术介导山羊Tβ4基因定点敲入的方法
CN107446932B (zh) 2017-08-29 2020-02-21 江西省农业科学院 一个控制水稻雄性生殖发育基因及其应用
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
CN107519492B (zh) 2017-09-06 2019-01-25 武汉迈特维尔生物科技有限公司 使用CRISPR技术敲除miR-3187-3p在冠状动脉粥样硬化性心脏病中的应用
CN107362372B (zh) 2017-09-07 2019-01-11 佛山波若恩生物科技有限公司 使用crispr技术在冠状动脉粥样硬化性心脏病中的应用
CN107641631A (zh) 2017-09-07 2018-01-30 浙江工业大学 一种由化学转化介导的基于CRISPR/Cas9系统敲除大肠杆菌基因的方法
CN107502608B (zh) 2017-09-08 2020-10-16 中山大学 用于敲除人ALDH2基因的sgRNA、ALDH2基因缺失细胞株的构建方法及应用
CN107557455A (zh) 2017-09-15 2018-01-09 国家纳米科学中心 一种基于CRISPR‑Cas13a的特异性核酸片段的检测方法
CN107475300B (zh) 2017-09-18 2020-04-21 上海市同济医院 Ifit3-eKO1基因敲除小鼠动物模型的构建方法和应用
CN107557390A (zh) 2017-09-18 2018-01-09 江南大学 一种筛选cho细胞系高表达位点的方法
CN107523583A (zh) 2017-09-19 2017-12-29 安徽大学 一种源于I型CRISPR‑Cas系统中基因cas5‑3的原核基因编辑方法
CN107630042A (zh) 2017-09-19 2018-01-26 安徽大学 一种源于I型Cas系统4个cas基因的原核生物基因编辑方法
CN107630041A (zh) 2017-09-19 2018-01-26 安徽大学 一种基于维吉尼亚链霉菌IBL14 I‑B型Cas系统的真核基因编辑方法
CN107557373A (zh) 2017-09-19 2018-01-09 安徽大学 一种基于I‑B型CRISPR‑Cas系统基因cas3的基因编辑方法
CN107557378A (zh) 2017-09-19 2018-01-09 安徽大学 一种基于I型CRISPR‑Cas系统中基因cas7‑3的真核基因编辑方法
CN107619837A (zh) 2017-09-20 2018-01-23 西北农林科技大学 利用Cas9切割核酸酶介导Ipr1定点插入获取转基因牛胎儿成纤维细胞的方法
CN107513531B (zh) 2017-09-21 2020-02-21 无锡市妇幼保健院 用于内源性过表达lncRNA-XIST的gRNA靶点序列及其应用
CN107686848A (zh) 2017-09-26 2018-02-13 中山大学孙逸仙纪念医院 转座子协同CRISPR/Cas9系统的稳定敲除单质粒载体及其应用
CN107557394A (zh) 2017-09-29 2018-01-09 南京鼓楼医院 降低CRISPR/Cas9介导的胚胎基因编辑脱靶率的方法
CN107760652A (zh) 2017-09-29 2018-03-06 华南理工大学 CRISPR/CAS9介导药物转运体靶向性敲除的caco‑2细胞模型及其方法
CN107630006B (zh) 2017-09-30 2020-09-11 山东兴瑞生物科技有限公司 一种制备tcr与hla双基因敲除的t细胞的方法
CN107760663A (zh) 2017-09-30 2018-03-06 新疆大学 油莎草pepc基因的克隆及表达载体的构建和应用
CN107828794A (zh) 2017-09-30 2018-03-23 上海市农业生物基因中心 一种水稻耐盐基因OsRR22突变体、其编码的氨基酸序列、植株及该突变体的创制方法
CN107604003A (zh) 2017-10-10 2018-01-19 南方医科大学 一种基于线性化crispr‑cas9慢病毒载体基因敲除试剂盒及其应用
CN107557381A (zh) 2017-10-12 2018-01-09 南京农业大学 一种白菜CRISPR‑Cas9基因编辑体系的建立及其应用
CN107474129B (zh) 2017-10-12 2018-10-19 江西汉氏联合干细胞科技有限公司 特异性增强crispr-cas系统基因编辑效率的方法
CN108102940B (zh) 2017-10-12 2021-07-13 中石化上海工程有限公司 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法
CN108103586A (zh) 2017-10-13 2018-06-01 上海科技大学 一种CRISPR/Cas9随机文库及其构建和应用
CN107586779B (zh) 2017-10-14 2018-08-28 天津金匙生物科技有限公司 使用crispr-cas系统对间充质干细胞进行casp3基因敲除的方法
CN107619829B (zh) 2017-10-14 2018-08-24 南京平港生物技术有限公司 使用crispr-cas系统对间充质干细胞进行gins2基因敲除的方法
CN107523567A (zh) 2017-10-16 2017-12-29 遵义医学院 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法
CN111757937A (zh) 2017-10-16 2020-10-09 布罗德研究所股份有限公司 腺苷碱基编辑器的用途
CN107760715B (zh) 2017-10-17 2021-12-10 张业胜 一种转基因载体及其构建方法和应用
CN107937427A (zh) 2017-10-20 2018-04-20 广东石油化工学院 一种基于CRISPR/Cas9体系的同源修复载体构建方法
CN107893086B (zh) 2017-10-24 2021-09-03 中国科学院武汉植物园 快速构建配对sgRNA的Cas9双元表达载体文库的方法
CN107760684B (zh) 2017-11-03 2018-09-25 上海拉德钫斯生物科技有限公司 使用crispr-cas系统对间充质干细胞进行rbm17基因敲除的方法
CN107858346B (zh) 2017-11-06 2020-06-16 天津大学 一种敲除酿酒酵母染色体的方法
CN107794276A (zh) 2017-11-08 2018-03-13 中国农业科学院作物科学研究所 一种crispr介导快速有效的农作物定点基因片段或等位基因替换方法和体系
CN107630043A (zh) 2017-11-14 2018-01-26 吉林大学 采用敲除技术建立Gadd45a敲除兔模型的方法
CN108441519A (zh) 2017-11-15 2018-08-24 中国农业大学 在crispr/cas9基因编辑中提高同源修复效率的方法
CN107858373B (zh) 2017-11-16 2020-03-17 山东省千佛山医院 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法
CN108192956B (zh) 2017-11-17 2021-06-01 东南大学 一种基于Cas9核酸酶的DNA检测分析方法及其应用
CN107893075A (zh) 2017-11-17 2018-04-10 和元生物技术(上海)股份有限公司 CRISPR‑Cas9靶向敲除人肠癌细胞RITA基因及其特异性的sgRNA
CN107828874B (zh) 2017-11-20 2020-10-16 东南大学 一种基于crispr的dna检测和分型方法及其应用
CN107904261A (zh) 2017-11-21 2018-04-13 福州大学 CRISPR/Cas9纳米基因系统的制备及其在转染方面的应用
CN107653256A (zh) 2017-11-21 2018-02-02 云南省烟草农业科学研究院 一种烟草多酚氧化酶基因NtPPO1及其定点突变方法与应用
CN107893076A (zh) 2017-11-23 2018-04-10 和元生物技术(上海)股份有限公司 CRISPR‑Cas9靶向敲除人乳腺癌细胞RASSF2基因及其特异性的sgRNA
CN107937501A (zh) 2017-11-24 2018-04-20 安徽师范大学 一种快速简便的筛选CRISPR/Cas基因编辑阳性对象的方法
CN107937432B (zh) 2017-11-24 2020-05-01 华中农业大学 一种基于crispr系统的基因组编辑方法及其应用
CN107828738A (zh) 2017-11-28 2018-03-23 新乡医学院 一种dna甲基转移酶缺陷型cho细胞系及其制备方法及应用
CN107988256B (zh) 2017-12-01 2020-07-28 暨南大学 人亨廷顿基因敲入用重组载体及其构建方法和在模型猪构建中的应用
CN108570479B (zh) 2017-12-06 2020-04-03 内蒙古大学 一种基于CRISPR/Cas9技术介导绒山羊VEGF基因定点敲入的方法
CN108148873A (zh) 2017-12-06 2018-06-12 南方医科大学 一种cav-1基因缺失斑马鱼及其制备方法
CN107974466B (zh) 2017-12-07 2020-09-29 中国科学院水生生物研究所 一种鲟鱼CRISPR/Cas9基因编辑方法
CN108315330B (zh) 2017-12-07 2020-05-19 嘉兴市第一医院 CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及敲除方法和应用
CN108251423B (zh) 2017-12-07 2020-11-06 嘉兴市第一医院 CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用
CN108148835A (zh) 2017-12-07 2018-06-12 和元生物技术(上海)股份有限公司 CRISPR-Cas9靶向敲除SLC30A1基因及其特异性的sgRNA
CN107828826A (zh) 2017-12-12 2018-03-23 南开大学 一种体外高效获得神经干细胞的方法
CN108103098B (zh) 2017-12-14 2020-07-28 华南理工大学 一种化合物皮肤致敏体外评估细胞模型及其构建方法
EP3724214A4 (en) 2017-12-15 2021-09-01 The Broad Institute Inc. SYSTEMS AND PROCEDURES FOR PREDICTING REPAIR RESULTS IN GENE ENGINEERING
CN107988268A (zh) 2017-12-18 2018-05-04 湖南师范大学 一种基因敲除选育tcf25基因缺失型斑马鱼的方法
CN108018316A (zh) 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法
CN108048466B (zh) 2017-12-21 2020-02-07 嘉兴市第一医院 CRISPR-Cas13a系统特异性靶向人RSPO2基因的crRNA及系统和应用
RU2652899C1 (ru) 2017-12-28 2018-05-03 Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) РНК-проводники для подавления репликации вируса гепатита B и для элиминации вируса гепатита B из клетки-хозяина
CN107893080A (zh) 2017-12-29 2018-04-10 江苏省农业科学院 一种靶向大鼠Inhba基因的sgRNA及其应用
CN107988229B (zh) 2018-01-05 2020-01-07 中国农业科学院作物科学研究所 一种利用CRISPR-Cas修饰OsTAC1基因获得分蘖改变的水稻的方法
CN107988246A (zh) 2018-01-05 2018-05-04 汕头大学医学院 一种基因敲除载体及其斑马鱼胶质瘤模型
CN108103092B (zh) 2018-01-05 2021-02-12 中国农业科学院作物科学研究所 利用CRISPR-Cas系统修饰OsHPH基因获得矮化水稻的系统及其应用
CN108559760A (zh) 2018-01-09 2018-09-21 陕西师范大学 基于CRISPR靶向基因组修饰技术建立荧光素酶knock-in细胞系的方法
CN108559730B (zh) 2018-01-12 2021-09-24 中国人民解放军第四军医大学 利用CRISPR/Cas9技术构建Hutat2:Fc基因敲入单核细胞的实验方法
CN108148837A (zh) 2018-01-12 2018-06-12 南京医科大学 ApoE-CRISPR/Cas9载体及其在敲除ApoE基因中的应用
CN108251451A (zh) 2018-01-16 2018-07-06 西南大学 HTT的CRISPR/Cas9-gRNA打靶序列对、质粒及其应用
CN108251452A (zh) 2018-01-17 2018-07-06 扬州大学 一种表达Cas9基因的转基因斑马鱼及其构建方法和应用
CN108359712B (zh) 2018-02-09 2020-06-26 广东省农业科学院农业生物基因研究中心 一种快速高效筛选SgRNA靶向DNA序列的方法
CN208034188U (zh) 2018-02-09 2018-11-02 衡阳市振洋汽车配件有限公司 一种快速定位的加工孔用夹具
CN108559745A (zh) 2018-02-10 2018-09-21 和元生物技术(上海)股份有限公司 基于CRISPR-Cas9技术提高B16F10细胞转染效率的方法
CN108359691B (zh) 2018-02-12 2021-09-28 中国科学院重庆绿色智能技术研究院 利用mito-CRISPR/Cas9系统敲除异常线粒体DNA的试剂盒及方法
CN108486145A (zh) 2018-02-12 2018-09-04 中国科学院遗传与发育生物学研究所 基于CRISPR/Cas9的植物高效同源重组方法
CN109021111B (zh) 2018-02-23 2021-12-07 上海科技大学 一种基因碱基编辑器
CN108396027A (zh) 2018-02-27 2018-08-14 和元生物技术(上海)股份有限公司 CRISPR-Cas9靶向敲除人肠癌细胞DEAF1基因及其特异性的sgRNA
CN108486159B (zh) 2018-03-01 2021-10-22 南通大学附属医院 一种敲除GRIN2D基因的CRISPR-Cas9系统及其应用
CN108342480B (zh) 2018-03-05 2022-03-01 北京医院 一种基因变异检测质控物及其制备方法
CN108410906A (zh) 2018-03-05 2018-08-17 淮海工学院 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法
CN108410907B (zh) 2018-03-08 2021-08-27 湖南农业大学 一种基于CRISPR/Cas9技术实现HMGCR基因敲除的方法
CN108410911B (zh) 2018-03-09 2021-08-20 广西医科大学 基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系
CN108486108B (zh) 2018-03-16 2020-10-09 华南农业大学 一种敲除人hmgb1基因的细胞株及其应用
CN108486146B (zh) 2018-03-16 2021-02-19 中国农业科学院作物科学研究所 LbCpf1-RR突变体用于CRISPR/Cpf1系统在植物基因编辑中的应用
CN108384784A (zh) 2018-03-23 2018-08-10 广西医科大学 一种利用CRISPR/Cas9技术敲除Endoglin基因的方法
CN108410877A (zh) 2018-03-27 2018-08-17 和元生物技术(上海)股份有限公司 CRISPR-Cas9靶向敲除人细胞SANIL1基因及其特异性的sgRNA
CN108504685A (zh) 2018-03-27 2018-09-07 宜明细胞生物科技有限公司 一种利用CRISPR/Cas9系统同源重组修复IL-2RG缺陷基因的方法
CN108424931A (zh) 2018-03-29 2018-08-21 内蒙古大学 CRISPR/Cas9技术介导山羊VEGF基因定点整合的方法
CN108486234B (zh) 2018-03-29 2022-02-11 东南大学 一种crispr分型pcr的方法及其应用
CN108441520B (zh) 2018-04-04 2020-07-31 苏州大学 利用CRISPR/Cas9系统构建的基因条件性敲除方法
CN108504693A (zh) 2018-04-04 2018-09-07 首都医科大学附属北京朝阳医院 利用Crispr技术敲除T合酶基因构建的O-型糖基化异常的结肠癌细胞系
CN108486111A (zh) 2018-04-04 2018-09-04 山西医科大学 CRISPR-Cas9靶向敲除人SMYD3基因的方法及其特异性sgRNA
CN108753772B (zh) 2018-04-04 2020-10-30 南华大学 基于CRISPR/Cas技术敲除CAPNS1基因的人神经母细胞瘤细胞系的构建方法
CN108486154A (zh) 2018-04-04 2018-09-04 福州大学 一种唾液酸酶基因敲除小鼠模型的构建方法及其应用
CN108504657B (zh) 2018-04-12 2019-06-14 中南民族大学 利用crispr-cas9技术敲除hek293t细胞kdm2a基因的方法
CN108753817A (zh) 2018-04-13 2018-11-06 北京华伟康信生物科技有限公司 增强细胞的抗癌能力的方法及采用该方法获得的增强型细胞
CN108588182A (zh) 2018-04-13 2018-09-28 中国科学院深圳先进技术研究院 基于crispr-链取代的等温扩增及检测技术
CN108823248A (zh) 2018-04-20 2018-11-16 中山大学 一种利用CRISPR/Cas9编辑陆川猪CD163基因的方法
CN108753832A (zh) 2018-04-20 2018-11-06 中山大学 一种利用CRISPR/Cas9编辑大白猪CD163基因的方法
CN108588071A (zh) 2018-04-25 2018-09-28 和元生物技术(上海)股份有限公司 CRISPR-Cas9靶向敲除人肠癌细胞CNR1基因及其特异性的sgRNA
CN108588128A (zh) 2018-04-26 2018-09-28 南昌大学 一种高效率大豆CRISPR/Cas9系统的构建方法及应用
CN108546712B (zh) 2018-04-26 2020-08-07 中国农业科学院作物科学研究所 一种利用CRISPR/LbCpf1系统实现目的基因在植物中同源重组的方法
CN108707621B (zh) 2018-04-26 2021-02-12 中国农业科学院作物科学研究所 一种CRISPR/Cpf1系统介导的以RNA转录本为修复模板的同源重组方法
CN108642053A (zh) 2018-04-28 2018-10-12 和元生物技术(上海)股份有限公司 CRISPR-Cas9靶向敲除人肠癌细胞PPP1R1C基因及其特异性的sgRNA
CN108611364A (zh) 2018-05-03 2018-10-02 南京农业大学 一种非转基因crispr突变体的制备方法
CN108588123A (zh) 2018-05-07 2018-09-28 南京医科大学 CRISPR/Cas9载体组合在制备基因敲除猪的血液制品中的应用
CN108610399B (zh) 2018-05-14 2019-09-27 河北万玛生物医药有限公司 特异性增强crispr-cas系统在表皮干细胞中进行基因编辑效率的方法
CN108546717A (zh) 2018-05-15 2018-09-18 吉林大学 反义lncRNA介导顺式调控抑制靶基因表达的方法
CN108546718B (zh) 2018-05-16 2021-07-09 康春生 crRNA介导的CRISPR/Cas13a基因编辑系统在肿瘤细胞中的应用
CN108624622A (zh) 2018-05-16 2018-10-09 湖南艾佳生物科技股份有限公司 一种基于CRISPR-Cas9系统构建的能分泌小鼠白细胞介素-6的基因工程细胞株
CN108642055B (zh) 2018-05-17 2021-12-03 吉林大学 能有效编辑猪miR-17-92基因簇的sgRNA
CN108642078A (zh) 2018-05-18 2018-10-12 江苏省农业科学院 基于CRISPR/Cas9基因编辑技术选育绿豆开花传粉突变体的方法及专用gRNA
CN108642090A (zh) 2018-05-18 2018-10-12 中国人民解放军总医院 基于CRISPR/Cas9技术获得Nogo-B敲除模式小鼠的方法及应用
CN108642077A (zh) 2018-05-18 2018-10-12 江苏省农业科学院 基于CRISPR/Cas9基因编辑技术选育绿豆不育突变体的方法及专用gRNA
CN108559732A (zh) 2018-05-21 2018-09-21 陕西师范大学 基于CRISPR/Cas9靶向基因组修饰技术建立KI-T2A-luciferase细胞系的方法
CN108707620A (zh) 2018-05-22 2018-10-26 西北农林科技大学 一种Gene drive载体及构建方法
EP3797160A1 (en) 2018-05-23 2021-03-31 The Broad Institute Inc. Base editors and uses thereof
CN108690844B (zh) 2018-05-25 2021-10-15 西南大学 HTT的CRISPR/Cas9-gRNA打靶序列对、质粒及HD细胞模型
CN108707628B (zh) 2018-05-28 2021-11-23 上海海洋大学 斑马鱼notch2基因突变体的制备方法
CN108707629A (zh) 2018-05-28 2018-10-26 上海海洋大学 斑马鱼notch1b基因突变体的制备方法
CN108823249A (zh) 2018-05-28 2018-11-16 上海海洋大学 CRISPR/Cas9构建notch1a突变体斑马鱼的方法
CN108753835A (zh) 2018-05-30 2018-11-06 中山大学 一种利用CRISPR/Cas9编辑猪BMP15基因的方法
CN108707604B (zh) 2018-05-30 2019-07-23 江西汉氏联合干细胞科技有限公司 表皮干细胞中采用CRISPR-Cas系统进行CNE10基因敲除
CN108753836B (zh) 2018-06-04 2021-10-12 北京大学 一种利用rna干扰机制的基因调控或编辑系统
CN108715850B (zh) 2018-06-05 2020-10-23 艾一生命科技(广东)有限公司 表皮干细胞中采用CRISPR-Cas系统进行GING2基因敲除
CN108753813B (zh) 2018-06-08 2021-08-24 中国水稻研究所 获得无标记转基因植物的方法
CN108753783A (zh) 2018-06-13 2018-11-06 上海市同济医院 Sqstm1全基因敲除小鼠动物模型的构建方法和应用
CN108728486A (zh) 2018-06-20 2018-11-02 江苏省农业科学院 一种茄子CRISPR/Cas9基因敲除载体的构建方法和应用
CN108841845A (zh) 2018-06-21 2018-11-20 广东石油化工学院 一种带有筛选标记的CRISPR/Cas9载体及其构建方法
CN108893529A (zh) 2018-06-25 2018-11-27 武汉博杰生物医学科技有限公司 一种基于CRISPR技术特异性检测人KRAS基因2号及3号外显子突变的crRNA
CN108866093B (zh) 2018-07-04 2021-07-09 广东三杰牧草生物科技有限公司 一种利用CRISPR/Cas9系统对紫花苜蓿基因定点突变的方法
CN108795902A (zh) 2018-07-05 2018-11-13 深圳三智医学科技有限公司 一种安全高效的CRISPR/Cas9基因编辑技术
CN108913714A (zh) 2018-07-05 2018-11-30 江西省超级水稻研究发展中心 一种利用CRISPR/Cas9系统敲除BADH2基因创制香稻的方法
EP3820495A4 (en) 2018-07-09 2022-07-20 The Broad Institute Inc. RNA PROGRAMMABLE EPIGENETIC RNA MODIFIERS AND THEIR USES
CN108913691B (zh) 2018-07-16 2020-09-01 山东华御生物科技有限公司 表皮干细胞中采用CRISPR-Cas系统进行Card3基因敲除
CN108913664B (zh) 2018-07-20 2020-09-04 嘉兴学院 一种CRISPR/Cas9基因编辑方法敲除卵巢癌细胞中CFP1基因的方法
CN108853133A (zh) 2018-07-25 2018-11-23 福州大学 一种PAMAM与CRISPR/Cas9系统重组质粒递送纳米粒的制备方法
CN108823291B (zh) 2018-07-25 2022-04-12 领航医学科技(深圳)有限公司 基于crispr技术的特异性核酸片段定量检测方法
CN108913717A (zh) 2018-08-01 2018-11-30 河南农业大学 一种利用CRISPR/Cas9系统对水稻PHYB基因定点突变的方法
EP3841203A4 (en) 2018-08-23 2022-11-02 The Broad Institute Inc. CAS9 VARIANTS WITH NON-CANONICAL PAM SPECIFICITIES AND USES OF THEM
US20240173430A1 (en) 2018-09-05 2024-05-30 The Broad Institute, Inc. Base editing for treating hutchinson-gilford progeria syndrome
US20220380740A1 (en) 2018-10-24 2022-12-01 The Broad Institute, Inc. Constructs for improved hdr-dependent genomic editing
WO2020092453A1 (en) 2018-10-29 2020-05-07 The Broad Institute, Inc. Nucleobase editors comprising geocas9 and uses thereof
US20220282275A1 (en) 2018-11-15 2022-09-08 The Broad Institute, Inc. G-to-t base editors and uses thereof
WO2020154500A1 (en) 2019-01-23 2020-07-30 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
WO2020181195A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through adenine excision
WO2020181180A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to c:g base editors and uses thereof
US20220170013A1 (en) 2019-03-06 2022-06-02 The Broad Institute, Inc. T:a to a:t base editing through adenosine methylation
WO2020181202A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to t:a base editing through adenine deamination and oxidation
WO2020181178A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through thymine alkylation
BR112021018607A2 (pt) 2019-03-19 2021-11-23 Massachusetts Inst Technology Métodos e composições para editar sequências de nucleotídeos
WO2020210751A1 (en) 2019-04-12 2020-10-15 The Broad Institute, Inc. System for genome editing
US20220307003A1 (en) 2019-04-17 2022-09-29 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
EP3973054A1 (en) 2019-05-20 2022-03-30 The Broad Institute Inc. Aav delivery of nucleobase editors
EP4010474A1 (en) 2019-08-08 2022-06-15 The Broad Institute, Inc. Base editors with diversified targeting scope
WO2021030666A1 (en) 2019-08-15 2021-02-18 The Broad Institute, Inc. Base editing by transglycosylation

Also Published As

Publication number Publication date
US20150166981A1 (en) 2015-06-18
DK3080265T3 (da) 2019-11-18
US11124782B2 (en) 2021-09-21
WO2015089406A1 (en) 2015-06-18
DK3604511T3 (da) 2024-06-03
EP3080265B1 (en) 2019-08-07
PT3080265T (pt) 2019-11-18
AU2023254972A1 (en) 2023-11-16
US20160304846A1 (en) 2016-10-20
CN105934516B (zh) 2022-02-08
US20220119785A1 (en) 2022-04-21
US20150166983A1 (en) 2015-06-18
EP3604511B1 (en) 2024-02-28
US20150166982A1 (en) 2015-06-18
AU2014362208B2 (en) 2021-02-11
US11053481B2 (en) 2021-07-06
EP3080265A1 (en) 2016-10-19
US10465176B2 (en) 2019-11-05
JP2024061716A (ja) 2024-05-08
US20150166984A1 (en) 2015-06-18
US9840699B2 (en) 2017-12-12
EP3604511A1 (en) 2020-02-05
CA2933625C (en) 2022-08-30
CA2933625A1 (en) 2015-06-18
JP2017500035A (ja) 2017-01-05
US9068179B1 (en) 2015-06-30
EP4375373A2 (en) 2024-05-29
US20150165054A1 (en) 2015-06-18
EP4375373A3 (en) 2024-08-21
PL3080265T3 (pl) 2020-01-31
US20150166985A1 (en) 2015-06-18
AU2021200375B2 (en) 2023-08-17
HUE046398T2 (hu) 2020-02-28
JP2022043042A (ja) 2022-03-15
JP2020164529A (ja) 2020-10-08
AU2021200375A1 (en) 2021-03-18
US20190322992A1 (en) 2019-10-24
AU2014362208A1 (en) 2016-06-30
US20150166980A1 (en) 2015-06-18
CN114516920A (zh) 2022-05-20
CN105934516A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
ES2754433T3 (es) Variantes de Cas para edición génica
JP7525174B2 (ja) 遺伝子編集のための進化したCas9蛋白質
EP3497214B1 (en) Programmable cas9-recombinase fusion proteins and uses thereof
KR20190130613A (ko) 핵산 프로그램가능한 dna 결합 단백질을 포함하는 핵염기 편집제
WO2018165504A1 (en) Suppression of pain by gene editing
US20210355475A1 (en) Optimized base editors enable efficient editing in cells, organoids and mice