RU2406760C2 - Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами - Google Patents

Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами Download PDF

Info

Publication number
RU2406760C2
RU2406760C2 RU2007145419/10A RU2007145419A RU2406760C2 RU 2406760 C2 RU2406760 C2 RU 2406760C2 RU 2007145419/10 A RU2007145419/10 A RU 2007145419/10A RU 2007145419 A RU2007145419 A RU 2007145419A RU 2406760 C2 RU2406760 C2 RU 2406760C2
Authority
RU
Russia
Prior art keywords
antibody
variable region
seq
chain containing
antibodies
Prior art date
Application number
RU2007145419/10A
Other languages
English (en)
Other versions
RU2007145419A (ru
RU2406760C3 (ru
Inventor
Алан Дж. КОРМАН (US)
Алан Дж. Корман
Мохан СРИНИВАСАН (US)
Мохан Сринивасан
Чанюй ВАН (US)
Чанюй ВАН
Марк Дж. СЕЛБИ (US)
Марк Дж. Селби
Бин ЧЭНЬ (US)
Бин ЧЭНЬ
Жозефин М. КАРДАРЕЛЛИ (US)
Жозефин М. Кардарелли
Original Assignee
Оно Фармасьютикал Ко., Лтд.
Медарекс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37396674&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2406760(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Оно Фармасьютикал Ко., Лтд., Медарекс, Инк. filed Critical Оно Фармасьютикал Ко., Лтд.
Publication of RU2007145419A publication Critical patent/RU2007145419A/ru
Application granted granted Critical
Publication of RU2406760C2 publication Critical patent/RU2406760C2/ru
Publication of RU2406760C3 publication Critical patent/RU2406760C3/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/74Inducing cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

Изобретение относится к биотехнологии и представляет собой выделенные моноклональные антитела, в частности моноклональные антитела человека, которые специфически связываются с PD-1 с высокой аффинностью. Изобретение также относится к молекулам нуклеиновых кислот, кодирующим антитела настоящего изобретения, экспрессионным векторам, содержащим такие нуклеиновые кислоты, а также к клеткам-хозяевам, содержащим указанные векторы. Изобретение также относится к способам повышения иммунной реакции, ингибирования роста клеток, а также лечения инфекционных заболеваний у индивида, основанным на использовании антител по изобретению. Антитела по изобретению позволяют проводить иммунотерапию при лечении заболевания человека и уменьшение ее побочных эффектов. 9 н. и 1 з.п. ф-лы, 100 ил., 8 табл.

Description

Описание
Перекрестная ссылка на родственные заявки
Настоящее изобретение является национальной фазой международной заявки РСТ/JP06/0309606, поданной 2 мая 2006, по которой испрашивается приоритет предварительной патентной заявки США No. 60/679466, поданной 9 мая 2005, предварительной патентной заявки США No. 60/738434, поданной 21 ноября 2005, и предварительной патентной заявки США No. 60/748919, поданной 8 декабря 2005, каждая из которых приведена в описании в качестве ссылки в полном объеме.
Перечень последовательностей
В приложении к описанию также представлен перечень последовательностей, направленный посредством EFS 31 октября 2007 согласно 37 C.R.F. § I.52(e)(5); текстовый файл перечня последовательностей обозначен 077375,0499SEQLISTING.txt, имеет размер 48642 байта и создан 3 октября 2007. Перечень последовательностей, поданный в электронной версии, не ограничивает рамки описания и не содержит новых объектов.
Область техники, к которой относится изобретение
Настоящее изобретение главным образом относится к иммунотерапии при лечении заболевания человека и уменьшению ее побочных эффектов. Более конкретно, настоящее изобретение относится к применению анти-PD-1-антител и к применению комбинированной иммунотерапии, включая комбинацию анти-CTLА-4 и анти-PD1-антител, для лечения рака и/или для уменьшения частоты или тяжести побочных эффектов, связанных с лечением такими отдельно используемыми антителами.
Уровень техники
Белок программируемой смерти 1 (PD-1) является ингибиторным членом семейства рецепторов CD28, которое включает в себя также CD28, CTLА-4, ICOS и BTLA. PD-1 экспрессируется активированными В-клетками, Т-клетками и миелоидными клетками (Agata et al., supra; Okazaki et al. (2002) Curr. Opin. Immunol. 14: 391779-82; Bennet et al. (2003) J Immunol 170:711-8). Первоначальные члены данного семейства, CD28 и ICOS, были обнаружены по функциональным действиям на увеличение пролиферации Т-клеток после добавления моноклональных антител (Hutloff et al. (1999) Nature 397:263-266; Hansen et al. (1980) Immunogenics 10:247-260). PD-1 был обнаружен скринингом на дифференциальную экспрессию в апоптотических клетках (Ishida et al. (1992) EMBO J 11:3887-95). Другие члены данного семейства, CTLA-4 и BTLA, были обнаружены скринингом на дифференциальную экспрессию в цитотоксических Т-лимфоцитах и TH1-клетках, соответственно. CD28, ICOS и CTLA-4, все, имеют неспаренный остаток цистеина, дающий возможность гомодимеризации. В противоположность этому, предполагается, что PD-1 существует в виде мономера, не имея неспаренного остатка цистеина, характерного для других членов семейства CD28.
Ген PD-1 является трансмембранным белком типа I 55 кДа, который является частью суперсемейства генов Ig (Agata et al. (1996) Int Immunol 8:765-72). PD-1 содержит мембранопроксимальный иммунорецепторный ингибирующий мотив на основе тирозина (ITIM) и мембранодистальный мотив переключения на основе тирозина (ITSM) (Thomas, M.L. (1995) J Exp Med 181:1953-6; Vivier, E и Daeron, M (1997) Immunol Today 18:286-91). PD-1, хотя и является структурно сходным с CTLA-4, лишен мотива MYPPPY, который является критическим для связывания B7-1 и B7-2. Были идентифицированы два лиганда для PD-1, PD-L1 и PD-L2, которые, как было показано, отрицательно регулируют активацию Т-клеток после связывания с PD-1 (Freeman et al. (2000) J Exp Med 192:1027-34; Latchman et al. (2001) Nat Immunol 2:261-8; Carter et al. (2002) Eur J Immunol 32:634-43). Как PD-L1, так и PD-L2 являются гомологами B7, которые связываются с PD-1, но не связываются с другими членами семейства CD28. Один лиганд для PD-1, PD-L1, является изобилующим в различных типах рака человека (Dong et al. (2002) Nat. Med. 8:787-9). Взаимодействие между PD-1 и PD-L1 приводит к уменьшению инфильтрирующих опухоль лимфоцитов, уменьшению опосредованной рецептором Т-клеток пролиферации и ускользанию от иммунологического надзора раковых клеток (Dong et al. (2003) J. Mol. Med. 81:281-7; Blank et al. (2005) Cancer Immunol. Immunother. 54:307-314; Konishi et al. (2004) Clin. Cancer Res. 10:5094-100). Иммуносупрессия может быть обращена ингибированием локального взаимодействия PD-1 с PD-L1, и это действие является аддитивным при блокировании взаимодействия PD-1 с PD-L2 (Iwai et al. (2002) Proc. Nat'l. Acad. Sci. USA 99:12293-7; Brown et al. (2003) J. Immunol. 170:1257-66).
PD-1 является ингибирующим членом семейства CD28, экспрессируемым на активированных B-клетках, T-клетках и миелоидных клетках (Agata et al., supra; Okazaki et al. (2002) Curr Opin Immunol 14: 391779-82; Bennett et al. (2003) J Immunol 170:711-8). PD-1-недостаточные животные развивают различные аутоиммунные фенотипы, включая аутоиммунную кардиопатию и подобный волчанке синдром с артритом и нефритом (Nishimura et al. (1999) Immunity 11:141-51; Nishimura et al. (2001) Science 291:319-22). Кроме того, было обнаружено, что PD-1 играет роль в аутоиммунном энцефаломиелите, системной красной волчанке, болезни трансплантат против хозяина (GVHD), диабете типа I и ревматоидном артрите (Salama et al. (2003) J Exp Med 198:71-78; Prokunina and Alarcon-Riquelme (2004) Hum Mol Genet 13:R143; Nielsen et al. (2004) Lupus 13:510). Было показано, что в линии мышиных опухолевых В-клеток ITSM PD-1 является необходимым для блокирования BCR-опосредованного вхождения Ca2+ и фосфорилирования тирозина, находящихся ниже по ходу процесса эффекторных молекул (Okazaki et al. (2001) PNAS 98:13866-71).
Таким образом, желательными являются агенты, которые распознают PD-1, и способы применения таких агентов.
Описание изобретения
Настоящее изобретение обеспечивает выделенные моноклональные антитела, в частности моноклональные антитела человека, которые связываются с PD-1 и которые проявляют многочисленные желаемые свойства. Такие свойства включают, например, высокую аффинность связывания с PD-1 человека, но отсутствие существенной перекрестной реактивности с CD28, CTLА-4 или ICOS человека. Кроме того, было показано, что антитела настоящего изобретения модулируют иммунные реакции. Таким образом, другой аспект настоящего изобретения относится к способам модуляции иммунных реакций с использованием анти-PD-1-антител. В частности, настоящее изобретение обеспечивает способ ингибирования роста опухолевых клеток in vivo с использованием анти-PD-1-антител.
В одном аспекте настоящее изобретение относится к выделенному моноклональному антителу или его антигенсвязывающей части, где данное антитело проявляет по меньшей мере одно из следующих свойств:
(а) связывается с PD-1 человека с KD 1×10-7М или менее;
(b) по существу не связывается с CD28, CTLА-4 или ICOS человека;
(с) увеличивает пролиферацию Т-клеток в анализе реакции лимфоцитов в смешанной культуре (MLR);
(d) увеличивает продуцирование интерферона-гамма в анализе MLR;
(е) увеличивает секрецию интерлейкина-2 (IL-2) в анализе MLR;
(f) связывается с PD-1 человека и PD-1 собакоподобной обезьяны;
(g) ингибирует связывание PD-L1 и/или PD-L2 с PD-1;
(h) стимулирует антигенспецифические ответные реакции памяти;
(i) стимулирует ответные реакции антител;
(j) ингибирует рост опухолевых клеток in vivo.
Предпочтительно, данное антитело является антителом человека, хотя в альтернативном варианте осуществления данное антитело может быть мышиным антителом, химерным антителом или гуманизированным антителом.
В более предпочтительных вариантах осуществления данное антитело связывается с PD-1 человека с KD 5×10-8М или менее, связывается с PD-1 человека с KD 1×10-8М или менее, связывается с PD-1 человека с KD 5×10-9М или менее, или связывается с PD-1 человека с KD 1×10-8М - KD 1×10-10М.
В другом варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее:
(а) вариабельную область тяжелой цепи человека, которая содержит аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:1, 2, 3, 4, 5, 6 и 7; и
(b) вариабельную область легкой цепи человека, которая содержит аминокислотную последовательность, состоящую из SEQ ID NO:8, 9, 10, 11, 12, 13 и 14;
В различных вариантах осуществления ссылочное антитело содержит:
(а) вариабельную область тяжелой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:1; и
(b) вариабельную область легкой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:8;
или ссылочное антитело содержит:
(а) вариабельную область тяжелой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:2; и
(b) вариабельную область легкой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:9;
или ссылочное антитело содержит:
(а) вариабельную область тяжелой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:3; и
(b) вариабельную область легкой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:10;
или ссылочное антитело содержит:
(а) вариабельную область тяжелой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:4; и
(b) вариабельную область легкой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:11;
или ссылочное антитело содержит:
(а) вариабельную область тяжелой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:5; и
(b) вариабельную область легкой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:12;
или ссылочное антитело содержит:
(а) вариабельную область тяжелой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:6; и
(b) вариабельную область легкой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:13;
или ссылочное антитело содержит:
(а) вариабельную область тяжелой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:7; и
(b) вариабельную область легкой цепи человека, содержащую аминокислотную последовательность SEQ ID NO:14.
В другом аспекте настоящее изобретение относится к выделенному моноклональному антителу или его антигенсвязывающей части, содержащему вариабельную область тяжелой цепи, которая является продуктом или получена из гена VH 3-33, где данное антитело специфически связывает PD-1. Кроме того, настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область тяжелой цепи, которая является продуктом или получена из гена VH 4-39, где данное антитело специфически связывает PD-1. Кроме того, настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область тяжелой цепи, которая является продуктом или получена из гена VК L6, где данное антитело специфически связывает PD-1. Кроме того, настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область легкой цепи, которая является продуктом или получена из гена VK L15, где данное антитело специфически связывает PD-1.
В предпочтительном варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее:
(а) вариабельную область тяжелой цепи гена VH 3-33 человека; и
(b) вариабельную область легкой цепи гена VK L6 человека;
где данное антитело специфически связывается с PD-1.
В другом предпочтительном варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее:
(а) вариабельную область тяжелой цепи гена VH 4-39 человека; и
(b) вариабельную область легкой цепи гена VK L15 человека;
где данное антитело специфически связывается с PD-1.
В другом аспекте настоящее изобретение обеспечивает выделенное моноклональное антитело человека или его антигенсвязывающую часть, содержащее:
вариабельную область тяжелой цепи, которая содержит последовательности CDR1, CDR2 и CDR3; и
вариабельную область легкой цепи, которая содержит последовательности CDR1, CDR2 и CDR3, где
(а) последовательность CDR3 вариабельной области тяжелой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:29, 30, 31, 32, 33, 34 и 35, и их консервативных модификаций;
(b) последовательность CDR3 вариабельной области легкой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:50, 51, 52, 53, 54, 55 и 56, и их консервативных модификаций; и
(с) данное антитело специфически связывается с PD-1 человека.
Предпочтительно, последовательность CDR2 вариабельной области тяжелой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:22, 23, 24, 25, 26, 27 и 28, и их консервативных модификаций; и последовательность CDR2 вариабельной области легкой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:43, 44, 45, 46, 47 и 49, и их консервативных модификаций. Предпочтительно, последовательность CDR1 вариабельной области тяжелой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:15, 16, 17, 18, 19, 20 и 21, и их консервативных модификаций; и последовательность CDR1 вариабельной области легкой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:36, 37, 38, 39, 40, 41 и 42, и их консервативных модификаций.
Еще в одном аспекте настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область тяжелой цепи и вариабельную область легкой цепи, где:
(а) вариабельная область тяжелой цепи содержит аминокислотную последовательность, которая по меньшей мере на 80% гомологична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO:1, 2, 3, 4, 5, 6 и 7;
(b) вариабельная область легкой цепи содержит аминокислотную последовательность, которая по меньшей мере на 80% гомологична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO:8, 9, 10, 11, 12, 13 и 14;
(с) данное антитело связывается с PD-1 человека с KD 1×10-7М или менее; и
(d) данное антитело по существу не связывается с CD28, CTLА-4 или ICOS человека.
В предпочтительном варианте осуществления данные антитела дополнительно обладают по меньшей мере одним из следующих свойств:
(а) данное антитело увеличивает пролиферацию Т-клеток в анализе MLR;
(b) данное антитело увеличивает продуцирование интерферона-гамма в анализе MLR или
(с) данное антитело увеличивает секрецию IL-2 в анализе MLR.
Дополнительно или альтернативно, данное антитело может обладать одним или несколькими другими признаками, перечисленными выше.
В предпочтительном варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее:
(а) CDR1 вариабельной области тяжелой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:15, 16, 17, 18, 19, 20 и 21;
(b) CDR2 вариабельной области тяжелой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:22, 23, 24, 25, 26, 27 и 28;
(с) CDR3 вариабельной области тяжелой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:29, 30, 31, 32, 33, 34 и 35;
(d) CDR1 вариабельной области легкой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:36, 37, 38, 39, 40, 41 и 42;
(е) CDR2 вариабельной области легкой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:43, 44, 45, 46, 47, 48 и 49; и
(f) CDR3 вариабельной области легкой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:50, 51, 52, 53, 54, 55 и 56;
где данное антитело специфически связывает PD-1.
Предпочтительная комбинация содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:15;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:22;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:29;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:36;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:43, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:50.
Другая предпочтительная комбинация содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:16;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:23;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:30;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:37;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:44, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:51.
Другая предпочтительная комбинация содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:17;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:24;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:31;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:38;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:45, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:52.
Другая предпочтительная комбинация содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:18;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:25;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:32;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:39;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:46, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:53.
Другая предпочтительная комбинация содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:19;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:26;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:33;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:40;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:47, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:54.
Другая предпочтительная комбинация содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:20;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:27;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:34;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:41;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:48, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:55.
Другая предпочтительная комбинация содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:21;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:28;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:35;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:42;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:49, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:56.
Другие предпочтительные антитела настоящего изобретения или их антигенсвязывающие части содержат:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:1, 2, 3, 4, 5, 6 и 7, и
(b) вариабельную область легкой цепи, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:8, 9, 10, 11, 12, 13 и 14;
где данное антитело специфически связывает PD-1.
Предпочтительная комбинация содержит:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:1, и
(b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:8.
Другая предпочтительная комбинация содержит:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:2, и
(b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:9.
Другая предпочтительная комбинация содержит:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:3, и
(b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:10.
Другая предпочтительная комбинация содержит:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:4, и
(b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:11.
Другая предпочтительная комбинация содержит:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:5, и
(b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:12.
Другая предпочтительная комбинация содержит:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:6, и
(b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:13.
Другая предпочтительная комбинация содержит:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:7, и
(b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:14.
Антитела настоящего изобретения могут быть, например, полноразмерными антителами, например, изотипа IgG1 или IgG4. Альтернативно, данные антитела могут быть фрагментами антител, такими как Fab или F(ab')2 фрагменты, или одноцепочечными антителами.
Настоящее изобретение обеспечивает также иммуноконъюгат, содержащий антитело настоящего изобретения или его антигенсвязывающую часть, связанные с терапевтическим агентом, таким как цитотоксин или радиоактивный изотоп. Настоящее изобретение обеспечивает также биспецифическую молекулу, содержащую антитело или его антигенсвязывающую часть настоящего изобретения, связанные со второй функциональной частью, имеющей другую специфичность связывания, чем указанное антитело или его антигенсвязывающая часть.
Обеспечены также композиции, содержащие антитело или его антигенсвязывающую часть, или иммуноконъюгат или биспецифическую молекулу настоящего изобретения и фармацевтически приемлемый носитель.
Молекулы нуклеиновых кислот, кодирующие данные антитела или их антигенсвязывающие части настоящего изобретения, также включены в настоящее изобретение, а также экспрессирующие векторы, содержащие такие нуклеиновые кислоты, и клетки-хозяева, содержащие такие экспрессирующие векторы. Кроме того, настоящее изобретение обеспечивает трансгенную мышь, содержащую трансгены тяжелой и легкой цепей иммуноглобулина человека, причем указанная мышь экспрессирует антитело настоящего изобретения, а также гибридомы, полученные из такой мыши, причем указанная гибридома продуцирует антитело настоящего изобретения.
Еще в одном аспекте настоящее изобретение обеспечивает способ модуляции иммунной реакции у субъекта, предусматривающий введение указанному субъекту антитела или его антигенсвязывающей части настоящего изобретения таким образом, что иммунная реакция у данного субъекта модулируется. Предпочтительно, антитело настоящего изобретения усиливает, стимулирует или увеличивает иммунную реакцию у данного субъекта.
В следующем аспекте настоящее изобретение обеспечивает способ ингибирования роста опухолевых клеток у субъекта, предусматривающий введение субъекту терапевтически эффективного количества анти-PD-1-антитела или его антигенсвязывающей части. Антитела настоящего изобретения предпочтительны для применения в данном способе, хотя вместо них могут быть использованы другие анти-PD-1-антитела (самостоятельно или в комбинации с анти-PD-1-антителом настоящего изобретения). Например, в способе ингибирования роста опухоли может быть использовано химерное, гуманизированное или полностью анти-PD-1-антитело человека.
В следующем аспекте настоящее изобретение обеспечивает способ лечения инфекционного заболевания у субъекта, предусматривающий введение субъекту терапевтически эффективного количества анти-PD-1-антитела или его антигенсвязывающей части. Антитела настоящего изобретения предпочтительны для применения в данном способе, хотя вместо них могут быть использованы другие анти-PD-1-антитела (самостоятельно или в комбинации с анти-PD-1-антителом настоящего изобретения). Например, в способе лечения инфекционного заболевания может быть использовано химерное, гуманизированное или полностью анти-PD-1-антитело человека.
Кроме того, настоящее изобретение обеспечивает способ усиления иммунной реакции на антиген у субъекта, предусматривающий введение данному субъекту: (i) антигена и (ii) анти-PD-1-антитела или его антигенсвязывающей части таким образом, что иммунная реакция на данный антиген у субъекта усиливается. Таким антигеном может быть, например, опухолевый антиген, вирусный антиген, бактериальный антиген или антиген из патогена. Антитела настоящего изобретения предпочтительны для применения в данном способе, хотя вместо них могут быть использованы другие анти-PD-1-антитела (самостоятельно или в комбинации с анти-PD-1-антителом настоящего изобретения). Например, в способе усиления иммунной реакции на антиген у субъекта может быть использовано химерное, гуманизированное или полностью анти-PD-1-антитело человека.
Настоящее изобретение обеспечивает также способы получения анти-PD-1-антител «второй генерации» на основе последовательностей анти-PD-1-антител настоящего изобретения. Например, настоящее изобретение обеспечивает способ получения анти-PD-1-антитела, предусматривающий:
(а) обеспечение: (i) последовательности вариабельной области тяжелой цепи антитела, содержащей последовательность CDR1, которая выбрана из группы, состоящей из SEQ ID NO:15, 16, 17, 18, 19, 20 и 21, и/или последовательность CDR2, которая выбрана из группы, состоящей из SEQ ID NO:22, 23, 24, 25, 26, 27 и 28; и/или последовательность CDR3, которая выбрана из группы, состоящей из SEQ ID NO:29, 30, 31, 32, 33, 34 и 35; или (ii) последовательности вариабельной области легкой цепи антитела, содержащей последовательность CDR1, которая выбрана из группы, состоящей из SEQ ID NO:36, 37, 38, 39, 40, 41 и 42, и/или последовательность CDR2, которая выбрана из группы, состоящей из SEQ ID NO:43, 44, 45, 46, 47, 48 и 49, и/или последовательность CDR3, которая выбрана из группы, состоящей из SEQ ID NO:50, 51, 52, 53, 54, 55 и 56;
(b) изменение по меньшей мере одного аминокислотного остатка по меньшей мере в одной последовательности вариабельной области антитела, причем указанная последовательность выбрана из последовательности вариабельной области тяжелой цепи антитела и последовательности вариабельной области легкой цепи антитела, для создания по меньшей мере одной измененной последовательности антитела; и
(с) экспрессию измененной последовательности антитела в виде белка.
Другие признаки и преимущества настоящего изобретения будут очевидны из следующего подробного описания и примеров, которые не должны рассматриваться как ограничивающие. Содержание всех цитируемых ссылок, вводов GenBank, патентов и опубликованных заявок на патент специально включено в данное описание посредством ссылки.
Краткое описание чертежей
На фиг.1А показана нуклеотидная последовательность (SEQ ID NO:57) и аминокислотная последовательность (SEQ ID NO:1) вариабельной области тяжелой цепи моноклонального антитела человека 17D8. Области CDR1 (SEQ ID NO:15), CDR2 (SEQ ID NO:22) и CDR3 (SEQ ID NO:29) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V, D и J.
На фиг.1В показана нуклеотидная последовательность (SEQ ID NO:64) и аминокислотная последовательность (SEQ ID NO:8) вариабельной области легкой цепи моноклонального антитела человека 17D8. Области CDR1 (SEQ ID NO:36), CDR2 (SEQ ID NO:43) и CDR3 (SEQ ID NO:50) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.2А показана нуклеотидная последовательность (SEQ ID NO:58) и аминокислотная последовательность (SEQ ID NO:2) вариабельной области тяжелой цепи моноклонального антитела человека 2D3. Области CDR1 (SEQ ID NO:16), CDR2 (SEQ ID NO:23) и CDR3 (SEQ ID NO:30) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.2В показана нуклеотидная последовательность (SEQ ID NO:65) и аминокислотная последовательность (SEQ ID NO:9) вариабельной области легкой цепи моноклонального антитела человека 2D3. Области CDR1 (SEQ ID NO:37), CDR2 (SEQ ID NO:44) и CDR3 (SEQ ID NO:51) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.3А показана нуклеотидная последовательность (SEQ ID NO:59) и аминокислотная последовательность (SEQ ID NO:3) вариабельной области тяжелой цепи моноклонального антитела человека 4Н1. Области CDR1 (SEQ ID NO:17), CDR2 (SEQ ID NO:24) и CDR3 (SEQ ID NO:31) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.3В показана нуклеотидная последовательность (SEQ ID NO:66) и аминокислотная последовательность (SEQ ID NO:10) вариабельной области легкой цепи моноклонального антитела человека 4Н1. Области CDR1 (SEQ ID NO:38), CDR2 (SEQ ID NO:45) и CDR3 (SEQ ID NO:52) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.4А показана нуклеотидная последовательность (SEQ ID NO:60) и аминокислотная последовательность (SEQ ID NO:4) вариабельной области тяжелой цепи моноклонального антитела человека 5С4. Области CDR1 (SEQ ID NO:18), CDR2 (SEQ ID NO:25) и CDR3 (SEQ ID NO:32) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.4В показана нуклеотидная последовательность (SEQ ID NO:67) и аминокислотная последовательность (SEQ ID NO:11) вариабельной области легкой цепи моноклонального антитела человека 5С4. Области CDR1 (SEQ ID NO:39), CDR2 (SEQ ID NO:46) и CDR3 (SEQ ID NO:53) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.5А показана нуклеотидная последовательность (SEQ ID NO:61) и аминокислотная последовательность (SEQ ID NO:5) вариабельной области тяжелой цепи моноклонального антитела человека 4А11. Области CDR1 (SEQ ID NO:19), CDR2 (SEQ ID NO:26) и CDR3 (SEQ ID NO:33) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.5В показана нуклеотидная последовательность (SEQ ID NO:68) и аминокислотная последовательность (SEQ ID NO:12) вариабельной области легкой цепи моноклонального антитела человека 4А11. Области CDR1 (SEQ ID NO:40), CDR2 (SEQ ID NO:47) и CDR3 (SEQ ID NO:54) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.6А показана нуклеотидная последовательность (SEQ ID NO:62) и аминокислотная последовательность (SEQ ID NO:6) вариабельной области тяжелой цепи моноклонального антитела человека 7D3. Области CDR1 (SEQ ID NO:20), CDR2 (SEQ ID NO:27) и CDR3 (SEQ ID NO:34) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.6В показана нуклеотидная последовательность (SEQ ID NO:69) и аминокислотная последовательность (SEQ ID NO:13) вариабельной области легкой цепи моноклонального антитела человека 7D3. Области CDR1 (SEQ ID NO:41), CDR2 (SEQ ID NO:48) и CDR3 (SEQ ID NO:55) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.7А показана нуклеотидная последовательность (SEQ ID NO:63) и аминокислотная последовательность (SEQ ID NO:7) вариабельной области тяжелой цепи моноклонального антитела человека 5F4. Области CDR1 (SEQ ID NO:21), CDR2 (SEQ ID NO:28) и CDR3 (SEQ ID NO:35) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.7В показана нуклеотидная последовательность (SEQ ID NO:70) и аминокислотная последовательность (SEQ ID NO:14) вариабельной области легкой цепи моноклонального антитела человека 5F4. Области CDR1 (SEQ ID NO:42), CDR2 (SEQ ID NO:49) и CDR3 (SEQ ID NO:56) показаны прерывистой линией и указаны деривации (источники) зародышевой линии V и J.
На фиг.8 показано сопоставление аминокислотной последовательности вариабельной области тяжелой цепи 17D8, 2D3, 4H1, 5C4 и 7D3 с аминокислотной последовательностью VH 3-33 зародышевой линии человека (SEQ ID NO:71).
На фиг.9 показано сопоставление аминокислотной последовательности вариабельной области легкой цепи 17D8, 2D3 и 7D3 с аминокислотной последовательностью Vk L6 зародышевой линии человека (SEQ ID NO:73).
На фиг.10 показано сопоставление аминокислотной последовательности вариабельной области легкой цепи 4Н1 и 5С4 с аминокислотной последовательностью Vk L6 зародышевой линии человека (SEQ ID NO:73).
На фиг.11 показано сопоставление аминокислотной последовательности вариабельной области тяжелой цепи 4А11 и 5F4 с аминокислотной последовательностью VH 4-39 зародышевой линии человека (SEQ ID NO:72).
На фиг.12 показано сопоставление аминокислотной последовательности вариабельной области легкой цепи 4А11 и 5F4 с аминокислотной последовательностью Vk L15 зародышевой линии человека (SEQ ID NO:74).
На фиг.13А-13В показаны результаты экспериментов с проточной цитометрией, демонстрирующие, что моноклональные антитела человека 5С4 и 4Н1, направленные против PD-1 человека, связываются с клеточной поверхностью клеток СНО, трансфицированных полноразмерным PD-1 человека. На фиг.13А показан график проточной цитометрии для 5С4. На фиг.13В показан график проточной цитометрии для 4Н1. Тонкая линия представляет связывание с клетками СНО, и жирная линия представляет связывание с СНО-hPD-1-клетками.
На фиг.14 показан график, демонстрирующий, что моноклональные антитела 17D8, 2D3, 4H1, 5C34 и 4А11, направленные против PD-1 человека, специфически связываются с PD-1, но не с другими членами семейства CD28.
На фиг.15А-15С показаны результаты экспериментов с проточной цитометрией, демонстрирующие, что моноклональные антитела человека 5С4 и 4Н1, направленные против PD-1 человека, связываются с PD-1 на клеточной поверхности. На фиг.15А показано связывание с активированными Т-клетками человека. На фиг.15В показано связывание с Т-клетками собакоподобной обезьяны. На фиг.15С показано связывание с трансфицированными клетками СНО, экспрессирующими PD-1.
На фиг.16А-16С показаны результаты экспериментов, демонстрирующие, что моноклональные антитела человека против PD-1 человека стимулируют пролиферацию Т-клеток, секрецию IFN-гамма и секрецию IL-2 в анализе реакции лимфоцитов в смешенной культуре. Фиг.16А является диаграммой в виде столбцов, показывающей зависимую от концентрации пролиферацию Т-клеток; фиг.16В является диаграммой в виде столбцов, показывающей зависимую от концентрации секрецию IFN-гамма; фиг.16С является диаграммой в виде столбцов, показывающей зависимую от концентрации секрецию IL-2.
На фиг.17А-17В показаны результаты экспериментов с проточной цитометрией, демонстрирующие, что моноклональные антитела человека против PD-1 человека блокируют связывание PD-L1 и PD-L2 с трансфицированными клетками СНО, экспрессирующими PD-1. Фиг.17А является графиком, показывающим ингибирование связывания PD-L1; фиг.17В является графиком, показывающим ингибирование связывания PD-L2.
На фиг.18 показаны результаты экспериментов с проточной цитометрией, демонстрирующие, что моноклональные антитела человека против PD-1 человека не стимулируют апоптоз Т-клеток.
На фиг.19 показаны результаты экспериментов, демонстрирующие, что анти-PD-1-HuMab имеют зависимое от концентрации действие на секрецию IFN-гамма PBMC из CMV-положительных доноров, когда PBMC стимулировали лизатом CMV и анти-PD-1-антителом.
На фиг.20 показаны результаты экспериментов по росту опухоли на системе мышиной модели, демонстрирующие, что лечение опухоли мыши in vivo анти-PD-1-антителами ингибирует рост опухоли.
На фиг.21А-21D показан объем опухоли во времени у отдельных мышей, которым имплантировали опухолевые клетки ободочной кишки МС38 (PD-1-) и в тот же день подвергали одной из следующих терапий: (A) IgG мыши (контроль), (B) анти-CTLA-4-антитело, (C) анти-PD-1-антитело и (D) анти-CTLA-4-антитело и анти-PD-1-антитело. Мышей подвергали последующей обработке антителами в дни 3, 6 и 10, как описано в примере 13, и объем опухоли подвергали мониторингу на протяжении 60 дней.
На фиг.22 показан средний объем опухоли мышей, показанный на фиг.21
На фиг.23 показана медиана объема опухоли мышей, показанного на фиг.21.
На фиг.24A-24D показан объем опухоли во времени у отдельных мышей, которым были имплантированы опухолевые клетки MC38 ободочной кишки (PD-L1-) и спустя одну неделю были подвергнуты одной из следующих терапий: (A) IgG мыши (контроль), (B) анти-CTLA-4-антитело, (C) анти-PD-1-антитело и (D) анти-CTLA-4-антитело и анти-PD-1-антитело. Объем опухоли в первый день обработки составлял приблизительно 315 мм3. Мышей подвергали последующей обработке антителами в дни 3, 6 и 10, как описано в примере 14.
На фиг.25 показан средний объем опухоли мышей, показанный на фиг.24.
На фиг.26 показана медиана объема опухоли мышей, показанного на фиг.24.
На фиг.27 показан средний объем опухоли во времени у отдельных мышей, которым были имплантированы опухолевые клетки MC38 ободочной кишки (PD-L1-) (день -7) и затем были подвергнуты в дни 0, 3, 6 и 10 после имплантации (как описано в примере 15) одной из следующих терапий: (A) IgG мыши в качестве контроля (20 мг/кг, X20), (B) анти-PD-1-антитело (10 мг/кг) и IgG мыши (10 мг/кг) (P10X10), (C) анти-CTLA-4-антитело (10 мг/кг) и IgG мыши (10 мг/кг) (C10X10), (D) анти-CTLA-4-антитело и анти-PD-1-антитело (10 мг/кг каждого) (C10P10), (E) анти-CTLA-4-антитело и анти-PD-1-антитело (3 мг/кг каждого) (C3P3), и (F) анти-CTLA-4-антитело и анти-PD-1-антитело (1 мг/кг каждого) (C1P1). Две группы мышей были подвергнуты обработке каждым антителом последовательно следующим образом: (G) анти-CTLA-4-антитело (10 мг/кг, день 0), анти-CTLA-4-антитело (10 мг/кг, день 3), анти-PD-1-антитело (10 мг/кг, день 6) и анти-PD-1-антитело (10 мг/кг, день 10) (C10C10P10P10); и (H) анти-PD-1-антитело (10 мг/кг, день 0), анти-PD-1-антитело (10 мг/кг, день 3), анти-CTLA-4-антитело (10 мг/кг, день 6) и анти-CTLA-4-антитело (10 мг/кг, день 10) (10 мг/кг, день 10) (P10P10C10C10).
На фиг.28 показан средний объем опухоли мышей, показанный на фиг.27.
На фиг.29 показана медиана объема опухоли мышей, показанного на фиг.27.
На фиг.30A-30F показан объем опухоли во времени у отдельных мышей, которым были имплантированы клетки фибросаркомы SA1/N (PD-L1-) и спустя один день были подвергнуты одной из следующих терапий: (A) PBS (забуференный фосфатом физиологический раствор) (контроль-носитель), (B) IgG мыши (контроль-антитело, 10 мг/кг), (C) анти-PD-1-антитело (10 мг/кг), (D) анти-CTLA-4-антитело (10 мг/кг), (E) анти-CTLA-4-антитело (0,2 мг/кг) и (F) анти-PD-1-антитело (10 мг/кг) и анти-CTLA-4-антитело (0,2 мг/кг). Мышей подвергали последующей обработке антителами в дни 4, 7 и 11, как описано в примере 16, и объем опухоли подвергали мониторингу на протяжении 41 дня.
На фиг.31 показан средний объем опухоли мышей, показанный на фиг.29.
На фиг.32 показана медиана объема опухоли мышей, показанного на фиг.29.
На фиг.33А-33J показан объем опухоли во времени у отдельных мышей, которым были имплантированы клетки фибросаркомы SA1/N (PD-L1-) и затем были подвергнуты в дни 7, 10, 13 и 17 после имплантации (как описано на фиг.17) одной из следующих терапий: (A) PBS (контроль-носитель), (B) IgG мыши (контроль-антитело, 10 мг/кг), (C) анти-CTLA-4-антитело (0,25 мг/кг), (D) анти-CTLA-4-антитело (05 мг/кг), (E) анти-CTLA-4-антитело (5 мг/кг), (F) анти-PD-1-антитело (3 мг/кг), (G) анти-PD-1-антитело (10 мг/кг), (H) анти-PD-1-антитело (10 мг/кг) и анти-CTLA-4-антитело (0,25 мг/кг), (I) анти-PD-1-антитело (10 мг/кг) и анти-CTLA-4-антитело (0,5 мг/кг), и (F) анти-PD-1-антитело (3 мг/кг) и анти-CTLA-4-антитело (0,5 мг/кг). Объем опухоли в первый день обработки составлял приблизительно 110 мм3.
На фиг.34 показан средний объем опухоли мышей, показанный на фиг.33.
На фиг.35 показана медиана объема опухоли мышей, показанного на фиг.33.
На фиг.36A и 36B показан объем опухоли во времени у отдельных мышей, которым были имплантированы клетки фибросаркомы SA1/N (PD-L1-) и затем были подвергнуты в дни 10, 13, 16 и 19 после имплантации (как описано в примере 17) одной из следующих терапий: (A) IgG мыши (контроль-антитело, 10 мг/кг) или (B) анти-PD-1-антитело (10 мг/кг) и анти-CTLA-4-антитело (1 мг/кг). Объем опухоли в первый день обработки составлял приблизительно 250 мм3.
На фиг.37 показан средний объем опухоли мышей, показанный на фиг.36.
На фиг.38 показана медиана объема опухоли мышей, показанного на фиг.36.
На фиг.39 показан средний процент и медиана процента ингибирования опухоли, рассчитанные из объемов опухолей, показанных на фиг.33 и 36.
На фиг.40A-40D показан объем опухоли у мышей BALB/c, которым были имплантированы подкожно клетки почечной аденокарциномы RENCA (PD-L1+) (Murphy and Hrushesky (1973) J. Nat'l. Cancer Res. 50:1013-1025) (день -12) и затем были подвергнуты внутрибрюшинно в дни 0, 3, 6 и 9 после имплантации одной из следующих терапий: (A) IgG мыши (контроль-антитело, 20 мг/кг), (B) анти-PD-1-антитело (10 мг/кг), (C) анти-CTLA-4-антитело (10 мг/кг) и (D) анти-PD-1-антитело (10 мг/кг) в комбинации с анти-CTLA-4-антителом (10 мг/кг). Объем опухоли в первый день обработки составлял приблизительно 115 мм3.
На фиг.41 показано, что связывание мышиного слитого белка PD-L2-Fc с мышиным PD-1 (mPD-1) блокируется анти-mPD-1-антителом 4H2 зависимым от дозы образом. Связывание детектируют измерением флуоресценции FITC-меченым ослиным антителом против IgG крысы при помощи ELISA. Чем больше MFI (средняя интенсивность флуоресценции), тем больше связывание.
На фиг.42 показаны кривые связывания анти-mPD-1-антител с иммобилизованным слитым белком mPD-1-Fc, полученные при помощи ELISA.
На фиг.43 показана кривая связывания крысиного анти-mPD-1-антитела 4H2.B3 с mPD-1-экспрессирующими CHO-клетками. Связывание детектировали ослиными антителами против крысиного IgG, FITC-конъюгированными и измеренными при помощи FACS (MFI).
На фиг.44 показана кривая связывания слитого белка mPD-L1-hFc с mPD-1-экспрессирующими СНО-клетками в присутствии увеличивающихся концентраций анти-mPD-1-антитела 4H2.B3. Связывание детектировали козьими антителами против IgG человека IgG, FITC-конъюгированными и измеренными при помощи FACS (MFI).
На фиг.45 показаны кривые связывания крысиного анти-mPD-1-антитела 4H2.B3 с mPD-1-экспрессирующими СНО-клетками в сравнении с химерным крысиным:мышиным анти-mPD-1-антителом 4H2.
На фиг.46 показаны кривые связывания слитого белка mPD-L1-hFc с mPD-1-экспрессирующими СНО-клетками в присутствии увеличивающихся концентраций либо крысиного анти-mPD-1-антитела 4H2.B3, либо химерного крысиного:мышиного анти-mPD-1-антитела 4H2.
На фиг.47 показан средний объем опухоли не содержащих опухоли мышей, предварительно обработанных анти-PD-1-антителом и повторно имплантированных клетками фибросаркомы SA1/N (PD-L1-). Показан также средний объем опухоли необработанных мышей (контроль, предварительно неимплантированные или необработанные), имплантированных клетками фибросаркомы SA1/N.
На фиг.48 показан объем опухоли во времени у отдельных мышей, которые выживали без опухоли после имплантации опухолевых клеток MC38 ободочной кишки (PD-L1-) и обработки анти-PD1-антителом или комбинацией анти-PD1-антитела с анти-CTLA-4-антителом, повторно имплантированных в 10 раз большим количеством опухолевых клеток MC38 ободочной кишки, чем при начальной обработке. Показан также средний объем опухоли необработанных мышей (контроль, предварительно неимплантированные или необработанные), имплантированных опухолевыми клетками МС38 ободочной кишки.
На фиг.49 показан средний объем опухоли мышей, показанный на фиг.48.
На фиг.50 показан средний объем опухоли во времени у отдельных мышей, которым были имплантированы опухолевые клетки CT26 ободочной кишки.
На фиг.51A-B показаны результаты экспериментов, демонстрирующих, что моноклональные антитела человека против PD-1 человека стимулируют пролиферацию Т-клеток и секрецию IFN-гамма в культурах, содержащих регуляторные Т-клетки. Фиг.51A является диаграммой в виде столбцов, показывающей зависимую от концентрации пролиферацию Т-клеток с использованием HuMAb 5C4; Фиг.51B является диаграммой в виде столбцов, показывающей зависимую от концентрации секрецию IFN-гамма с использованием HuMAb 5C4.
На фиг.52A-B показаны результаты экспериментов, демонстрирующие, что моноклональные антитела человека против PD-1 человека стимулируют пролиферацию Т-клеток и секрецию IFN-гамма в культурах, содержащих активированные Т-клетки. Фиг.52A является диаграммой в виде столбцов, показывающей зависимую от концентрации пролиферацию Т-клеток с использованием HuMAb 5C4; Фиг.52B является диаграммой в виде столбцов, показывающей зависимую от концентрации секрецию IFN-гамма с использованием HuMAb 5C4.
На фиг.53 показаны результаты анализа антителозависимой клеточноопосредованной цитотоксичности (ADCC), демонстрирующие, что моноклональные анти-PD-1-антитела человека убивают активированные Т-клетки человека в ADCC зависимым от концентрации образом относительно Fc-области анти-PD-1-антитела.
На фиг.54 показаны результаты анализа комплементзависимой цитотоксичности (CDC), демонстрирующие, что моноклональные анти-PD-1-антитела человека не убивают активированные Т-клетки человека в CDC зависимым от концентрации образом.
Наилучший способ осуществления изобретения
В одном аспекте настоящее изобретение относится к выделенным моноклональным антителам, в частности моноклональным антителам человека, которые специфически связываются с PD-1. В некоторых вариантах осуществления антитела настоящего изобретения проявляют одно или несколько желаемых функциональных свойств, таких как высокая аффинность связывания с PD-1, отсутствие перекрестной реактивности c другими членами семейства CD28, способность стимулировать пролиферацию Т-клеток, секрецию IFN-гамма и/или IL-2 в реакциях смешанных лимфоцитов, способность ингибировать связывание одного или нескольких лигандов PD-1 (например, PD-L1 и/или PD-L2), способность перекрестно реагировать с PD-1 собакоподобной обезьяны, способность стимулировать антигенспецифические реакции памяти, способность стимулировать ответные реакции антител и/или способность ингибировать рост опухолевых клеток in vivo. Дополнительно или альтернативно, антитела настоящего изобретения получены из конкретных последовательностей зародышевой линии тяжелой и легкой цепи и/или содержат конкретные структурные признаки, такие как CDR-области, содержащие конкретные аминокислотные последовательности. В другом аспекте настоящее изобретение относится к комбинированному применению моноклональных антител, которые специфически связываются с PD-1, и моноклональных антител, которые специфически связываются с CTLА-4.
Настоящее изобретение обеспечивает, например, выделенные антитела, способы получения таких антител, иммуноконъюгатов и биспецифических молекул, содержащих такие антитела, и фармацевтические композиции, содержащие такие антитела, иммуноконъюгаты или биспецифические молекулы настоящего изобретения.
В другом аспекте настоящее изобретение относится к способам ингибирования роста опухолевых клеток у субъекта с использованием анти-PD-1-антител. Как показано в данном описании, анти-PD-1-антитела способны ингибировать рост опухолевых клеток in vivo. Настоящее изобретение относится также к способам применения данных антител для модификации иммунной реакции, а также для лечения заболеваний, таких как рак или инфекционное заболевание, или для стимуляции защитной аутоиммунной реакции, или для стимуляции антигенспецифических иммунных реакций (например, совместным введением анти-PD-1-антитела с представляющим интерес антигеном).
Для более легкого понимания настоящего изобретения сначала будут определены некоторые термины. Дополнительные определения объяснены в подробном описании.
Термины “программируемая гибель 1,” “программируемая гибель клеток 1,” “белок PD-1,” “PD-1,” PD1,” “PDCD1,” “hPD-1” и “hPD-I” используются взаимозаменяемо и включают варианты, изоформы, видовые гомологи PD-1 человека и аналоги, имеющие по меньшей мере один общий эпитоп с PD-1. Полная последовательность PD-1 может быть найдена под номером доступа GenBank Accession No. U64863.
Термины “цитотоксический T-лимфоцит-ассоциированный антиген-4,” “CTLA-4,” “CTLA4,” “антиген CTLA-4” и “CD152” (см., например, Murata, Am. J. Pathol. (1999) 155:453-460) используются взаимозаменяемо и включают варианты, изоформы, видовые гомологи CTLА-4 человека и аналоги, имеющие по меньшей мере один общий эпитоп с CTLА-4 (см., например, Balzano (1992) Int. J. Cancer Suppl. 7:28-32). Полная последовательность CTLА-4 может быть найдена под номером доступа GenBank Accession No. L15006.
Термин “иммунная реакция" относится к действию, например, лимфоцитов, антигенпрезентирующих клеток, фагоцитарных клеток, гранулоцитов и растворимых макромолекул, продуцируемых вышеуказанными клетками или печенью (включая антитела, цитокины и комплемент), которое приводит к селективному повреждению, деструкции или элиминации из организма человека внедряющихся патогенов, клеток или тканей, инфицированных патогенами, раковых клеток или, в случаях аутоиммунитета или патологического воспаления, здоровых клеток или тканей человека.
“Путь трансдукции сигнала” относится к биохимической связи между различными молекулами трансдукции сигналов, которые играют роль в передаче сигнала от одной части клетки к другой части клетки. Как использовано в данном описании, фраза “рецептор клеточной поверхности" включает, например, молекулы и комплексы молекул, способные получать сигнал и передавать такой сигнал через плазматическую мембрану клетки. Примером «рецептора клеточной поверхности» настоящего изобретения является рецептор PD-1.
Термин “антитело”, как использовано в данном описании, включает целые антитела и любой антигенсвязывающий фрагмент (т.е. “антигенсвязывающую часть”) или его отдельные цепи. Термин “антитело" относится к гликопротеину, содержащему по меньшей мере две тяжелые (H) цепи и две легкие (L) цепи, взаимосвязанные дисульфидными связями, или его антигенсвязывающей части. Каждая тяжелая цепь содержит вариабельную область тяжелой цепи (сокращенно называемую в данном описании как VH) и константную область тяжелой цепи. Константная область тяжелой цепи состоит из трех доменов, CH1, CH2 и CH3. Каждая легкая цепь состоит из вариабельной области легкой цепи (сокращенно называемой в данном описании как VL) и константной области легкой цепи. Константная область легкой цепи состоит из одного домена, CL. Области VH и VL могут быть дополнительно подразделены на области гипервариабельности, называемые определяющими комплементарность областями (CDR), разбросанные между области, которые являются более консервативными, называемыми каркасными областями (FR). Каждая VH и VL состоит из трех CDR и четырех FR, расположенных от амино-конца к карбокси-концу в следующем порядке: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Вариабельные области тяжелой и легкой цепей содержат домен связывания, который взаимодействует с антигеном. Константные области антител могут опосредовать связывание иммуноглобулина с тканями хозяина или факторами, включая различные клетки иммунной системы (например, эффекторными клетками), и первый компонент (Clq) классической системы комплемента.
Термин “антигенсвязывающая часть" антитела (или просто “часть антитела"), как использовано в данном описании, относится к одному или нескольким фрагментам антитела, которые сохраняют способность специфически связываться с антигеном (например, PD-1). Было показано, что антигенсвязывающая функция антитела может выполняться фрагментами полноразмерного антитела. Примеры связывающих фрагментов, включенных в термин “антигенсвязывающая часть" антитела включают (i) Fab-фрагмент, одновалентный фрагмент, состоящий из доменов VL, VH, CL и CH1; (ii) F(ab')2-фрагмент, двухвалентный фрагмент, содержащий два Fab-фрагмента, связанных дисульфидным мостиком в шарнирной области; (iii) Fd-фрагмент, состоящий из доменов VH и CH1; (iv) Fv-фрагмент, состоящий из доменов VL и VH в едином плече антитела, (v) dAb-фрагмент (Ward et al., (1989) Nature 341:544-546), который состоит из домена VH; и (vi) выделенная определяющая комплементарность область (CDR). Кроме того, две области Fv-фрагмента, VL и VH, кодируются разными генами, они могут быть соединены при помощи рекомбинантных способов с использованием синтетического линкера, который дает возможность получать их в виде единой белковой цепи, в которой области VL и VH спариваются с образованием одновалентных молекул (известных как одноцепочечный Fv (scFv); см., например, Bird et al. (1988) Science 242:423-426; и Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Предполагается, что такие одноцепочечные молекулы также включены в термин “антигенсвязывающая часть" антитела. Такие фрагменты антител получают с использованием общепринятых способов, известных специалистам в данной области, и эти фрагменты подвергают скринингу таким же образом, как и интактные антитела.
“Выделенное антитело", как использовано в данном описании, означает антитело, которое по существу не содержит других антител, имеющих отличающиеся антигенные специфичности (например, выделенное антитело, которое специфически связывает PD-1, является по существу свободным от антител, которые специфически связывают антигены, отличные от PD-1). Однако выделенное антитело, которое связывает PD-1, может иметь перекрестную реактивность с другими антигенами, такими как молекулы PD-1 из других видов. Кроме того, выделенное антитело может быть по существу свободным от другого клеточного материала и/или химикалиев.
Термины «моноклональное антитело» или «композиция моноклонального антитела» относятся в данном описании к препарату молекул антител единого молекулярного состава. Композиция моноклонального антитела проявляет единственную специфичность связывания и аффинность в отношении конкретного эпитопа.
Термин «антитело человека» включает в данном описании антитела, имеющие вариабельные области, в которых как каркасные, так и CDR-области получены из последовательностей иммуноглобулина зародышевой линии человека. Кроме того, если данное антитело содержит константную область, то константная область также получена из последовательностей иммуноглобулина зародышевой линии человека. Антитела человека настоящего изобретения могут включать в себя аминокислотные остатки, не кодируемые последовательностями иммуноглобулина зародышевой линии человека (например, мутации, введенные случайным или сайт-специфическим мутагенезом in vitro, или соматическая мутация in vivo). Однако термин «антитело человека», как использовано в данном описании, не включает антитела, в которых CDR-последовательности, полученные из зародышевой линии другого вида млекопитающего, такого как мышь, были привиты на каркасные последовательности человека.
Термин «моноклональное антитело человека» означает антитела, проявляющие единственную специфичность связывания, которые имеют вариабельные области, в которых как каркасные, так и CDR-области получены из последовательностей иммуноглобулина зародышевой линии человека. В одном варианте осуществления моноклональные антитела человека получают с использованием гибридомы, которая включает в себя В-клетку, полученную из трансгенного животного (не человека), например, трансгенной мыши, имеющего геном, содержащий трансген тяжелой цепи и трансген легкой цепи человека, слитые с иммортализованной клеткой.
Термин «рекомбинантное антитело человека», как использовано в данном описании, включает все антитела человека, которые были получены, экспрессированы, созданы или выделены рекомбинантными способами, например, (а) антитела, выделенные из животного (например, мыши), которое является трансгенным или трансхромосомным в отношении генов иммуноглобулина человека, или полученной из них гибридомы (описанной дополнительно ниже), (b) антитела, выделенные из клетки-хозяина, трансформированной для экспрессии антитела человека, например, из трансфектомы, (с) антитела, выделенные из библиотеки рекомбинантных, комбинаторных антител человека, и (d) антитела, полученные, экспрессированные, созданные или выделенные любым другим способом, включающим сплайсинг последовательностей генов иммуноглобулинов человека в другие ДНК-последовательности. Такие рекомбинантные антитела человека имеют вариабельные области, в которых каркасные и CDR-области получены из последовательностей иммуноглобулина зародышевой линии человека. Однако в некоторых вариантах осуществления такие рекомбинантные антитела человека могут быть подвергнуты in vitro мутагенезу (или, когда используют животное, трансгенное в отношении последовательностей Ig, соматическому мутагенезу), и, следовательно, аминокислотные последовательности областей VH и VL рекомбинантных антител являются последовательностями, которые, хотя и получены из последовательностей VH и VL зародышевой линии человека или являются родственными указанным последовательностям, могут не существовать в природе в репертуаре зародышевой линии антител человека in vivo.
Как использовано в данном описании, «изотип» относится к классу антитела (например, IgМ или IgG1), который кодируется генами константной области тяжелой цепи.
Фразы «антитело, распознающее антиген» и «антитело, специфическое в отношении антигена» являются в данном описании взаимозаменяемыми с термином «антитело, которое специфически связывается с антигеном».
Термин «производные антитела человека» относится к любой модифицированной форме антитела человека, например конъюгату антитела и другого агента или антитела.
Термин «гуманизированное антитело» относится к антителам, в которых последовательности CDR, полученные из зародышевой линии другого вида млекопитающего, такого как мышь, были привиты на каркасные последовательности человека. В таких каркасных последовательностях человека могут быть произведены дополнительные модификации каркасной области.
Термин «химерное антитело» относится к антителам, в которых последовательности вариабельной области получены из одного вида, и последовательности константной области получены из другого вида, таким как антитело, в котором последовательности вариабельной области получены из мышиного антитела, и последовательности константной области получены из антитела человека.
Как использовано в данном описании, фраза антитело, которое «специфически связывается с PD-1 человека» относится к антителу, которое связывается с PD-1 человека с KD 1×10-7М или менее, более предпочтительно 5×10-8М или менее, более предпочтительно 1×10-8М или менее, более предпочтительно 5×10-9М или менее.
Термин “Kассоц” или “Ka”, как использовано в данном описании, относится к скорости ассоциации конкретного взаимодействия антитело-антиген, тогда как термин “Kдис” или “Kд” относится к скорости диссоциации конкретного взаимодействия антитело-антиген. Термин «KD» в данном описании относится к константе диссоциации, которую получают из отношения Kд к Ка (т.е. Кда), и ее выражают в виде молярной концентрации (М). Величины KD для антител могут быть определены с использованием способов, хорошо установленных в данной области. Предпочтительным способом определения KD антитела является способ с использованием резонанса поверхностных плазмонов, предпочтительно с использованием биосенсорной системы, такой как система Biacore®.
Как использовано в данном описании, термин «высокая аффинность» в отношении IgG-антитела относится к антителу, имеющему KD 10-8М, более предпочтительно 10-9 или менее и, даже более предпочтительно, 10-10М или менее в отношении антигена-мишени. Однако «высокая аффинность» связывания может варьироваться для других изотипов антигена. Например, «высокая аффинность» связывания для изотипа IgМ относится к антителу, имеющему KD 10-7М или менее, более предпочтительно 10-8М или менее, даже более предпочтительно 10-9М или менее.
Термин «лечение» или «терапия» относится к введению активного агента с целью излечения, лечения, уменьшения симптомов, облегчения, изменения, вылечивания, купирования, улучшения состояния (например, заболевания), симптомов указанного состояния или воздействия на состояние (или заболевание), симптомы указанного состояния или для предупреждения или задержки проявления симптомов, осложнений, биохимических показателей заболевания или иным образом остановки или ингибирования дальнейшего развития указанного заболевания, симптомов или нарушения статистически значимым образом.
«Побочные эффекты» (АЕ) означает в данном описании любой неблагоприятный и обычно неожиданный, даже нежелательный, признак (включая аномальное лабораторное открытие), симптом или заболевание, ассоциированное с применением медицинского лечения. Например, неблагоприятное событие может быть ассоциировано с активацией иммунной системы или экспансии клеток иммунной системы (например, Т-клеток) в ответ на лечение. Медицинское лечение может иметь одно или несколько ассоциированных побочных эффектов (АЕ), и каждый АЕ может иметь один и тот же или различный уровень тяжести. Ссылка на способы, способные «изменять неблагоприятные события», означает схему лечения, которая уменьшает частоту и/или тяжесть одного или нескольких АЕ, ассоциированных с применением другой схемы лечении.
Как использовано в данном описании, «гиперпролиферативное заболевание» означает состояния, в которых рост клеток увеличивается выше нормальных уровней. Например, гиперпролиферативные заболевания или нарушения включают злокачественные заболевания (например, рак пищевода, рак ободочной кишки, билиарный рак) и незлокачественные заболевания (например, атеросклероз, доброкачественную гиперплазию, доброкачественную гиперплазию предстательной железы).
«Субтерапевтическая доза» означает дозу терапевтического соединения при введении отдельно для лечения гиперпролиферативного заболевания (например, рака). Например, субтерапевтической дозой CTLА-4-антитела является единственная доза данного антитела при менее чем приблизительно 3 мг/кг, т.е. известная доза анти-CTLА-4-антитела.
Применение альтернативы (например, «или»), как следует понимать, означает одну, обе или любую комбинацию указанных альтернатив.
Как использовано в данном описании, «приблизительно» или «состоящий по существу из» означает «в пределах приемлемого диапазона ошибок» для конкретной величины, определенной специалистом в данной области, которая будет зависеть отчасти от того, как данная величина измерена или определена, т.е. от ограничений конкретной системы измерения. Например, «приблизительно» или «состоящий по существу из» может означать «в пределах 1 стандартного отклонения или более чем 1 стандартного отклонения», согласно практике в данной области. Альтернативно, «приблизительно» или «состоящий по существу из» может означать диапазон до 20%. Кроме того, в частности, в отношении биологических систем или процессов, эти термины могут означать «вплоть до значения или до 5-кратного значения величины». При использовании конкретных величин в данном описании и в формуле изобретения, если нет других указаний, значение «приблизительно» или «состоящий по существу из», как предполагается, должно быть в пределах приемлемого диапазона ошибок для этой конкретной величины.
Должно быть понятно, что в данном описании любой диапазон концентраций, диапазон процентов, диапазон отношений или диапазон целых чисел включает в себя величину любого целого числа в пределах указанного диапазона и, необязательно, его частей (например, одну десятую и одну сотую целого числа), если нет других указаний.
Как использовано в данном описании, термин «субъект» включает любого человека или любого животного, не являющегося человеком. Термин «животное-не человек» включает всех позвоночных, например млекопитающих и не-млекопитающих, таких как приматы (не человек), овцы, собаки, лошади, коровы, куры, земноводные, рептилии и т.д. За исключением случаев, когда даются другие указания, термины «пациент» или «субъект» используются взаимозаменяемо.
Анти-PD-1-антитела
Антитела настоящего изобретения характеризуются конкретными функциональными признаками или свойствами указанных антител. Например, данные антитела связываются с PD-1 (например, связываются с PD-1 человека и могут перекрестно реагировать с PD-1 из другого вида, такого как собакоподобная обезьяна). Предпочтительно, антитело настоящего изобретения связывается с PD-1 с высокой аффинностью, например, с KD 1×10-7М или менее. Анти-PD-1-антитело настоящего изобретения предпочтительно проявляют одну или несколько из следующих характеристик:
(а) связывается с PD-1 человека с KD 1×10-7М или менее;
(b) по существу не связывается с CD28, CTLА-4 или ICOS человека;
(с) увеличивает пролиферацию Т-клеток в анализе реакции лимфоцитов в смешанной культуре (MLR);
(d) увеличивает продуцирование интерферона-гамма в анализе MLR;
(f) связывается с PD-1 человека и PD-1 собакоподобной обезьяны;
(g) ингибирует связывание PD-L1 и/или PD-L2 с PD-1;
(h) стимулирует антигенспецифические ответные реакции памяти;
(i) стимулирует ответные реакции антител;
(j) ингибирует рост опухолевых клеток in vivo.
Предпочтительно, данное антитело связывается с PD-1 человека с KD 5×10-8М или менее, связывается с PD-1 человека с KD 1×10-8М или менее, связывается с PD-1 человека с KD 5×10-9М или менее, или связывается с PD-1 человека с KD 1×10-8М-KD 1×10-10М.
Антитело настоящего изобретения может проявлять любую комбинацию вышеперечисленных признаков, например двух, трех, четырех, пяти или более вышеперечисленных признаков.
Стандартные анализы для оценки связывающей способности антител против PD-1 известны в данной области, включая, например, ELISA, Вестерн-блоттинг и RIA. Кинетика связывания (например, аффинность связывания) антител может оцениваться также стандартными анализами, известными в данной области, такими как Biacore. Подходящие анализы для оценки любой из вышеописанных характеристик описаны подробно в примерах.
Моноклональные антитела 17D8, 2D3, 4H1, 5C4, 4А11, 7D3 и 5F4
Предпочтительные антитела настоящего изобретения являются моноклональными антителами человека 17D8, 2D3, 4H1, 5C4, 4А11, 7D3 и 5F4, выделенными и структурно охарактеризованными, как описано в примерах 1 и 2. Аминокислотные последовательности VH 17D8, 2D3, 4H1, 5C4, 4А11, 7D3 и 5F4 показаны в SEQ ID NO:1, 2, 3, 4, 5, 6 и 7, соответственно. Аминокислотные последовательности VL 17D8, 2D3, 4H1, 5C4, 4А11, 7D3 и 5F4 показаны в SEQ ID NO:8, 9, 10, 11, 12, 13 и 14, соответственно.
При условии, что каждое из указанных антител может связываться с PD-1, последовательности VH и VL могут быть «смешаны и спарены» для создания других анти-PD-1-связывающих молекул настоящего изобретения. PD-1-связывание таких «смешанных и спаренных» антител может быть испытано с использованием анализов связывания, описанных выше и в примерах (например, ELISA). Предпочтительно, при смешивании и спаривании цепей VH и VL последовательность VH из конкретного VH/VL-спаривания заменяется структурно сходной последовательностью VH. Подобным образом, последовательность VL из конкретного VH/VL-спаривания заменяется структурно сходной последовательностью VL.
Таким образом, в одном аспекте настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее:
(а) вариабельную область тяжелой цепи человека, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:1, 2, 3, 4, 5, 6 и 7; и
(b) вариабельную область легкой цепи человека, содержащую аминокислотную последовательность, состоящую из SEQ ID NO:8, 9, 10, 11, 12, 13 и 14;
где данное антитело специфически связывает PD-1, предпочтительно PD-1 человека.
Предпочтительные комбинации тяжелых и легких цепей включают:
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:1; и (b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:8; или
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:2; и (b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:9; или
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:3; и (b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:10; или
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:4; и (b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:11; или
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:5; и (b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:12; или
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:6; и (b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:13; или
(а) вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:7; и (b) вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:14.
В другом аспекте настоящее изобретение обеспечивает антитела, которые содержат CDR1, CDR2 и CDR3 тяжелой и легкой цепи 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 или их комбинации. Аминокислотные последовательности CDR1 VH 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 показаны в SEQ ID NO:15, 16, 17, 18, 19, 20 и 21, соответственно. Аминокислотные последовательности CDR2 VH 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 показаны в SEQ ID NO:22, 23, 24, 25, 26, 27 и 28, соответственно. Аминокислотные последовательности CDR3 VH 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 показаны в SEQ ID NO:29, 30, 31, 32, 33, 34 и 35, соответственно. Аминокислотные последовательности CDR1 Vκ 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 показаны в SEQ ID NO:36, 37, 38, 39, 40, 41 и 42, соответственно. Аминокислотные последовательности CDR2 Vκ 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 показаны в SEQ ID NO:43, 44, 45, 46, 47, 48 и 49, соответственно. Аминокислотные последовательности CDR3 Vκ 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 показаны SEQ ID NO:50, 51, 52, 53, 54, 55 и 56, соответственно. CDR-области показаны прерывистой линией с использованием системы Кабата (Kabat, E.A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242).
При условии, что каждое из указанных антител может связываться с PD-1 и что специфичность антигенсвязывания обеспечивается первично областями CDR1, CDR2 и CDR3, последовательности CDR1, CDR2 и CDR3 VH и последовательности CDR1, CDR2 и CDR3 Vκ могут быть “смешаны и спарены” (т.е. CDR из разных антител могут быть смешаны и спарены, хотя каждое антитело должно содержать CDR1, CDR2 и CDR3 и VH CDR1, CDR2 и CDR3 Vκ) для создания других анти-PD-1-связывающих молекул настоящего изобретения. PD-1-связывание таких “смешанных и спаренных” антител может быть испытано с использованием анализов связывания, описанных выше и в примерах (например, анализ ELISA, Biacore). Предпочтительно, при смешивании и спаривании последовательностей CDR VH, последовательность CDR1, CDR2 и/или CDR3 из конкретной последовательности VH заменяют структурно сходной (сходными) последовательностью (последовательностями) CDR. Подобным образом, при смешивании и спаривании последовательностей CDR Vκ, последовательность CDR1, CDR2 и/или CDR3 из конкретной последовательности Vκ заменяют структурно сходной (сходными) последовательностью (последовательностями) CDR. Специалисту в данной области будет очевидно, что новые последовательности VH и VL могут быть созданы заменой одной или нескольких последовательностей CDR-областей VH и/или VL структурно сходными последовательностями из последовательностей CDR, описанных в данном описании для моноклональных антител 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4.
Таким образом, в другом аспекте настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее:
(а) CDR1 вариабельной области тяжелой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:15, 16, 17, 18, 19, 20 и 21;
(b) CDR2 вариабельной области тяжелой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:22, 23, 24, 25, 26, 27 и 28;
(с) CDR3 вариабельной области тяжелой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:29, 30, 31, 32, 33, 34 и 35;
(d) CDR1 вариабельной области легкой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:36, 37, 38, 39, 40, 41 и 42;
(е) CDR2 вариабельной области легкой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:43, 44, 45, 46, 47, 48 и 49; и
(f) CDR3 вариабельной области легкой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:50, 51, 52, 53, 54, 55 и 56;
где данное антитело специфически связывает PD-1, предпочтительно PD-1 человека.
В предпочтительном варианте осуществления данное антитело содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:15;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:22;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:29;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:36;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:43; и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:50.
В другом предпочтительном варианте осуществления данное антитело содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:16;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:23;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:30;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:37;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:44, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:51.
В другом предпочтительном варианте осуществления данное антитело содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:17;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:24;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:31;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:38;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:45, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:52.
В другом предпочтительном варианте осуществления данное антитело содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:18;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:25;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:32;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:39;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:46, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:53.
В другом предпочтительном варианте осуществления данное антитело содержит:
(а) CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:19;
(b) CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:26;
(с) CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:33;
(d) CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:40;
(е) CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:47, и
(f) CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:54.
Антитела, имеющие конкретные последовательности зародышевой линии
В некоторых вариантах осуществления антитело настоящего изобретения содержит вариабельную область тяжелой цепи из гена тяжелой цепи иммуноглобулина конкретной зародышевой линии и/или вариабельную область легкой цепи из гена легкой цепи иммуноглобулина конкретной зародышевой линии.
Например, в предпочтительном варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область тяжелой цепи, которая является продуктом или получена из гена VH 3-33, где данное антитело специфически связывает PD-1, предпочтительно PD-1 человека. В другом предпочтительном варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область тяжелой цепи, которая является продуктом или получена из гена VH 4-39, где данное антитело специфически связывает PD-1, предпочтительно PD-1 человека. Еще в одном предпочтительном варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область легкой цепи, которая является продуктом или получена из гена VК L6, где данное антитело специфически связывает PD-1, предпочтительно PD-1 человека. Еще в одном предпочтительном варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область легкой цепи, которая является продуктом или получена из гена VK L15, где данное антитело специфически связывает PD-1, предпочтительно PD-1 человека. Еще в одном предпочтительном варианте осуществления настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, где данное антитело:
(а) содержит вариабельную область тяжелой цепи, которая является продуктом гена VH 3-33 или гена 4-39 человека (причем указанный кодирует аминокислотную последовательность, представленную в SEQ ID NO:71 или 73, соответственно);
(b) содержит вариабельную область легкой цепи гена VK L6 или гена L15 человека (причем указанный кодирует аминокислотную последовательность, представленную в SEQ ID NO:72 или 74, соответственно), и
(с) специфически связывается с PD-1.
Примерами антител, имеющих VH и Vκ VH 3-33 и Vκ L6, соответственно, являются 17D8, 2D3, 4H1, 5C4 и 7D3. Примерами антител, имеющих VH и Vκ VH 4-39 и Vκ L15, соответственно, являются 4А11 и 5F4.
Как использовано в данном описании, антитело человека содержит вариабельные области тяжелой и легкой цепей, которые являются «продуктом или получены из» последовательности конкретной зародышевой линии, если вариабельные области антитела получены из системы, которая использует гены иммуноглобулина зародышевой линии человека. Такие системы включают в себя иммунизацию трансгенной мыши, несущей гены иммуноглобулина человека, представляющим интерес антигеном или скрининг библиотеки генов иммуноглобулина человека, с фаговым дисплеем, с представляющим интерес антигеном. Антитело человека, которое является «продуктом или получено из» последовательности иммуноглобулина зародышевой линии человека, может быть идентифицировано, как таковое, сравнением аминокислотной последовательности антитела человека с аминокислотными последовательностями иммуноглобулинов зародышевой линии человека и отбором последовательности иммуноглобулина зародышевой линии человека, которая является наиболее близкой по последовательности (т.е. с большим % идентичности) с последовательностью антитела человека. Антитело человека, которое является «продуктом или получено из» последовательности иммуноглобулина зародышевой линии человека, могут содержать аминокислотные различия в сравнении с последовательностью зародышевой линии, вследствие, например, встречающихся в природе соматических мутаций или преднамеренного введения сайтнаправленной мутации. Однако выбранное антитело человека обычно является по меньшей мере на 90% идентичным по аминокислотной последовательности с аминокислотной последовательностью, кодируемой геном иммуноглобулина зародышевой линии человека, и содержит аминокислотные остатки, которые идентифицируют антитело человека, как являющееся антителом человека, при сравнении с аминокислотными последовательностями иммуноглобулина зародышевой линии другого вида (например, последовательностями зародышевой линии мыши). В некоторых случаях, антитело человека может быть по меньшей мере на 95% или даже по меньшей мере на 96%, 97%, 98% или 99% идентичным по аминокислотной последовательности с аминокислотной последовательностью, кодируемой геном иммуноглобулина данной зародышевой линии. Конкретно, антитело человека, полученное из последовательности конкретной зародышевой линии человека, будет обнаруживать не более чем 10 аминокислотных отличий от аминокислотной последовательности, кодируемой геном зародышевой линии иммуноглобулина. В этом случае антитело человека может обнаруживать не более чем 5, или даже не более чем 4, 3, 2 или 1 аминокислотное отличие от аминокислотной последовательности, кодируемой геном иммуноглобулина этой зародышевой линии.
Гомологичные антитела
Еще в одном варианте осуществления антитело настоящего изобретения содержит вариабельные области тяжелой и легкой цепей, содержащие аминокислотные последовательности, которые гомологичны аминокислотным последовательностям предпочтительных антител, описанных в данном описании, и где данные антитела сохраняют желаемые функциональные свойства анти-PD-1-антител настоящего изобретения.
Например, настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область тяжелой цепи и вариабельную область легкой цепи, где:
(а) вариабельная область тяжелой цепи содержит аминокислотную последовательность, которая по меньшей мере на 80% гомологична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO:1, 2, 3, 4, 5, 6 и 7;
(b) вариабельная область легкой цепи содержит аминокислотную последовательность, которая по меньшей мере на 80% гомологична аминокислотной последовательности, выбранной из группы, состоящей из SEQ ID NO:8, 9, 10, 11, 12, 13 и 14, и
данное антитело проявляет одно или несколько из следующих свойств:
(с) данное антитело связывается с PD-1 человека с KD 1×10-7М или менее; и
(d) данное антитело по существу не связывается с CD28, CTLА-4 или ICOS человека;
(е) данное антитело увеличивает пролиферацию Т-клеток в анализе MLR;
(f) данное антитело увеличивает продуцирование интерферона-гамма в анализе MLR;
(g) данное антитело увеличивает секрецию IL-2 в анализе MLR;
(h) данное антитело связывается с PD-1 человека и PD-1 собакоподобной обезьяны;
(i) данное антитело ингибирует связывание PD-L1 и/или PD-L2 с PD-1;
(j) данное антитело стимулирует антигенспецифические ответные реакции памяти;
(k) данное антитело стимулирует ответные реакции антител;
(l) данное антитело ингибирует рост опухолевых клеток in vivo.
В других вариантах осуществления аминокислотные последовательности VH и/или VL могут быть на 85%, 90%, 95%, 96%, 97%, 98% или 99% гомологичны последовательностям, представленным выше. Антитело, имеющее области VH и VL, обладающие высокой гомологией (т.е. 80% или более) в отношении областей VH и VL представленных выше последовательностей, могут быть получены мутагенезом (например, сайтнаправленным или ПЦР-опосредованным мутагенезом) молекул нуклеиновых кислот, кодирующих SEQ ID NO:57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 и 70, с последующим испытанием кодируемого измененного антитела на сохраненную функцию (т.е. на функции, представленные в (c)-(l) выше) с использованием описанных в данном описании функциональных анализов.
Как использовано в данном описании, процентная гомология между двумя аминокислотными последовательностями эквивалентна проценту идентичности между двумя последовательностями. Процент идентичности между двумя последовательностями является функцией числа идентичных положений, являющихся общими для данных последовательностей (т.е. % гомология=число идентичных положений/общее число положений×100), с учетом числа гэпов и длины каждого гэпа, которые должны быть введены для оптимального сопоставления указанных двух последовательностей. Это сравнение последовательностей и определение процента идентичности между двумя последовательностями может быть выполнено с использованием математического алгоритма, как описано в неограничивающих примерах ниже.
Процент идентичности между двумя аминокислотными последовательностями может быть определен с использованием алгоритма E. Meyers and W. Miller (Comput. Appl. Biosci., 4:11-17 (1988)), который был включен в программу ALIGN (версия 2.0), использующую таблицу массы остатков PAM120, штраф за длину гэпа 12 и штраф за открывание гэпа 4. Кроме того, процент идентичности между двумя аминокислотными последовательностями может быть определен с использованием алгоритма Needleman and Wunsch (J. Mol. Biol. 48:444-453 (1970)), который был включен в программу GAP в пакете программ GCG (доступном в http://www.gcg.com), использующую либо матрицу Blossum 62, либо матрицу PAM250 и массу гэпа 16, 14, 12, 10, 8, 6 или 4 и массу длины 1, 2, 3, 4, 5 или 6.
Дополнительно или альтернативно, белковые последовательности настоящего изобретения могут быть дополнительно использованы в качестве “запрашиваемой последовательности" для проведения поиска в публичных базах данных, например, для идентификации родственных последовательностей. Такие поиски могут быть проведены с использованием программы XBLAST (версия 2.0) Altschul, et al. (1990) J. Mol. Biol. 215:403-10. Поиски белков BLAST могут быть проведены с программой XBLAST, оценка=50, длина слова=3, для получения аминокислотных последовательностей, гомологичных молекулам антител настоящего изобретения. Для получения имеющих гэпы сопоставлений для целей сравнения может быть использована программа GAPPED BLAST, описанная в Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. При использовании программ BLAST и Gapped BLAST, могут быть использованы параметры по умолчанию соответствующих программ (например, XBLAST и NBLAST). (См. www.ncbi.nlm.nih.gov).
Антитела с консервативными модификациями
В некоторых вариантах осуществления антитело настоящего изобретения содержит вариабельную область тяжелой цепи, содержащую последовательности CDR1, CDR2 и CDR3, и вариабельную область легкой цепи, содержащую последовательности CDR1, CDR2 и CDR3, где одна или несколько из последовательностей CDR содержат указанные аминокислотные последовательности, выбранные на основе описанных в данном описании предпочтительных антител (например, 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4) или их консервативные модификации, и где указанные антитела сохраняют желаемые функциональные свойства анти-PD-1-антител настоящего изобретения. Таким образом, настоящее изобретение обеспечивает выделенное моноклональное антитело или его антигенсвязывающую часть, содержащее вариабельную область тяжелой цепи, содержащую последовательности CDR1, CDR2 и CDR3, и вариабельную область легкой цепи, содержащую последовательности CDR1, CDR2 и CDR3, где:
(а) последовательность CDR3 вариабельной области тяжелой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:29, 30, 31, 32, 33, 34 и 35, и их консервативных модификаций;
(b) последовательность CDR3 вариабельной области легкой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:50, 51, 52, 53, 54, 55 и 56, и их консервативных модификаций; и
где данное антитело проявляет одно или несколько из следующих свойств:
(с) данное антитело связывается с PD-1 человека с KD 1×10-7М или менее; и
(d) данное антитело по существу не связывается с CD28, CTLА-4 или ICOS человека;
(е) данное антитело увеличивает пролиферацию Т-клеток в анализе MLR;
(f) данное антитело увеличивает продуцирование интерферона-гамма в анализе MLR;
(g) данное антитело увеличивает секрецию IL-2 в анализе MLR;
(h) данное антитело связывается с PD-1 человека и PD-1 собакоподобной обезьяны;
(i) данное антитело ингибирует связывание PD-L1 и/или PD-L2 с PD-1;
(j) данное антитело стимулирует антигенспецифические ответные реакции памяти;
(k) данное антитело стимулирует ответные реакции антител;
(l) данное антитело ингибирует рост опухолевых клеток in vivo.
В предпочтительном варианте осуществления последовательность CDR2 вариабельной области тяжелой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:22, 23, 24, 25, 26, 27 и 28, и их консервативных модификаций; и последовательность CDR2 вариабельной области легкой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:43, 44, 45, 46, 47, 48 и 49, и их консервативных модификаций. В другом предпочтительном варианте осуществления последовательность CDR1 вариабельной области тяжелой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:15, 16, 17, 18, 19, 20 и 21, и их консервативных модификаций; и последовательность CDR1 вариабельной области легкой цепи содержит аминокислотную последовательность, выбранную из группы, состоящей из аминокислотных последовательностей SEQ ID NO:36, 37, 38, 39, 40, 41 и 42, и их консервативных модификаций.
Как использовано в данном описании, термин «консервативные модификации последовательностей» означает аминокислотные модификации, которые не влияют значимо на характеристики связывания или не изменяют характеристики связывания антитела, содержащего указанную аминокислотную последовательность. Такие консервативные модификации включают в себя аминокислотные замены, добавления и делеции. Модификации могут быть введены в антитело настоящего изобретения стандартными способами, известными в данной области, такими как сайтнаправленный мутагенез и ПЦР-опосредованный мутагенез. Консервативные аминокислотные замены являются заменами, в которых аминокислотный остаток заменен аминокислотным остатком, имеющим сходную боковую цепь. Семейства аминокислотных остатков, имеющих сходные боковые цепи, были определены в данной области. Такие семейства включают в себя аминокислоты с основными боковыми цепями (например, лизин, аргинин, гистидин), кислотными боковыми цепями (например, аспарагиновая кислота, глутаминовая кислота), незаряженными полярными боковыми цепями (например, глицин, аспарагин, глутамин, серин, треонин, тирозин, цистеин, триптофан), неполярными боковыми цепями (например, аланин, валин, лейцин, изолейцин, пролин, фенилаланин, метионин), бета-разветвленными боковыми цепями (например, треонин, валин, изолейцин) и ароматическими боковыми цепями (например, тирозин, фенилаланин, триптофан, гистидин). Таким образом, один или несколько аминокислотных остатков в областях CDR антитела настоящего изобретения могут быть заменены другими аминокислотными остатками из того же самого семейства боковых цепей, и такое измененное антитело может быть тестировано на сохраненную функцию (т.е. функции, представленные в (с)-(l) выше), с использованием описанных в данном описании функциональных анализов.
Антитела, которые связываются с таким же эпитопом, что и анти-PD-1-антитела настоящего изобретения
В другом варианте осуществления настоящее изобретение обеспечивает антитела, которые связываются с таким же эпитопом на PD-1 человека, что и любое из моноклональных антител PD-1 настоящего изобретения (т.е. антитела, которые способны перекрестно конкурировать за связывание с PD-1 с любым из моноклональных антител настоящего изобретения). В предпочтительных вариантах осуществления ссылочным антителом для исследований перекрестной конкуренции может быть моноклональное антитело 17D8 (имеющее последовательности VH и VL, показанные в SEQ ID NO:1 и 8, соответственно) или моноклональное антитело 2D3 (имеющее последовательности VH и VL, показанные в SEQ ID NO:2 и 9, соответственно), или моноклональное антитело 4H1 (имеющее последовательности VH и VL, показанные в SEQ ID NO:3 и 10, соответственно), или моноклональное антитело 5C4 (имеющее последовательности VH и VL, показанные в SEQ ID NO:4 и 11, соответственно), или моноклональное антитело 4A11 (имеющее последовательности VH и VL, показанные в SEQ ID NO:5 и 12, или моноклональное антитело 7D3 (имеющее последовательности VH и VL, показанные в SEQ ID NO:6 и 13, или моноклональное антитело 5F4 (имеющее последовательности VH и VL, показанные в SEQ ID NO:7 и 14, соответственно). Такие перекрестно конкурирующие антитела могут быть идентифицированы на основе их способности перекрестно конкурировать с 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4 в стандартных анализах связывания PD-1. Например, анализ BIAcore, анализы ELISA или проточная цитометрия могут быть использованы для демонстрации перекрестной конкуренции с антителами настоящего изобретения. Способность тестируемого антитела ингибировать связывание, например, 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4, с PD-1 человека демонстрирует, что указанное тестируемое антитело может конкурировать с 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4 за связывание с PD-1 человека и, следовательно, связывается с таким же эпитопом на PD-1 человека, что и 17D8, 2D3, 4H1, 5С4 или 4А11. В предпочтительном варианте осуществления антителом, которое связывается с таким же эпитопом на PD-1 человека, что и 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4, является моноклональное антитело человека. Такие моноклональные антитела человека могут быть получены и выделены, как описано в примерах.
Сконструированные и модифицированные антитела
Кроме того, антитело настоящего изобретения может быть получено с использованием антитела, имеющего одну или несколько последовательностей VH и/или VL, описанных в данном описании, в качестве исходного материала для конструирования модифицированного антитела, которое может иметь измененные свойства в сравнении с исходным антителом. Антитело может быть сконструировано модификацией одного или нескольких остатков в одной или обеих вариабельных областях (т.е. VH и/или VL), например, в одной или нескольких областях CDR и/или в одной или нескольких каркасных областях. Дополнительно или альтернативно, антитело может быть сконструировано модификацией остатков в константной области (константных областях), например, для изменения эффекторной функции (эффекторных функций) данного антитела.
Одним типом конструирования вариабельной области, который может выполняться, является прививка CDR. Антитела взаимодействуют с антигенами-мишенями преимущественно через аминокислотные остатки, которые расположены в шести определяющих комплементарность областях (CDR) тяжелой и легкой цепи. По этой причине аминокислотные последовательности в CDR являются более разнообразными между отдельными индивидуумами, чем последовательности вне CDR. Поскольку последовательности CDR ответствены за большинство взаимодействий антитело-антиген, можно экспрессировать рекомбинантные антитела, которые имитируют свойства специфических встречающихся в природе антител, конструированием экспрессирующих векторов, которые включают в себя последовательности CDR из специфического встречающегося в природе антитела, привитые на каркасные последовательности из другого антитела с другими свойствами (см., например, Riechmann, L. et al. (1998) Nature 332:323-327; Jones, P. et al. (1986) Nature 321:522-525; Queen, C. et al. (1989) Proc. Natl. Acad. см. U.S.A. 86:10029-10033; патент США № 5225539, Winter, и патенты США №№ 5530101; 5585089; 5693762 и 6180370, Queen et al.).
Таким образом, другой вариант настоящего изобретения относится к выделенному моноклональному антителу или его антигенсвязывающей части, содержащему последовательности CDR1, CDR2 и CDR3 вариабельной области тяжелой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:15, 16, 17, 18, 19, 20 и 21, SEQ ID NO:22, 23, 24, 25, 26, 27 и 28 и SEQ ID NO:29, 30, 31, 32, 33, 34 и 35, соответственно, и последовательности CDR1, CDR2 и CDR3 вариабельной области легкой цепи, содержащей аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:36, 37, 38, 39, 40, 41 и 42, SEQ ID NO:43, 44, 45, 46, 47, 48 и 49, и SEQ ID NO:50, 51, 52, 53, 54, 55 и 56, соответственно. Таким образом, такие последовательности содержат последовательности CDR VH и VL моноклональных антител 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4, но могут содержать разные каркасные последовательности из указанных антител.
Такие каркасные последовательности могут быть получены из публичных баз данных или опубликованных ссылок, которые включают в себя последовательности генов антител зародышевой линии. Например, ДНК-последовательности зародышевой линии для генов вариабельной области тяжелой и легкой цепи человека могут быть найдены в базе данных последовательностей зародышевой линии человека "VBase" (доступной в Интернете в http://www.mrc-cpe.cam.ac.uk/vbase), а также в Kabat, E A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; Tomlinson, I.M., et al. (1992) "The Repertoire of Human Germline VH Sequences Reveals about Fifty Groups of VH Segments with Different Hypervariable Loops" J. Mol. Biol. 227:776-798; и Cox, J. P. L. et al. (1994) "A Directory of Human Germ-line VH Segments Reveals a Strong Bias in their Usage" Eur. J. Immunol. 24:827-836; содержание которых специально включено в данное описание посредством ссылки. В качестве другого примера, ДНК-последовательности зародышевой линии для генов вариабельной области тяжелой и легкой цепи могут быть найдены в базе данных GenBank. Например, следующие последовательности зародышевой линии тяжелой цепи, обнаруженные у мыши HCo7 HuMAb, доступны в сопутствующих номерах доступа GenBank: 1-69 (NG_0010109, NT_024637 и BC070333), 3-33 (NG_0010109 и NT_024637) и 3-7 (NG_0010109 и NT_024637). В качестве другого примера, следующие последовательности зародышевой линии тяжелой цепи, обнаруженные у мыши HCo12 HuMAb, доступны в сопутствующих номерах доступа GenBank: 1-69 (NG_0010109, NT_024637 и BC070333), 5-51 (NG_0010109 и NT_024637), 4-34 (NG_0010109 и NT_024637), 3-30.3 (AJ556644) и 3-23 (AJ406678).
Предпочтительными каркасными последовательностями для применения в антителах настоящего изобретения являются последовательности, которые структурно сходны с каркасными последовательностями, используемыми в выбранных антителах настоящего изобретения, например сходные с каркасными последовательностями VH 3-33 (SEQ ID NO:71) и/или каркасными последовательностями VH 4-39 (SEQ ID NO:73), и/или каркасными последовательностями VK L6 (SEQ ID NO:72), и/или каркасными последовательностями VK L15 (SEQ ID NO:74), используемыми предпочтительными моноклональными антителами настоящего изобретения. Последовательности CDR1, CDR2 и CDR3 VH и последовательности CDR1, CDR2 и CDR3 VK могут быть привиты на каркасные области, которые имеют последовательность, идентичную последовательности, обнаруженной в гене иммуноглобулина зародышевой линии, из которой получена указанная последовательность, или такие последовательности CDR могут быть привиты на каркасные области, которые содержат одну или несколько мутаций в сравнении с последовательностями зародышевой линии. Например, было обнаружено, что в некоторых случаях предпочтительно мутировать остатки в каркасных областях для сохранения или усиления антигенсвязывающей способности данного антитела (см., например, патенты США №№ 5530101; 5585089; 5693762 и 6180370, Queen et al).
Другим типом модификации вариабельной области является мутирование аминокислотных остатков в областях CDR1, CDR2 и/или CDR3 VH и/или Vκ, посредством чего улучшая одно или несколько свойств связывания (например, аффинности) представляющего интерес антитела. Сайтнаправленный мутагенез или ПЦР-опосредованный мутагенез может быть выполнен для введения мутации (мутаций), и действие на связывание антител или другое представляющее интерес функциональное свойство может быть оценено в анализах in vitro или in vivo, описанных в данном описании и представленных в примерах. Предпочтительно, вводят консервативные модификации (обсуждаемые выше). Такими мутациями могут быть замены, добавления или делеции аминокислот, но предпочтительными являются замены. Кроме того, обычно изменяют не более чем один, два, три, четыре или пять остатков в области CDR.
Таким образом, в другом варианте осуществления настоящее изобретение обеспечивает выделенные моноклональные анти-PD-1-антитела, или их антигенсвязывающие части, содержащие вариабельную область тяжелой цепи, содержащую: (a) CDR1-область VH, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:15, 16, 17, 18, 19, 20 и 21, или аминокислотную последовательность, содержащую одну, две, три, четыре или пять аминокислотных замен, делеций или добавлений, в сравнении с SEQ ID NO:15, 16, 17, 18, 19, 20 и 21; (b) CDR2-область VH, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:22, 23, 24, 25, 26, 27 и 28, или аминокислотную последовательность, содержащую одну, две, три, четыре или пять аминокислотных замен, делеций или добавлений, в сравнении с SEQ ID NO:22, 23, 24, 25, 26, 27 и 28; (с) CDR3-область VH, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:29, 30, 31, 32, 33, 34 и 35, или аминокислотную последовательность, содержащую одну, две, три, четыре или пять аминокислотных замен, делеций или добавлений, в сравнении с SEQ ID NO:29, 30, 31, 32, 33, 34 и 35; (d) CDR1-область VK, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:36, 37, 38, 39, 40, 41 и 42, или аминокислотную последовательность, имеющую одну, две, три, четыре или пять аминокислотных замен, делеций или добавлений, в сравнении с SEQ ID NO:36, 37, 38, 39, 40, 41 и 42; (e) CDR2-область VK, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:43, 44, 45, 46, 47, 48 и 49, или аминокислотную последовательность, имеющую одну, две, три, четыре или пять аминокислотных замен, делеций или добавлений, в сравнении с SEQ ID NO:43, 44, 45, 46, 47, 48 и 49; и (f) CDR3-область VK, содержащую аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:50, 51, 52, 53, 54, 55 и 56, или аминокислотную последовательность, имеющую одну, две, три, четыре или пять аминокислотных замен, делеций или добавлений, в сравнении с SEQ ID NO: 50, 51, 52, 53, 54, 55 и 56.
Сконструированные антитела настоящего изобретения включают в себя антитела, в которых модификации были произведены в каркасных остатках в VH и/или Vκ, например, для улучшения свойств данного антитела. Обычно такие каркасные модификации производят для уменьшения иммуногенности антитела. Например, одним подходом является «обратное мутирование» одного или нескольких каркасных остатков в соответствующую последовательность зародышевой линии. Более конкретно, антитело, которое было подвергнуто соматической мутации, может содержать каркасные остатки, которые отличаются от последовательности зародышевой линии, из которой получено данное антитело. Такие остатки могут быть идентифицированы сравнением каркасных последовательностей антитела с последовательностями зародышевой линии, из которой получено данное антитело.
Например, в таблице 1 ниже показано количество аминокислотных изменений в каркасных областях анти-PD-1-антител 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4, которые отличаются от последовательностей тяжелой цепи исходной зародышевой линии. Для возврата одного или нескольких аминокислотных остатков в указанных последовательностях каркасной области в их конфигурацию в зародышевой линии, соматические мутации могут быть «обратно-мутированы» в последовательность зародышевой линии, например, сайтнаправленным мутагенезом или ПЦР-опосредованным мутагенезом.
Аминокислотные изменения могут иметь место в каркасных областях анти-PD-1-антител, которые отличаются от исходной последовательности легкой цепи зародышевой линии. Например, для 17D8, аминокислотным остатком №47 (в FR2) VК является изолейцин, тогда как остатком в соответствующей последовательности VК L6 зародышевой линии является лейцин. Для возврата последовательностей каркасной области в их конфигурацию зародышевой линии, соматические мутации могут быть «обратно-мутированы» в последовательность зародышевой линии, например, сайтнаправленным мутагенезом или ПЦР-опосредованным мутагенезом (например, остаток №47 (остаток №13 FR2) VК 17D8 может быть «обратно-мутирован» из изолейцина в лейцин).
В качестве другого примера, для 4А11, аминокислотным остатком №20 (в FR1) VК является серин, тогда как остатком в соответствующей последовательности VК L15 зародышевой линии является треонин. Для возврата последовательностей каркасной области в их конфигурацию зародышевой линии, соматические мутации могут быть «обратно-мутированы» в последовательность зародышевой линии, например, остаток №20 VК 4А11 может быть «обратно-мутирован» из серина в треонин). Предполагается, что такие «обратно-мутированные» антитела также включены в настоящее изобретение.
Сопоставление VH-областей для 17D8, 2D3, 4H1, 5C4 и 7D3 с последовательностью VH 3-33 исходной зародышевой линии показано на фиг.8. Сопоставление VH-областей для 4А11 и 5F4 с последовательностью VH 4-39 исходной зародышевой линии показано на фиг.11.
Таблица 1
Модификации в антителах 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 относительно конфигурации тяжелой цепи зародышевой линии
Анти-PD-1 Ab Положение аминокислоты Аминокислота антитела Конфигурация исходной аминокислоты зародышевой линии
17D8 10 D G
16 G R
27 V F
28 A T
78 M T
93 M V
2D3 10 D G
27 L F
30 T S
85 N S
98 T R
4H1 3 Y Q
84 T N
88 V A
98 S R
5C4 21 D S
23 K A
27 I F
80 F Y
98 T R
4A11 29 L I
79 Q H
98 V A
7D3 23 T A
24 T A
27 I F
70 L I
74 D N
97 V A
98 T R
5F4 23 S T
29 L I
51 A G
77 R K
Другой тип модификации каркаса включает мутацию одного или нескольких остатков в каркасной области или даже в одном или нескольких CDR-областей, для удаления эпитопов Т-клеток для уменьшения таким образом потенциальной иммуногенности антитела. Такой подход называют также «деиммунизацией», и он описаны более подробно в публикации патента США № 20030153043, Carr et al.
В качестве дополнения или альтернативы модификациям, произведенным в каркасных или CDR-областях, антитела настоящего изобретения могут быть сконструированы таким образом, что они включают в себя модификации в Fc-области, обычно для изменения одного или нескольких функциональных свойств антитела, таких как период полусуществования в сыворотке, фиксация комплемента, связывание рецептора Fc и/или антиген-независимая клеточноопосредованная цитотоксичность. Кроме того, антитело настоящего изобретения может быть также химически модифицировано (например, к антителу могут быть присоединены одна или несколько химических групп) или может быть модифицировано для изменения его гликозилирования, опять для изменения одного или нескольких функциональных свойств данного антитела. Каждый из указанных вариантов описан более подробно ниже. Нумерация остатков в Fc-области является нумерацией EU-индекса Кабата.
В одном варианте осуществления шарнирная область СН1 модифицирована таким образом, что количество остатков цистеина в шарнирной области изменено, например, увеличенным или уменьшенным. Такой подход описан дополнительно в патенте США № 5677425, Bodmer et al. Количество остатков цистеина в шарнирной области СН1 изменяют, например, для облегчения сборки легких и тяжелых цепей или для увеличения или уменьшения стабильности антитела.
В другом варианте осуществления шарнирную область Fc антитела мутируют для уменьшения биологического периода полусуществования антитела. Более конкретно, одну или несколько аминокислотных мутаций вводят в области контакта СН2-СН3-доменов Fc-шарнирного фрагмента таким образом, что данное антитело имеет нарушенное связывание стафилококкового белка А (SpA) в сравнении со связыванием Fc-шарнирного домена с SpA. Такой подход описан более подробно в патенте США № 6165745, Ward et al.
В другом варианте осуществления антитело модифицируют для увеличения биологического периода полусуществования антитела. Например, могут быть введены одна или несколько мутаций: T252L, T254S, T256F, как описано в патенте США № 6277375, Ward. Альтернативно, для увеличения биологического периода полусуществования, антитело может быть изменено в СН1 или СН2 области таким образом, что оно содержит эпитоп связывания рецептора реутилизации, образованного из двух петель СН2-домена Fc-области IgG, как описано в патентах США №№ 5869046 и 6121022, Presta et al.
Еще в одном варианте осуществления Fc-область изменяют заменой по меньшей мере одного аминокислотного остатка другим аминокислотным остатком для изменения эффекторной функции (эффекторных функций) данного антитела. Например, одна или несколько аминокислот, выбранных из аминокислотных остатков 234, 235, 236, 237, 297, 318, 320 и 322, могут быть заменены другим аминокислотным остатком таким образом, что антитело имеет измененную аффинность в отношении эффекторного лиганда, но сохраняет антигенсвязывающую способность исходного антитела. Эффекторным лигандом, в отношении которого аффинность изменяется, может быть, например, рецептор Fc или С1-компонент комплемента. Такой подход описан более подробно в патентах США №№ 5624821 и 5648260, Winter.
В другом примере, одна или несколько аминокислот, выбранных из аминокислотных остатков 329, 331 и 322, могут быть заменены другим аминокислотным остатком таким образом, что антитело имеет измененное связывание С1q и/или уменьшенную или устраненную комплементзависимую цитотоксичность (CDC). Такой подход описан более подробно в патенте США № 6194551, Idusogie et al.
В другом примере, один или несколько аминокислотных остатков в положениях аминокислот 231 и 239 изменяют, чтобы таким образом изменить способность антитела фиксировать комплемент. Такой подход описан более подробно в публикации РСТ WO 94/29351, Bodmer et al.
Еще в одном примере Fc-область модифицируют для увеличения способности антитела опосредовать антителозависимую клеточную цитотоксичность (ADCC) и/или для увеличения аффинности антитела в отношении рецептора Fcγ модификацией одной или нескольких аминокислот в следующих положениях:: 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 или 439. Такой подход описан дополнительно в публикации PCT WO 00/42072, Presta. Кроме того, сайты связывания на IgG1 человека для FcγRI, FcγRII, FcγRIII и FcγRn были картированы и описаны варианты с улучшенным связыванием (см. Shields, R.L. et al. (2001) J. Biol. Chem. 276:6591-6604). Было показано, что конкретные мутации в положениях 256, 290, 298, 333, 334 и 339 улучшают связывание с FcγRIII. Дополнительно, было показано, что следующие мутанты улучшают связывание FcγRIII: T256A/S298A, S298A/E333A, S298A/K224A и S298A/E333A/K334A.
Еще в одном варианте осуществления модифицируют гликозилирование антитела. Например, может быть получено агликозилированное антитело (т.е. антитело лишено гликозилирования). Гликозилирование может быть изменено, например, для увеличения аффинности антитела в отношении антигена. Такие углеводные модификации могут быть выполнены, например, изменением одного или нескольких сайтов гликозилирования в последовательности антитела. Например, могут быть произведены одна или несколько аминокислотных замен, которые приводят к элиминации одного или нескольких сайтов гликозилирования каркаса вариабельной области, чтобы таким образом элиминировать гликозилирование в данном сайте. Такое агликозилироание может увеличивать аффинность антитела в отношении антигена. Такой подход описан более подробно в патентах США №№ 5714350 и 6350861, Co et al.
Дополнительно или альтернативно, может быть получено антитело, которое имеет измененный тип гликозилирования, например, гипофукозилированное антитело, имеющее уменьшенные количества остатков фукозила, или антитело, имеющее увеличенные разделяющие пополам структуры GlcNac. Было продемонстрировано, что такие измененные картины гликозилирования увеличивают ADCC-способность антител. Такие углеводные модификации могут быть выполнены, например, экспрессией антитела в клетке-хозяине с измененным аппаратом гликозилирования. Клетки с измененным аппаратом гликозилирования были описаны в данной области и могут быть использованы в качестве клеток-хозяев для экспрессии в них рекомбинантных антител настоящего изобретения, чтобы таким образом получить антитела с измененным гликозилированием. Например, линии клеток Ms704, Ms705 и Ms709 лишены гена фукозилтрансферазы, FUT8 (aльфа(1,6)фукозилтрансферазы) таким образом, что антитела, экспрессируемые в клеточных линиях Ms704, Ms705 и Ms709, лишены фукозы на их углеводах. FUT8-/--клеточные линии Ms704, Ms705 и Ms709 были созданы нацеленным разрушением гена FUT8 в клетках CHO/DG44 с использованием двух вытесняющих векторов (см. публикацию патента США No. 20040110704, Yamane et al. и Yamane-Ohnuki et al. (2004) Biotechnol Bioeng 87:614-22). В качестве другого примера, в ЕР 1176195 Hanai et al. описывают клеточную линию с функционально разрушенным геном FUT8, который кодирует фукозилтрансферазу таким образом, что антитела, экспрессируемые в такой клеточной линии, проявляют гипофукозилирование или элиминацию альфа-1,6-связь-родственного фермента. Hanai et al. описывают также клеточные линии, которые имеют низкую ферментативную активность в отношении присоединения фукозы к N-ацетилглюкозамину, который связывается с Fc-областью антитела, или не имеет ферментативной активности, например, клеточную линию миеломы крысы YB2/0 (ATCC CRL 1662). В публикации PCT WO 03/035835, Presta описывает вариант клеточной линии СНО, клетки Lec13, с уменьшенной способностью присоединять фукозу к Asn(297)-связанным углеводам, что также приводит к гипофукозилированию антител, экспрессируемых в клетках-хозяевах (см. также Shields, R.L. et al. (2002) J. Biol. Chem. 277:26733-26740). В публикации PCT WO 99/54342, Umana et al. описывают клеточные линии, сконструированные для экспрессии гликопротеин-модифицирующих гликозилтрансфераз (например, бета(1,4)-N-ацетилглюкозаминилтрансферазы III (GnTIII)) таким образом, что антитела, экспрессируемые в таких сконструированных клеточных линиях, проявляют увеличенное разделение на две половины структур GlcNac, что приводит к увеличенной активности ADCC в указанных антителах (см. также Umana et al. (1999) Nat. Biotech. 17:176-180). Альтернативно, остатки фукозы антитела могут быть отщеплены с использованием фермента фукозидазы. Например, фукозидаза альфа-L-фукозидаза удаляет фукозильные остатки из антител (Tarentino, A.L. et al. (1975) Biochem. 14:5516-23).
Другой модификацией антител, которая обсуждается данным изобретением, является пэгилирование. Антитело может быть пэгилировано, например, для увеличения биологического (например, в сыворотке) периода полусуществования антитела. Для пэгилирования антитела данное антитело или его фрагмент, обычно реагирует с полиэтиленгликолем (ПЭГ), таким как реакционноспособное сложноэфирное или альдегидное производное ПЭГ, в условиях, в которых одна или несколько групп ПЭГ становятся присоединенными к антителу или фрагменту антитела. Предпочтительно, пэгилирование проводят путем реакции ацилирования или реакции алкилирования с реакционноспособной молекулой ПЭГ (или аналогичным реакционноспособным водорастворимым полимером). Как использовано в данном описании, предполагается, что термин “полиэтиленгликоль” включает любую из форм ПЭГ, которые были использованы для дериватизации других белков, такую как моно(C1-C10)алкокси-, или арилоксиполиэтиленгликоль, или малеимид полиэтиленгликоля. В некоторых вариантах осуществления антителом, которое должно быть пэгилировано, является агликозилированное антитело. Способы пэгилирования белков известны в данной области и могут быть применены к антителам настоящего изобретения. См., например, EP 0154316, Nishimura et al. и EP 0401384, Ishikawa et al.
Способы конструирования антител
Как обсуждалось выше, анти-PD-1-антитела, имеющие описываемые последовательности VH и VК, могут быть использованы для создания новых анти-PD-1-антител модификацией последовательностей VH и/или VK или константной области (константных областей), присоединенных к ним. Таким образом, в другом аспекте настоящего изобретения структурные признаки анти-PD-1-антитела настоящего изобретения, например, 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4, используют для создания структурно родственных анти-PD-1-антител, которые сохраняют по меньшей мере одно функциональное свойство антител настоящего изобретения, например, связывание с PD-1 человека. Например, одна или несколько CDR-областей 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4, или их мутации, могут быть комбинированы с известными каркасными областями и/или другими CDR для создания дополнительных, рекомбинантно сконструированных анти-PD-1-антител настоящего изобретения, как обсуждалось выше. Другие типы модификаций включают модификации, обсуждаемые в предыдущем разделе. Исходным материалом для способа конструирования является одна или несколько последовательностей VH и/или VК, обеспеченные настоящим изобретением, или одна или несколько их CDR-областей. Для создания сконструированного антитела необязательно действительно получать (т.е. экспрессировать в виде белка) антитело, имеющее одну или несколько последовательностей VH и/или VК, обеспеченных настоящим изобретением, или одну или несколько их CDR-областей. Предпочтительно, используют информацию, содержащуюся в последовательности (последовательностях), в качестве исходного материала для создания последовательности (последовательностей) «второй генерации», полученных из начальной последовательности (начальных последовательностей), и затем последовательность (последовательности) «второй генерации» получают и экспрессируют в виде белка.
Таким образом, в другом варианте осуществления настоящее изобретение обеспечивает способ получения анти-PD-1-антитела, предусматривающий:
(a) обеспечение: (i) последовательности вариабельной области тяжелой цепи антитела, содержащей последовательность CDR1, выбранную из группы, состоящей из SEQ ID NO:15, 16, 17, 18, 19, 20 и 21, последовательность CDR2, выбранную из группы, состоящей из SEQ ID NO:22, 23, 24, 25, 26, 27 и 28, и/или последовательность CDR3, выбранную из группы, состоящей из SEQ ID NO:29, 30, 31, 32, 33, 34 и 35; и/или (ii) последовательности вариабельной области легкой цепи антитела, содержащей последовательность CDR1, выбранную из группы, состоящей из SEQ ID NO:36, 37, 38, 39, 40, 41 и 42, последовательность CDR2, выбранную из группы, состоящей из SEQ ID NO:43, 44, 45, 46, 47, 48 и 49, и/или CDR3, выбранную из группы, состоящей из SEQ ID NO:50, 51, 52, 53, 54, 55 и 56;
(b) изменение по меньшей мере одного аминокислотного остатка в последовательности вариабельной области тяжелой цепи антитела и/или последовательности вариабельной области легкой цепи антитела для создания по меньшей мере одной измененной последовательности антитела; и
(c) экспрессию измененной последовательности антитела в виде белка.
Для получения и экспрессии измененной последовательности антитела могут быть использованы стандартные способы молекулярной биологии.
Предпочтительно, антителом, кодируемым измененной последовательностью антитела (измененными последовательностями антитела), является антитело, которое сохраняет одно, несколько или все из функциональных свойств, описанных в данном описании анти-PD-1-антител, причем указанные функциональные свойства включают, но не ограничиваются ими:
(а) данное антитело связывается с PD-1 человека с KD 1×10-7М или менее; и
(b) данное антитело по существу не связывается с CD28, CTLА-4 или ICOS человека;
(c) данное антитело увеличивает пролиферацию Т-клеток в анализе MLR;
(d) данное антитело увеличивает продуцирование интерферона-гамма в анализе MLR;
(e) данное антитело увеличивает секрецию IL-2 в анализе MLR;
(f) данное антитело связывается с PD-1 человека и PD-1 собакоподобной обезьяны;
(g) данное антитело ингибирует связывание PD-L1 и/или PD-L2 с PD-1;
(h) данное антитело стимулирует антигенспецифические ответные реакции памяти;
(i) данное антитело стимулирует ответные реакции антител;
(j) данное антитело ингибирует рост опухолевых клеток in vivo.
Функциональные свойства измененных антител могут оцениваться с использованием стандартных способов, доступных в данной области и/или описанных в данном описании, таких как представленные в примерах (например, проточная цитометрия, анализы связывания).
В некоторых вариантах способов конструирования антител настоящего изобретения мутации могут вводиться случайным образом или селективно вдоль всей или части кодирующей последовательности анти-PD-1-антитела, и полученные анти-PD-1-антитела могут быть подвергнуты скринингу на связывающую активность и/или другие функциональные свойства, как описано в данном описании. Мутационные способы были описаны в данной области. Например, в публикации РСТ WO 02/092780, Short описывает способы создания и скрининга мутаций антител с использованием насыщающего мутагенеза, сборки синтетическим лигированием или их комбинации. Альтернативно, в публикации РСТ WO 03/074679, Lazar et al. описывают компьютерные способы скрининга для оптимизации физико-химических свойств антител.
Молекулы нуклеиновых кислот, кодирующие антитела настоящего изобретения
Другой аспект настоящего изобретения относится к молекулам нуклеиновых кислот, которые кодируют антитела настоящего изобретения. Такие нуклеиновые кислоты могут присутствовать в цельных клетках, в лизате клеток или в частично очищенной или по существу очищенной форме. Нуклеиновая кислота является «выделенной» или «по существу очищенной» при очистке от других клеточных компонентов или других загрязнений, например других клеточных нуклеиновых кислот или белков, стандартными способами, включающими обработку щелочью/ДСН, CsCl-бэндинг, колоночную хроматографию, электрофорез в агарозном геле и другие способы, хорошо известные в данной области. См., F. Ausubel, et al., ed. (1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York. Нуклеиновая кислота настоящего изобретения может быть, например, ДНК или РНК, и может содержать или нет интронные последовательности. В предпочтительном варианте осуществления указанной нуклеиновой кислотой является молекула кДНК.
Нуклеиновые кислоты настоящего изобретения могут быть получены с использованием стандартных способов молекулярной биологии. Что касается антител, экспрессируемых гибридомами (например, гибридомами, полученными из трансгенных мышей, несущих гены иммуноглобулина человека, как описано дополнительно ниже), кДНК, кодирующие легкую и тяжелую цепи антитела, созданные гибридомой, могут быть получены стандартными способами ПЦР-амплификации или клонирования кДНК. Что касается антител, полученных из библиотеки генов иммуноглобулинов (например, использующей способы фагового дисплея), нуклеиновая кислота, кодирующая данное антитело, может быть извлечена из указанной библиотеки.
Предпочтительными молекулами нуклеиновых кислот настоящего изобретения являются молекулы нуклеиновых кислот, кодирующие последовательности VH и VL моноклональных антител 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 или 5F4. ДНК-последовательности, кодирующие последовательности VH 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4, показаны в SEQ ID NO:57, 58, 59, 60, 61, 62 и 63, соответственно. ДНК-последовательности, кодирующие последовательности VL 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4 показаны в SEQ ID NO:64, 65, 66, 67, 68, 69 и 70, соответственно.
После получения ДНК-фрагментов, кодирующих сегменты VH и VL, ДНК-фрагменты могут быть подвергнуты дополнительной манипуляции при помощи стандартных способов рекомбинантных ДНК, например, для превращения генов вариабельной области в гены полноразмерной цепи антитела, в гены Fab-фрагмента или в ген scFv. В указанных манипуляциях кодирующий фрагмент VH или VL ДНК функционально связан с другим ДНК-фрагментом, кодирующим другой белок, таким как константная область антитела или гибкий линкер. Термин «функционально связан» в данном описании означает, что два ДНК-фрагмента соединены таким образом, что аминокислотные последовательности, кодируемые такими двумя ДНК-фрагментами, остаются в рамке считывания.
Выделенная ДНК, кодирующая VH-область, может быть превращена в полноразмерный ген тяжелой цепи функциональным связыванием VH-кодирующей ДНК с другой молекулой ДНК, кодирующей константные области тяжелой цепи (CH1, CH2 и CH3). Последовательности генов константной области тяжелой цепи человека известны в данной области (см., например, Kabat, E. A., el al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242), и ДНК-фрагменты, включающие в себя указанные области, могут быть получены стандартной ПЦР-амплификацией. Константная область тяжелой цепи может быть константной областью IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM или IgD, но наиболее предпочтительно является константной областью IgG1 или IgG4. Что касается гена Fab-фрагмента, VH-кодирующая ДНК может быть функционально связана с другой молекулой ДНК, кодирующей только константную область тяжелой цепи СН1.
Выделенная ДНК, кодирующая VL-область, может быть превращена в полноразмерный ген легкой цепи (а также ген легкой цепи Fab) функциональным связыванием VL-кодирующей ДНК с другой молекулой ДНК, кодирующей константную область легкой цепи, CL. Последовательности генов константной области легкой цепи человека известны в данной области (см., например, Kabat, E.A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242), и ДНК-фрагменты, включающие в себя указанные области, могут быть получены стандартной ПЦР-амплификацией. Константная область легкой цепи может быть константной областью каппа или лямбда, но наиболее предпочтительно она является константной областью каппа.
Для создания гена scFv, VH и VL-кодирующие ДНК-фрагменты функционально связывают с другим фрагментом, кодирующим гибкий линкер, например кодирующим аминокислотную последовательность (Gly4-Ser)3 таким образом, что последовательности VH и VL могут быть экспрессированы в виде непрерывного одноцепочечного белка с областями VH и VL, соединенными гибким линкером (см., например, Bird et al. (1988) Science 242:423-426; Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; McCafferty et al., (1990) Nature 348:552-554).
Получение моноклональных антител настоящего изобретения
Моноклональные антитела (mAb) настоящего изобретения могут быть получены различными способами, включая общепринятую методику моноклональных антител, например способ гибридизации соматических клеток Kohler and Milstein (1975) Nature 256: 495. Хотя предпочтительными являются методы гибридизации соматических клеток, в принципе могут быть использованы другие способы получения моноклонального антитела, например вирусное или онкогенное превращение В-лимфоцитов.
Предпочтительной системой животного для получения гибридом является мышиная система. Получение гибридомы мыши является хорошо установленной методикой. Протоколы и способы выделения иммунизированных спленоцитов для слияния известны в данной области. Партнеры слияния (например, мышиные миеломные клетки) и методы слияния также известны.
Химерные или гуманизированные антитела настоящего изобретения могут быть получены на основе последовательности мышиного моноклонального антитела, полученного, как описано выше. ДНК, кодирующая иммуноглобулины тяжелой и легкой цепи, может быть получена из представляющей интерес мышиной гибридомы и сконструированы таким образом, что они содержат последовательности не-мышиного иммуноглобулина (например, иммуноглобулина человека), с использованием стандартных способов молекулярной биологии. Например, для создания химерного антитела мышиные вариабельные области могут быть связаны с константными областями человека с использованием способов, известных в данной области (см., например, патент США № 4816567, Cabilly et al.). Для создания гуманизированного антитела мышиные CDR-области могут быть встроены в каркасную область человека с использованием способов, известных в данной области (см., например, патент США № 5225539, Winter, и патенты США №№ 5530101; 5585089; 5693762 и 6180370, Queen et al.).
В предпочтительном варианте осуществления антитела настоящего изобретения являются моноклональными антителами человека. Такие моноклональные антитела человека, направленные против PD-1, могут быть генерированы с использованием трансгенных или трансхромосомных мышей, несущих части иммунной системы человека, что более предпочтительно системам мыши. Такие трансгенные и трансхромосомные мыши включают мышей, называемых в данном описании мышами HuMAb и мышами КМ™, соответственно, и в целом называемых «мышами с Ig человека».
Мышь HuMAb® (Medarex, Inc.) содержит минилокусы гена иммуноглобулина человека, которые кодируют неупорядоченные последовательности тяжелой (µ и γ) и легкой цепи κ иммуноглобулина человека, вместе с нацеленными мутациями, которые инактивируют эндогенные локусы цепи µ и κ (см., например, Lonberg, et al. (1994) Nature 368(6474): 856-859). Таким образом, данные мыши обнаруживают уменьшенную экспрессию IgМ мыши или κ, и в ответ на иммунизацию, введенные трансгены тяжелой и легкой цепей человека подвергаются переключению класса и соматической мутации с генерированием моноклонального IgGκ с высокой аффинностью (Lonberg, N. et al. (1994), supra; в обзоре Lonberg, N. (1994) Handbook of Experimental Pharmacology 113:49-101; Lonberg, N. and Huszar, D. (1995) Intern. Rev. Immunol. 13: 65-93, и Harding, F. and Lonberg, N. (1995) Ann. N.Y. Acad. Sci. 764:536-546). Получение и использование мышей HuMAb и геномные модификации, которые несут такие мыши, дополнительно описаны у Taylor, L. et al. (1992) в Nucleic Acids Research 20:6287-6295; Chen, J. et al. (1993) International Immunology 5: 647-656; Tuaillon et al. (1993) Proc. Natl. Acad. Sci. USA 90:3720-3724; Choi et al. (1993) Nature Genetics 4:117-123; Chen, J. et al. (1993) EMBO J. 12: 821-830; Tuaillon et al. (1994) J. Immunol. 152:2912-2920; Taylor, L. et al. (1994) International Immunology 6: 579-591; and Fishwild, D. et al. (1996) Nature Biotechnology 14: 845-851, содержание каждой из которых специально включено в данное описание посредством ссылки во всей их полноте. См. дополнительно, патенты США №№ 5545806; 5569825; 5625126; 5633425; 5789650; 5877397; 5661016; 5814318; 5874299 и 5770429; все на имя Lonberg и Kay; патент США № 5545807, Surani et al.; публикации PCT №№ WO 92/03918, WO 93/12227, WO 94/25585, WO 97/13852, WO 98/24884 и WO 99/45962, все на имя Lonberg и Kay; и публикацию PCT № WO 01/14424, Korman et al.
В другом варианте осуществления антитела человека настоящего изобретения могут быть индуцированы с использованием мыши, которая несет последовательности иммуноглобулина человека на трансгенах и трансхромосомах, такой как мышь, которая несет трансген тяжелой цепи человека и трансхромосому легкой цепи человека. Такие мыши, называемые “мышами KMTM”, подробно описаны в публикации PCT WO 02/43478, Ishida et al.
Дополнительно в данной области доступны альтернативные системы животных, экспрессирующие гены иммуноглобулина человека, и они могут быть использованы для индукции анти-PD-1-антител настоящего изобретения. Например, может быть использована альтернативная трансгенная система, называемая ксеномышью (Abgenix, Inc.); такие мыши описаны, например, в патентах США №№ 5939598; 6075181; 6114598; 6150584 и 6162963, Kucherlapati et al.
Кроме того, альтернативные трансхромосомные системы животных, экспрессирующие гены иммуноглобулина человека, доступны в данной области и могут быть использованы для индукции анти-PD-1-антител настоящего изобретения. Например, могут быть использованы мыши, несущие как трансхромосому тяжелой цепи человека, так и трансхромосому легкой цепи человека, называемые “TC-мышами”; такие мыши описаны Tomizuka et al. (2000) в Proc. Natl. Acad. Sci. USA 97:722-727. Кроме того, в данной области были описаны коровы, несущие трансхромосомы тяжелой и легкой цепей человека (Kuroiwa et al. (2002) Nature Biotechnology 20:889-894), и они могут быть использованы для индукции анти-PD-1-антител настоящего изобретения.
Моноклональные антитела человека настоящего изобретения могут быть также получены с использованием способов фагового дисплея для скрининга библиотек генов иммуноглобулинов человека. Такие способы фагового дисплея для выделения антител человека являются установленными в данной области. См., например, патенты США №№ 5223409; 5403484 и 5571698, Ladner et al.; патенты США №№ 5427908 и 5580717, Dower et al.; патенты США №№ 5969108 и 6172197, McCafferty et al.; и патенты США №№ 5885793; 6521404; 6544731; 6555313; 6582915 и 6593081, Griffiths et al.
Моноклональные антитела настоящего изобретения могут быть также получены с использованием мышей SCID, в которых иммунные клетки человека были реконструированы таким образом, что после иммунизации может быть генерирована реакция антител человека. Такие мыши описаны, например, в патентах США №№ 5476996 и 5698767, Wilson et al.
Иммунизация мышей с Ig человека
При использовании мышей с Ig человека для индуцирования антител человека настоящего изобретения, такие мыши могут быть иммунизированы очищенным или обогащенным препаратом антигена PD-1 и/или рекомбинантного PD-1 или слитого белка PD-1, как описано Lonberg, N. et al. (1994) Nature 368(6474): 856-859; Fishwild, D. et al. (1996) Nature Biotechnology 14: 845-851; и в публикациях PCT WO 98/24884 и WO 01/14424. Предпочтительно, мыши должны быть 6-16-недельными после первой инфузии. Например, очищенный или рекомбинантный препарат (5-50 мкг) антигена PD-1 может быть использован для внутрибрюшинной иммунизации мышей с Ig человека.
Подробные методики генерирования полных моноклональных антител к PD-1 человека описаны в примере 1 ниже. Кумулятивный опыт работы с различными антигенами показал, что трансгенные мыши отвечают при начальной иммунизации внутрибрюшинно (IP) антигеном в полном адъюванте Фрейнда с последующими иммунизациями IP каждую вторую неделю (всего до 6 недель) антигеном в неполном адъюванте Фрейнда. Однако обнаружено, что адъюванты, отличные от адъювантов Фрейнда, также являются эффективными. Кроме того, обнаружено, что цельные клетки в отсутствие адъюванта являются высокоиммуногенными. Иммунная реакция может быть подвергнута мониторингу в ходе протокола иммунизации, причем пробы плазмы получают ретроорбитальными кровопусканиями. Плазма может быть подвергнута скринингу при помощи ELISA (как описано ниже), и мыши с достаточными титрами анти-PD-1-иммуноглобулина человека могут быть использованы для слияний. Мыши могут быть подвергнуты внутривенному бустингу антигеном за 3 дня перед умерщвлением и удалением селезенки. Ожидается, что может быть необходимым проведение 2-3 слияний для каждой иммунизации. Обычно иммунизируют от 6 мышей до 24 мышей для каждого антигена. Обычно используют штаммы HCo7 и HCo12. Кроме того, как трансген HCo7, так и трансген HCo12 могут быть введены вместе в одну мышь, имеющую два разных трансгена тяжелой цепи человека (HCo7/HCo12). Альтернативно или дополнительно, может быть использован штамм KM-мышиTM, как описано в примере 1.
Генерирование гибридом, продуцирующих моноклональные антитела человека настоящего изобретения
Для генерирования гибридом, продуцирующих моноклональные антитела человека настоящего изобретения, спленоциты и/или клетки лимфатических узлов из иммунизированных мышей могут быть выделены и слиты с подходящей иммортализованной клеточной линией, такой как линия мышиных миеломных клеток. Полученные гибридомы могут быть подвергнуты скринингу на продуцирование антигенспецифических антител. Например, суспензии отдельных клеток лимфоцитов селезенки из иммунизированных мышей могут быть слиты до одной шестой количества несекретирующих P3X63-Ag8.653 миеломных клеток мыши (ATCC, CRL 1580) с 50% ПЭГ. Альтернативно, суспензии отдельных клеток лимфоцитов селезенки из иммунизированных мышей могут быть слиты при помощи способа электрослияния, основанного на использовании электрического поля, с использованием прибора с большой камерой для слияния клеток Cyto Pulse large chamber cell fusion electroporator (Cyto Pulse Sciences, Inc., Glen Burnie, MD). Клетки высевают приблизительно 2×105 клеток в плоскодонном микротитрационном планшете с последующим двухнедельным инкубированием в селективной среде, содержащей 20% фетальную сыворотку (Clone Serum), 18% кондиционированную среду "653", 5% ориген (IGEN), 4 мМ L-глутамин, 1 мМ пируват натрия, 5 мМ HEPES, 0,055 мМ 2-меркаптоэтанол, 50 единиц/мл пенициллина, 50 мг/мл стрептомицина, 50 мг/мл гентамицина и 1X HAT (Sigma; HAT добавляют спустя 24 часа после слияния). Спустя приблизительно две недели, клетки могут быть культивированы в среде, в которой НАТ заменена НТ. Затем отдельные лунки могут быть подвергнуты скринингу при помощи ELISA на моноклональные IgМ и IgG антитела человека. После экстенсивного роста гибридом за средой можно наблюдать обычно спустя 10-14 дней. Секретирующие антитело гибридомы могут быть повторно высеяны, снова подвергнуты скринингу и, если они все еще являются положительными в отношении IgG человека, моноклональные антитела могут быть субклонированы по меньшей мере два раза с использованием лимитирующего разведения. Стабильные субклоны могут быть затем культивированы in vitro для генерирования небольших количеств антитела в среде для культуры ткани для характеристики.
Для очистки моноклональных антител человека отобранные гибридомы могут выращиваться во вращающихся колбах на два литра для очистки моноклональных антител. Супернатанты могут быть отфильтрованы и концентрированы перед аффинной хроматографией с использованием белка А-сефарозы (Pharmacia, Piscataway, N.J.). Элюированный IgG может контролироваться гель-электрофорезом и высокоэффективной жидкостной хроматографией для гарантии чистоты. Буферный раствор может быть заменен PBS и концентрация может быть определена по OD280 с использованием коэффициента экстинкции 1,43. Моноклональные антитела могут быть разделены на аликвоты и могут храниться при -80°С.
Генерирование трансфектом, продуцирующих моноклональные антитела настоящего изобретения
Антитела настоящего изобретения могут быть также получены в трансфектоме клетки-хозяина, например, с использованием комбинирования способов рекомбинантных ДНК и способов трансфекции генов, как хорошо известно в данной области (например, Morrison, S (1985) Science 229:1202).
Например, для экспрессии указанных антител или фрагментов антител, ДНК, кодирующие частичные или полноразмерные легкие и тяжелые цепи, могут быть получены стандартными способами молекулярной биологии (например, ПЦР-амплификацией или клонированием кДНК с использованием гибридомы, которая экспрессирует представляющее интерес антитело), и полученные ДНК могут быть встроены в экспрессирующие векторы таким образом, что гены функционально связаны с регуляторными последовательностями транскрипции и трансляции. В данном описании термин «функционально связанные» означает, что ген антитела лигирован в вектор таким образом, что регуляторные последовательности транскрипции и трансляции в векторе выполняют их предполагаемую функцию регуляции транскрипции и трансляции гена данного антитела. Экспрессирующий вектор и регуляторные последовательности экспрессии выбраны таким образом, что они являются совместимыми с используемой экспрессионной клеткой-хозяином. Ген легкой цепи антитела и ген тяжелой цепи антитела могут быть встроены в отдельные векторы или, более конкретно, оба гена встроены в один и тот же экспрессирующий вектор. Гены антител встраивают в экспрессирующий вектор стандартными способами (например, лигированием комплементарных сайтов рестрикции на фрагменте гена антитела и векторе, или лигированием тупых концов, если сайты рестрикции отсутствуют). Вариабельные области легкой и тяжелой цепей антител, описанных выше, могут быть использованы для создания полноразмерных генов антител любого изотипа антитела встраиванием их в экспрессирующие векторы, уже кодирующие константные области тяжелой цепи и константные области легкой цепи желаемого изотипа таким образом, что VH-сегмент функционально связывается с СН-сегментом (сегментами) в данном векторе, и VК-сегмент функционально связывается с CL-сегментом в этом векторе. Дополнительно или альтернативно, рекомбинантный экспрессионный вектор может кодировать сигнальный пептид, который облегчает секрецию цепи антитела из клетки-хозяина. Ген цепи антитела может быть клонирован в вектор таким образом, что сигнальный пептид связывается в рамке считывания с аминоконцом гена цепи антитела. Сигнальный пептид может быть сигнальным пептидом иммуноглобулина или гетерологичным сигнальным пептидом (т.е. сигнальным пептидом из белка, не являющегося иммуноглобулином).
В дополнение к генам цепей антитела, рекомбинантные экспрессирующие векторы настоящего изобретения несут регуляторные последовательности, которые регулируют экспрессию генов цепей антитела в клетке-хозяине. Термин «регуляторная последовательность» включает промоторы, энхансеры и другие элементы регуляции экспрессии (например, сигналы полиаденилирования), которые регулируют транскрипцию и трансляцию генов цепей антител. Такие регуляторные последовательности описаны, например, в Goeddel (Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, CA (1990)). Специалистам в данной области будет понятно, что конструкция экспрессирующего вектора, включая выбор регуляторных последовательностей, может зависеть от таких факторов, как выбор трансформируемого хозяина, уровень экспрессии желаемого белка и т.д. Предпочтительные регуляторные последовательности для экспрессии клетки-хозяина млекопитающего включают в себя вирусные элементы, которые определяют высокие уровни экспрессии белка в клетках млекопитающего, такие как промоторы и/или энхансеры, полученные из цитомегаловируса (CMV), вируса обезьян 40 (SV40), аденовируса (например, основной поздний промотор аденовируса (AdMLP) и полиомы. Альтернативно, могут быть использованы невирусные регуляторные последовательности, такие как промотор убиквитина или промотор β-глобина. Кроме того, могут быть использованы регуляторные элементы, составленные из последовательностей из разных источников, такие как промоторная система SRα, которая содержит последовательности из раннего промотора SV40, и длинный концевой повтор вируса типа 1 Т-клеточного лейкоза человека (Takebe, Y. et al. (1988) Mol. Cell. Biol. 8:466-472).
В дополнение к генам цепей антитела и регуляторным последовательностям, рекомбинантные экспрессирующие векторы настоящего изобретения могут нести дополнительные последовательности, например последовательности, которые регулируют репликацию вектора в клетках-хозяевах (например, сайты инициации репликации), и гены селектируемых маркеров. Ген селектируемого маркера облегчает отбор клеток-хозяев, в которые был введен вектор (см. например, патенты США №№ U.S. Pat. 4399216, 4634665 и 5179017, все на имя Axel et al.). Например, обычно ген селектируемого маркера придает устойчивость к лекарственным средствам, таким как G418, гигромицин или метотрексат, клетке-хозяину, в которую был введен данный вектор. Предпочтительные гены селектируемых маркеров включают в себя ген дигидрофолатредуктазы (DHFR) (для применения в dhfr-клетках-хозяевах с отбором/амплификацией в присутствии метотрексата) и ген neo (для отбора в присутствии G418).
Для экспрессии легкой и тяжелой цепей экспрессирующий вектор (экспрессирующие векторы), кодирующие тяжелую и легкую цепи, трансфицируют в клетку-хозяина стандартными способами. Имеется в виду, что различные формы термина «трансфекция» включают большое разнообразие способов, обычно используемых для введения экзогенной ДНК в прокариотическую или эукариотическую клетку-хозяина, например электропорацию, осаждение фосфатом кальция, трансфекцию с использованием DEAE-декстрана и т.п. Хотя теоретически можно экспрессировать антитела настоящего изобретения в любых прокариотических или эукариотических клетках-хозяевах, наиболее предпочтительной является экспрессия антител в эукариотических клетках и, наиболее предпочтительно, в клетках-хозяевах млекопитающих, так как такие эукариотические клетки и, в частности, клетки млекопитающих, с большей вероятностью, чем прокариотические клетки, будут собираться и секретировать правильно уложенное и иммунологически активное антитело. Сообщалось, что прокариотическая экспрессия генов антител является неэффективной для получения высоких выходов активного антитела (Boss, M.A. and Wood, C. R. (1985) Immunology Today 6:12-13).
Предпочтительные клетки-хозяева млекопитающих для экспрессии рекомбинантных антител настоящего изобретения включают в себя клетки яичника китайского хомячка (клетки CHO) (включая dhfr-CHO-клетки, описанные Urlaub and Chasin, (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, используемые с DHFR-селектируемым маркером, например, как описано R.J. Kaufman and P.A. Sharp (1982) в Mol. Biol. 159:601-621), клетки миеломы NSO, клетки COS и клетки SP2. В частности, для применения с миеломными клетками NSO, другой предпочтительной системой экспрессии является система экспрессии гена GS, описанная в WO 87/04462, WO 89/01036 и EP 338841. При введении рекомбинантных экспрессирующих векторов, кодирующих гены антител, в клетки-хозяев млекопитающих, антитела получают культивированием клеток-хозяев в течение времени, достаточного для достижения прохождения экспрессии антитела в клетках-хозяевах или, более предпочтительно, секреции антитела в культуральную среду, в которой выращиваются клетки-хозяева. Антитела могут быть извлечены из культуральной среды с использованием стандартных методов очистки белка.
Характеристика связывания антител с антигеном
Антитела настоящего изобретения могут быть испытаны в отношении связывания с PD-1, например, при помощи стандартного ELISA. Кратко, микротитрационные планшеты покрывают очищенным PD-1 при 0,25 мкг/мл в PBS и затем блокируют 5% бычьим сывороточным альбумином в PBS. Разведения антитела (например, разведения плазмы из иммунизированных PD-1 мышей) добавляют в каждую лунку и инкубируют в течение 1-2 часов при 37°С. Планшеты промывают смесью PBS/Твин и затем инкубируют со вторым реагентом (например, для антител человека, поликлональными козьими антителами, специфическими в отношении IgG-Fc человека), конъюгированным со щелочной фосфатазой, в течение 1 часа при 37°С. После промывания планшеты проявляют с субстратом pNPP (1 мг/мл) и анализируют при OD 405-650. Предпочтительно, мыши, которые развивают наивысшие титры, будут использоваться для слияний.
Анализ ELISA, описанный выше, может быть также использован для скрининга на гибридомы, которые обнаруживают положительную реактивность с иммуногеном PD-1. Гибридомы, которые связываются с высокой авидностью с PD-1, субклонируют и дополнительно характеризуют. Один клон из каждой гибридомы, который сохраняет реактивность исходных клеток (согласно ELISA), может быть выбран для создания банка клеток из 5-10 флаконов, хранящегося при -140°С, и для очистки антитела.
Для очистки анти-PD-1-антител отобранные гибридомы могут быть выращены во вращающихся колбах на два литра для очистки моноклональных антител. Супернатанты могут быть отфильтрованы и концентрированы перед аффинной хроматографией с использованием белка А-сефарозы (Pharmacia, Piscataway, N.J.). Элюированный IgG может контролироваться гель-электрофорезом и высокоэффективной жидкостной хроматографией для гарантии чистоты. Буферный раствор может быть заменен на PBS и концентрация может быть определена по OD280 с использованием коэффициента экстинкции 1,43. Моноклональные антитела могут быть разделены на аликвоты и могут храниться при -80°С.
Для определения, связываются ли отобранные моноклональные анти-PD-1-антитела с уникальными эпитопами, каждое антитело может быть биотинилировано с использованием коммерчески доступных реагентов (Pierce, Rockford, IL). Конкурентные исследования с использованием немеченых моноклональных антител и биотинилированных моноклональных антител могут быть проведены с использованием покрытых PD-1 планшетов ELISA, как описано выше. Связывание биотинилированного mAb может быть детектировано с использованием зонда, содержащего стрептавидин-щелочную фосфатазу.
Для определения изотипа очищенных антител ELISA могут быть проведены с использованием реагентов, специфических в отношении антител конкретного изотипа. Например, для определения изотипа моноклонального антитела человека, лунки микротитрационного планшета могут быть покрыты 1 мкг/мл антитела против иммуноглобулина человека и оставлены при 4°С в течение ночи. После блокирования 1% BSA планшеты подвергают взаимодействию с 1 мкг/мл или менее тестируемых моноклональных антител или очищенными контролями изотипа, при температуре окружающей среды в течение одного или двух часов. Затем лунки могут быть подвергнуты взаимодействию со специфическими либо в отношении IgG1 человека, либо в отношении IgM человека, конъюгированными со щелочной фосфатазой зондами. Планшеты визуализируют и анализируют, как описано выше.
Анти-PD-1-IgG человека могут быть дополнительно испытаны на реактивность с антигеном PD-1 при помощи Вестерн-блоттинга. Кратко, PD-1 может быть получен и подвергнут электрофорезу в додецилсульфатполиакриламидном геле. После электрофореза разделенные антигены переносят на нитроцеллюлозные мембраны, блокируют 10% фетальной телячьей сывороткой и зондируют тестируемыми моноклональными антителами. Связывание IgG человека может быть детектировано с использованием комплекса антитело против IgG человека - щелочная фосфатаза и обнаружено с помощью таблеток субстрата BCIP/NBT (Sigma Chem. Co., St. Louis, Mo.).
Иммуноконъюгаты
В другом аспекте настоящее изобретение описывает анти-PD-1-антитело или его фрагмент, конъюгированные с терапевтической частью молекулы, такой как цитотоксин, лекарственное средство (например, иммуносупрессор) или радиотоксин. Такие конъюгаты называют «иммуноконъюгатами». Иммуноконъюгаты, которые включают один или несколько цитотоксинов, называют «иммунотоксинами». Цитотоксин или цитотоксический агент включает в себя любой агент, который является вредным для клеток (например, убивает клетки). Примеры включают в себя таксол, цитохалазин В, грамицидин D, бромид этидия, эметин, митомицин, этопозид, тенопозид, винкристин, винбластин, колхицин, доксорубицин, даунорубицин, дигидроксиантрациндион, митоксантрон, митрамицин, актиномицин D, 1-дегидротестостерон, глюкокортикоиды, прокаин, тетракаин, лидокаин, пропранолол и пуромицин, и их аналоги или гомологи. Терапевтические агенты включают также, например, антиметаболиты (например, метотрексат, 6-меркаптопурин, цитарабин, 5-фторурацил-декарбазин), алкилирующие агенты (например, мехлорэтамин, тиоэпахлорамбуцил, мелфалан, кармустин (BSNU) и ломустин (CCNU), циклофосфамид, бусульфан, дибромманнит, стрептозотоцин, митомицин С и цис-дихлордиаминплатина (II) (DDP) цисплатин), антрациклины (например, даунорубицин (ранее дауномицин) и доксорубицин), антибиотики (например, дактиномицин (ранее актиномицин), блеомицин, митрамицин и антрамицин (АМС)) и антимитотические агенты (например, винкристин и винбластин).
Другие предпочтительные примеры терапевтических цитотоксинов, которые могут быть конъюгированы с антителом настоящего изобретения, включают дуокармицины, калихеамицины, майтансины и ауристатины, и их производные. Один пример конъюгата калихеамицин-антитело является коммерчески доступным (Mylotarg™; Wyeth-Ayerst).
Цитотоксины могут быть конъюгированы с антителами настоящего изобретения с использованием линкерной технологии, доступной в данной области. Примеры типов линкеров, которые используют для конъюгирования цитотоксина с антителом, включают в себя, но не ограничиваются ими, гидразоны, простые тиоэфиры, сложные эфиры, дисульфиды и пептидсодержащие линкеры. Может быть выбран линкер, который, например, является чувствительным к расщеплению при низком рН в лизосомном компартменте или чувствительным к расщеплению протеазами, например протеазами, предпочтительно экспрессируемыми в опухолевой ткани, такими как катепсины (например, катепсины В, С, D).
В отношении дополнительного обсуждения типов цитотоксинов, линкеров и способов конъюгации терапевтических агентов с антителами, см. также Saito, G. et al. (2003) Adv. Drug Deliv. Rev. 55:199-215; Trail, P.A. et al. (2003) Cancer Immunol. Immunother. 52:328-337; Payne, G. (2003) Cancer Cell 3:207-212; Allen, T.M. (2002) Nat. Rev. Cancer 2:750-763; Pastan, I. and Kreitman, R.J. (2002) Curr. Opin. Investig. Drugs 3:1089-1091; Senter, P.D. and Springer, C.J. (2001) Adv. Drug Deliv. Rev. 53:247-264.
Антитела настоящего изобретения могут быть также конъюгированы с радиоактивным изотопом для генерирования цитотоксических радиофармацевтических веществ, также называемых радиоиммуноконъюгатами. Примеры радиоактивных изотопов, которые могут быть конъюгированы с антителами для диагностического или терапевтического применения, включают, но не ограничиваются ими, иод131, индий111, иттрий90 и лютеций177. Способы получения радиоиммуноконъюгатов являются установленными в данной области. Примеры радиоиммуноконъюгатов являются коммерчески доступными, включая Zevalin™ (IDEC Pharmaceuticals) и Bexxar™ (Corixa Pharmaceuticals), и сходные способы могут быть использованы для получения радиоиммуноконъюгатов с использованием антител настоящего изобретения.
Конъюгаты антител настоящего изобретения могут быть использованы для модификации конкретной биологической ответной реакции, и лекарственная часть молекулы не должна быть ограничена классическими химическими терапевтическими агентами. Например, лекарственной частью молекулы может быть белок или полипептид, обладающий желаемой биологической активностью. Такие белки могут включать в себя, например, ферментативно активный токсин или его активный фрагмент, такой как абрин, рицин А, экзотоксин Pseudomonas или дифтерийный токсин; такой белок, как фактор некроза опухолей или интерферон-γ; или модификаторы биологической реакции, такие как, например, лимфокины, интерлейкин-1 (“IL-1”), интерлейкин-2 ("IL-2"), интерлейкин-6 (“IL-6"), колониестимулирующий фактор гранулоцитов-макрофагов (“GM-CSF"), колониестимулирующий фактор гранулоцитов (“G-CSF") или другие факторы роста.
Способы конъюгирования такой терапевтической части молекулы с антителами хорошо известны, см., например, Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), и Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982).
Биспецифические молекулы
В другом аспекте настоящее изобретение описывает биспецифические молекулы, содержащие анти-PD-1-антитело или его фрагмент настоящего изобретения. Антитело настоящего изобретения или его антигенсвязывающие части могут быть дериватизованы или связаны с другой функциональной молекулой, например другим пептидом или белком (например, другим антителом или лигандом для рецептора) с получением биспецифической молекулы, которая связывается по меньшей мере с двумя различными сайтами связывания или молекулами-мишенями. Антитело настоящего изобретения может быть фактически дериватизировано или связано с более чем одной функциональной молекулой, с получением полиспецифических молекул, которые связываются с более чем двумя различными сайтами связывания и/или молекулами-мишенями; предполагается, что такие полиспецифические молекулы включены в термин «биспецифическая молекула» данного описания. Для создания биспецифической молекулы настоящего изобретения антитело настоящего изобретения может быть функционально связано (например, химическим связыванием, генетическим слиянием, нековалентной ассоциацией или другим образом) с одной или несколькими другими связывающими молекулами, такими как другое антитело, фрагмент антитела, пептид или связывающий миметик таким образом, что образуется биспецифическая молекула.
Таким образом, настоящее изобретение включает биспецифические молекулы, содержащие по меньшей мере одну первую специфичность связывания в отношении PD-1 и вторую специфичность связывания в отношении второго эпитопа-мишени. В конкретном варианте осуществления настоящего изобретения вторым эпитопом-мишенью является рецептор Fc, например, FcγRI человека (CD64) или рецептор Fcα человека (CD89). Таким образом, настоящее изобретение включает биспецифические молекулы, способные связываться как с FcγR или FcαR экспрессирующими эффекторными клетками (например, моноцитами, макрофагами или полиморфонуклеарными клетками (PMN), так и с клетками-мишенями, экспрессирующими PD-1. Такие биспецифические молекулы нацеливают экспрессирующие PD-1 клетки на эффекторную клетку и запускают опосредованные рецептором Fc активности эффекторных клеток, такие как фагоцитоз экспрессирующих PD-1 клеток, антителозависимую клеточноопосредованную цитотоксичность (ADCC), высвобождение цитокинов или генерирование супероксидного аниона.
В одном варианте осуществления настоящего изобретения, в котором биспецифическая молекула является полиспецифической, данная молекула может дополнительно включать третью специфичность связывания и специфичность анти-PD-1-связывания. В одном варианте осуществления третьей специфичностью связывания является часть фактора антиусиления (EF), например молекула, которая связывается с поверхностным белком, участвующим в цитотоксической активности, и усиливает, таким образом, иммунную реакцию против клетки-мишени. «Частью фактора антиусиления (EF)» может быть антитело, функциональный фрагмент антитела или лиганд, который связывается с конкретной молекулой, например антигеном или рецептором, и приводит, таким образом, к усилению эффекта связывающих детерминант для рецептора Fc или клеточного антигена-мишени. «Часть фактора антиусиления (EF)» может связываться с рецептором Fc или клеточным антигеном-мишенью. Альтернативно, «часть фактора антиусиления» может связываться с частицей, которая отличается от частицы, с которой связываются первая и вторая специфичности связывания. Например, «часть фактора антиусиления» может связывать цитотоксическую Т-клетку (например, через CD2, CD3, CD8, CD28, CD4, CD40, ICAM-1 или другую иммунную клетку в увеличенной реакции против клетки-мишени).
В одном варианте осуществления биспецифические молекулы настоящего изобретения содержат в качестве специфичности связывания по меньшей мере одно антитело или фрагмент антитела, включая, например, Fab, Fab', F(ab')2, Fv или одноцепочечный Fv. Данное антитело может быть димером легкой цепи или тяжелой цепи или любого минимального фрагмента антитела, такого как Fv или любая одноцепочечная конструкция, как описано Ladner et al. в патенте США No. 4946778, содержание которого включено в данное описание посредством ссылки.
В одном варианте осуществления специфичность связывания для рецептора Fcγ обеспечивается моноклональным антителом, связывание которого не блокируется иммуноглобулином G человека (IgG). Как использовано в данном описании, термин “рецептор IgG" относится к любому из восьми генов γ-цепи, локализованным на хромосоме 1. Такие гены кодируют в целом двенадцать трансмембранных или растворимых изоформ рецептора, которые сгруппированы в три класса рецепторов Fcγ: FcγRI (CD64), FcγRII (CD32) и FcγRIII (CD16). В одном предпочтительном варианте осуществления рецептором FcγR является FcγRI человека с высокой аффинностью. FcγRI человека является молекулой 72 кДа, которая обнаруживает высокую аффинность в отношении мономерного IgG (108-109М-1).
Получение и характеристика некоторых предпочтительных моноклональных анти-Fcγ-антител описаны Fanger et al. в публикации PCT WO 88/00052 и в патенте США № 4954617, описания которых включены в данное описание посредством ссылки во всей своей полноте. Данные антитела связываются с эпитопом FcγRI, FcγRII или FcγRIII в сайте, который отличается от сайта связывания Fcγ данного рецептора, и, следовательно, их связывание по существу не блокируется физиологическими уровнями IgG. Специфическими анти-FcγRI-антителами, применимыми в данном изобретении, являются mAb 22, mAb 32, mAb 44, mAb 62 и mAb 197. Гибридома, продуцирующая mAb 32, доступна из Американской Коллекции Типовых Культур, ATCC Accession No. (номер доступа) HB9469. В других вариантах осуществления антирецептор Fcγ-антителом является гуманизированная форма моноклонального антитела 22 (H22). Получение и характеристика антитела Н22 описаны Graziano, R.F. et al. (1995) в J. Immunol 155 (10): 4996-5002 и публикации PCT WO 94/10332. Продуцирующая антитело H22 клеточная линия была депонирована в Американской Коллекции Типовых Культур под номером HA022CL1 и имеет номер доступа CRL 11177.
В других предпочтительных вариантах осуществления специфичность связывания в отношении рецептора Fc обеспечена антителом, которое связывается с рецептором IgА человека, например рецептором Fc-альфа (FcαRI (CD89)), связывание которого предпочтительно не блокируется иммуноглобулином А человека (IgA). Термин “рецептор IgA" включает генный продукт одного α-гена (FcαRI), расположенного на хромосоме 19. Известно, что указанный ген кодирует несколько альтернативно сплайсированных трансмембранных изоформ 55-110 кДа. FcαRI (CD89) конститутивно экспрессируется на популяциях моноцитов/макрофагов, эозинофильных и нейтрофильных гранулоцитов, но не на популяциях неэффекторных клеток. FcαRI имеет среднюю аффинность (≈5×107M-1) в отношении как IgA1, так и IgA2, которая увеличивается после воздействия цитокинов, таких как G-CSF или GM-CSF (Morton, H.C. et al. (1996) Critical Reviews in Immunology 16:423-440). Были описаны четыре FcαRI-специфических моноклональных антитела, идентифицированных как A3, A59, A62 и A77, которые связывают FcαRI вне домена связывания лиганда IgA (Monteiro, R.C. et al. (1992) J. Immunol. 148:1764).
FcαRI и FcγRI являются запускающими рецепторами для применения в биспецифических молекулах настоящего изобретения, так как они (1) экспрессируются первично на иммунных эффекторных клетках, например моноцитах, PMN, макрофагах и дендритных клетках; (2) экспрессируются при высоких уровнях (например, 5000-100000 на клетку); (3) являются медиаторами цитотоксических активностей (например, ADCC, фагоцитоза); (4) опосредуют усиленную презентацию антигенов, включая аутоантигены, которые являются их мишенями.
Хотя предпочтительными являются моноклональные антитела человека, другими антителами, которые могут использоваться в биспецифических антителах, являются мышиные, химерные и гуманизированные моноклональные антитела.
Биспецифические молекулы настоящего изобретения могут быть получены конъюгацией составляющих специфичностей связывания, например анти-FcR- и анти-PD-1-специфичностей связывания, с использованием известных в данной области способов. Например, каждая специфичность связывания биспецифической молекулы может быть получена отдельно, и затем они могут быть конъюгированы друг с другом. Когда специфичностями связывания являются белки или пептиды, разнообразные связывающие или сшивающие агенты могут быть использованы для ковалентной конъюгации. Примеры сшивающих агентов включают белок A, карбодиимид, N-сукцинимидил-S-ацетилтиоацетат (SATA), 5,5'-дитиобис(2-нитробензойную кислоту) (DTNB), o-фенилендималеимид (oPDM), N-сукцинимидил-3-(2-пиридилтио)пропионат (SPDP) и сульфосукцинимидил-4-(N-малеимидометил)циклогексан-1-карбоксилат (сульфо-SMCC) (см., например, Karpovsky et al. (1984) J. Exp. Med. 160:1686; Liu, MA et al. (1985) Proc. Natl. Acad. Sci. USA 82:8648). Другие способы включают способы, описанные в Paulus (1985) Behring Ins. Mitt. No. 78, 118-132; Brennan et al. (1985) Science 229:81-83) и Glennie et al. (1987) J. Immunol. 139: 2367-2375). Предпочтительными конъюгирующими агентами являются SATA и сульфо-SMCC, оба доступные от Pierce Chemical Co. (Rockford, IL).
Когда специфичностями связывания являются антитела, они могут быть конъюгированы через образование сульфгидрильной связи шарнирных областей С-концов двух тяжелых цепей. В особенно предпочтительном варианте осуществления шарнирная область модифицирована таким образом, что она содержит нечетное число сульфгидрильных остатков, предпочтительно один сульфгидрильный остаток, перед конъюгацией.
Альтернативно, обе специфичности связывания могут быть кодированы в одном и том же векторе и экспрессированы и собраны в одной и той же клетке-хозяине. Данный способ особенно полезен, когда биспецифической молекулой является mAb×mAb, mAb×Fab, Fab×F(ab')2 или лиганд×Fab-слитый белок. Биспецифической молекулой настоящего изобретения может быть одноцепочечная молекула, содержащая одно одноцепочечное антитело и детерминанту связывания, или одноцепочечная биспецифическая молекула, содержащая две детерминанты связывания. Биспецифические молекулы могут содержать по меньшей мере две одноцепочечные молекулы. Способы получении биспецифических молекул описаны, например, в патенте США № 5260203; патенте США № 5455030; патенте США № 4881175; патенте США № 5132405; патенте США № 5091513; патенте США № 5476786; патенте США № 5013653; патенте США № 5258498 и патенте США № 5482858.
Связывание биспецифических молекул с их специфическими мишенями может быть подтверждено, например, твердофазным иммуноферментным анализом (ELISA), радиоиммуноанализом (RIA), FACS-анализом, биоанализом (например, ингибированием роста) или Вестерн-блот-анализом. Каждый из указанных анализов обычно детектирует присутствие представляющих конкретный интерес комплексов белок-антитело с использованием меченого реагента (например, антитела), специфического в отношении представляющего интерес комплекса. Например, комплексы FcR-антитело могут быть детектированы с использованием, например, ферментсвязанного антитела или фрагмента антитела, которые распознают комплексы антитело-Fcγ и специфически связываются с ними. Альтернативно, комплексы могут быть детектированы с использованием различных других иммуноанализов. Например, антитело может быть радиоактивно меченым и может быть использовано в радиоиммуноанализе (RIA) (см., например, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, которая включена в данное описание посредством ссылки). Радиоактивный изотоп может быть детектирован такими средствами, как использование γ-счетчика или сцинтилляционного счетчика, или авторадиографией.
Фармацевтические композиции
В другом аспекте настоящее изобретение обеспечивает композицию, например фармацевтическую композицию, содержащую одно моноклональное антитело или комбинацию моноклональных антител, или их антигенсвязывающую часть (антигенсвязывающие части), настоящего изобретения, приготовленные вместе с фармацевтически приемлемым носителем. Такие композиции могут содержать одно антитело или комбинацию (например, два или более различных) антител, или иммуноконъюгаты, или биспецифические молекулы настоящего изобретения. Например, фармацевтическая композиция настоящего изобретения может содержать комбинацию антител (или иммуноконъюгаты, или биспецифические антитела), которые связываются с разными эпитопами на антигене-мишени или которые имеют комплементарные (дополняющие) активности.
Фармацевтические композиции настоящего изобретения также могут быть введены в комбинированной терапии, т.е. комбинированные с другими агентами. Например, комбинированная терапия может включать анти-PD-1-антитело настоящего изобретения, комбинированное по меньшей мере с одним другим противовоспалительным или иммуносупрессорным агентом. Примеры терапевтических агентов, которые могут быть использованы в комбинированной терапии, описаны более подробно ниже в разделе о применении антител настоящего изобретения.
Как использовано в данном описании, «фармацевтически приемлемый носитель» включает любые и все растворители, задерживающие абсорбцию агенты и т.п., которые являются физиологически совместимыми. Предпочтительно, носитель является подходящим для внутривенного, внутримышечного, подкожного, парентерального, спинномозгового или эпидермального введения (например, инъекцией или инфузией). В зависимости от способа введения, активное соединение, т.е. антитело, иммуноконъюгат или биспецифическая молекула, могут быть покрыты материалом для защиты данного соединения от действия кислот и других природных условий, которые могут инактивировать данное соединение.
Фармацевтические соединения настоящего изобретения могут включать в себя одну или несколько фармацевтически приемлемых солей. «Фармацевтически приемлемая соль» означает соль, которая сохраняет желаемую биологическую активность исходного соединения и не вызывает никаких нежелательных токсикологических эффектов (см., например, Berge, S.M., et al. (1977) J. Pharm. Sci. 66:1-19). Примеры таких солей включают кислотно-аддитивные соли и основно-аддитивные соли. Кислотно-аддитивные соли включают соли, образованные из нетоксичных неорганических кислот, таких как хлористоводородная, азотная, фосфорная, серная, бромистоводородная, иодистоводородная, фосфористая и т.п., а также из нетоксичных органических кислот, таких как алифатические моно- и дикарбоновые кислоты, фенилзамещенные алкановые кислоты, гидроксиалкановые кислоты, ароматические кислоты, алифатические и ароматические сульфоновые кислоты и т.п. Основно-аддитивные соли включают соли, образованные из щелочных и щелочноземельных металлов, таких как натрий, калий, магний, кальций и т.п., а также из нетоксичных органических аминов, таких как N,N'-дибензилэтилендиамин, N-метилглюкамин, хлорпрокаин, холин, диэтаноламин, этилендиамин, прокаин и т.п.
Фармацевтические композиции настоящего изобретения могут содержать также фармацевтически приемлемый антиоксидант. Примеры фармацевтически приемлемых антиоксидантов включают: (1) водорастворимые антиоксиданты, такие как аскорбиновая кислота, гидрохлорид цистеина, бисульфат натрия, метабисульфит натрия, сульфат натрия и т.п.; (2) растворимые в масле антиоксиданты, такие как аскорбилпальмитат, бутилированный гидроксианизол (ВНА), бутилированный гидрокситолуол (ВНТ), лецитин, пропилгаллат, альфа-токоферол и т.п.; и (3) образующие хелаты металлов агенты, такие как лимонная кислота, этилендиаминтетрауксусная кислота (EDTA), сорбит, винная кислота, фосфорная кислота и т.п.
Примеры подходящих водных и неводных носителей, которые могут быть использованы в фармацевтических композициях настоящего изобретения, включают воду, этанол, полиолы (такие как глицерин, пропиленгликоль, полиэтиленгликоль и т.п.) и их подходящие смеси, растительные масла, такие как оливковое масло, и инъецируемые органические эфиры, такие как этилолеат. Подходящая текучесть может поддерживаться, например, применением материалов покрытий, таких как лецитин, поддержанием требуемого размера частиц в случае дисперсий и применением поверхностно-активных веществ.
Композиции также могут содержать адъюванты, такие как консерванты, увлажняющие агенты, эмульгирующие агенты и диспергирующие агенты. Предотвращение присутствия микроорганизмов может гарантироваться процедурами стерилизации, supra, и включением различных антибактериальных и противогрибковых агентов, например парабена, хлорбутанола, фенолсорбиновой кислоты и т.п. Может быть желательным включение в композиции изотонических агентов, таких как сахара, хлорид натрия и т.п. Кроме того, пролонгированная абсорбция инъектируемой фармацевтической формы может быть осуществлена включением агентов, которые замедляют абсорбцию, таких как моностеарат алюминия и желатин.
Фармацевтически приемлемые носители включают в себя стерильные растворы или дисперсии и стерильные порошки для немедленного приготовления стерильных инъекционных растворов или дисперсии. Применение таких сред и агентов для фармацевтически активных веществ известно в данной области. За исключением случаев, когда какие-либо общепринятые среда или агент являются несовместимыми с активным соединением, рассматривается его применение в фармацевтической композиции настоящего изобретения. В композиции могут быть также включены дополнительные активные соединения.
Терапевтические композиции обычно должны быть стерильными и стабильными в условиях приготовления и хранения. Композиция может быть приготовлена в виде раствора, микроэмульсии, липосомы или другой упорядоченной структуры, пригодной для высокой концентрации лекарственного средства. Носителем может быть растворитель или дисперсионная среда, содержащая, например, воду, этанол, полиол (например, глицерин, пропиленгликоль и жидкий полиэтиленгликоль и т.п.) и их подходящие смеси. Необходимая текучесть может поддерживаться, например, с использованием покрытия, такого как лецитин, поддержанием требуемого размера частиц в случае дисперсии и с использованием поверхностно-активных веществ. Во многих случаях, будет предпочтительно включать в композицию изотонические агенты, например сахара, полиспирты, такие как маннит, сорбит, или хлорид натрия. Пролонгированная абсорбция инъектируемых композиций может быть осуществлена включением агентов, которые замедляют абсорбцию, таких как моностеаратные соли и желатин.
Стерильные инъекционные растворы могут быть приготовлены включением активного соединения в требуемом количестве в подходящем растворителе с одним ингредиентом или несколькими ингредиентами, перечисленными выше, при необходимости, с последующей микрофильтрацией. Обычно дисперсии готовят включением активного соединения в стерильный наполнитель, который содержит дисперсионную среду в качестве основы и требуемые другие ингредиенты из перечисленных выше ингредиентов. В случае стерильных порошков для приготовления стерильных инъекционных растворов, предпочтительными способами приготовления являются сушка в вакууме и сушка вымораживанием (лиофилизация), которые дают порошок активного ингредиента с любым дополнительным желаемым ингредиентом из его предварительно стерильно-отфильтрованного раствора.
Количество активного ингредиента, которое может быть объединено с материалом-носителем для приготовления отдельной дозированной формы, будет варьироваться в зависимости от подлежащего лечению субъекта и конкретного способа введения. Количество активного ингредиента, которое может быть объединено с материалом-носителем для приготовления отдельной дозированной формы, будет обычно количеством композиции, которое производит терапевтическое действие. Обычно, в расчете на сто процентов, это количество будет находиться в диапазоне приблизительно от 0,01 процента до приблизительно девяносто девяти процентов активного ингредиента, предпочтительно приблизительно от 0,1 процента до приблизительно 70 процентов, наиболее предпочтительно приблизительно от 1 процента до приблизительно 30 процентов активного ингредиента в комбинации с фармацевтически приемлемым носителем.
Схемы введения доз приспосабливают для обеспечения оптимальной желаемой ответной реакции (например, терапевтической реакции). Например, может вводиться единственная ударная доза (болюс), несколько разделенных доз на протяжении времени или доза может быть пропорционально уменьшена или увеличена в зависимости от случаев острой необходимости терапевтической ситуации. Парентеральные композиции особенно предпочтительно готовить в единичных дозированных формах для легкости введения и однородности дозы. «Единичная дозированная форма» в данном описании означает физически дискретные единицы, подходящие в качестве разовой дозы для субъектов, которые должны подвергаться лечению; каждая единица дозы содержит заданное количество активного соединения, рассчитанное для получения желаемого терапевтического эффекта, вместе с требуемым фармацевтическим носителем. Спецификация в отношении единичных дозированных форм настоящего изобретения диктуется (а) уникальными характеристиками активного соединения и конкретным терапевтическим эффектом, который должен быть достигнут и зависит от них, и (b) ограничениями, присущими в области компаундирования такого активного соединения, для воздействия на чувствительность у индивидуумов.
Для введения антитела доза находится в диапазоне приблизительно 0,0001-100 мг/кг и более часто 0,01-5 мг/кг массы тела хозяина. Например, дозы могут составлять 0,3 мг/кг массы тела, 5 мг/кг массы тела или 10 мг/кг массы тела или находиться в диапазоне 1-10 мг/кг. Примерная схема лечения включает введение один раз в неделю, один раз каждые две недели, один раз каждые три недели, один раз каждые четыре недели, один раз в месяц, один раз каждые 3 месяца или один раз каждые 3-6 месяцев. Предпочтительные схемы введения доз для анти-PD-1-антитела настоящего изобретения включают 1 мг/кг массы тела или 3 мг/кг массы тела внутривенным введением, причем данное антитело вводят с использованием одной из следующих схем введения доз: (i) каждые четыре недели шесть доз, затем каждые три месяца; (ii) каждые три недели; (iii) 3 мг/кг массы тела один раз и затем 1 мг/кг массы тела каждые три недели.
В некоторых способах, два или более моноклональных антител с разными специфичностями связывания вводят одновременно, и в этом случае доза каждого антитела находится в указанных диапазонах. Антитело обычно вводят в виде множественных введений. Интервалы между отдельными дозами могут быть, например, недельными, месячными, каждые три месяца или один раз в год. Интервалы могут быть также нерегулярными, в зависимости от измерения уровней в крови антитела к антигену в конкретном пациенте. В некоторых способах дозу корректируют для достижения концентрации антитела в плазме приблизительно 1-1000 мкг/мл и в некоторых способах приблизительно 25-300 мкг/мл.
Альтернативно, антитело может вводиться в виде формы непрерывного высвобождения, и в этом случае требуется менее частое введение. Доза и частота введения варьируются в зависимости от периода полусуществования антитела у пациента. Обычно, антитела человека обнаруживают самый длинный период полусуществования, за ними следуют гуманизированные антитела, химерные антитела и антитела не человека. Доза и частота введения могут варьироваться в зависимости от того, является ли лечение профилактическим или терапевтическим. В профилактических применениях, вводят относительно низкую дозу при относительно нечастых интервалах на протяжении продолжительного периода времени. Некоторые пациенты продолжают получать лечение в течение всей их оставшейся жизни. В терапевтических применениях, иногда требуется относительно высокая доза при относительно коротких интервалах, пока прогрессирование заболевания не уменьшается или не терминируется, и, предпочтительно, пока пациент не обнаружит частичное или полное уменьшение симптомов заболевания. После этого пациент может получать дозы в соответствии с профилактической схемой введения.
Фактические уровни доз активных ингредиентов в фармацевтических композициях настоящего изобретения могут варьироваться таким образом, чтобы получить количество активного ингредиента, которое является эффективным для достижения желаемой терапевтической реакции для конкретного пациента, конкретной композиции и конкретного способа введения, без проявления токсичности в отношении данного пациента. Выбранный уровень дозы будет зависеть от различных фармакокинетических факторов, включающих активность конкретных используемых композиций настоящего изобретения или их сложного эфира, соли или амида, способ введения, время введения, скорость выведения конкретного используемого соединения, продолжительность лечения, другие лекарственные средства, соединения и/или материалы, используемые в комбинации с применяемыми конкретными композициями, возраст, пол, массу, состояние, общее здоровье и предыдущую историю болезни пациента, и подобные факторы, хорошо известные в данных областях медицины.
«Терапевтически эффективная доза» анти-PD-1-антитела настоящего изобретения предпочтительно приводит к уменьшению тяжести симптомов заболевания, увеличению частоты и продолжительности бессимптомных периодов или предупреждению ухудшения или потери трудоспособности вследствие данной болезни. Например, для лечения опухолей, «терапевтически эффективная доза» предпочтительно ингибирует рост клеток или рост опухоли по меньшей мере приблизительно на 20%, более предпочтительно по меньшей мере приблизительно на 40%, даже более предпочтительно по меньшей мере приблизительно на 60% и еще более предпочтительно по меньшей мере приблизительно на 80% относительно не подвергнутых лечению субъектов. Способность соединения ингибировать рост опухоли может оцениваться на системе модели животного, предсказывающей эффективность в опухолях человека. Альтернативно, такое свойство композиции может быть оценено испытанием способности данного соединения к ингибированию, и такие анализы ингибирования in vitro известны квалифицированному практику. Терапевтически эффективное количество терапевтического соединения может уменьшать размер опухоли или иным образом ослаблять симптомы у субъекта. Специалист в данной области сможет определить такие количества на основе таких факторов, как размер субъекта, тяжесть симптомов у субъекта и конкретная выбранная композиция или выбранный способ введения.
В другом аспекте настоящее изобретение обеспечивает фармацевтический набор компонентов, содержащий анти-PD-1-антитело и анти-CTLА-4-антитело, описанные в данном описании. Набор может дополнительно содержать инструкции для применения в лечении гиперпролиферативного заболевания (такого как рак, как описано здесь). В другом варианте осуществления анти-PD-1 и анти-CTLА-4-антитела могут быть совместно упакованы в единичной дозированной форме.
В некоторых вариантах осуществления два или несколько моноклональных антител с различными специфичностями связывания (например, анти-PD-1-антитело и анти-CTLА-4-антитело) вводят одновременно, и в этом случае доза каждого вводимого антитела находится в указанных диапазонах. Антитело может вводиться в виде единственной дозы или, более часто, может вводиться в виде множественных введений. Интервалы между отдельными единственными дозами могут составлять один раз в неделю, один раз в месяц, каждые три месяца или один раз в год. Интервалы могут быть также нерегулярными, в соответствии с измерениями уровней в крови антитела к антигену-мишени у пациента. В некоторых способах доза корректируется таким образом, чтобы получать концентрацию антитела в плазме приблизительно 1-1000 мкг/мл, и в некоторых способах приблизительно 25-300 мкг/мл.
Композиция настоящего изобретения может вводиться посредством одного или нескольких способов введения с использованием одного или нескольких различных способов, известных в данной области. Как будет понятно специалисту в данной области, способ и/или схема введения будут варьироваться в зависимости от желаемых результатов. Предпочтительные способы введения антител настоящего изобретения включают внутривенный, внутримышечный, внутрикожный, внутрибрюшинный, подкожный, спинномозговой или другие парентеральные способы введения, например, инъекцией или инфузией. Фраза «парентеральное введение» означает в данном описании способы введения, другие, чем энтеральное и местное введение, обычно посредством инъекции, и включает, но без ограничения, внутривенную, внутримышечную, внутриартериальную, внутриоболочечную, внутрикапсулярную, внутриглазную, внутрисердечную, внутрикожную, внутрибрюшинную, транстрахеальную, подкожную, субкутикулярную, внутрисуставную, субкапсулярную, субарахноидальную, вводимую в спинномозговой канал, эпидуральную и надчревную инъекцию и инфузию.
Альтернативно, антитело настоящего изобретения может вводиться непарентеральным способом, таким как местный, эпидермальный способ или способ введения через слизистую оболочку, например, интраназально, перорально, вагинально, ректально, сублингвально или местно.
Активные соединения могут быть приготовлены с носителями, которые будут защищать данное соединение против быстрого высвобождения, например формы регулируемого высвобождения, включая имплантаты, трансдермальные пластыри и микроинкапсулированные системы доставки. Могут быть использованы биодеградируемые, биосовместимые полимеры, такие как этиленвинилацетат, полиангидриды, полигликолевая кислота, коллаген, полиортоэфиры и полимолочная кислота. Многие способы приготовления таких форм запатентованы или обычно известны специалистам в данной области. См., например, Sustained and Controlled Release Drug Delivery Systems, J.R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
Терапевтические композиции могут вводиться медицинскими устройствами, известными в данной области. Например, в предпочтительном варианте осуществления терапевтическая композиция настоящего изобретения может водиться безыгольным устройством для подкожных инъекций, таким как устройства, описанные в патентах США №№ 5399163; 5383851; 5312335; 5064413; 4941880; 4790824 или 4596556. Примеры хорошо известных имплантатов и модулей, применимых в данном изобретении, включают: патент США № 4487603, в котором описан имплантируемый микроинфузионный насос для введения лекарственного средства при регулируемой скорости; патент США № 4486194, в котором описано терапевтическое устройство для введения лекарственного средства через кожу; патент США № 4447233, в котором описан насос для инфузии лекарственного средства для доставки лекарственного средства при точной скорости инфузии; патент США № 4447224, в котором описано имплантируемое устройство для инфузии с вариабельным током для непрерывной доставки лекарственного средства; патент США № 4439196, в котором описана система осмотической доставки лекарственного средства, имеющая многокамерные компартменты; и патент США № 4475196, в котором описана система осмотической доставки лекарственного средства. Приведенные патенты включены в данное описание посредством ссылки. Многие другие подобные имплантаты, системы доставки и модули известны специалистам в данной области.
В некоторых вариантах осуществления моноклональные антитела человека настоящего изобретения могут быть приготовлены для гарантии правильного распределения in vivo. Например, гематоэнцефалический барьер (ВВВ) исключает многие высокогидрофильные соединения. Для гарантии того, что терапевтические соединения настоящего изобретения пересекают ВВВ (если желательно), они могут быть приготовлены, например, в липосомах. В отношении способов приготовления липосом, см., например, патенты США №№ 4522811; 5374548 и 5399331. Липосомы могут содержать одну или несколько групп, которые селективно транспортируются в специфические клетки или органы и, следовательно, усиливают нацеленную доставку лекарственного средства (см., например, V.V. Ranade (1989) J. Clin. Pharmacol. 29:685). Примеры нацеливающих частей молекул включают фолат и биотин (см., например, патент США 5416016, Low et al.); маннозиды (Umezawa et al., (1988) Biochem. Biophys. Res. Commun. 153:1038); антитела (P.G. Bloeman et al. (1995) FEBS Lett. 357:140; M. Owais et al. (1995) Antimicrob. Agents Chemother. 39:180); рецептор белка А поверхностно-активного вещества (Briscoe et al. (1995) Am. J. Physiol. 1233:134); p120 (Schreier et al. (1994) J. Biol. Chem. 269:9090); см. также K. Keinanen; M.L. Laukkanen (1994) FEBS Lett. 346:123; J.J. Killion; I.J. Fidler (1994) Immunomethods 4:273.
Применения и способы настоящего изобретения
Антитела, композиции антител и способы настоящего изобретения имеют многочисленные применения in vitro и in vivo, например детектирование PD-1 или усиление иммунной реакции блокадой PD-1. В предпочтительном варианте осуществления антитела настоящего изобретения являются антителами человека. Например, молекулы могут быть введены в клетки в культуре, in vitro и in vivo, или субъектам-людям, например, in vivo для усиления иммунитета в различных ситуациях. Таким образом, в одном аспекте настоящее изобретение обеспечивают способ модификации иммунного ответа у субъекта, предусматривающий введение указанному субъекту антитела или его антигенсвязывающей части настоящего изобретения таким образом, что иммунная реакция у субъекта модифицируется. Предпочтительно, указанная реакция усиливается, стимулируется или положительно регулируется.
Как использовано в данном описании, термин “субъект" включает человека и животных, не являющихся человеком. Термин животное (не человек) включает в себя всех позвоночных, например млекопитающих и не млекопитающих, таких как приматы (не человек), овцы, собаки, кошки, коровы, лошади, куры, земноводные и пресмыкающиеся, хотя млекопитающие являются предпочтительными, например приматы (не человек), овцы, собаки, кошки, коровы и лошади. Предпочтительные субъекты включают пациентов-людей, нуждающихся в усилении иммунного ответа. Данные способы предпочтительно являются подходящими для лечения пациентов-людей, имеющих нарушение, которое может подвергаться лечению увеличением опосредованной Т-клетками иммунной реакции. В предпочтительном варианте осуществления данные способы предпочтительно пригодны для лечения клеток рака in vivo. Для достижения антигенспецифического усиления иммунитета анти-PD-1-антитела могут вводиться вместе с представляющим интерес антигеном. При введении антител к PD-1 вместе с другим агентом, указанные два агента могут вводиться в любом порядке или одновременно.
Настоящее изобретение обеспечивает дополнительно способы детектирования присутствия антигена PD-1 человека в пробе или измерения количества антигена PD-1 человека, предусматривающие контактирование пробы и контрольной пробы с моноклональным антителом человека или его антигенсвязывающей частью, которое специфически связывается с PD-1 человека, в условиях, которые делают возможным образование комплекса между антителом или его частью и PD-1 человека. Затем образование комплекса детектируют, причем различие образования комплекса данной пробой в сравнении с контрольной пробой является показателем присутствия антигена PD-1 человека в пробе.
Вследствие специфического связывания антител настоящего изобретения с PD-1, в сравнении с CD28, ICOS и CTLА-4, антитела настоящего изобретения могут быть использованы для специфического детектирования экспрессии PD-1 на поверхности клеток и, кроме того, могут быть использованы для очистки PD-1 при помощи иммуноаффинной очистки.
Рак
Блокада PD-1 антителами может усиливать иммунную реакцию пациента на раковые клетки. Лиганд для PD-1, PD-L1, не экспрессируется в здоровых клетках человека, но является изобилующим в различных типах рака человека (Dong et al. (2002) Nat Med 8:787-9). Взаимодействие между PD-1 и PD-L1 приводит к уменьшению инфильтрирующих опухоль лимфоцитов, уменьшению опосредованной рецептором Т-клеток пролиферации и ускользанию раковых клеток от иммунологического надзора (Dong et al. (2003) J Mol Med 81:281-7; Blank et al. (2005) Cancer Immunol. Immunother. 54:307-314; Konishi et al. (2004) Clin. Cancer Res. 10:5094-100). Иммунная супрессия может быть изменена ингибированием локального взаимодействия PD-1 с PD-L1, и это действие является аддитивным при блокировании также взаимодействия PD-1 с PD-L2 (Iwai et al. (2002) PNAS 99:12293-7; Brown et al. (2003) J. Immunol. 170:1257-66). Хотя предыдущие исследования показали, что пролиферация Т-клеток может быть восстановлена ингибированием взаимодействия PD-1 с PD-L1, не было сообщений о прямом действии на рост раковой опухоли in vivo блокированием взаимодействия PD-1/PD-L1. В одном аспекте настоящее изобретение относится к лечению субъекта in vivo с использованием анти-PD-1-антитела таким образом, что рост раковых тканей ингибируется. Анти-PD-1-антитело может быть использовано одно для ингибирования роста раковых опухолей. Альтернативно, анти-PD-1-антитело может быть использовано вместе с другими иммуногенными агентами, стандартными способами лечения рака или другими антителами, как описано ниже.
Таким образом, в одном варианте осуществления настоящее изобретение обеспечивает способ ингибирования роста опухолевых клеток у субъекта, предусматривающий введение указанному субъекту терапевтически эффективного количества анти-PD-1-антитела или его антигенсвязывающей части. Предпочтительно, антителом является анти-PD-1-антитело человека (например, любое из анти-PD-1-антител человека, описанных в данном описании). Дополнительно или альтернативно, антителом может быть химерное или гуманизированное анти-PD-1-антитело.
Предпочтительными типами рака, рост которых может быть ингибирован с использованием антител настоящего изобретения, включают типы рака, отвечающие на иммунотерапию. Неограничивающие примеры предпочтительных типов рака включают меланому (например, метастатическую злокачественную меланому), рак почки (например, гипернефрому), рак предстательной железы (например, не отвечающую на гормоны аденокарциному предстательной железы), рак молочной железы, рак ободочной кишки и рак легкого (например, немелкоклеточный рак легкого). Кроме того, настоящее изобретение включает трудноизлечимые или рецидивирующие злокачественные опухоли, рост которых может быть ингибирован антителами настоящего изобретения.
Примеры других типов рака, которые могут подвергаться лечению способами настоящего изобретения, включают костный рак, рак поджелудочной железы, рак кожи, рак головы и шеи, кожную или внутриглазную злокачественную меланому, рак матки, рак яичника, ректальный рак, рак анальной области, рак желудка, рак яичек, рак матки, рак фаллопиевых труб, рак эндометрия, рак шейки матки, рак вагины, рак вульвы, болезнь Ходжкина, не-Ходжкинскую лимфому, рак пищевода, рак тонкой кишки, рак эндокринной системы, рак щитовидной железы, рак паращитовидной железы, рак надпочечника, саркому мягкой ткани, рак мочеиспускательного канала, рак пениса, хронические или острые лейкозы, включая острый миелоидный лейкоз, хронический миелоидный лейкоз, острый лимфобластный лейкоз, хронический лимфоцитарный лейкоз, солидные опухоли детского возраста, лимфоцитарную лимфому, рак мочевого пузыря, рак почки или мочеточника, рак почечных лоханок, неоплазму центральной нервной системы (ЦНС), лимфому первичной ЦНС, ангиогенез опухоли, опухоль спинного мозга, глиому ствола мозга, аденому гипофиза, саркому Капоши, эпидермоидный рак, плоскоклеточный рак, Т-клеточную лимфому, индуцированные условиями окружающей среды раковые заболевания, включая раковые заболевания, индуцированные асбестом, и комбинации указанных типов рака. Настоящее изобретение также полезно для лечения метастазирующих типов рака, которые экспрессируют PD-L2 (Iwai et al. (2005) Int. Immunol. 17:133-144).
Необязательно, антитела к PD-1 могут быть объединены с иммуногенным агентом, таким как раковые клетки, очищенные опухолевые антигены (включая рекомбинантные белки, пептиды и углеводные молекулы), клетки и клетки, трансфицированные генами, кодирующими иммуностимулирующие цитокины (He et al (2004) J. Immunol. 173:4919-28). Неограничивающие примеры опухолевых вакцин, которые могут быть использованы, включают пептиды антигенов меланомы, например пептиды gp100, антигены MAGE, Trp-2, MART1 и/или тирозиназу, или опухолевые клетки, трансфицированные для экспрессии цитокина GM-CSF (обсуждаемые дополнительно ниже).
Было показано, что у людей некоторые опухоли являются иммуногенными, например меланомы. Считается, что при увеличении порога активации Т-клеток посредством блокады PD-1 можно ожидать активации опухолевых реакций в хозяине.
Блокада PD-1 является, по-видимому, наиболее эффективной при комбинировании с протоколом вакцинации. Были разработаны многие экспериментальные стратегии вакцинации против опухолей (см. Rosenberg, S., 2000, Development of Cancer Vaccines, ASCO Educational Book Spring: 60-62; Logothetis, C., 2000, ASCO Educational Book Spring: 300-302; Khayat, D. 2000, ASCO Educational Book Spring: 414-428; Foon, K. 2000, ASCO Educational Book Spring: 730-738; см. также Restifo, N. and Sznol, M., Cancer Vaccines, Ch. 61, pp. 3023-3043 in DeVita, V. et al. (eds.), 1997, Cancer: Principles and Practice of Oncology. Fifth Edition). В одной из таких стратегий вакцину готовят с использованием аутологичных или аллогенных опухолевых клеток. Было показано, что клеточные вакцины являются наиболее эффективными при трансдукции опухолевых клеток для экспрессии GM-CSF. Было показано, что GM-CSF является сильным активатором презентации антигена для опухолевой вакцинации (Dranoff et al. (1993) Proc. Natl. Acad. Sci U.S.A. 90: 3539-43).
Исследование экспрессии генов и широкомасштабных распределений экспрессии в различных опухолях привело к определению так называемых опухолеспецифических антигенов (Rosenberg, SA (1999) Immunity 10: 281-7). Во многих случаях, опухолеспецифические антигены являются антигенами дифференцировки, экспрессируемыми в опухолях и в клетке, из которой возникла данная опухоль, например антигенами меланоцитов gp100, антигенами MAGE и Trp-2. Более важно, было показано, что многие из указанных антигенов являются мишенями опухолеспецифических Т-клеток, обнаруженных в данном хозяине. Блокада PD-1 может быть использована вместе с набором рекомбинантных белков и/или пептидов, экспрессируемых в опухоли, для генерирования иммунной реакции на данные белки. Белки в норме рассматриваются иммунной системой как аутоантигены и, следовательно, являются толерантными к ней. Опухолевый антиген может также включать в себя белок теломеразу, который необходим для синтеза теломеров хромосом и который экспрессируется в более чем 85% типов рака человека, и только в ограниченном количестве соматических тканей (Kim, N et al. (1994) Science 266: 2011-2013). (Соматические ткани могут быть защищены от иммунной атаки различными способами). Опухолевым антигеном могут быть также «неоантигены», экспрессируемые в раковых клетках вследствие соматических мутаций, которые изменяют последовательность белка или создают слитые белки между двумя неродственными последовательностями (например, bcr-abl в хромосоме Philadelphia) или идиотип из В-клеточных опухолей.
Другие опухолевые вакцины могут включать в себя белки из вирусов, участвующие в раковых заболеваниях человека, таких как папилломавирусы человека (HPV), вирусы гепатита (HBV и HCV) и герпесвирус саркомы Капоши (KHSV). Другой формой опухолеспецифического антигена, который может быть использован вместе с блокадой PD-1, является белки теплового шока (HSP), выделенные из самой ткани опухоли. Белки теплового шока содержат фрагменты белков из опухолевых клеток, и такие HSP являются высокоэффективными в доставке антигенпрезентирующих клеток для индукции противоопухолевого иммунитета (Suot, R & Srivastava, P (1995) Science 269:1585-1588; Tamura, Y. et al. (1997) Science 278:117-120).
Дендритные клетки (DC) являются сильными антигенпрезентирующими клетками, которые могут быть использованы для прайминга антигенспецифических реакций. DC могут продуцироваться ex vivo и загружаться разными белковыми и пептидными антигенами, а также экстрактами опухолевых клеток (Nestle, F. et al. (1998) Nature Medicine 4: 328-332). DC могут также переноситься генетическими средствами для экспрессии таких опухолевых антигенов. DC были также слиты непосредственно с опухолевыми клетками для цели иммунизации (Kugler, A. et al. (2000) Nature Medicine 6:332-336). В качестве способа вакцинации, иммунизация DC может быть эффективно объединена с блокадой PD-1 для активации более сильных противоопухолевых реакций.
Блокада PD-1 может также комбинироваться со стандартными раковыми терапиями. В этих случаях, можно уменьшать дозу вводимого химиотерапевтического реагента (Mokyr, M. et al. (1998) Cancer Research 58: 5301-5304). Примером такой комбинации является анти-PD-1-антитело в комбинации с интерлейкином-2 (IL-2) для лечения меланомы. Научным обоснованием такого комбинированного применения блокады PD-1 и химиотерапии является то, что гибель клеток, которая является следствием цитотоксического действия большинства химиотерапевтических соединений, должна приводить к увеличенным уровням опухолевого антигена в пути презентации антигена. Другими комбинированными терапиями, которые могут приводить к синергизму с блокадой PD-1 посредством гибели клеток, являются облучение, хирургия и выключение эндокринной функции. Каждый из таких протоколов создает источник опухолевого антигена в хозяине. Ингибиторы ангиогенеза могут также комбинироваться с блокадой PD-1. Ингибирование ангиогенеза приводит к гибели опухолевых клеток, которые могут подавать опухолевый антиген в пути презентации антигенов хозяина.
Блокирующие PD-1 антитела могут быть также использованы в комбинации с биспецифическими антителами, которые нацеливают экспрессирующие Fc-альфа- или рецептор Fc-гамма эффекторные клетки на опухолевые клетки (см., например, патенты США №№ 5922845 и 5837243). Биспецифические антитела могут быть использованы для нацеливания на два отдельных антигена. Например, биспецифические антитела против рецептора Fc/против опухолевого антигена (например, Her-2/neu) использовали для нацеливания макрофагов на участки опухоли. Такое нацеливание может более эффективно активировать опухолеспецифические реакции. Т-клеточная ветвь данных реакций может увеличиваться с использованием блокады PD-1. Альтернативно, антиген может доставляться непосредственно к DC с использованием биспецифических антител, которые связываются с опухолевым антигеном и специфическим в отношении дендритных клеток маркером поверхности клеток.
Опухоли избегают иммунологического надзора хозяина большим разнообразием механизмов. Многие из таких механизмов могут быть преодолены инактивацией белков, которые экспрессируются опухолями и которые являются иммуносупрессивными. Они включают, среди прочего, TGF-бета (Kehrl, J. et al. (1986) J. Exp. Med. 163: 1037-1050), IL-10 (Howard, M. & O'Garra, A. (1992) Immunology Today 13: 198-200) и Fas-лиганд (Hahne, M. et al. (1996) Science 274: 1363-1365). Антитела к каждому из указанных агентов могут быть использованы в комбинации с анти-PD-1-антителом для противодействия эффектам иммуносупрессивного агента и содействия иммунным реакциям хозяина против опухоли.
Другие антитела, которые могут быть использованы для активации иммунологической откликаемости хозяина, могут быть использованы в комбинации с анти-PD-1-антителом. Они включают в себя молекулы на поверхности дендритных клеток, которые активируют функцию DC и презентацию антигена. Анти-CD40-антитела способны эффективно заменять активность Т-клеток-хелперов (Ridge, J. et al. (1998) Nature 393: 474-478) и могут быть использованы вместе с анти-PD-1-антителами (Ito, N. et al. (2000) Immunobiology 201 (5) 527-40). Активация антител к костимулирующим Т-клетки молекулам, таким как CTLA-4 (например, патент США № 5811097), OX-40 (Weinberg, A. et al. (2000) Immunol 164: 2160-2169), 4-1BB (Melero, I. et al. (1997) Nature Medicine 3: 682-685 (1997), and ICOS (Hutloff, A. et al. (1999) Nature 397: 262-266) может также обеспечивать увеличенные уровни активации Т-клеток.
Пересадку (трансплантацию) костного мозга используют в настоящее время для лечения различных опухолей гемопоэтического происхождения. Хотя реакция трансплантат против хозяина является следствием такой терапии, можно получить терапевтическую пользу из реакций трансплантат против хозяина. Блокада PD-1 может быть использована для эффективности пересаженных опухолеспецифических Т-клеток донора.
Имеются также несколько экспериментальных протоколов терапии, которые включают активацию ex vivo и размножение антигенспецифических Т-клеток и адоптивный (со стойким приживлением) перенос указанных клеток реципиентам для получения антигенспецифических Т-клеток против опухоли (Greenberg, R. & Riddell, S. (1999) Science 285: 546-51). Такие способы могут быть также использованы для активации Т-клеточных реакций на инфекционные агенты, такие как CMV. Можно ожидать, что активация ex vivo в присутствии анти-PD-1-антител будет увеличивать встречаемость и активность адоптивно перенесенных Т-клеток.
Инфекционные заболевания
Другие способы настоящего изобретения используют для лечения пациентов, которые были подвергнуты действию конкретных токсинов или патогенов. Таким образом, другой аспект настоящего изобретения обеспечивает способ лечения инфекционного заболевания у субъекта, предусматривающий введение указанному субъекту анти-PD-1-антитела или его антигенсвязывающей части таким образом, что субъект подвергается лечению в отношении указанного инфекционного заболевания. Предпочтительно, антителом является анти-PD-1-антитело человека (например, любое из описанных в данном описании анти-PD-1-антител человека). Дополнительно или альтернативно, данное антитело может быть химерным или гуманизированным антителом.
Подобно ее использованию в отношении опухолей, как обсуждалось выше, опосредованная антителом блокада PD-1 может быть использована самостоятельно или в качестве дополнения в комбинации с вакцинами, для стимуляции иммунной реакции на патогенны, токсины и аутоантигены. Примеры патогенов, для которых может использоваться, в частности, такой терапевтический подход, включают патогены, для которых в настоящее время нет эффективной вакцины, или патогены, для которых общепринятые вакцины являются менее чем полностью эффективными. Они включают, но не ограничиваются ими, ВИЧ, вирусы гепатита (A, B и C), вирусы гриппа, герпесвирусы, возбудителей гиардиоза, возбудителей малярии, лейшманиоза, Staphylococcus aureus, Pseudomonas aeruginosa. Блокада PD-1 особенно полезна против установленных инфекций. Новые эпитопы распознаются как чужеродные в момент введения анти-PD-1-антител, провоцируя таким образом сильную Т-клеточную реакцию, которая не заглушается негативными сигналами через PD-1.
Некоторые примеры патогенных вирусов, вызывающих инфекции, которые могут подвергаться лечению способами настоящего изобретения, включают ВИЧ, вирус гепатита (А, В или С), герпесвирус (например, VZV, HSV-1, HAV-6, HSV-II и CMV, вирус Эпштейна-Барра), аденовирус, вирус гриппа, флавивирусы, эховирус, риновирус, вирус Коксаки, коронавирус, респираторно-синцитиальный вирус, вирус эпидемического паротита, ротавирус, вирус кори, вирус коревой краснухи, парвовирус, вирус коровьей оспы, HTLV-вирус, вирус Денге, папилломавирус, вирус контагиозного моллюска, полиовирус, вирус бешенства, JC-вирус (вирус полиомы человека, прогрессирующей многоочаговой лейкоэнцефалопатии) и вирус арбовирусного энцефалита.
Некоторые примеры патогенных бактерий, вызывающих инфекции, которые могут подвергаться лечению способами настоящего изобретения, включают хламидии, бактерии рода Rickettsia, микобактерии, стафилококки, стрептококки, пневмококки, менингококки и гонококки, Klebsiella, Proteus, Serratia, Pseudomonas, Legionella, дифтерийные бактерии, Salmonella, бациллы, возбудитель холеры, возбудитель столбняка, возбудитель ботулизма, возбудитель сибирской язвы, возбудитель чумы, возбудитель лептоспироза и бактерии, вызывающие болезнь Лайма.
Некоторые примеры патогенных грибов, вызывающих инфекции, которые могут подвергаться лечению способами настоящего изобретения, включают Candida (albicans, krusei, glabrata, tropicalis и т.д.), Cryptococcus neoformans, Aspergillus (fumigatus, niger и т.д.), род Mucorales (mucor, absidia, rhizophus), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis и Histoplasma capsulatum.
Некоторые примеры патогенных паразитов, вызывающих инфекции, которые могут подвергаться лечению способами настоящего изобретения, включают Entamoeba histolytica, Balantidium coli, Naegleriafowleri, Acanthamoeba sp., Giardia lambia, Cryptosporidium sp., Pneumocystis carinii, Plasmodium vivax, Babesia microti, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondi и Nippostrongylus brasiliensis.
Во всех вышеуказанных способах блокада PD-1 может комбинироваться с другими формами иммунотерапии, такими как лечение цитокинами (например, интерферонами, GM-CSF, G-CSF, IL-2), или терапия с использованием биспецифических антител, которая обеспечивает усиленную презентацию опухолевых антигенов (см., например, Holliger (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak (1994) Structure 2:1121-1123).
Аутоиммунные реакции
Анти-PD-1-антитела могут провоцировать и размножать аутоиммунные реакции. Действительно, индукции противоопухолевых реакций с использованием опухолевых клеток и пептидных вакцин выявила, что многие противоопухолевые реакции включают в себя реактивности против собственных антигенов (депигментацию, наблюдаемую в модифицированной анти-CTLА-4+GM-CSF меланоме В16 в Elsas et al. supra; депигментацию в вакцинированных Trp-2 мышах (Overwijk, W. et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96: 2982-2987); аутоиммунный простатит, индуцированный противоопухолевыми вакцинами TRAMP (Hurwitz, A. (2000) supra), вакцинацией пептидным антигеном меланомы и витилиго, наблюдаемые в клинических исследованиях на человеке (Rosenberg, SA and White, DE (1996) J. Immunother Emphasis Tumor Immunol 19 (1): 81-4).
Таким образом, можно рассматривать применение блокады против PD-1 вместе с различными аутологичными белками для создания протоколов вакцинации для эффективного генерирования иммунных реакций против аутологичных белков для лечения заболевания. Например, болезнь Альцгеймера включает в себя нежелательное накапливание Аβ-пептида в амилоидных отложениях в головном мозге; реакции антител против амилоида способны очищать амилоидные отложения (Schenk et al., (1999) Nature 400: 173-177).
Другие аутологичные белки могут также использоваться в качестве мишеней, например, IgЕ, для лечения аллергии и астмы, и TNFα для ревматоидного артрита. Наконец, реакции антител на различные гормоны могут быть индуцированы с использованием анти-PD-1-антитела. Реакции нейтрализующих антител на репродуктивные гормоны могут быть использованы для контрацепции. Может быть также использована реакция нейтрализующих антител на гормоны и другие растворимые факторы, которые необходимы для роста конкретных опухолей и могут также рассматриваться как возможные мишени вакцинации.
Способы, аналогичные способам, описанным выше для использования анти-PD-1-антитела, могут быть использованы для индукции терапевтических аутоиммунных реакций для лечения пациентов, имеющих нежелательное накапливание других аутоантигенов, таких как амилоидные отложения, включая Аβ в болезни Альцгеймера, цитокинов, таких как TNFα, и IgЕ.
Вакцины
Анти-PD-1-антитела могут быть использованы для стимуляции антигенспецифических иммунных реакций совместным введением анти-PD-1-антитела с представляющим интерес антигеном (например, вакциной). Таким образом, в другом аспекте настоящее изобретение обеспечивает способ усиления иммунной реакции на антиген у субъекта, предусматривающий введение указанному субъекту: (i) антигена; и (ii) анти-PD-1-антитела или его антигенсвязывающей части таким образом, что иммунная реакция на данный антиген у субъекта усиливается. Предпочтительно, антителом является анти-PD-1-антитело человека (например, любое из описанных в данном описании анти-PD-1-антител человека). Дополнительно или альтернативно, таким антителом может быть химерное антитело или гуманизированное антитело. Антигеном может быть, например, опухолевый антиген, вирусный антиген, бактериальный антиген или антиген из патогена. Неограничивающие примеры таких антигенов включают антигены, обсуждаемые в разделах выше, такие как опухолевые антигены (или противоопухолевые вакцины), обсуждаемые выше, или антигены из вирусов, бактерий или других патогенов, описанные в данном описании.
Подходящие пути введения композиций антител (например, моноклональных антител человека, полиспецифических и биспецифических молекул или иммуноконъюгатов) настоящего изобретения in vivo и in vitro хорошо известны в данной области и могут быть выбраны специалистами в данной области. Например, композиции антител могут вводиться инъекцией (например, внутривенной или подкожной). Подходящие дозы используемых молекул будут зависеть от возраста и массы субъекта и концентрации и/или формы композиции антител.
Как описано выше, анти-PD-1-антитела человека настоящего изобретения могут вводиться совместно с одним или несколькими другими терапевтическими агентами, например цитотоксическим агентом, радиотоксическим агентом или иммуносупрессивным агентом. Антитело может быть связано с данным агентом (в виде иммунокомплекса) или может быть введено отдельно от данного агента. В последнем случае (в случае отдельного введения) антитело может вводиться до, после или совместно с указанным агентом или может вводиться совместно с другими известными терапиями, например противораковой терапией, например, облучением. Такие терапевтические агенты включают, среди прочего, противоопухолевые агенты, такие как доксорубицин (адриамицин), цисплатин, блеомицина сульфат, кармустин, хлорамбуцил, декарбазин и циклофосфамидгидроксимочевина, которые, сами по себе, являются эффективными только при уровнях, которые являются токсичными или субтоксичными для пациента. Цисплатин вводят внутривенно в виде 100 мг на дозу один раз каждые четыре недели, и адриамицин вводят внутривенно в виде дозы 60-75 мг/мл один раз каждые 21 день. Совместное введение анти-PD-1-антител человека или их антигенсвязывающих частей настоящего изобретения с химиотерапевтическими агентами обеспечивает два противораковых агента, которые действуют посредством различных механизмов, которые оказывают цитотоксическое действие в отношении опухолевых клеток человека. Такое совместное введение может решить проблемы, связанные с развитием устойчивости к лекарственным средствам или изменением антигенности опухолевых клеток, которые будут делать их нереактивными с данным антителом.
В объем настоящего изобретения входят также наборы, содержащие композиции антител настоящего изобретения (например, антител человека, биспецифических или полиспецифических молекул или иммуноконъюгатов) и инструкции для применения. Кроме того, набор содержит по меньшей мере один дополнительный реагент или один или несколько дополнительных антител человека настоящего изобретения (например, антитело человека, имеющее дополняющую активность, которое связывается с эпитопом в антигене PD-1, отличающимся от эпитопа первого антитела человека). Наборы обычно содержат этикетку, указывающую предполагаемое применение содержимого данного набора. Термин «этикетка» включает любое описание или записанный материал, поставляемый с набором, или материал, который иным образом прилагается к набору.
Комбинированная терапия
Настоящее изобретение основано, частично, на следующих экспериментальных данных. Модели опухоли мыши (рака ободочной кишки МС38 и фибросаркомы SA1/N) использовали для испытания действия in vivo лечения опухоли комбинированием иммуностимулирующих терапевтических антител - анти-CTLА-4 и анти-PD-1-антител. Иммунотерапевтическую комбинацию предоставляли либо одновременно с имплантатом опухолевых клеток (примеры 14 и 17), либо после того как опухолевые клетки были имплантированы, в течение времени, достаточного для того, чтобы они стали развившейся (установленной) опухолью (примеры 15, 16 и 18). Независимо от хронометрирования лечения антителами, было обнаружено, что лечение одним анти-CTLА-4-антителом и одним анти-PD-1-антителом (химерным антителом, в котором крысиное антитело против мышиного PD-1 было модифицировано Fc-областью мышиного иммуноглобулина, см. пример 1) имело умеренное действие на уменьшение роста опухоли на модели опухоли МС38 (см., например, фиг.21, 24 и 27). Одно анти-CTLА-4-антитело было вполне эффективным на модели опухоли SA1/N (см. фиг.30D), которая требовала более низкой дозы анти-CTLА-4-антитела для комбинированных исследований на данной модели. Тем не менее, комбинированное лечение анти-CTLА-4-антителом и анти-PD-1-антителом показало неожиданное, значительно более высокое действие на уменьшение роста опухолей в сравнении с лечением каждым антителом по отдельности (см., например, фиг.21D, 24D, 30F и 33H-J). Кроме того, результаты примеров 14, 16 и 18 показывают, что комбинированное лечение анти-CTLА-4-антителом и анти-PD-1-антителом имело значительное синергическое действие на рост опухолей даже при субоптимальных терапевтических дозах в сравнении с лечением любым из антител по отдельности (т.е. комбинированная терапия была неожиданно более эффективной при субтерапевтических дозах, чем любая монотерапия). Не желая быть связанными теорией, авторы считают возможным, что увеличением порога активации Т-клеток блокадой PD-1 и CTLА-4 можно активировать противоопухолевые реакции у хозяина.
В одном варианте осуществления настоящее изобретение обеспечивает способ лечения гиперпролиферативного заболевания, предусматривающий введение анти-PD-1-антитела и анти-CTLА-4-антитела субъекту. В дополнительных вариантах осуществления анти-PD-1-антитело вводят в субтерапевтической дозе, анти-CTLА-4-антитело вводят в субтерапевтической дозе или оба вводят в субтерапевтической дозе. В другом варианте осуществления настоящее изобретение обеспечивает способ изменения побочного эффекта, связанного с лечением гиперпролиферативного заболевания иммуностимулирующим агентом, предусматривающий введение анти-PD-1-антитела и субтерапевтической дозы анти-CTLА-4-антитела субъекту. В некоторых вариантах осуществления субъектом является человек. В некоторых вариантах осуществления анти-CTLА-4-антителом является моноклональное антитело последовательности человека 10D1, и анти-PD-1-антителом является моноклональное антитело последовательности человека, такое как 17D8, 2D3, 4H1, 5C4 и 4А11. Моноклональные антитела с последовательностью человека 17D8, 2D3, 4H1, 5C4 и 4А11 были выделены и структурно охарактеризованы, как описано в предварительном патенте США № 60/679466.
Моноклональные антитела анти-CTLА-4-антитело и анти-PD-1-антитело (mAb) и антитела с последовательностью человека настоящего изобретения могут быть получены различными способами, включая общепринятую методику получения моноклональных антител, например вирусное или онкогенное превращение В-лимфоцитов. Одной системой животного для получения гибридом является мышиная система. Продуцирование гибридом у мыши является хорошо установленной методикой. Протоколы и способы выделения иммунизированных спленоцитов для слияния известны в данной области. Партнеры слияния (например, мышиные миеломные клетки) и методы слияния также известны (см., например, Harlow and Lane (1988) “Antibodies: A Laboratory Manual,” Cold Spring Harbor Laboratory Press, Cold Spring Harbor New York).
Анти-CTLA-4-антитела настоящего изобретения могут связываться с эпитопом на CTLА-4 человека таким образом, что они ингибируют взаимодействие CTLА-4 с противорецептором В7 человека. Поскольку взаимодействие CTLА-4 человека с В7 человека трансдуцирует сигнал, приводящий к инактивации Т-клеток, несущих рецептор CTLА-4 человека, антагонизм такого взаимодействия эффективно индуцирует, увеличивает или пролонгирует активацию Т-клеток, несущих рецептор CTLА-4 человека, пролонгируя или увеличивая тем самым иммунную реакцию. Анти-CTLА-4-антитела описаны в патентах США №№ 5811097; 5855887; 6051227; в публикациях заявок PCT №№ WO 01/14424 и WO 00/37504; и в публикации патента США № 2002/0039581. Каждая из приведенных ссылок специально включена в данное описание посредством ссылки с целью описания анти-CTLА-4-антител. Примером клинического анти-CTLA-4-антитела является моноклональное антитело человека 10D1, описанное в WO 01/14424 и Заявке на патент США № 09/644668. Антитело 10D1 вводили в единственной дозе и во множественных дозах, самостоятельно или в комбинации с вакциной, химиотерапией и интерлейкином-2 более чем 500 пациентам с диагнозом метастатической меланомы, рака предстательной железы, лимфомы, почечноклеточного рака, рака молочной железы, рака яичника и ВИЧ. Другие анти-CTLА-4-антитела, включенные способами настоящего изобретения, включают, например, антитела, описанные в WO 98/42752; WO 00/37504; патенте США № 6207156; Hurwitz et al. (1998) Proc. Natl. Acad. Sci. USA 95(17):10067-10071; Camacho et al. (2004) J. Clin. Oncology 22(145): Abstract No. 2505 (antibody CP-675206) и Mokyr et al. (1998) Cancer Res. 58:5301-5304. В некоторых вариантах осуществления способы настоящего изобретения включают в себя применение анти-CTLА-4-антитела, которое является антителом с последовательностью человека, предпочтительно моноклональным антителом, и в другом варианте осуществления оно является моноклональным антителом 10D1.
В некоторых вариантах осуществления анти-CTLА-4-антитело связывается с CTLА-4 человека с KD 5×10-8M или менее, связывается с CTLА-4 человека с KD 1×10-8M или менее, связывается с CTLА-4 человека с KD 5×10-9M или менее или связывается с CTLА-4 человека с KD 1×10-8M-1×10-10M или менее.
Комбинация антител полезна для усиления иммунной реакции против гиперпролиферативного заболевания блокадой PD-1 и CTLA-4. В предпочтительном варианте осуществления антитела настоящего изобретения являются антителами человека. Например, молекулы могут вводиться в клетки в культуре, in vitro или ex vivo, или субъектам-людям, например, in vivo, для усиления иммунитета в различных ситуациях. Таким образом, в одном аспекте настоящее изобретение обеспечивает способ модификации иммунной реакции у субъекта, предусматривающий введение указанному субъекту комбинации антител или комбинации их антигенсвязывающих частей, настоящего изобретения таким образом, что иммунная реакция у данного субъекта модифицируется. Предпочтительно, данная реакция усиливается, стимулируется или положительно регулируется. В другом варианте осуществления данное открытие обеспечивает способ изменения неблагоприятных (побочных) событий, связанных с лечением гиперпролиферативного заболевания иммуностимулирующим терапевтическим агентом, предусматривающий введение анти-PD-1-антитела и субтерапевтической дозы анти-CTLА-4-антитела субъекту.
Блокада PD-1 и CTLА-4 антителами может усиливать иммунную реакцию на раковые клетки у пациента. Типы рака, рост которых может быть ингибирован антителами настоящего изобретения, включают типы рака, обычно отвечающие на иммунотерапию. Репрезентативные примеры рака для лечения комбинированной терапией настоящего изобретения включают меланому (например, метастатическую злокачественную меланому), рак почки, рак предстательной железы, рак молочной железы, рак ободочной кишки и рак легкого. Примеры других типов рака, которые могут подвергаться лечению с использованием способов настоящего изобретения, включают костный рак, рак поджелудочной железы, рак кожи, рак головы и шеи, кожную или внутриглазную злокачественную меланому, рак матки, рак яичника, ректальный рак, рак анальной области, рак желудка, рак яичек, рак матки, рак фаллопиевых труб, рак эндометрия, рак шейки матки, рак вагины, рак вульвы, болезнь Ходжкина, не-Ходжкинскую лимфому, рак пищевода, рак тонкой кишки, рак эндокринной системы, рак щитовидной железы, рак паращитовидной железы, рак надпочечника, саркому мягкой ткани, рак мочеиспускательного канала, рак пениса, хронические или острые лейкозы, включая острый миелоидный лейкоз, хронический миелоидный лейкоз, острый лимфобластный лейкоз, хронический лимфоцитарный лейкоз, солидные опухоли детского возраста, лимфоцитарную лимфому, рак мочевого пузыря, рак почки или мочеточника, рак почечных лоханок, неоплазму центральной нервной системы (ЦНС), лимфому первичной ЦНС, ангиогенез опухоли, опухоль спинного мозга, глиому ствола мозга, аденому гипофиза, саркому Капоши, эпидермоидный рак, плоскоклеточный рак, Т-клеточную лимфому, индуцированные условиями окружающей среды раковые заболевания, включая раковые заболевания, индуцированные асбестом, и комбинации указанных типов рака. Настоящее изобретение полезно также для лечения метастазирующих типов рака.
В некоторых вариантах осуществления комбинация терапевтических антител, обсуждаемая в данном описании, может вводиться одновременно в виде единой композиции в фармацевтически приемлемом носителе или одновременно в виде отдельных композиций, в которых каждое антитело находится в фармацевтическом носителе. В другом варианте осуществления комбинация терапевтических антител может вводиться последовательно. Например, анти-CTLА-4-антитело и анти-PD-1-антитело могут вводиться последовательно таким образом, что анти-CTLА-4-антитело вводят первым, и анти-PD-1-антитело вводят вторым, или анти-PD-1-антитело вводят первым, а анти-CTLА-4-антитело вводят вторым. Кроме того, если вводят последовательно более чем одну дозу комбинированной терапии, порядок последовательного введения может быть обратным или может сохраняться один и тот же порядок введения в каждой временной точке введения, последовательные введения могут комбинироваться с совместными введениями или любой их комбинацией. Например, первое введение комбинации анти-CTLА-4-антитела и анти-PD-1-антитела может быть совместным, второе введение может быть последовательным с анти-CTLА-4-антителом первым и анти-PD-1-антителом вторым, и третье введение может быть последовательным с анти-PD-1-антителом первым и анти-CTLА-4-антителом вторым, и т.д. Другая репрезентативная схема введения доз может включать первое введение, которое является последовательным с анти-PD-1-антителом первым и анти-CTLА-4-антителом вторым, и следующие введения могут быть одновременными.
Необязательно, комбинация анти-PD-1-антител и анти-CTLА-4-антител может дополнительно комбинироваться с иммуногенным агентом, таким как раковые клетки, очищенные опухолевые антигены (включая рекомбинантные белки, пептиды и молекулы углеводов), клетки и клетки, трансфицированные генами, кодирующими иммуностимулирующие цитокины (He et al. (2004) J. Immunol. 173:4919-28). Неограничивающие примеры опухолевых вакцин, которые могут быть использованы, включают в себя пептиды антигенов меланомы, например пептиды gp100, антигены MAGE, Trp-2, MART1 и/или тирозиназу, или опухолевые клетки, трансфицированные для экспрессии цитокина GM-CSF (обсуждаемые дополнительно ниже).
Комбинированная блокада PD-1 и CTLА-4 может быть дополнительно комбинирована с протоколом вакцинации. Были разработаны многие экспериментальные стратегии для вакцинации против опухолей (см. Rosenberg, S. (2000) Development of Cancer Vaccines, ASCO Educational Book Spring: 60-62; Logothetis, C., 2000, ASCO Educational Book Spring: 300-302; Khayat, D. (2000) ASCO Educational Book Spring: 414-428; Foon, K. (2000) ASCO Educational Book Spring: 730-738; см. также Restifo and Sznol, Cancer Vaccines, Ch. 61, pp. 3023-3043 in DeVita et al. (eds.), 1997, Cancer: Principles and Practice of Oncology. Fifth Edition). В одной из таких стратегий вакцину готовят с использованием аутологичных или аллогенных опухолевых клеток. Было показано, что клеточные вакцины являются наиболее эффективными при трансдукции опухолевых клеток для экспрессии GM-CSF. Было показано, что GM-CSF является сильным активатором презентации антигена для опухолевой вакцинации (Dranoff et al. (1993) Proc. Natl. Acad. Sci U.S.A. 90: 3539-43).
Исследование экспрессии генов и широкомасштабных распределений экспрессии в различных опухолях привело к определению так называемых опухолеспецифических антигенов (Rosenberg (1999) Immunity 10: 281-7). Во многих случаях, опухолеспецифические антигены являются антигенами дифференцировки, экспрессируемыми в опухолях и в клетке, из которой возникла данная опухоль, например, антигенами меланоцитов gp100, антигенами MAGE и Trp-2. Более важно, было показано, что многие из указанных антигенов являются мишенями опухолеспецифических Т-клеток, обнаруженных у данного хозяина. В некоторых вариантах осуществления комбинированная блокада PD-1 и CTLА-4, использующая описанные выше композиции антител, может быть использована вместе с набором рекомбинантных белков и/или пептидов, экспрессируемых в опухоли, для генерирования иммунной реакции на указанные белки. Белки в норме рассматриваются иммунной системой как аутоантигены и, следовательно, они являются толерантными к ней. Опухолевый антиген может также включать в себя белок теломеразу, который необходим для синтеза теломеров хромосом и который экспрессируется в более чем 85% типов рака человека и только в ограниченном количестве соматических тканей (Kim, N et al. (1994) Science 266: 2011-2013). (Соматические ткани могут быть защищены от иммунной атаки различными способами). Опухолевым антигеном могут быть также «неоантигены», экспрессируемые в раковых клетках вследствие соматических мутаций, которые изменяют последовательность белка или создают слитые белки между двумя неродственными последовательностями (например, bcr-abl в хромосоме Philadelphia) или идиотип из В-клеточных опухолей.
Другие опухолевые вакцины могут включать белки из вирусов, участвующие в раковых заболеваниях человека, таких как папилломавирусы человека (HPV), вирусы гепатита (HBV и HCV) и вирус саркомы Капоши (KHSV). Другой формой опухолеспецифического антигена, который может быть использован вместе с блокадой PD-1, является белки теплового шока (HSP), выделенные из самой ткани опухоли. Белки теплового шока содержат фрагменты белков из опухолевых клеток, и такие HSP являются высокоэффективными в доставке антигенпрезентирующих клеток для индукции противоопухолевого иммунитета (Suot, R & Srivastava, P (1995) Science 269:1585-1588; Tamura, Y. et al. (1997) Science 278:117-120).
Дендритные клетки (DC) являются сильными антигенпрезентирующими клетками, которые могут быть использованы для прайминга антигенспецифических реакций. DC могут продуцироваться ex vivo и загружаться разными белковыми и пептидными антигенами, а также экстрактами опухолевых клеток (Nestle et al. (1998) Nature Medicine 4: 328-332). DC могут также переноситься генетическими средствами для экспрессии опухолевых антигенов. DC были также слиты непосредственно с опухолевыми клетками для целей иммунизации (Kugler et al. (2000) Nature Medicine 6:332-336). В качестве способа вакцинации, иммунизация DC может быть дополнительно эффективно объединена с блокадой PD-1 и CTLА-4 для активации более сильных противоопухолевых реакций.
Комбинированная блокада PD-1 и CTLА-4 может также дополнительно комбинироваться со стандартными раковыми терапиями. Например, комбинированная блокада PD-1 и CTLА-4 может эффективно комбинироваться с химиотерапевтическими схемами лечения. В этих случаях, как наблюдали с комбинацией анти-PD-1-антител и анти-CTLА-4-антител, можно уменьшать дозу вводимого химиотерапевтического реагента (Mokyr et al. (1998) Cancer Research 58: 5301-5304). Примером такой комбинации является комбинация анти-PD-1-антител и анти-CTLА-4-антител, дополнительно в комбинации с интерлейкином-2 (IL-2) для лечения меланомы. Научным обоснованием так комбинированного применения блокады PD-1 и CTLА-4 с химиотерапией является то, что гибель клеток, которая является следствием цитотоксического действия большинства химиотерапевтических соединений, должна приводить к увеличенным уровням опухолевого антигена в пути презентации антигена. Другими комбинированными терапиями, которые могут приводить к синергизму с комбинированной блокадой PD-1 и CTLА-4 посредством смерти клеток, являются облучение, хирургия и выключение эндокринной функции. Каждый из указанных протоколов создает источник опухолевого антигена у хозяина. Ингибиторы ангиогенеза могут также комбинироваться с комбинированной блокадой PD-1 и CTLА-4. Ингибирование ангиогенеза приводит к гибели опухолевых клеток, которые могут подавать опухолевый антиген в пути презентации антигенов хозяина.
Комбинация блокирующих PD-1 и CTLА-4 антител может быть также использована в комбинации с биспецифическими антителами, которые нацеливают экспрессирующие рецептор Fcα или Fcγ эффекторные клетки на опухолевые клетки (см., например, патенты США №№ 5922845 и 5837243). Биспецифические антитела могут быть использованы для нацеливания на два отдельных антигена. Например, биспецифические антитела против рецептора Fc/против опухолевого антигена (например, Her-2/neu) использовали для нацеливания макрофагов на участки опухоли. Такое нацеливание может более эффективно активировать опухолеспецифические реакции. Т-клеточная ветвь указанных реакций может увеличиваться с использованием комбинированной блокады PD-1 и CTLА-4. Альтернативно, антиген может доставляться непосредственно к DC с использованием биспецифических антител, которые связываются с опухолевым антигеном и специфическим в отношении дендритных клеток маркером поверхности клеток.
В другом примере комбинация анти-PD-1-антител и анти-CTLА-4-антител может быть использована вместе с противоопухолевыми антителами, такими как Rituxan® (ритуксимаб), Herceptin® (трастуцумаб), Bexxar® (тозитумомаб), Zevalin® (тбритумомаб), Campath® (алемтуцумаб), Lymphocide® (эпртуцумаб), Avastin® (бевацицумаб) и Tarceva® (эрлотиниб), и т.п. В качестве примера и без связи с теорией, лечение противораковым антителом и противораковым антителом, конъюгированным с токсином, может приводить к гибели раковых клеток (например, опухолевых клеток), которые могут потенцировать иммунную реакцию, опосредованную CTLА-4 или PD-1. В примере варианта осуществления лечение гиперпролиферативного заболевания (например, раковой опухоли) может включать противораковое антитело в комбинации с анти-PD-1 и анти-CTLА-4-антителами, одновременно или последовательно, или любой их комбинации, которые могут потенцировать противоопухолевые иммунные реакции хозяина.
Опухоли избегают иммунологического надзора хозяина большим разнообразием механизмов. Многие из таких механизмов могут быть преодолены инактивацией белков, которые экспрессируются опухолями и которые являются иммуносупрессивными. Они включают, среди прочего, TGF-бета (Kehrl, J. et al. (1986) J. Exp. Med. 163: 1037-1050), IL-10 (Howard, M. & O'Garra, A. (1992) Immunology Today 13: 198-200) и Fas-лиганд (Hahne, M. et al. (1996) Science 274: 1363-1365). В другом примере, антитела к каждому из указанных агентов могут быть комбинированы с комбинацией анти-PD-1-антитела и анти-CTLА-4-антитела для противодействия эффектам иммуносупрессивных агентов и содействия иммунным реакциям хозяина против опухоли.
Другие антитела, которые могут быть использованы для активации иммунологической откликаемости хозяина, могут быть дополнительно использованы в комбинации с комбинацией анти-PD-1-антитела и анти-CTLА-4-антитела. Они включают в себя молекулы на поверхности дендритных клеток, которые активируют функцию DC и презентацию антигена. Анти-CD40-антитела способны эффективно заменять активность Т-клеток-хелперов (Ridge, J. et al. (1998) Nature 393: 474-478) и могут быть использованы вместе с комбинацией анти-PD-1-антитела и анти-CTLА-4-антитела (Ito, N. et al. (2000) Immunobiology 201 (5) 527-40). Активация антител к костимулирующим Т-клетки молекулам, таким как OX-40 (Weinberg, A. et al. (2000) Immunol 164: 2160-2169), 4-1BB (Melero, I. et al. (1997) Nature Medicine 3: 682-685 (1997) и ICOS (Hutloff, A. et al. (1999) Nature 397: 262-266), может также обеспечивать увеличенные уровни активации Т-клеток.
Пересадку (трансплантацию) костного мозга используют в настоящее время для лечения различных опухолей гемопоэтического происхождения. Хотя реакция трансплантат против хозяина является следствием такой терапии, можно получить терапевтическую пользу из реакций трансплантат против хозяина. Комбинированная блокада PD-1 и CTLА-4 может быть использована для эффективности пересаженных опухолеспецифических Т-клеток донора.
Имеются также несколько экспериментальных протоколов терапии, которые включают активацию ex vivo и размножение антигенспецифических Т-клеток и адоптивный (со стойким приживлением) перенос указанных клеток реципиентам для получения антигенспецифических Т-клеток против опухоли (Greenberg, R. & Riddell, S. (1999) Science 285: 546-51). Такие способы могут быть также использованы для активации Т-клеточных реакций на инфекционные агенты, такие как CMV. Можно ожидать, что активация ex vivo в присутствии анти-PD-1-антител будет увеличивать встречаемость и активность адоптивно перенесенных Т-клеток.
Как описано в данном описании, органы могут проявлять иммуноассоциированные побочные эффекты после терапии иммуностимулирующими терапевтическими антителами, такие как эффекты, возникающие в желудочно-кишечном тракте (диарея и колит) и на коже (сыпь и зуд), после лечения анти-CTLА-4-антителом. Например, не связанные с ободочной кишкой иммуноассоциированные желудочно-кишечные неблагоприятные эффекты наблюдали также в пищеводе (эзофагит), двенадцатиперстной кишке (дуоденит) и подвздошной кишке (илеит) после лечения анти-CTLА-4-антителом.
В некоторых вариантах осуществления настоящее изобретение обеспечивает способ изменения побочных эффектов, связанных с лечением гиперпролиферативного заболевания иммуностимулирующим агентом, предусматривающий введение анти-PD-1-антитела и субтерапевтической дозы анти-CTLА-4-антител субъекту. Например, способы настоящего изобретения обеспечивают способы уменьшения встречаемости индуцированных иммуностимулирующим антителом колита или диареи введением неабсорбируемого стероида пациенту. Поскольку любой пациент, который будет получать иммуностимулирующее терапевтическое антитело, имеет риск развития колита или диареи, индуцированных таким антителом, вся популяция пациентов подходит для терапии в соответствии со способами настоящего изобретения. Хотя стероиды вводили для лечения воспалительного заболевания пищеварительного тракта (IBD) и предотвращения обострений IBD, их не использовали для предотвращения (уменьшения встречаемости) IBD у пациентов, которые не имели диагноза IBD. Существенные побочные действия, связанные со стероидами, даже неабсорбируемыми стероидами, расхолаживали врачей при рассмотрении профилактического применения.
В следующих вариантах осуществления комбинированная блокада PD-1 и CTLА-4 (т.е. иммуностимулирующих терапевтических антител анти-PD-1-антитела и анти-CTLА-4-антитела) может дополнительно комбинироваться с применением любого неабсорбируемого стероида. Как использовано в данном описании, «неабсорбируемый стероид» означает глюкокортикоид, который проявляет экстенсивный метаболизм первого прохождения таким образом, что после метаболизма в печени биодоступность стероида является низкой, т.е. приблизительно 20%. В одном варианте осуществления настоящего изобретения, неабсорбируемым стероидом является будесонид. Будесонид является локально действующим глюкокортикостероидом, который экстенсивно метаболизируется прежде всего печенью после перорального введения. ENTOCORT EC® (Astra-Zeneca) является зависимой от pH и времени пероральной формой будесонида, разработанной для оптимизации доставки лекарственного средства в подвздошную кишку и через ободочную кишку. ENTOCORT EC® одобрен в США для лечения мягкой-умеренной болезни Крона, включающей подвздошную и/или восходящую ободочную кишку. Обычная пероральная доза ENTOCORT EC® для лечения болезни Крона составляет 6-9 мг/день. ENTOCORT EC® высвобождается в кишечнике перед абсорбцией и сохраняется в слизистой оболочке кишечника. После прохождения его через ткань слизистой оболочки кишечника, ENTOCORT EC® экстенсивно метаболизируется системой цитохрома Р450 в печени до метаболитов с незначительной глюкокортикоидной активностью. Таким образом, биодоступность является низкой (приблизительно 10%). Такая низкая биодоступность будесонида приводит к улучшенному терапевтическому индексу в сравнении с другими глюкокортикоидами с менее экстенсивным метаболизмом первого прохождения. Будесонид приводит к меньшим побочным эффектам, включая меньшую гипоталамическую-гипофизарную супрессию, чем у системно действующих кортикостероидов. Однако продолжительное введение ENTOCORT EC® может привести к системным эффектам глюкокортикоидов, таким как супрессия гиперкортицизма и надпочечников. См. PDR 58th ed. 2004; 608-610.
В других вариантах осуществления комбинированная блокада PD-1 и CTLА-4 (т.е. иммуностимулирующих терапевтических анти-PD-1 и анти-CTLА-4-антител) вместе с неабсорбируемым стероидом может быть дополнительно комбинирована с салицилатом. Салицилаты включают агенты 5-ASA, такие как, например: сульфасалазин (AZULFIDINE®, Pharmacia & UpJohn); олсалазин (DIPENTUM®, Pharmacia & UpJohn); балсалазин (COLAZAL®, Salix Pharmaceuticals, Inc.) и месаламин (ASACOL®, Procter & Gamble Pharmaceuticals; PENTASA®, Shire US; CANASA®, Axcan Scandipharm, Inc.; ROWASA®, Solvay).
В соответствии со способами настоящего изобретения, салицилат, вводимый в комбинации с анти-PD-1 и анти-CTLА-4-антителами и неабсорбируемым стероидом, может предусматривать любое перекрывающееся или последовательное введение салицилата и неабсорбируемого стероида с целью уменьшения заболеваемости колитом, индуцируемой иммуностимулирующими антителами. Таким образом, например, способы уменьшения заболеваемости колитом, индуцируемой иммуностимулирующими антителами по данному изобретению, предусматривают введение салицилата и неабсорбируемого стероида одновременно или последовательно (например, салицилат вводят спустя 6 часов после введения неабсорбируемого стероида) или любой их комбинации. Кроме того, в соответствии с данным изобретением, салицилат и неабсорбируемый стероид могут вводиться одним и тем же способом (например, оба вводят перорально) или различными способами (например, салицилат вводят перорально, и неабсорбируемый стероид вводят ректально), которые могут отличаться от способа (способов), используемых для введения анти-PD-1 и анти-CTLА-4-антител.
Настоящее изобретение дополнительно иллюстрировано следующими примерами, которые не должны рассматриваться как дополнительное ограничение. Содержание всех фигур и всех цитируемых ссылок, патентов и опубликованных заявок на патент специально включены в данное описание посредством ссылки.
ПРИМЕРЫ
Пример 1
Генерирование моноклональных антител человека против PD-1
Антиген
Протоколы иммунизации использовали в качестве антигена как (i) рекомбинантный слитый белок, содержащий внеклеточную часть PD-1, так и (ii) мембраносвязанный полноразмерный PD-1. Оба антигена генерировали рекомбинантными способами трансфекции в клеточной линии СНО.
Трансгенные мыши HuMab и KM™
Полные моноклональные антитела к PD-1 получали с использованием штамма НСо7 трансгенных мышей HuMab и штамма КМ трансгенных трансхромосомных мышей, каждый из которых экспрессирует гены антител человека. В каждом из указанных мышиных штаммов эндогенный ген легкой цепи каппа мыши был гомозиготно разрушен, как описано в Chen et al. (1993) EMBO J. 12:811-820, и эндогенный ген тяжелой цепи мыши был гомозиготно разрушен, как описано в примере 1 публикации PCT WO 01/09187. Каждый из указанных штаммов мыши несет трансген легкой цепи каппа человека, KCo5, как описано в Fishwild et al. (1996) Nature Biotechnology 14:845-851. Штамм HCo7 несет трансген тяжелой цепи человека HCo7, как описано в патентах США №№ 5545806; 5625825 и 5545807. Штамм KM содержит трансхромосому SC20, как описано в публикации PCT WO 02/43478.
Иммунизации HuMab и KM
Для генерирования полных моноклональных антител человека к PD-1, мышей HuMab и мышей KMTM иммунизировали очищенным рекомбинантным слитым белком PD-1 и PD-1-трансфицированными клетками CHO в качестве антигена. Общие схемы иммунизации для мышей HuMab описаны Lonberg, N. et al (1994) в Nature 368(6474): 856-859; Fishwild, D. et al. (1996) Nature Biotechnology 14: 845-851 и публикации PCT WO 98/24884. Мыши имели возраст 6-16 недель после первой инфузии антигена. Рекомбинантный препарат (5-50 мкг) антигена PD-1-слитого белка и 5-10×106 клеток использовали для иммунизации мышей HuMab и мышей KMTM внутрибрюшинно, подкожно (SC) или посредством инъекции в подушечку лапы.
Трансгенных мышей иммунизировали дважды антигеном в полном адъюванте Фрейнда или адъюванте Риби IP, с последующими иммунизациями IP в течение 3-21 дней (в целом до 11 иммунизаций) антигеном в неполном адъюванте Фрейнда или адъюванте Риби. Иммунную реакцию подвергали мониторингу с использованием ретроорбитальных кровопусканий. Плазму подвергали скринингу при помощи ELISA (как описано ниже) и мышей с достаточными титрами анти-PD-1-иммуноглобулина человека использовали для слияний. Мышей повторно иммунизировали внутривенно антигеном 3 дня перед умерщвлением и извлечением селезенки. Обычно выполняли 10-35 слияний для каждого антигена. Каждым антигеном иммунизировали несколько дюжин мышей.
Отбор мышей HuMab или мышей KM TM , продуцирующих анти-PD-1-антитела
Для отбора мышей HuMab или мышей KMTM, продуцирующих антитела, которые связывают PD-1, сыворотки из иммунизированных мышей испытывали при помощи ELISA, как описано Fishwild, D. et al. (1996). Кратко, микротитрационные планшеты покрывали очищенным рекомбинантным PD-1-слитым белком из трансфицированных клеток СНО при 1-2 мкг/мл в PBS, 100 мкл на лунку, инкубировали при 4°С в течение ночи и затем блокировали 200 мкл на лунку 5% фетальной телячьей сыворотки в смеси PBS/Твин (0,05%). Разведения сывороток из иммунизированных PD-1 мышей добавляли в каждую лунку и инкубировали в течение 1-2 часов при температуре окружающей среды. Планшеты промывали смесью PBS/Твин и затем инкубировали с поликлональным козьим антителом против IgG человека, конъюгированным с пероксидазой хрена (HRP), в течение 1 часа при комнатной температуре. После промывания, планшеты проявляли с субстратом ABTS (Sigma, A-1888, 0,22 мг/мл) и анализировали на спектрофотометре при OD 415-495. Мышей, которые развивали самые высокие титры анти-PD-1-антител, использовали для слияний. Слияния выполняли, как описано ниже, и супернатанты гибридом испытывали на анти-PD-1-активность при помощи ELISA.
Генерирование гибридом, продуцирующих моноклональные антитела к PD-1 человека
Спленоциты мышей, выделенные из мышей HuMab или KM, сливали с мышиной линией миеломных клеток либо с использованием стандартных протоколов на основе ПЭГ, либо с использованием электрослияния на основе электрического поля при помощи электропоратора для слияния клеток с большой камерой (Cyto Pulse Sciences, Inc., Glen Burnie, MD). Затем полученные гибридомы подвергали скринингу на продуцирование антигенспецифических антител. Суспензии отдельных клеток спленоцитов из иммунизированных мышей сливали с одной четвертой количества не секретирующих SP2/0 мышиных миеломных клеток (АТСС, CRL 1581) c 50% ПЭГ (Sigma). Клетки высевали при приблизительно при 1×105 на лунку в плоскодонном микротитрационном планшете с последующей приблизительно двухнедельной инкубацией в селективной среде, содержащей 10% фетальную телячью сыворотку, 10% P388D1 (ATCC, CRL TIB-63) кондиционированную среду, 3-5% ориген (IGEN) в DMEM (Mediatech, CRL 10013, с высокой глюкозой, L-глутамином и пируватом натрия) плюс 5 мМ HEPES, 0,055 мМ 2-меркаптоэтанол, 50 мг/мл гентамицин и 1× HAT (Sigma, CRL P-7185). Спустя 1-2 недели, клетки культивировали в среде, в которой HAT была заменена HT. Затем отдельные клетки подвергали скринингу при помощи ELISA (как описано выше) на моноклональные анти-PD-1-IgG человека. После появления экстенсивного роста гибридом среду подвергали мониторингу обычно спустя 10-14 дней. Секретирующие антитела гибридомы повторно высевали, снова подвергали скринингу и, если они были все еще положительными в отношении IgG человека, моноклональные анти-PD-1-антитела субклонировали по меньшей мере два раза с использованием лимитирующего разведения. Затем стабильные субклоны культивировали in vitro для генерирования малых количеств антитела в среде для культуры ткани для последующей характеристики.
Для последующего анализа были отобраны гибридомные клоны 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4.
Пример 2
Структурная характеристика моноклональных антител человека 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4
кДНК-последовательности, кодирующие вариабельные области тяжелой и легкой цепей моноклональных антител 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4, получали из гибридом 17D8, 2D3, 4H1, 5C4, 4A11, 7D3 и 5F4, соответственно, с использованием стандартных ПЦР-способов и секвенировали с использованием стандартных способов секвенирования ДНК.
Нуклеотидная и аминокислотная последовательности вариабельной области тяжелой цепи 17D8 показаны на фиг.1А и в SEQ ID NO:57 и 1, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области легкой цепи 17D8 показаны на фиг.1В и в SEQ ID NO:64 и 8, соответственно.
Сравнение иммуноглобулиновой последовательности тяжелой цепи 17D8 с известными последовательностями тяжелых цепей иммуноглобулина зародышевой линии человека продемонстрировало, что тяжелая цепь 17D8 использует VH-сегмент из сегмента VH 3-33 зародышевой линии человека, неопределенный сегмент D и сегмент JH из JH 4b зародышевой линии человека. Сопоставление последовательности VH 17D8 c последовательностью VH 3-33 зародышевой линии человека показано на фиг.8. Дальнейший анализ последовательности VH 17D8 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 тяжелой цепи, как показано на фиг.1A и 8 и в SEQ ID NO:15, 22 и 29, соответственно.
Сравнение иммуноглобулиновой последовательности легкой цепи 17D8 с известными последовательностями легкой цепи зародышевой линии человека продемонстрировало, что легкая цепь 17D8 использует сегмент VL из Vκ L6 зародышевой линии человека и сегмент JK из JK 4 зародышевой линии человека. Сопоставление последовательности VL 17D8 с последовательностью Vκ L6 зародышевой линии человека показано на фиг.9. Дальнейший анализ последовательности VL 17D8 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 легкой цепи, как показано на фиг.1В и 9 и в SEQ ID NO:36, 43 и 50, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области тяжелой цепи 2D3 показаны на фиг.2А и в SEQ ID NO:58 и 2, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области легкой цепи 2D3 показаны на фиг.2В и в SEQ ID NO:65 и 9, соответственно.
Сравнение иммуноглобулиновой последовательности тяжелой цепи 2D3 с известными последовательностями тяжелых цепей иммуноглобулина зародышевой линии человека продемонстрировало, что тяжелая цепь 2D3 использует VH-сегмент из сегмента VH 3-33 зародышевой линии человека, сегмент D из 7-27 зародышевой линии человека и сегмент JH из JH 4b зародышевой линии человека. Сопоставление последовательности VH 2D38 c последовательностью VH 3-33 зародышевой линии человека показано на фиг.8. Дальнейший анализ последовательности VH 17D8 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 тяжелой цепи, как показано на фиг.2A и 8 и в SEQ ID NO:16, 23 и 30, соответственно.
Сравнение иммуноглобулиновой последовательности легкой цепи 2D38 с известными последовательностями легкой цепи зародышевой линии человека продемонстрировало, что легкая цепь 2D38 использует сегмент VL из Vκ L6 зародышевой линии человека и сегмент JK из JK 4 зародышевой линии человека. Сопоставление последовательности VL 2D3 с последовательностью Vκ L6 зародышевой линии человека показано на фиг.9. Дальнейший анализ последовательности VL 2D3 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 легкой цепи, как показано на фиг.2В и 9 и в SEQ ID NO:37, 44 и 51, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области тяжелой цепи 4Н1 показаны на фиг.3А и в SEQ ID NO:59 и 3, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области легкой цепи 4Н1 показаны на фиг.3В и в SEQ ID NO:66 и 10, соответственно.
Сравнение иммуноглобулиновой последовательности тяжелой цепи 4Н1 с известными последовательностями тяжелых цепей иммуноглобулина зародышевой линии человека продемонстрировало, что тяжелая цепь 4Н1 использует VH-сегмент из сегмента VH 3-33 зародышевой линии человека, неопределенный сегмент D и сегмент JH из JH 4b зародышевой линии человека. Сопоставление последовательности VH 4Н1 c последовательностью VH 3-33 зародышевой линии человека показано на фиг.8. Дальнейший анализ последовательности VH 4Н1 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 тяжелой цепи, как показано на фиг.3А и 8 и в SEQ ID NO:17, 24 и 31, соответственно.
Сравнение иммуноглобулиновой последовательности легкой цепи 4Н1 с известными последовательностями легкой цепи зародышевой линии человека продемонстрировало, что легкая цепь 4Н1 использует сегмент VL из Vκ L6 зародышевой линии человека и сегмент JK из JK 1 зародышевой линии человека. Сопоставление последовательности VL 4Н1 с последовательностью Vκ L6 зародышевой линии человека показано на фиг.10. Дальнейший анализ последовательности VL 4Н1 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 легкой цепи, как показано на фиг.3В и 10 и в SEQ ID NO:38, 45 и 52, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области тяжелой цепи 5С4 показаны на фиг.4А и в SEQ ID NO:60 и 4, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области легкой цепи 5С4 показаны на фиг.4В и в SEQ ID NO:67 и 11, соответственно.
Сравнение иммуноглобулиновой последовательности тяжелой цепи 5С4 с известными последовательностями тяжелых цепей иммуноглобулина зародышевой линии человека продемонстрировало, что тяжелая цепь 5С4 использует сегмент VH из сегмента VH 3-33 зародышевой линии человека, неопределенный сегмент D и сегмент JH из JH 4b зародышевой линии человека. Сопоставление последовательности VH 5С4 c последовательностью VH 3-33 зародышевой линии человека показано на фиг.8. Дальнейший анализ последовательности VH 5С4 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 тяжелой цепи, как показано на фиг.4А и 8, и в SEQ ID NO:18, 25 и 32, соответственно.
Сравнение иммуноглобулиновой последовательности легкой цепи 5С4 с известными последовательностями легкой цепи зародышевой линии человека продемонстрировало, что легкая цепь 5С4 использует сегмент VL из Vκ L6 зародышевой линии человека и сегмент JK из JK 1 зародышевой линии человека. Сопоставление последовательности VL 5С4 с последовательностью Vκ L6 зародышевой линии человека показано на фиг.10. Дальнейший анализ последовательности VL 5С4 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 легкой цепи, как показано на фиг.4В и 10 и в SEQ ID NO:39, 46 и 53, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области тяжелой цепи 4А11 показаны на фиг.5А и в SEQ ID NO:61 и 5, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области легкой цепи 4А11 показаны на фиг.5В и в SEQ ID NO:68 и 12, соответственно.
Сравнение иммуноглобулиновой последовательности тяжелой цепи 4А11 с известными последовательностями тяжелых цепей иммуноглобулина зародышевой линии человека продемонстрировало, что тяжелая цепь 4А11 использует сегмент VH из сегмента VH 4-39 зародышевой линии человека, сегмент D из 3-9 зародышевой линии человека и сегмент JH из JH 4b зародышевой линии человека. Сопоставление последовательности VH 4А11 c последовательностью VH 4-39 зародышевой линии человека показано на фиг.11. Дальнейший анализ последовательности VH 4А11 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 тяжелой цепи, как показано на фиг.5А и 11 и в SEQ ID NO:19, 26 и 33, соответственно.
Сравнение иммуноглобулиновой последовательности легкой цепи 4А11 с известными последовательностями легкой цепи зародышевой линии человека продемонстрировало, что легкая цепь 4А11 использует сегмент VL из Vκ L15 зародышевой линии человека и сегмент JK из JK 1 зародышевой линии человека. Сопоставление последовательности VL 4А11 с последовательностью Vκ L6 зародышевой линии человека показано на фиг.12. Дальнейший анализ последовательности VL 4А11 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 легкой цепи, как показано на фиг.5В и 12 и в SEQ ID NO:40, 47 и 54, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области тяжелой цепи 7D3 показаны на фиг.7А и в SEQ ID NO:62 и 6, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области легкой цепи 7D3 показаны на фиг.7В и в SEQ ID NO:69 и 13, соответственно.
Сравнение иммуноглобулиновой последовательности тяжелой цепи 7D3 с известными последовательностями тяжелых цепей иммуноглобулина зародышевой линии человека продемонстрировало, что тяжелая цепь 7D3 использует сегмент VH из сегмента VH 3-33 зародышевой линии человека, сегмент D из 7-27 зародышевой линии человека и сегмент JH из JH 4b зародышевой линии человека. Сопоставление последовательности VH 7D3 c последовательностью VH 3-33 зародышевой линии человека показано на фиг.8. Дальнейший анализ последовательности VH 7D3 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 тяжелой цепи, как показано на фиг.6А и 8 и в SEQ ID NO:20, 27 и 34, соответственно.
Сравнение иммуноглобулиновой последовательности легкой цепи 7D3 с известными последовательностями легкой цепи зародышевой линии человека продемонстрировало, что легкая цепь 4А11 использует сегмент VL из Vκ L6 зародышевой линии человека и сегмент JK из JK 4 зародышевой линии человека. Сопоставление последовательности VL 7D3 с последовательностью Vκ L6 зародышевой линии человека показано на фиг.9. Дальнейший анализ последовательности VL 7D3 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 легкой цепи, как показано на фиг.6В и 9 и в SEQ ID NO:41, 48 и 55, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области тяжелой цепи 5F4 показаны на фиг.7А и в SEQ ID NO:63 и 7, соответственно.
Нуклеотидная и аминокислотная последовательности вариабельной области легкой цепи 5F4 показаны на фиг.7В и в SEQ ID NO:70 и 14, соответственно.
Сравнение иммуноглобулиновой последовательности тяжелой цепи 5F4 с известными последовательностями тяжелых цепей иммуноглобулина зародышевой линии человека продемонстрировало, что тяжелая цепь 5F4 использует VH-сегмент из сегмента VH 4-39 зародышевой линии человека, сегмент D из 3-9 зародышевой линии человека и сегмент JH из JH 4b зародышевой линии человека. Сопоставление последовательности VH 5F4 c последовательностью VH 4-39 зародышевой линии человека показано на фиг.11. Дальнейший анализ последовательности VH 5F4 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 тяжелой цепи, как показано на фиг.7А и 11, и в SEQ ID NO:21, 28 и 35, соответственно.
Сравнение иммуноглобулиновой последовательности легкой цепи 5F4 с известными последовательностями легкой цепи зародышевой линии человека продемонстрировало, что легкая цепь 5F4 использует сегмент VL из Vκ L15 зародышевой линии человека и сегмент JK из JK 1 зародышевой линии человека. Сопоставление последовательности VL 5F4 с последовательностью Vκ L6 зародышевой линии человека показано на фиг.12. Дальнейший анализ последовательности VL 5F4 с использованием системы Кабата определения CDR-областей привел к очерчиванию областей CDR1, CDR2 и CD3 легкой цепи, как показано на фиг.7В и 12 и в SEQ ID NO:42, 49 и 56, соответственно.
Пример 3
Характеристика специфичности связывания и кинетики связывания моноклональных анти-PD-1-антител человека
В данном примере аффинность связывания и кинетику связывания анти-PD-1-антител испытывали при помощи анализа Biacore. Специфичность связывания и перекрестную конкуренцию испытывали при помощи проточной цитометрии.
Аффинность и кинетика связывания
Анти-PD-1-антитела характеризовали в отношении аффинностей и кинетики связывания при помощи анализа Biacore (Biacore AB, Uppsala, Sweden). Очищенный рекомбинантный PD-1-слитый белок человека ковалентно связывали с чипом СМ5 (покрытым карбоксиметилдекстраном чипом) через первичные аминогруппы, с использованием стандартного химического способа связывания аминогрупп и набора, обеспеченного Biacore. Связывание измеряли с использованием протекания антител в буфере HBS EP (обеспечиваемом Biacore AB) при концентрации 267 нМ при скорости потока 50 мкл/мин. Кинетику ассоциации антиген-антитело прослеживали в течение 3 минут и кинетику диссоциации прослеживали в течение 7 минут. Кривые ассоциации и диссоциации строили относительно модели связывания 1:1 Лангмуира с использованием программного обеспечения BIAevaluation (Biacore AB). Для минимизации эффектов авидности в оценке констант связывания для построения кривых использовали только начальный сегмент данных, соответствующих фазам ассоциации и диссоциации. Величины KD, kon и koff, которые были определены, показаны в таблице 2.
Таблица 2
Данные связывания Biacore для моноклональных анти-PD-1-антител человека
№ пробы ID пробы Аффинность KD×10 -9 (M) Скорость ассоциации k on ×105 (1/Mс) Скорость диссоциации k off ×10 -4 1/с
1 17D8 0,16 2,56 0,45
2 2D3 1,20 3,77 4,52
3 4H1 5,46 3,15 1,72
4 5C4 0,73 4,32 3,15
5 4A11 0,13 0,76 0,099
6 7D3 2,49 18,2 4,54
7 5F4 2,91 8,74 2,54
Специфичность связывания согласно проточной цитометрии
Получали линии клеток яичника китайского хомячка (CHO), которые экспрессируют рекомбинантный PD-1 человека на клеточной поверхности, и использовали их для определения специфичности моноклональных анти-PD-1-антител человека при помощи проточной цитометрии. Клетки CHO трансфицировали экспрессионными плазмидами, содержащими полноразмерную кДНК, кодирующую трансмембранные формы PD-1. Связывание моноклональных анти-PD-1-антител человека 5С4 и 4Н1 оценивали инкубированием трансфицированных клеток с моноклональными анти-PD-1-антителами при концентрации 20 мкг/мл. Клетки промывали и связывание детектировали с использованием FITC-меченого антитела против IgG Ab человека. Анализы проточной цитометрии выполняли с использованием проточной цитометрии FACScan (Becton Dickinson, San Jose, CA). Результаты изображены на фиг. 13A (5C4) и 13B (4H1). Моноклональные анти-PD-1-антитела связывались с клетками СНО, трансфицированными PD-1, но не с клетками СНО, которые не были трансфицированы PD-1 человека. Приведенные данные демонстрируют специфичность моноклональных анти-PD-1-антител человека в отношении PD-1.
Специфичность связывания согласно ELISA в сравнении с другими членами семейства CD28
Сравнение связывания анти-PD-1-антител с членами семейства CD28 выполняли при помощи стандартного ELISA с использованием четырех различных членов семейства CD28 для испытания специфичности связывания в отношении PD-1.
Слитые белки членов семейства CD28, ICOS, CTLA-4 и CD28 (R&D Biosystems), испытывали на связывание с моноклональными анти-PD-1-антителами человека 17D8, 2D3, 4H1, 5C4 и 4A11. Выполняли стандартные процедуры ELISA. Моноклональные анти-PD-1-антитела человека добавляли при концентрации 20 мкг/мл. Козье (специфическое в отношении каппа-цепи) поликлональное антитело против IgG человека, конъюгированное с пероксидазой хрена (HRP), использовали в качестве второго антитела. Результаты показаны на фиг.14. Каждое из моноклональных анти-PD-1-антител человека связывалось с высокой специфичностью с PD-1, но не с другими членами семейства CD28.
Пример 4
Характеристика связывания анти-PD-1-антитела с PD-1, экспрессируемым на поверхности клеток человека и обезьяны
Анти-PD-1-антитела испытывали на связывание с клетками, экспрессирующими PD-1, на их клеточной поверхности, при помощи проточной цитометрии.
Активированные Т-клетки человека, мононуклеарные клетки периферической крови (PBMC) обезьяны и клетки СНО, трансфицированные PD-1, испытывали на связывание антител. Т-клетки человека и PBMC собакоподобной обезьяны активировали анти-PD-1-антителом для индукции экспрессии PD-1 на Т-клетках перед связыванием с моноклональным анти-PD-1-антителом человека. Связывание моноклональных анти-PD-1-антител человека 5С4 и 4Н1 оценивали инкубированием трансфицированных клеток либо с формами IgG1, либо с формами IgG4 моноклональных анти-PD-1-антител человека при различных концентрациях. Клетки промывали и связывание детектировали FITC-меченым антителом против IgG человека. Анализы проточной цитометрии выполняли с использованием проточной цитометрии FACScan (Becton Dickinson, San Jose, CA). Результаты показаны на фиг. 15А (активированные Т-клетки человека), 15В (PBMC собакоподобной обезьяны) и 15С (PD-1-трансфицированные клетки СНО). Моноклональные анти-PD-1-антитела 5С4 и 4Н1 связывались с активированными Т-клетками человека, активированными PBMC обезьяны и клетками СНО, трансфицированными PD-1 человека, как измерено по средней интенсивности флуоресценции (MFI) окрашивания. Приведенные данные демонстрируют, что анти-PD-1-HuMAb связываются с PD-1 поверхности клеток как человека, так и собакоподобной обезьяны.
Пример 5
Действие анти-PD-1-антител человека на пролиферацию клеток и продуцирование цитокинов в реакции смешанных лимфоцитов
Реакцию смешанных лимфоцитов использовали для демонстрации эффекта блокирования PD-1-пути в отношении лимфоцитарных эффекторных клеток. Т-клетки в данном анализе тестировали на пролиферацию, секрецию IFN-гамма и секрецию IL-2 в присутствии и в отсутствие антитела анти-PD-1-HuMAb.
Т-клетки очищали из PBMC с использованием колонки обогащения CD4+ T-клеток человека (R&D systems). Каждая культура содержала 105 очищенных Т-клеток и 104 аллогенных дендритных клеток в общем объеме 200 мкл. Моноклональное анти-PD-1-антитело 5C4, 4H1, 17D8, 2D3 или Fab-фрагмент 5C4 добавляли к каждой культуре при различных концентрациях антител. Отсутствие антитела или контрольное изотипически сходное антитело добавляли в качестве отрицательного контроля. Клетки культивировали в течение 5 дней при 37°С. После дня 5 из каждой культуры отбирали 100 мкл среды для измерения цитокинов. Уровни IFN-гамма и других цитокинов измеряли с использованием наборов OptEIA ELISA (BD Biosciences). Клетки метили 3H-тимидином, культивировали еще в течение 18 часов и анализировали на пролиферацию клеток. Результаты показаны на фиг.16А (пролиферация Т-клеток), 16В (секреция IFN-γ) и 16С (секреция IL-2). Моноклональные анти-PD-1-антитела стимулировали пролиферацию Т-клеток, секрецию IFN-гамма и секрецию IL-2 зависимым от концентрации образом. Fab-фрагмент 5С4 также стимулировал пролиферацию Т-клеток, секрецию IFN-гамма и секрецию IL-2 зависимым от концентрации образом. В противоположность этому, культуры, содержащие контрольное изотопически сходное антитело, не обнаруживали увеличения пролиферации Т-клеток, секреции IFN-гамма или IL-2.
Пример 6
Блокирование связывания лиганда с PD-1 анти-PD-1-антителами человека
Анти-PD-1-HuMAb испытывали на способность блокировать связывание лигандов PD-L1 и PD-L2 с PD-1, экспрессируемым на трансфицированных клетках СНО, с использованием анализа проточной цитометрии.
Экспрессирующие PD-1 клетки CHO суспендировали в FACS-буфере (PBS с 4% фетальной телячьей сывороткой). Различные концентрации анти-PD-1-HuMAb 5C4 и 4H1 добавляли к суспензии клеток и инкубировали при 4°С в течение 30 минут. Несвязанное антитело вымывали и в пробирки добавляли либо FITC-меченый PD-L1-слитый белок, либо FITC-меченый PD-L2-слитый белок и инкубировали при 4°С в течение 30 минут. Анализы проточной цитометрии выполняли с использованием проточного цитометра FACScan (Becton Dickinson, San Jose, CA). Результаты изображены на фиг.17А (блокирование PD-L1) и 17B (блокирование PD-L2). Моноклональные анти-PD-1-антитела 5C4 и 4H1 блокировали связывание PD-L1 и PD-L2 с клетками CHO, трансфицированными PD-1 человека, как измерено по средней интенсивности флуоресценции (MFI) окрашивания. Приведенные данные демонстрируют, что анти-PD-1-HuMAb блокируют связывание лиганда (как PD-L1, так и PD-L2) с PD-1 поверхности клеток.
Пример 7
Действие анти-PD-1-антител человека на высвобождение цитокинов в крови человека
Анти-PD-1-HuMAb смешивали со свежей цельной кровью человека для определения, только ли анти-PD-1-HuMAb стимулируют высвобождение определенных цитокинов из клеток крови человека.
500 мкл гепаринизированной свежей цельной крови человека добавляли в каждую лунку. В каждую лунку добавляли либо 10 мкг, либо 100 мкг анти-PD-1-HuMAb (4H1 или 5C4, последнее в виде изотипа IgG1 или изотипа IgG4). Некоторые лунки инкубировали с анти-CD3-антителом в качестве положительного контроля или с IgG1 или IgG4-антителом человека в качестве изотипически сходных отрицательных контролей. Клетки инкубировали при 37°C в течение либо 6, либо 24 часов. Клетки осаждали центрифугированием и плазму собирали для измерения цитокинов IFN-гамма, TNF-альфа, IL-2, IL-4, IL-6, IL-10 и IL-12 с использованием цитометрического анализа цитокинов на множестве гранул (BD Biosciences). Концентрация каждого цитокина (пг/мл) показана в таблицах 3а, с 6-часовой инкубацией, и 3b, с 24-часовой инкубацией, ниже. Полученные результаты показывают, что обработка только анти-PD-1-антителами 5C4 и 4H1 не стимулировала клетки крови человека для высвобождения ни одного из цитокинов IFN-гамма, TNF-альфа, IL-2, IL-4, IL-6, IL-10 и IL-12.
Таблица 3а
Продуцирование цитокинов после 6-часовой инкубации
Ab IFN-гамма (пг/мл) TNF-альфа (пг/мл) IL-10 (пг/мл) IL-6 (пг/мл) IL-4 (пг/мл) IL-2 (пг/мл)
Без Ab 12,3 2 3 5 3,6 1,9
10 мг/мл анти-CD3 5000 530 82,6 510,4 37,2 467,9
100 мг/мл анти-CD3 5000 571 91,3 530 43,9 551,5
10 мг/мл hIgG1 7 1,8 2,8 4,4 2,6 1,5
100 мг/мл hIgG1 0 2,2 2,7 6 2,6 1,4
10 мг/мл hIgG4 5,4 1,4 2,5 4,5 2,1 1,3
100 мг/мл hIgG4 6,4 2,3 3 32,6 2,9 1,4
10 мг/мл 4H1 6,2 1,8 2,4 4,1 2,8 1,6
100 мг/мл 4H1 11,8 2 2,6 3,5 2,6 1,7
10 мг/мл 5C4 IgG1 4,2 1,6 2,3 3,9 2,5 1,3
100 мг/мл 5C4 IgG1 0 1,4 2,2 3,6 2,1 1,2
10 мг/мл 5C4 IgG4 8,3 2,5 1,9 4,8 1,6 1,5
100 мг/мл 5C4 IgG4 3,6 1,7 2,4 3,9 2,3 1,5
Таблица 3b
Продуцирование цитокинов после 24-часовой инкубации
Ab IFN-гамма (пг/мл) TNF-альфа (пг/мл) IL-10 (пг/мл) IL-6 (пг/мл) IL-4 (пг/мл) IL-2 (пг/мл)
Без Ab 11,2 2 6,1 5,9 2,6 1,7
10 мг/мл анти-CD3 5000 565,9 432 5000 64,5 1265,3
100 мг/мл анти-CD3 5000 535 461 5000 73,8 1334,9
10 мг/мл hIgG1 0 0 0 0 0 0
100 мг/мл hIgG1 11,5 1,7 7,9 60,8 2,9 1,5
10 мг/мл hIgG4 24,6 3,1 8,3 63,4 3,1 2,3
100 мг/мл hIgG4 11,2 1,8 8 27,7 3,1 2,4
10 мг/мл 4H1 27,3 2,9 8 13,9 5,3 2,6
100 мг/мл 4H1 17,5 2,5 4,4 7 4 2,1
10 мг/мл 5C4 IgG1 9,1 2 7,6 68,5 3,5 1,8
100 мг/мл 5C4 IgG1 12,9 1,9 6,1 25,3 2,9 1,7
10 мг/мл 5C4 IgG4 14 1,9 4,4 3,3 2,6 1,9
100 мг/мл 5C4 IgG4 0 0 0 0 0 0
Пример 8
Действие анти-PD-1-антител на апоптоз Т-клеток
Действие анти-PD-1-антител на индукцию апоптоза Т-клеток измеряли с использованием тест окрашивания аннексином V.
Т-клетки культивировали в реакции смешанных лимфоцитов, как описано выше в примере 5. Анти-PD-1-антитело 5C4 добавляли в пробирку в концентрации 25 мкг/мл. Неспецифическое антитело использовали в качестве контроля. Аннексин V и пропидийиодид добавляли в соответствии со стандартным протоколом (BD Biosciences). Полученную смесь инкубировали в течение 15 минут в темноте при комнатной температуре и затем анализировали с использованием проточного цитометра FACScan (Becton Dickinson, San Jose, CA). Результаты показаны на фиг.18. Анти-PD-1-антитело 5C4 не действовало на апоптоз Т-клеток.
Пример 9
Действие анти-PD-1-антител на секрецию цитокина стимулированными вирусом клетками PBMC из вирус-положительного донора
В данном примере мононуклеарные клетки периферической крови (PBMC) из донора, положительного в отношении CMV, выделяли и подвергали действию лизата CMV в присутствии и в отсутствие анти-PD-1-антител для испытания действия указанных антител на секрецию цитокина, стимулированную антигеном.
2×105 PMBC человека из CMV-положительного донора культивировали в общем объеме 200 мкл и добавляли в каждую лунку вместе с лизатом CMV-инфицированных клеток. Анти-PD-1-HuMAb 5C4 добавляли в каждую лунку в различных концентрациях в течение 4 дней. После дня 4, 100 мкл среды отбирали из каждой культуры для измерения цитокина. Уровень IFN-гамма измеряли с использованием наборов OptEIA ELISA (BD Biosciences). Клетки метили 3H-тимидином, культивировали еще в течение 18 часов и анализировали на пролиферацию клеток. Пролиферацию клеток анализировали с использованием реагента Cell Titer-Glo reagent (Promega). Результаты показаны на фиг.19. Анти-PD-1-HuMab 5C4 увеличивало секрецию IFN-гамма зависимым от концентрации образом. Полученные результаты показывают, что анти-PD-1-HuMAb могут стимулировать высвобождение IFN-гамма в Т-клеточной ответные реакции памяти из клеток PBMC, стимулированных предварительно антигеном.
Пример 10
Действие анти-PD-1-антитела на реакцию вторичного антитела на антиген
Мышей иммунизировали и повторно иммунизировали TI-антигеном (DNP-Ficoll), а также обрабатывали крысиным анти-mPD-1-антителом или контрольным антителом для испытания действия анти-PD-1-антитела на титры антител.
Самок мышей C57BL6 делили на две группы с 6 мышами на одну группу. Одну группу обрабатывали контрольным крысиным IgG, и другую крысиным анти-mPD-1-антителом. Этих мышей иммунизировали 5 мкг DNP-Ficoll (T1-антигена) в 50 мкл полного адъюванта Фрейнда (CFA) i.p. в день 0. Любое контрольное крысиное IgG-антитело или крысиное анти-mPD-1-антитело (200 мкг/мышь) вводили i.p. в дни -1, 0 и 2. После четырех недель мышей повторно иммунизировали 5 мкг DNP-Ficoll в 50 мкл неполного адъюванта Фрейнда (IFA) i.p. в день 0. Крысиное анти-mPD-1-антитело или контрольное антитело (200 µg/мышь) вводили i.p. в дни 0 и 1. Титры антител измеряли стандартным анализом ELISA в день 7 после вторичной иммунизации. Полученные результаты показаны в таблице 4 ниже. У мышей, обработанных анти-mPD-1-антителом, как изотип IgM, так и изотип IgG3 показали наивысшее увеличение титра после иммунизации Т1-антигеном, в сравнении с мышами, обработанными контрольным антителом. Полученные результаты демонстрируют, что обработка анти-PD-1-антителом может увеличивать титры антитела в реакции на T1-антиген.
Таблица 4
Мышиная вторичная реакция после обработки анти-PD-1-антителом
Изотип
антитела
Контрольная группа Крысиное анти-mPD-1-антитело Величина P
IgM 606 1200 0,026
IgG 9 15,55 0,18
IgG1 1,2 1,1 0,83
IgG2b 5,05 9,26 0,18
IgG3 21,9 81,2 0,03
* Показанные результаты являются средней концентрацией изотипа антитела (мкг/мл)
Пример 11
Лечение на модели опухоли in vivo с использованием анти-PD-1-антител
Мышей, имплантированных раковой опухолью, лечили in vivo анти-PD-1-антителами для испытания действия in vivo указанных антител на рост опухоли. В качестве положительного контроля использовали анти-CTLА-4-антитела, поскольку было показано, что такие антитела ингибируют рост опухоли in vivo.
В данном эксперименте используемым анти-PD-1-антителом было химерное крысиное анти-mPD-1-антитело, полученное с использованием хорошо известных лабораторных способов. Для генерирования крысиного анти-mPD-1-антитела, крыс иммунизировали мышиными клетками, трансфицированными для экспрессии рекомбинантного мышиного PD-1-слитого белка (R&D Systems Catalog No. 1021-PD), и моноклональные антитела подвергали скринингу на связывание с мышиным антигеном PD-1 при помощи анализа ELISA. Затем V-области крысиного анти-PD-1-антитела рекомбинантно связывали с константной областью мышиного IgG1 с использованием стандартных способов молекулярной биологии и подвергали повторному скринингу на связывание с мышиным PD-1 при помощи ELISA и FACS. Полученное химерное крысиное антитело против мышиного PD-1 (крысиное анти-mPD-1-антитело), используемое в данном случае, было названо 4Н2.
Для исследований на опухолях, самок мышей AJ в возрасте 6-8 недель (Harlan Laboratories) делили случайным образом по массе на 6 групп. Мышей имплантировали подкожно в правом боку 2×106 клетками фибросаркомы SA1/N, растворенными в 200 мкл DMEM в день 0. Мышей обрабатывали PBS-носителем или антителами при 10 мг/кг. Животным вводили дозу внутрибрюшинной инъекцией приблизительно 200 мкл PBS, содержащих антитело или носитель, в дни 1, 4, 8 и 11. Каждая группа содержала 10 животных и все группы состояли из следующих групп: (i) группа носителя, (ii) контроль IgG мыши, (iii) контроль IgG хомячка, (iv) антитело хомячка против мышиного CTLА-4 и (v) химерное анти-PD-1-антитело 4Н2. Мышей подвергали мониторингу два раза в неделю на рост опухоли в течение приблизительно 6 недель. С использованием электронного штангенциркуля опухоли измеряли в трех измерениях (высота×ширина×длина) и рассчитывали объем опухоли. Мышей подвергали эвтаназии, когда опухоли достигали конечной точки (1500 мм3) или обнаруживали большую чем 15% потерю массы. Результаты показаны на фиг.20. Анти-PD-1-антитело продлевало среднее время до достижения объема опухоли конечной точки (1500 мм3) с ~25 дней в контрольных группах до ~40 дней. Таким образом, лечение анти-PD-1-антителом оказывало прямое ингибирующее действие на рост опухоли in vivo.
Пример 12
Генерирование химерного (крыса-мышь) анти-PD-1-антитела 4H2
Крысиное моноклональное антитело против мышиных анти-PD-1-антител (крысиное анти-mPD-1) получали из крыс, иммунизированных mPD-1-hFc-слитым белком с использованием стандартных способов получения гибридом (см. Kohler and Milstein (1975) Nature 256:495; и Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor New York). Восемь гибридом субклонировали и антитела выделяли и подвергали скринингу на их способность блокировать связывание мышиного PD-L2 (mPD-L2) с mPD-1. Были идентифицированы несколько анти-mPD-1-антител, способных блокировать связывание mPD-L2 с mPD-1 (см. например, активность 4H2, фиг.41), и определяли аффинность связывания нескольких из указанных антител с mPD-1-Fc-слитым белком при помощи ELISA (фиг.42).
Было дополнительно охарактеризовано антитело 4H2.B3, которое называют взаимозаменяемо “4H2.” Клетки CHO, экспрессирующие мышиный PD-1, конструировали и инкубировали с анти-mPD-1-антителом 4H2 при диапазоне концентраций от 200 мкг/мл до 0,012 мкг/мл для определения аффинности связывания 4H2 с PD-1. Связывание анти-mPD-1-антитела с экспрессирующими PD-1 клетками CHO детектировали инкубированием с ослиным антителом против крысиного IgG, конъюгированным с FITC, и измеряли при помощи FACS. Анти-mPD-1-антитело имело EC50 (50% эффективную концентрацию) приблизительно 0,38 мкг (фиг.43) и KD 4,7×10-9M. Для испытания ингибирования связывания PD-L1 с PD-1, выполняли тот же самый анализ, за исключением того, что клетки инкубировали также с 0,16 мкг mPD-L1-hFc-слитым белком, затем связывание PD-L1 с экспрессирующими PD-1 клетками CHO детектировали инкубированием с козьими антителами против IgG человека (Fc-специфическими), конъюгированными с FITC, и измерением сигнала связывания при помощи FACS (MFI, средней интенсивности флуоресценции). Анти-mPD-1-антитело имело EC50 приблизительно 0,72 мкг (фиг.44).
Для применении на мышиных моделях опухолей крысиное антитело анти-mPD-1 должно быть модифицировано таким образом, чтобы иммунная система мыши не могла нейтрализовать иммунотерапевтическое антитело (т.е. таким образом данное антитело будет иметь лучшую фармакокинетику), и чтобы избежать антителозависимой клеточной цитотоксичности (ADCC) уменьшением Fc-рецепторных взаимодействий (т.е. таким образом блокада анти-PD-1 может быть оценена как ухудшенная эффектами ADCC). Было определено, что исходное крысиное анти-mPD-1-антитело, 4H2, является крысиным изотипом IgG2. Таким образом, Fc-часть этого антитела 4Н2 была заменена Fc-частью из мышиного изотипа IgG1. С использованием описанного выше анализа было обнаружено, что аффинность связывания химерного крыса-мышь антитела 4Н2 в отношении mPD-1 является сравнимой с аффинностью связывания крысиного анти-mPD-1-антитела 4Н2.В3 (фиг.45). Подобным образом, ингибирование связывания PD-L1 с PD-1 было сравнимым для обоих антител (фиг.46). Таким образом, химерное крыса-мышь анти-mPD-1-антитело 4Н2 использовали для испытания терапевтической эффективности анти-PD-1-антитела в комбинации с анти-CTLА-4-антителом.
Пример 13
Эффективность in vivo комбинированной терапии (анти-CTLА-4 и анти-PD-1-антител) на установлении и росте опухоли
Раковые клетки ободочной кишки MC38 (PD-L1-) (доступные от доктора Dr. N. Restifo, National Cancer Institute, Bethesda, MD; or Jeffrey Schlom, National Institutes of Health, Bethesda, MD) имплантировали мышам C57BL/6 (2×106 клеток/мышь). В день 0 (т.е. в день, когда клетки МС38 имплантировали мышам), каждую из четырех групп из 10 мышей инъецировали внутрибрюшинно (IP) одним из следующих вариантов: (1) IgG мыши (контроль), (2) моноклональное анти-CTLА-4-антитело 9D9 (мышиное анти-mCTLA-4-антитело, полученное от J. Allison, Memorial Sloan-Kettering Cancer Center, New York, NY), (3) моноклональное анти-PD-1-антитело 4H2 (химерное антитело, в котором крысиное анти-mPD-1-антитело было модифицировано Fc-областью мыши, как описано в примере 6), или (4) анти-CTLA-4-антитело 9D9 и анти-PD-1-антитело 4H2. Затем инъекции антител вводили дополнительно в дни 3, 6 и 10. Лечение только одним антителом проводили при дозе 10 мг/кг, и комбинацией анти-CTLA-4-антитела и анти-PD-1-антитела проводили при 5 мг/кг каждого антитела (т.е. 10 мг/кг антител в целом). С использованием электронного штангенциркуля опухоли измеряли в трех измерениях (высота×ширина×длина) и рассчитывали объем опухоли. Мышей подвергали эвтаназии, когда опухоли достигали указанной конечной точки опухоли. Полученные результаты показаны в таблице 5 и на фиг.21.
Таблица 5
Процент не имеющих опухолей мышей после лечения анти-PD-1-антителами и/или анти-CTLА-4-антителами
Лечение Общее количество исследованных мышей Не содержащие опухоли мыши (%)
mIgG1 10 0
анти-CTLA-4 10 1 (10)
анти-PD-1 10 3 (30)
анти-CTLA-4 анти-PD-1 10 6 (60)
Восемь мышей в группе IgG достигали конечной точки опухоли приблизительно в день 30, а две мыши (86066 и 87260) в группе IgG имели изъязвленные опухоли (фиг.21A). В группе только с анти-CTLA-4-антителом, семь мышей достигали конечной точки опухоли приблизительно в день 60, одна мышь имела изъязвленную опухоль (84952), одна мышь имела опухоль с объемом, меньшим чем 1500 мм3 (85246), и одна мышь не имела опухоли (86057) (фиг.21B). В группе только с анти-PD-1-антителом, шесть мышей достигали конечной точки опухоли приблизительно в день 60, одна мышь имела изъязвленную опухоль (86055), и три мыши не содержали опухолей (84955, 85239 и 86750) (фиг.21C). В группе с комбинацией анти-CTLА-4-антитела и анти-PD-1-антитела, четыре мыши достигали конечной точки опухоли приблизительно в день 40, и шесть мышей не содержали опухолей (84596, 85240, 86056, 86071, 86082 и 86761) (фиг.21D).
На фиг.22 показано, что средний объем опухоли, измеренный в день 21, составлял приблизительно 2955 мм3 для контрольной IgG-группы; приблизительно 655 мм3 для группы только с анти-CTLА-4-антителом, приблизительно 510 мм3 для группы только с анти-PD-1-антителом, и приблизительно 280 мм3 для группы с комбинацией анти-CTLА-4-антитела и анти-PD-1-антитела. На фиг.23 показано, что медиана объема опухоли, измеренного в день 21, была приблизительно 2715 мм3 для группы IgG; приблизительно 625 мм3 для группы только с анти-CTLА-4-антителом; приблизительно 525 мм3 для группы только с анти-PD-1-антителом; и приблизительно 10 мм3 для группы с комбинацией анти-CTLА-4-антитела и анти-PD-1-антитела (и снижалась до 0 мм3 в день 32).
Данное исследование показывает, что на мышиной модели опухоли лечение одним анти-CTLА-4-антителом и лечение одним анти-PD-1-антителом имеет умеренное действие на рост опухоли и что комбинированное лечение анти-CTLА-4-антителом и анти-PD-1-антителом имеет значительно большее действие на рост опухоли. Интересно отметить, что комбинированное лечение анти-CTLА-4-антителом и анти-PD-1-антителом имеет более существенное действие на рост опухоли при дозе 5 мг/кг каждого антитела в сравнении с действием каждого антитела по отдельности при введении каждого в более высокой дозе 10 мг/кг.
Пример 14
Эффективность in vivo комбинированной терапии (анти-CTLА-4-антитела и анти-PD-1-антитела) на рост установленной опухоли
Раковые клетки MC38 ободочной кишки (PD-L1-) имплантировали мышам C57BL/6 (2×106 клеток/мышь) в течение времени, достаточного (приблизительно 6-7 дней) для образования опухолей. В день 6 после имплантации (день -1) выполняли измерения опухоли и мышей делили случайным образом на основе среднего объема опухоли (приблизительно 250 мм3) на 11 групп для последующей терапии антителами. В день 0 (т.е. спустя одну неделю после имплантации клеток MC38) мышей инъецировали IP (1) IgG мыши (контроль), (2) моноклональным анти-CTLА-4-антителом 9D9, (3) моноклональным анти-PD-1-антителом 4H2 или (4) анти-CTLA-4-антителом 9D9 и моноклональным анти-PD-1-антителом 4H2 при концентрации 10 мг/кг мыши. Инъекции антител вводили также в дни 3, 6 и 10. Используемые композиции моноклональных антител имели низкие уровни эндотоксина и по существу не агрегировали. С использованием электронного штангенциркуля опухоли измеряли в трех измерениях (высота×ширина×длина) и рассчитывали объем опухоли. Измерения опухоли выполняли в день 0 (опухоли в начале лечения имели объем приблизительно 125 мм3), и в дни 3, 6, 10, 13, 17 и 20 после инъекции антител. Мышей подвергали эвтаназии, когда опухоли достигали конечной точки (1500 мм3) или когда мыши обнаруживали большую чем 15% потерю массы.
Все 11 мышей в группе IgG достигали конечной точки опухоли приблизительно в день 17 (фиг.24А). В группе только с анти-CTLА-4-антителом семь из 11 мышей достигали конечной точки опухоли приблизительно в день 13 и две мыши не имели опухолей (фиг.24С). В группе с комбинацией анти-CTLА-4-антитела и анти-PD-1-антитела одна мышь достигала конечной точки опухоли приблизительно в день 17, одна мышь достигала конечной точки опухоли приблизительно в день 45 и девять мышей не содержали опухоли в день 45 (фиг.24D).
На фиг.25 показано, что средний объем опухоли, измеренный в день 10, составлял приблизительно 1485 мм3 для контрольной IgG-группы; приблизительно 1010 мм3 для группы только с анти-CTLА-4-антителом, приблизительно 695 мм3 для группы только с анти-PD-1-антителом, и приблизительно 80 мм3 для группы с комбинацией анти-CTLА-4-антитела и анти-PD-1-антитела. На фиг.26 показано, что медиана объема опухоли, измеренного в день 10, была приблизительно 1365 мм3 для группы IgG; приблизительно 1060 мм3 для группы только с анти-CTLА-4-антителом; приблизительно 480 мм3 для группы только с анти-PD-1-антителом; и приблизительно 15 мм3 для группы с комбинацией анти-CTLА-4-антитела и анти-PD-1-антитела (которая снижалась до 0 мм3 в день 17).
Данное исследование показывает, что на мышиной модели лечение комбинацией анти-CTLА-4-антитела и анти-PD-1-антитела имеет значительно большее действие на рост опухолей, чем любое антитело по отдельности, даже когда опухоль уже хорошо образовалась.
Пример 15
Титрование дозы комбинированной терапии (анти-CTLА-4-антитела и анти-PD-1-антитела) на рост установленной опухоли
Раковые клетки MC38 ободочной кишки (PD-L1-) имплантировали мышам C57BL/6 (2×106 клеток/мышь) в течение времени, достаточного (приблизительно 6-7 дней) для образования опухолей, как описано в примере 3. Группы из 10 мышей инъецировали IP в дни 0, 3, 6 и 10 следующим образом: группа (A) IgG мыши (контроль, 20 мг/кг), группа (B) моноклональное анти-PD-1-антитело 4H2 (10 мг/кг) и IgG мыши (10 мг/кг), группа (C) моноклональное анти-CTLА-4-антитело 9D9 (10 мг/кг) и IgG мыши (10 мг/кг), группа (D) моноклональное анти-CTLА-4-антитело 9D9 (10 мг/кг) и моноклональное анти-PD-1-антитело 4H2 (10 мг/кг), группа (E) моноклональное анти-CTLА-4-антитело 9D9 (3 мг/кг) и моноклональное анти-PD-1-антитело 4H2 (3 мг/кг), или группа (F) моноклональное анти-CTLА-4-антитело 9D9 (1 мг/кг) и моноклональное анти-PD-1-антитело 4H2 (1 мг/кг). С использованием электронного штангенциркуля опухоли измеряли в трех измерениях (высота×ширина×длина) и рассчитывали объем опухоли. Измерения опухоли выполняли в начале лечения (т.е. в день 0 опухоли имели средний объем приблизительно 90 мм3) и в дни 3, 6, 10, 13, 17 и 20 после лечения антителами. Мышей подвергали эвтаназии, когда опухоли достигали конечной точки (конкретного объема опухоли, например, 1500 мм3, и/или когда мыши обнаруживали большую, чем приблизительно 15% потерю массы).
На фиг.27A показано, что все 10 контрольных мышей достигали конечной точки опухоли. На фиг.27B показано, что группа, получавшая 10 мг/кг анти-PD-1-антитела (группа B), имела 6 мышей, которые достигали конечной точки опухоли, и 4 мыши с опухолями, имеющими объем приблизительно 750 мм3 или менее. На фиг.27C показано, что группа, получавшая 10 мг/кг анти-CTLА-4-антитела (группа C), имела 3 мыши, которые достигали конечной точки опухоли, и 7 мышей с опухолями, имеющими объем приблизительно 1000 мм3 или менее. На фиг.27D показано, что группа, получавшая комбинацию 10 мг/кг анти-PD-1-антитела с 10 мг/кг анти-CTLА-4-антитела (группа D) имела 2 мыши с опухолями, имеющими объем приблизительно 1000 мм3 или менее, и 8 мышей, которые не имели опухолей. На фиг.27E показано, что группа, получавшая комбинацию 3 мг/кг анти-PD-1-антитела с 3 мг/кг анти-CTLА-4-антитела (группа E), имела одну мышь, которая достигла конечной точки опухоли, 7 мышей с опухолями, имеющими объем приблизительно 500 мм3 или менее, и 2 мыши, которые не имели опухолей. На фиг.27F показано, что группа, получавшая комбинацию 1 мг/кг анти-PD-1-антитела с 1 мг/кг анти-CTLА-4-антитела (группа F), имела 4 мыши, которые достигли конечной точки опухоли, 5 мышей с опухолями, имеющими объем приблизительно 1100 мм3 или менее, и одну мышь, которая не имела опухоли.
На фиг.27G и 27H показаны объемы опухолей у мышей, получавших последовательно анти-PD-1-антитело первым и анти-CTLА-4-антитело вторым, и наоборот. Мыши фиг.27G сначала получали 10 мг/кг анти-CTLА-4-антитела в каждый из дней 0 и 3, и затем получали 10 мг/кг анти-PD-1-антитела в каждый из дней 6 и 10. Мыши фиг.27H сначала получали 10 мг/кг анти-PD-1-антитела в каждый из дней 0 и 3, и затем получали 10 мг/кг анти-CTLА-4-антитела в каждый из дней 6 и 10. Что касается группы G, в день 27 8 мышей достигали конечной точки опухоли, одна мышь имела очень маленькую опухоль (которая после значительной задержки в конечном счете исчезала) и одна мышь не имела опухоли. Что касается группы Н, в день 27 8 мышей достигали конечной точки опухоли и 2 мыши не имели опухоли.
На фиг.28 показано, что средний объем опухоли, измеренный в день 10, составлял приблизительно 1250 мм3 для группы IgG-контроля; приблизительно 470 мм3 для анти-PD-1-антитела с IgG-контролем; приблизительно 290 мм3 для анти-CTLА-4-антитела с IgG-контролем (измеренный в день 6); приблизительно 40 мм3 для группы комбинации анти-CTLА-4-антитела (10 мг/кг) и анти-PD-1-антитела (10 мг/кг); приблизительно 165 мм3 для группы комбинации анти-CTLА-4-антитела (3 мг/кг) и анти-PD-1-антитела (3 мг/кг); и приблизительно 400 мм3 для группы комбинации анти-CTLА-4-антитела (1 мг/кг) и анти-PD-1-антитела (1 мг/кг). На фиг.29 показано, что медиана объема опухоли, измеренного в день 13, была приблизительно 1680 мм3 для группы IgG-контроля; приблизительно 400 мм3 для анти-PD-1-антитела с IgG-контролем; приблизительно 660 мм3 для анти-CTLА-4-антитела с IgG-контролем; 0 мм3 для группы комбинации анти-CTLА-4-антитела (10 мг/кг) и анти-PD-1-антитела (10 мг/кг); приблизительно 90 мм3 для группы комбинации анти-CTLА-4-антитела (3 мг/кг) и анти-PD-1-антитела (3 мг/кг); и приблизительно 650 мм3 для группы комбинации анти-CTLА-4-антитела (1 мг/кг) и анти-PD-1-антитела (1 мг/кг). Для комбинированного лечения анти-PD-1-антителом с анти-CTLА-4-антителом количество мышей на группу, которые не имели опухолей в день 27 данного исследования, было равно 8/10 (10 мг/кг), 2/10 (3 мг/кг) и 1/10 (1 мг/кг) (данные не показаны).
Данное исследование показывает, что на мышиной модели опухоли лечение комбинацией анти-CTLА-4-антитела и анти-PD-1-антитела действует зависимым от дозы образом и имеет значимо большее действие на рост опухоли, чем оба антитела по отдельности, даже при более низкой дозе и даже, когда опухоль уже хорошо развилась. Кроме того, антитела могут вводиться последовательно (анти-CTLА-4-антитело первым и анти-PD-1-антитело вторым или наоборот), и эта комбинация является все еще превосходящей монотерапии с использованием антител.
Пример 16
Эффективность in vivo комбинированной терапии (анти-CTLА-4-антитела и анти-PD-1-антитела) в отношении возникновения (установления) и роста фибросаркомы
Клетки SA1/N фибросаркомы (PD-L1-) (Leach et al. (1996) Science 271:1734-1736) имплантировали подкожно в мышей A/J (2×106 клеток/мышь) в день 0. В дни 1, 4, 7 и 11 после имплантации, мышей инъецировали IP следующим образом: группа (A) только PBS (называемый “носителем”); группа (B) IgG мыши (контроль, 10 мг/кг на мышь), группа (C) моноклональное анти-PD-1-антитело 4H2 (10 мг/кг на мышь), группа (D) моноклональное анти-CTLА-4-антитело 9D9 (10 мг/кг или 0,2 мг/кг на мышь) и группа (E) моноклональное анти-PD-1-антитело 4H2 (10 мг/кг на мышь) в комбинации с моноклональным анти-CTLА-4-антителом 9D9 (0,2 мг/кг на мышь). Данное исследование длилось 41 день и измерения опухолей выполняли в разные дни по ходу всего исследования (см. фиг.29). Объем опухоли рассчитывали измерением опухолей в трех измерениях (высота×ширина×длина) с использованием электронного штангенциркуля. Мышей подвергали эвтаназии, когда опухоли достигали указанной конечной точки опухоли - объема 1500 мм3 и/или мыши развивали изъязвленные опухоли.
На фиг.30A и 30B показано, что 19 из 20 контрольных (9/10 в группе A и 10/10 в группе B) мышей либо достигали конечной точки опухоли, либо развивали изъязвленные опухоли. На фиг.30C показано, что группа, получавшая 10 мг/кг анти-PD-1-антитела (группа C), имела 6 мышей, которые достигали конечной точки опухоли (2 с объемом, большим чем 1500 мм3, и 4 с изъязвленной опухолью), и 4 мыши, которые не имели опухоли. На фиг.30D показано, что группа, получавшая 10 мг/кг анти-CTLА-4-антитела (группа D), имела 5 мышей, которые достигали конечной точки опухоли (2 с объемом, большим чем 1500 мм3, и 3 с изъязвленной опухолью), одну мышь с небольшой опухолью (объем приблизительно 70 мм3) и 4 мыши, которые не имели опухоли. На фиг.30E показано, что группа, получавшая 0,2 мг/кг анти-CTLА-4-антитела (группа E), имела 10 мышей, которые достигали конечной точки опухоли (6 с объемом, большим чем 1500 мм3, и 4 с изъязвленной опухолью). На фиг.30F показано, что группа, получавшая комбинацию 10 мг/кг анти-PD-1-антитела с 0,2 мг/кг анти-CTLА-4-антитела (группа F), имела 2 мышей, которые достигали конечной точки опухоли (одну с объемом опухоли, большим чем 1500 мм3, одну с изъязвленной опухолью и 8 мышей, которые не имели опухоли.
На фиг.31 и 32 показаны средний объем опухоли и медиана объема опухоли, которые развивались у получавших лечение и не получавших лечения мышей по ходу всего исследования. Ингибирование роста опухолей у мышей, получавших данные антитела, в сравнении с мышами, получавшими мышиный IgG в качестве контрольного антитела, суммировано в таблице 6.
Таблица 6
Ингибирование роста опухолей и не содержащие опухоли мыши после лечения анти-PD-1-антителами и/или анти-CTLА-4-антителами
Группа Медиана объема опухоли - мм 3 (день 15) TGI* (%) (день 15) Медиана объема опухоли - мм 3 (день 19) TGI (%) (день 19) Количество не содержащих опухоли мышей (день 41)
A 985 - 1140 - 0/10
B 635 - 1060 - 0/10
C 465 27 310 71 4/10
D 235 63 90 91 4/10
E 600 6 805 24 0/10
F 330 48 90 92 8/10
* TGI=ингибирование роста опухоли; медиана могла быть рассчитана только в том случае, когда меньше чем 50% мышей достигали конечной точки опухоли.
Группы, как они определены на фиг.30. A=носитель (PBS); B=IgG мыши; C=анти-PD-1-антитело, 10 мг/кг; D=анти-CTLА-4-антитело, 10 мг/кг; E=анти-CTLА-4-антитело, 0,2 мг/кг; и F=анти-PD-1-антитело, 10 мг/кг с анти-CTLА-4-антителом, 0,2 мг/кг
Полученные результаты дополнительно показывают, что комбинированная терапия, включающая анти-PD-1 и анти-CTLА-4-антитела, является значительно более эффективной, чем лечение любым из антител по отдельности. Действительно, комбинация является еще более эффективной, чем терапии только с одним антителом, даже в том случае, когда комбинированная терапия включает субтерапевтическую дозу анти-CTLА-4-антитела. Приведенные данные показывают также, что неожиданно присутствие или отсутствие PD-L1 на опухоли может не влиять на эффективность лечения комбинацией антител, хотя присутствие PD-L1 может влиять на эффект монотерапии с использованием антител таким образом, что экспрессия PD-L1 на опухоли может приводить к ингибированию противоопухолевых Т-клеточных реакций (см. фиг.40).
Пример 17
Эффективность in vivo и титрование дозы комбинированной терапии (анти-CTLА-4-антитела и анти-PD-1-антитела) на рост фибросаркомы PD-L1 -
Клетки SA1/N фибросаркомы (PD-L1-) имплантировали подкожно мышам A/J (2×106 клеток/мышь) в день 0 в течение времени, достаточного (приблизительно 7 дней) для установления опухоли. В дни 7, 10, 13 и 16 после имплантации, десять групп из 8 мышей, имеющих средний объем опухоли 110 мм3, инъецировали IP следующим образом: группа (A) только PBS (называемый “носителем”); группа (B) IgG мыши (контроль, 10 мг/кг на мышь), группа (C) моноклональное анти-CTLА-4-антитело 9D9 (0,25 мг/кг на мышь), группа (D) моноклональное анти-CTLА-4-антитело 9D9 (0,5 мг/кг или 0,2 мг/кг на мышь), группа (E) моноклональное анти-CTLА-4-антитело 9D9 (5 мг/кг на мышь); группа (F) моноклональное анти-PD-1-антитело 4Н2 (3 мг/кг на мышь); группа (G) моноклональное анти-PD-1-антитело 4Н2 (10 мг/кг на мышь); группа (Н) моноклональное анти-PD-1-антитело 4Н2 (10 мг/кг на мышь); группа (I) моноклональное антитело 4Н2 (10 мг/кг на мышь) в комбинации с моноклональным анти-CTLА-4-антителом 9D9 (0,6 мг/кг на мышь); и группа (J) моноклональное анти-PD-1-антитело 4Н2 (3 мг/кг на мышь) в комбинации с моноклональным анти-CTLА-4-антителом 9D9 (0,5 мг/кг на мышь).
В дни 10, 13, 16 и 19 после имплантации две группы из 6 мышей, имеющих средний объем опухоли 255 мм3, инъецировали IP следующим образом: группа (К) IgG мыши (контроль, 10 мг/кг на мышь) и группа (L) моноклональное анти-PD-1-антитело 4H2 (10 мг/кг на мышь) в комбинации с моноклональным анти-CTLА-4-антителом 9D9 (1 мг/кг на мышь). Данное исследование длилось 51 день и измерения опухолей выполняли в разные дни по ходу всего исследования (см. фиг.33-38). Объем опухоли рассчитывали измерением опухолей в трех измерениях (высота×ширина×длина) с использованием электронного штангенциркуля. Мышей подвергали эвтаназии, когда опухоли достигали указанной конечной точки опухоли - объема 1500 мм3 и/или развивали изъязвленную опухоль.
На фиг.33 показана реакция на лечение иммуностимулирующими антителами у мышей с опухолями, имеющими начальный объем приблизительно 110 мм3 (т.е. в момент обработки первым антителом). На фиг.33А и 33В показано, что все 16 контрольных мышей (группы А и В) достигали конечной точки опухоли (15 с объемом опухоли, большим чем 1500 мм3, и 1 с изъязвленной опухолью). На фиг.33С-33Е показано, что несущие опухоль мыши отвечают на лечение анти-CTLА-4-антителом зависимым от дозы образом (например, группа С, получающая 0,25 мг/кг, имела 7/8 мышей, достигших конечной точки опухоли, и одну мышь с объемом опухоли, меньшим чем 200 мм3, тогда как группа Е, получающая 5 мг/кг, имела 6/8 мышей, достигших конечной точки опухоли, и две мыши не имели опухоли). На фиг.33F и 33G показано, что мыши отвечали приблизительно одинаково независимо от дозы анти-PD-1-антитела (группа F получала 3 мг/кг и группа G получала 10 мг/кг). В противоположность этому, мыши, получавшие комбинированное лечение 10 или 3 мг/кг анти-PD-1-антитела с 0,25 или 0,5 мг/кг анти-CTLА-4-антитела (группы Н, I и J), показали значительное уменьшение роста опухоли. Например, на фиг.33J показано, что группа, получавшая комбинацию 3 мг/кг анти-PD-1-антитела с 0,5 мг/кг анти-CTLА-4-антитела (группа J), имела 2 мыши, которые имели изъязвленные опухоли, 2 мыши с объемом опухоли, меньшим чем 500 мм3, и 4 мыши, которые не имели опухоли. Это неожиданное синергическое действие анти-PD-1-антитела, комбинированного с анти-CTLА-4-антителом, вместе с неожиданной эффективностью субтерапевтических уровней анти-CTLА-4-антитела в данной комбинации, показаны на фиг.32 (средний объем опухоли) и 35 (медиана объема опухоли).
На фиг.36 показана реакция на лечение иммуностимулирующими антителами у мышей с более крупными опухолями, имеющими начальный объем приблизительно 250 мм3 (т.е. в момент обработки первым антителом). На фиг.36А показано, что все 6 контрольных мышей (группа К) достигали конечной точки опухоли (4 с опухолями, большими чем 1500 мм3, и 2 с изъязвленной опухолью). На фиг.36В показано, что группа, получавшая комбинацию 10 мг/кг анти-PD-1-антитела с 1 мг/кг анти-CTLА-4-антитела (группа L), имела одну мышь с изъязвленной опухолью, 4 мыши с объемом опухоли, большим чем 1500 мм3, и одну мышь, которая не имела опухоли. Средние объемы опухоли и медианы объемов опухолей показаны на фиг.37 и 38.
Ингибирование роста опухоли у мышей, получавших данные антитела, в сравнении с мышами, получавшими IgG мыши в качестве контрольного антитела, суммировано в таблице 7 и на фиг.39.
Таблица 7
Ингибирование роста опухоли после лечения анти-PD-1-антителами и/или анти-CTLА-4-антителами
Группа* Средний объем опухоли - мм 3 (день 23) TGI* (Среднее) Медиана объема опухоли - мм 3 (день 23) TGI (медиана) Не содержащие опухоли мыши
(день 51)
Количество мышей в конечной точке опухоли
A 700 - 1380 - - -
B 1710 - 1360 - - -
C 1050 39% 925 32 - -
D 770 55% 505 63 - -
E 155 91% 100 93 2/8 6/8
F 1050 39% 675 50 - 7/8
G 1070 37% 1145 16 - 6/8
H 85 95% 25 98 4/8 3/8
I 75 96% 60 95 4/8 1/8
J 80 95% 5 99 4/8 0/8
K 1900 - 2125 - - -
L 1115 41 1,090 49 1/6 -
* TGI=ингибирование роста опухоли; медиана может быть рассчитана только в том случае, когда меньше чем 50% мышей достигали конечной точки опухоли.
Группы, как они определены на фиг.33 и 36. Для меньшей начальной опухоли: A=носитель (PBS); B=IgG мыши, 10 мг/кг; C=анти-CTLA-4, 0,25 мг/кг; D=анти-CTLA-4, 0,5 мг/кг; E=анти-CTLA-4, 5 мг/кг; F=анти-PD-1, 3 мг/кг; G=анти-PD-1, 10 мг/кг; H=анти-PD-1, 10 мг/кг с анти-CTLA-4, 0,25 мг/кг; I=анти-PD-1, 10 мг/кг с анти-CTLA-4, 0,5 мг/кг; и J=анти-PD-1, 3 мг/кг с анти-CTLA-4, 0,5 мг/кг. Для более крупной опухоли: K=IgG мыши, 10 мг/кг; и L=анти-PD-1, 10 мг/кг с анти-CTLA-4, 0,25 мг/кг.
Вместе приведенные данные показывают, что комбинированная терапия, включающая анти-PD-1 и анти-CTLА-4-антитела, является значительно более эффективной, чем лечение каждым антителом по отдельности. Кроме того, неожиданно доза каждого антитела может быть уменьшена без влияния на синергическую эффективность данной комбинации иммуностимулирующих терапевтических антител. По-видимому, комбинированная терапия является более эффективной даже в том случае, когда масса опухоли является более зрелой (т.е. большей).
Пример 18
Опухолевый иммунитет у мышей после лечения анти-PD-1-антителами и повторной иммунизации клетками фибросаркомы (PD-L1 - )
Мышей, которые выживали без опухолей при иммунизации опухолевыми клетками и лечении анти-PD-1-антителом (т.е. обработки, сходной с исследованиями эффективности, описанными в примерах 5 и 6), затем повторно иммунизировали опухолевыми клетками для исследования иммунитета к образованию опухоли после такого лечения. Кратко, в начальной иммунизации клетки фибросаркомы SA1/N (PD-L1-) имплантировали подкожно мышам A/J (1×106 клеток/мышь) в день 0. В дни 1, 4, 7, 10, 14, 17 и 20 после имплантации группы мышей инъецировали IP либо IgG мыши (контроль, 10 мг/кг на мышь), либо одной из различных доз анти-PD-1-антитела 4H2 (30, 10, 3, 1 и 0,3 мг/кг на мышь). Образование и объем опухолей подвергали мониторингу с использованием прецизионного электронного штангенциркуля два раза в неделю до завершения данного исследования. Группы из 8 мышей не имели опухолей после лечения анти-PD-1-антителами (4, которых лечили с использованием 30 мг/кг, 2 с 3 мг/кг, одна с 1 мг/кг и одна с 0,3 мг/кг).
Восемь получавших лечение не содержащих опухоли мышей A/J повторно иммунизировали подкожной имплантацией 1×106 клеток фибросаркомы SA1/N на мышь. В качестве контроля девяти необработанным мышам подкожно имплантировали с использованием 1×106 клеток фибросаркомы SA1/N на мышь. Образование и объем опухолей подвергали мониторингу с использованием прецизионного электронного штангенциркуля два раза в неделю до дня 62 после имплантации. Все девять необработанных мышей (контроль) достигали конечной точки опухоли в день 22 после имплантации клетками фибросаркомы. В противоположность этому, у восьми не содержащих опухоли мышей, повторно иммунизированных клетками фибросаркомы, не развивались опухоли до дня 62 после имплантации. На фиг.47 показан средний объем опухолей для необработанных и повторно обработанных мышей. Полученные результаты демонстрируют, что лечение иммуностимулирующим антителом, таким как анти-PD-1-антитело, обеспечивает прошедшего лечение субъекта иммунитетом в отношении последующего образования опухоли даже в присутствии клеток, способных образовывать опухоль.
Пример 19
Опухолевый иммунитет у мышей после терапии единственным антителом (анти-PD-1-антителом) или комбинированной терапии (анти-CTLА-4-антителом и анти-PD-1-антителом), повторно иммунизированных клетками рака ободочной кишки PD-L1 -
Мышей, которые выживали без опухолей при иммунизации опухолевыми клетками и лечении либо одним анти-PD-1-антителом, либо анти-PD-1-антителом, комбинированным с анти-CTLА-4-антителом (т.е. обработки, сходной с исследованиями эффективности, описанными в примерах 2-4), затем повторно иммунизировали опухолевыми клетками для исследования иммунитета к образованию опухоли после такого лечения. Кратко, в начальной иммунизации клетки, клетки МС38 рака ободочной кишки (PD-L1-) имплантировали мышам C57BL/6 (2×106 клеток/мышь) в день 0. В дни 0, 3, 6 и 10 после имплантации, группы мышей инъецировали IP с использованием одной из следующих обработок: (1) IgG мыши (контроль, 10 мг/кг на мышь), (2) моноклональное анти-PD-1-антитело 4H2 или (3) моноклональное анти-PD-1-антитело 4H2 в комбинации с анти-CTLА-4-антителом 9D9. Рост опухоли подвергали мониторингу с использованием прецизионного электронного штангенциркуля, как описано в примере 15. Группа из 11 мышей не имела опухолей после лечения анти-PD-1-антителом (всего 2) или комбинированного лечения анти-PD-1-антителом/анти-CTLА-4-антителом (всего 9).
11 обработанных, не содержащих опухоли мышей С57BL/6 повторно иммунизировали имплантацией 2×107 клеток MC38 рака ободочной кишки на мышь (т.е. дозы клеток, в 10 раз большей, чем при начальной иммунизации). В качестве контроля, семь необработанных мышей имплантировали с использованием 2×107 клеток MC38 рака ободочной кишки на мышь. Рост и объем опухоли подвергали мониторингу с использованием прецизионного электронного штангенциркуля по ходу всего эксперимента по повторной иммунизации (по меньшей мере 20 дней). На фиг.48 показано, что все семь необработанных (контрольных) мышей развивали опухоли и достигали конечной точки опухоли в день 18 после имплантации клеток рака ободочной кишки. В противоположность этому, все 11 не имеющих опухоли мышей, повторно иммунизированных клетками рака ободочной кишки, не развивали опухоли до дня 18 после имплантации. На фиг.49 показан средний объем опухоли для необработанных и повторно иммунизированных мышей. Приведенные данные показывают, что, подобно монотерапии с использованием антител, комбинированная терапия антителами, приводящая к блокаде PD-1 и CTLА-44, продуцирует стойкий иммунитет к рецидиву опухоли.
Пример 20
Эффективность in vivo комбинированной терапии (с анти-CTLА-4- и анти-PD-1-антителами) в отношении роста установленной опухоли
Клетки CT26 рака ободочной кишки имплантировали мышам Balb/c (2×106 клеток/мышь) в течение времени, достаточного (приблизительно 10 дней) для образования опухолей. В день 10 после имплантации, выполняли измерения опухолей и мышей рандомизировали на основе среднего объема опухоли (приблизительно 250 мм3) на 5 групп для последующей терапии с использованием антител. В день 1 (т.е. спустя 10 дней после имплантации клеток CT26), мышей инъецировали IP (1) IgG мыши (контроль), (2) моноклональным анти-CTLА-4-антителом 9D9, (3) моноклональным анти-PD-1-антителом 4H2 или (4) моноклональным анти-CTLА-4-антителом и 9D9 и моноклональным анти-PD-1-антителом 4H2, в концентрации 10 мг/кг на мышь. Инъекции антител вводили также в дни 3, 6 и 10. Использованные композиции антител имели низкие уровни эндотоксина и по существу не агрегировались. С использованием электронного штангенциркуля опухоли измеряли в трех измерениях (высота×ширина×длина) и рассчитывали объем опухоли. Измерения опухолей выполняли в день 0 (опухоли в начале лечения имели объем приблизительно 125 мм3) и в дни 3, 6, 10, 13, 17 и 20 после инъекции антител. Мышей подвергали эвтаназии, когда опухоли достигали указанной конечной точки (конкретного объема опухоли, например 1500 мм3, и/или когда мыши обнаруживали большую чем приблизительно 15% потерю массы). Полученные результаты показаны на фиг.50. Данное исследование показывает, что на мышиной модели опухоли лечение комбинацией CTLА-4-антитела и PD-1-антитела имеет значительно большее действие на рост опухоли, чем каждое антитело по отдельности, даже в том случае, когда опухоль уже хорошо установилась.
Пример 21
Действие анти-PD-1-антитела человека на функцию регуляторных Т-клеток
Регуляторные T-клетки являются лимфоцитами, которые подавляют иммунную реакцию. В данном примере регуляторные Т-клетки испытывали на их ингибирующую функцию в отношении пролиферации и секреции IFN-гамма CD4+CD25- Т-клетками в присутствии или в отсутствие моноклонального анти-PD-1-антитела.
Регуляторные Т-клетки очищали из PBMC с использованием набора для выделения регуляторных CD4+CD25+ Т-клеток (Miltenyi Biotec). Регуляторные T-клетки добавляли в реакцию смешанных лимфоцитов (см. выше), содержащую очищенные CD4+CD25- T-клетки и аллогенные дендритные клетки в соотношении 2:1 CD4+CD25- Т-клеток к регуляторным T-клеткам. Моноклональное анти-PD-1-антитело 5C4 добавляли при концентрации 10 мкг/мл. В качестве отрицательного контроля служил вариант без антитела или изотипически сходное контрольное антитело. Культуральные супернатанты собирали в день 5 для измерения цитокинов с использованием системы детектирования цитокинов Beadlyte (Upstate). Клетки метили 3H-тимидином, культивировали еще в течение 18 часов и анализировали на пролиферацию клеток. Результаты показаны на фиг.51А (пролиферация Т-клеток) и 51В (секреция IFN-гамма). Добавление моноклонального анти-PD-1-антитела человека 5C4 частично снимало ингибирование, вызываемое регуляторными Т-клетками (Treg-клетками), в отношении пролиферации и секреции IFN-гамма CD4+CD25- T-клетками, что свидетельствует о том, что анти-PD-1-антитела влияют на регуляторные Т-клетки.
Пример 22
Действие анти-PD-1-антитела человека на активацию Т-клеток
В данном примере исследовали действие блокады PD-1-пути анти-PD-1-антителом 5С4 на активацию Т-клеток. Очищенные CD4+ Т-клетки человека (набор Dynal для очистки CD4 Т-клеток) активировали 1 мкг/мл растворимого анти-CD3-антителом (BD) в присутствии аутологичных моноцитов или полученных из моноцитов дендритных клеток (DC). Моноциты очищали с использованием набора для очистки CD4 моноцитов Miltenyi и DC генерировали in vitro после культивирования моноцитов с GM-CSF и IL-4 (PeproTech) в течение 7 дней. Спустя три дня активации в присутствии или в отсутствие разведенного анти-PD-1-антитела или постороннего изотопически сходного контрольного mAb, культуральные супернатанты собирали для анализа ELISA секреции IFN-гамма, добавляя тритированный тимидин во время последних 18 часов данного анализа для измерения пролиферации Т-клеток. Результаты, показанные на фиг.52A и 52B, демонстрируют, что блокада PD-1 анти-PD-1-антителом приводила к усиленной пролиферации Т-клеток и усиленной секреции IFN-гамма. Наблюдали также синергическое действие анти-PD-1-антитела и анти-CTLА-4-антитела на активацию Т-клеток (конкретно, на секрецию IFN-гамма) в присутствии моноцитов.
Пример 23
Оценка активности ADCC анти-PD-1-антитела
В данном примере выполняли анализ антителозависимой клеточной цитотоксичности (ADCC) для оценки, может ли анти-PD-1-антитело индуцировать ADCC в отношении клеток-мишеней. Две версии 5С4, одну с Fc-областью IgG1 человека (5С4-IgG1) и другую с Fc-областью IgG4 человека (5С4-IgG4), испытывали в данном анализе. Набор Delfia клеточной цитотоксичности из Perkin Elmer использовали для данного анализа. Кратко, очищенные CD4+ Т-клетки человека (набор для очистки CD4 Т-клеток Dynal) активировали связанным с планшетом анти-CD3-антителом (BD) для индукции экспрессии PD-1. Затем активированные CD4 Т-клетки-мишени метили реагентом BATDA. Меченые CD4 T-клетки добавляли в 96-луночный планшет с V-образным дном с последующим добавлением PBMC человека (отношение эффекторных клеток к клеткам-мишеням (Е/Т) 50:1) и указанного антитела. После инкубирования в течение 1 часа при 37°С планшет центрифугировали. Супернатант переносили в плоскодонный 96-луночный планшет и планшет считывали с использованием планшет-ридера RubyStar. Результаты показали, что 5С4-IgG4 не опосредовал ADCC на активированных CD4 Т-клетках, тогда как 5С4-IgG1 действительно опосредовал ADCC на активированных CD4 Т-клетках (фиг.53), что свидетельствовало о том, что ADCC-активность связана с Fc-областью анти-PD-1-антитела.
Пример 24
Оценка комплементзависимой цитотоксичности анти-PD-1-антитела
В данном примере испытывали комплементзависимую цитотоксичность (CDC) анти-PD-1-антитела. Две версии 5С4, одну с Fc-областью IgG1 человека (5С4-IgG1) и другую с Fc-областью IgG4 человека (5С4-IgG4), испытывали в данном анализе. Кратко, очищенные CD4+ Т-клетки человека (набор для очистки CD4 Т-клеток Dynal) активировали связанным с планшетом анти-CD3-антителом (BD) для индукции экспрессии PD-1. Серийные разведения анти-PD-1-антитела (5C4) и контрольных антител от 50 мкг/мл до 640 пг/мл испытывали на CDC в присутствии комплемента человека (Quidel-A113). Для измерения цитотоксичности использовали краситель аламаровый синий (Biosource International). Планшет считывали на флуоресцентном планшет-ридере (EX530 EM590). Количества жизнеспособных клеток являются пропорциональными единицам флуоресценции. Результаты показали, что ни 5C4-IgG1, ни 5C4-IgG4 не опосредовал CDC на активированных CD4 T-клетках, тогда как антитело положительного контроля (анти-HLA-ABC-антитело) опосредовало CDC (фиг.54).
Пример 25
Оценка экспрессии PD-1 на Т-клетках человека
В данном примере PBMC человека от различных доноров испытывали на экспрессию PD-1 на различных популяциях клеток при помощи FACS. В данном анализе использовали биотинилированное анти-PD-1-антитело, которое проявляло гораздо более высокую чувствительность, чем коммерчески доступное анти-PD-1-антитело при детектировании молекул PD-1 на поверхности клеток. Связанное антитело детектировали с использованием РЕ-конъюгированного стрептавидина. Проточные цитометрические анализы выполняли с использованием проточной цитометрии FACScan (Becton Dickinson) и программного обеспечения Flowjo (Tree Star). Экспрессию PD-1 детектировали на некоторых периферических Т-клетках человека, но не на В-клетках или моноцитах. Дополнительное испытание субпопуляций Т-клеток указывает на то, что PD-1 экспрессируется на CD4+ и CD8+ Т-клетках памяти и эффекторных Т-клетках, но отсутствуют на «необученных» CD4 или CD8 Т-клетках.
Настоящее изобретение не ограничивается объемом конкретных описанных в данном описании вариантов осуществления. Действительно, различные модификации настоящего изобретения, наряду с описанными выше, будут очевидными для специалистов в данной области из приведенного выше описания и сопутствующих фигур. Предполагается, что такие модификации входят в объем прилагаемой формулы изобретения. Таким образом, настоящее изобретение должно ограничиваться только прилагаемой формулой изобретения вместе с полным объемом эквивалентов, на которые дает право настоящая формула изобретения.

Claims (10)

1. Выделенное моноклональное антитело или его антигенсвязывающая часть, где антитело связывается с PD-1 и проявляет все перечисленные ниже свойства:
(a) связывается с PD-1 человека с КD 1·10-8 М или менее;
(b) по существу, не связывается с CD28, CTLA-4 и ICOS человека;
(c) увеличивает пролиферацию Т-клеток в анализе реакции лимфоцитов в смешанной культуре (MLR);
(d) увеличивает продукцию интерферона-гамма в анализе MLR и
(e) увеличивает секрецию интерлейкина-2 (IL-2) в анализе MLR.
2. Выделенное моноклональное антитело или его антигенсвязывающая часть, где антитело выбрано из группы, состоящей из:
a) антитела, содержащего
CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:15;
CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:22;
CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:29;
CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:36;
CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:43, и
CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:50;
b) антитела, содержащего
CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:16;
CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:23;
CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:30;
CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:37;
CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:44, и
CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:51;
c) антитела, содержащего
CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:17;
CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:24;
CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:31;
CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:38;
CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:45, и
CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:52;
d) антитела, содержащего
CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:18;
CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:25;
CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:32;
CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:39;
CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:46, и
CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:53;
e) антитела, содержащего
CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:19;
CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:26;
CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:33;
CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:40;
CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:47, и
CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:54;
f) антитела, содержащего
CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:20;
CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:27;
CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:34;
CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:41;
CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:48, и
CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:55; и
g) антитела, содержащего
CDR1 вариабельной области тяжелой цепи, содержащей SEQ ID NO:21;
CDR2 вариабельной области тяжелой цепи, содержащей SEQ ID NO:28;
CDR3 вариабельной области тяжелой цепи, содержащей SEQ ID NO:35;
CDR1 вариабельной области легкой цепи, содержащей SEQ ID NO:42;
CDR2 вариабельной области легкой цепи, содержащей SEQ ID NO:49, и
CDR3 вариабельной области легкой цепи, содержащей SEQ ID NO:56;
где антитело специфически связывает PD-1.
3. Выделенное моноклональное антитело или его антигенсвязывающая часть, где антитело выбрано из группы, состоящей из:
a) антитела, содержащего вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:1, и вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:8;
b) антитела, содержащего вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:2, и вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:9;
c) антитела, содержащего вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:3, и вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:10;
d) антитела, содержащего вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:4, и вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:11;
e) антитела, содержащего вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:5, и вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:12;
f) антитела, содержащего вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:6, и вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:13; и
g) антитела, содержащего вариабельную область тяжелой цепи, содержащую аминокислотную последовательность SEQ ID NO:7, и вариабельную область легкой цепи, содержащую аминокислотную последовательность SEQ ID NO:14, где антитело специфически связывает PD-1.
4. Выделенная молекула нуклеиновой кислоты, кодирующая антитело или его антигенсвязывающую часть по п.2.
5. Экспрессирующий вектор, содержащий молекулу нуклеиновой кислоты по п.4.
6. Клетка-хозяин, содержащая экспрессирующий вектор по п.5 для получения антитела или его антигенсвязывающей части по п.1.
7. Способ повышения иммунной реакции у индивида, предусматривающий введение указанному индивиду антитела или его антигенсвязывающей части по п.1.
8. Способ ингибирования роста опухолевых клеток у индивида, предусматривающий введение указанному индивиду антитела или его антигенсвязывающей части по п.1 в количестве, эффективном для ингибирования роста опухолевых клеток.
9. Способ по п.8, где опухолевые клетки являются клетками рака, выбранными из группы, состоящей из меланомы, рака почки, рака предстательной железы, рака молочной железы, рака ободочной кишки и рака легкого.
10. Способ лечения инфекционного заболевания у индивида, предусматривающий введение указанному индивиду антитела или его антигенсвязывающей части по п.1 таким образом, что указанный субъект подвергается лечению в отношении указанного инфекционного заболевания, где инфекционное заболевание вызвано вирусом, выбранным из группы, состоящей из ВИЧ, гепатита (А, В и С), вируса герпеса (VZV, HSV-1, HAV-6, HSV-II и CMV, вируса Эпштейна-Барра), аденовируса и вируса гриппа.
RU2007145419A 2005-05-09 2006-05-02 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами RU2406760C3 (ru)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US67946605P 2005-05-09 2005-05-09
US60/679,466 2005-05-09
US73843405P 2005-11-21 2005-11-21
US60/738,434 2005-11-21
US74891905P 2005-12-08 2005-12-08
US60/748,919 2005-12-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
RU2010135087/10A Division RU2494107C2 (ru) 2005-05-09 2006-05-02 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами
RU2013133714A Division RU2599417C3 (ru) 2005-05-09 2013-07-18 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами

Publications (3)

Publication Number Publication Date
RU2007145419A RU2007145419A (ru) 2009-06-20
RU2406760C2 true RU2406760C2 (ru) 2010-12-20
RU2406760C3 RU2406760C3 (ru) 2017-11-28

Family

ID=37396674

Family Applications (4)

Application Number Title Priority Date Filing Date
RU2010135087/10A RU2494107C2 (ru) 2005-05-09 2006-05-02 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами
RU2007145419A RU2406760C3 (ru) 2005-05-09 2006-05-02 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами
RU2013133714A RU2599417C3 (ru) 2005-05-09 2013-07-18 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами
RU2016133899A RU2732924C2 (ru) 2005-05-09 2016-08-18 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2010135087/10A RU2494107C2 (ru) 2005-05-09 2006-05-02 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2013133714A RU2599417C3 (ru) 2005-05-09 2013-07-18 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами
RU2016133899A RU2732924C2 (ru) 2005-05-09 2016-08-18 Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами

Country Status (27)

Country Link
US (10) US8008449B2 (ru)
EP (6) EP1896582A4 (ru)
JP (9) JP4361545B2 (ru)
KR (3) KR101498834B1 (ru)
CN (5) CN109485727A (ru)
AU (1) AU2006244885B2 (ru)
BR (1) BRPI0610235B8 (ru)
CA (3) CA2970873C (ru)
CY (2) CY2015057I1 (ru)
DK (2) DK2161336T4 (ru)
ES (2) ES2720160T3 (ru)
FR (1) FR15C0087I2 (ru)
HK (1) HK1140793A1 (ru)
HU (2) HUE044719T2 (ru)
IL (2) IL187108A (ru)
LT (2) LT2439273T (ru)
LU (1) LU92904I2 (ru)
MX (1) MX2007013978A (ru)
NL (1) NL300782I2 (ru)
NO (5) NO341219B1 (ru)
NZ (1) NZ563193A (ru)
PL (2) PL2439273T3 (ru)
PT (2) PT2161336E (ru)
RU (4) RU2494107C2 (ru)
SI (2) SI2161336T1 (ru)
TW (1) TWI379898B (ru)
WO (1) WO2006121168A1 (ru)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625034C2 (ru) * 2011-04-20 2017-07-11 МЕДИММЬЮН, ЭлЭлСи Антитела и другие молекулы, которые связывают в7-н1 и pd-1
RU2695332C2 (ru) * 2014-05-15 2019-07-23 Бристол-Маерс Сквибб Компани Лечение рака легкого с помощью комбинации антитела против pd-1 и другого противоракового средства
RU2731418C2 (ru) * 2015-09-28 2020-09-02 Сучжоу Санкадия Биофармасьютикалз Ко., Лтд. Стабильный фармацевтический препарат на основе антитела к pd-1 и его применение в медицине
RU2734771C2 (ru) * 2014-09-16 2020-10-23 Иннейт Фарма Нейтрализация ингибиторных путей в лимфоцитах
RU2737637C2 (ru) * 2015-07-22 2020-12-01 Инатерис Антитела против tfr и их применение при лечении пролиферативных и воспалительных расстройств
RU2744911C2 (ru) * 2016-08-15 2021-03-17 Нэшнл Юниверсити Корпорейшн Хоккайдо Юниверсити Антитело против pd-l1
US10954301B2 (en) 2015-12-14 2021-03-23 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
RU2746409C1 (ru) * 2015-10-02 2021-04-13 Ф. Хоффманн-Ля Рош Аг Антитела к pd1 и способы их применения
US11130810B2 (en) 2015-10-02 2021-09-28 Hoffmann-La Roche Inc. Bispecific antibodies specific for PD1 and TIM3
RU2757316C2 (ru) * 2016-09-21 2021-10-13 СиСТОНЕ ФАРМАСЬЮТИКАЛС Новые моноклональные антитела к белку программируемой смерти 1(pd-1)
RU2764548C2 (ru) * 2016-08-09 2022-01-18 Кимаб Лимитед Анти-icos антитела
US11285207B2 (en) 2017-04-05 2022-03-29 Hoffmann-La Roche Inc. Bispecific antibodies specifically binding to PD1 and LAG3
RU2770590C2 (ru) * 2016-10-30 2022-04-18 Шанхай Хенлиус Байотек, Инк. Антитела против pd-l1 и их варианты
US11413331B2 (en) 2017-04-03 2022-08-16 Hoffmann-La Roche Inc. Immunoconjugates
RU2778669C1 (ru) * 2021-08-31 2022-08-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" ФГБОУВО "ЯГТУ" Способ выбора препарата для лечения немелкоклеточного рака легкого

Families Citing this family (1817)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605238B2 (en) 1999-08-24 2009-10-20 Medarex, Inc. Human CTLA-4 antibodies and their uses
US7030219B2 (en) 2000-04-28 2006-04-18 Johns Hopkins University B7-DC, Dendritic cell co-stimulatory molecules
WO2003086459A1 (en) * 2002-04-12 2003-10-23 Medarex, Inc. Methods of treatement using ctla-4 antibodies
FI2206517T3 (fi) 2002-07-03 2023-10-19 Ono Pharmaceutical Co Immuunopotentioivia koostumuksia käsittäen anti-PD-L1 -vasta-aineita
JP5401001B2 (ja) 2002-09-11 2014-01-29 ジェネンテック, インコーポレイテッド 免疫関連疾患の治療のための新規組成物と方法
DE10347710B4 (de) 2003-10-14 2006-03-30 Johannes-Gutenberg-Universität Mainz Rekombinante Impfstoffe und deren Verwendung
LT2439273T (lt) 2005-05-09 2019-05-10 Ono Pharmaceutical Co., Ltd. Žmogaus monokloniniai antikūnai prieš programuotos mirties 1(pd-1) baltymą, ir vėžio gydymo būdai, naudojant vien tik anti-pd-1 antikūnus arba derinyje su kitais imunoterapiniais vaistais
AU2006244068B9 (en) 2005-05-10 2012-10-25 Incyte Holdings Corporation Modulators of indoleamine 2,3-dioxygenase and methods of using the same
RU2596491C2 (ru) 2005-06-08 2016-09-10 Дана-Фарбер Кэнсер Инститьют Способы и композиции для лечения персистирующих инфекций
CN105330741B (zh) 2005-07-01 2023-01-31 E.R.施贵宝&圣斯有限责任公司 抗程序性死亡配体1(pd-l1)的人单克隆抗体
DE102005046490A1 (de) 2005-09-28 2007-03-29 Johannes-Gutenberg-Universität Mainz Modifikationen von RNA, die zu einer erhöhten Transkriptstabilität und Translationseffizienz führen
US7700567B2 (en) 2005-09-29 2010-04-20 Supergen, Inc. Oligonucleotide analogues incorporating 5-aza-cytosine therein
AU2006321593B2 (en) 2005-12-07 2012-10-04 E. R. Squibb & Sons, L.L.C. CTLA-4 antibody dosage escalation regimens
US8216996B2 (en) 2006-03-03 2012-07-10 Ono Pharmaceutical Co., Ltd. Multimer of extracellular domain of cell surface functional molecule
EP2061504A4 (en) * 2006-09-20 2010-01-27 Univ Johns Hopkins COMBINATION THERAPY FOR CANCER AND INFECTION DISEASES WITH ANTI-B7-H1 ANTIBODIES
CN101663323A (zh) * 2006-12-27 2010-03-03 埃默里大学 用于治疗传染病和肿瘤的组合物和方法
AU2013200388B2 (en) * 2006-12-27 2014-10-23 Dana-Farber Cancer Institute, Inc. Compositions and methods for the treatment of infections and tumors
US20100055111A1 (en) * 2007-02-14 2010-03-04 Med. College Of Georgia Research Institute, Inc. Indoleamine 2,3-dioxygenase, pd-1/pd-l pathways, and ctla4 pathways in the activation of regulatory t cells
CN107011445B (zh) 2007-06-01 2021-06-29 马里兰大学巴尔的摩分校 免疫球蛋白恒定区Fc受体结合剂
DK2170959T3 (da) * 2007-06-18 2014-01-13 Merck Sharp & Dohme Antistoffer mod human programmeret dødsreceptor pd-1
AU2014201367B2 (en) * 2007-06-18 2016-01-28 Merck Sharp & Dohme B.V. Antibodies to human programmed death receptor pd-1
US20090028857A1 (en) * 2007-07-23 2009-01-29 Cell Genesys, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
US9243052B2 (en) 2007-08-17 2016-01-26 Daniel Olive Method for treating and diagnosing hematologic malignancies
EP2225397A4 (en) 2007-11-28 2011-08-17 Univ Montreal PD-1 MODULATION AND USES THEREOF
ES2848323T3 (es) 2008-01-31 2021-08-06 Inst Nat Sante Rech Med Anticuerpos contra CD39 humano y uso de los mismos para inhibir la actividad de las células T reguladoras
EP2262837A4 (en) * 2008-03-12 2011-04-06 Merck Sharp & Dohme PD-1 BINDING PROTEINS
SG10201402815VA (en) 2008-04-09 2014-09-26 Genentech Inc Novel compositions and methods for the treatment of immune related diseases
US9017660B2 (en) 2009-11-11 2015-04-28 Advaxis, Inc. Compositions and methods for prevention of escape mutation in the treatment of Her2/neu over-expressing tumors
WO2009143167A2 (en) 2008-05-19 2009-11-26 Advaxis Dual delivery system for heterologous antigens
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
JP5945096B2 (ja) * 2008-07-04 2016-07-05 小野薬品工業株式会社 抗ヒトpd−1抗体の癌に対する治療効果を最適化するための判定マーカーの使用
KR101783004B1 (ko) * 2008-07-08 2017-09-28 인사이트 홀딩스 코포레이션 인돌아민 2,3-디옥시게나아제의 억제제로서의 1,2,5-옥사디아졸
WO2010014784A2 (en) 2008-08-01 2010-02-04 Bristol-Myers Squibb Company Combination of anti-ctla4 antibody with diverse therapeutic regimens for the synergistic treatment of proliferative diseases
AR072999A1 (es) 2008-08-11 2010-10-06 Medarex Inc Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos
US20110159023A1 (en) * 2008-08-25 2011-06-30 Solomon Langermann Pd-1 antagonists and methods for treating infectious disease
NZ591130A (en) 2008-08-25 2012-09-28 Amplimmune Inc Compositions comprising a PD-1 antagonists and cyclophosphamide and methods of use thereof
WO2010029434A1 (en) 2008-09-12 2010-03-18 Isis Innovation Limited Pd-1 specific antibodies and uses thereof
AU2009290544B2 (en) 2008-09-12 2015-07-16 Oxford University Innovation Limited PD-1 specific antibodies and uses thereof
ES2592216T3 (es) 2008-09-26 2016-11-28 Dana-Farber Cancer Institute, Inc. Anticuerpos anti-PD-1, PD-L1 y PD-L2 humanos y sus usos
JP2012508563A (ja) * 2008-11-12 2012-04-12 シェーリング コーポレイション 抗IGF1R発現の増強のためのβGl−IGGイントロン
EP2356446A4 (en) * 2008-11-14 2014-03-19 Brigham & Womens Hospital DIAGNOSTIC AND THERAPEUTIC METHODS RELATING TO CANCER STEM CELLS
US11542328B2 (en) 2008-11-14 2023-01-03 The Brigham And Women's Hospital, Inc. Therapeutic and diagnostic methods relating to cancer stem cells
DK2370593T3 (en) 2008-11-28 2016-07-04 Univ Emory A method for determining the effect of PD-1 Antagonists
SI2376535T1 (sl) 2008-12-09 2017-07-31 F. Hoffmann-La Roche Ag Protitelesa anti-pd-l1 in njihova uporaba za izboljšanje funkcije celic t
JP5844159B2 (ja) * 2009-02-09 2016-01-13 ユニヴェルシテ デクス−マルセイユUniversite D’Aix−Marseille Pd−1抗体およびpd−l1抗体ならびにその使用
US8394922B2 (en) 2009-08-03 2013-03-12 Medarex, Inc. Antiproliferative compounds, conjugates thereof, methods therefor, and uses thereof
ES2681214T3 (es) 2009-09-30 2018-09-12 Memorial Sloan-Kettering Cancer Center Inmunoterapia de combinación para el tratamiento del cáncer
PL3072526T3 (pl) 2009-10-16 2019-04-30 Oncomed Pharm Inc Kombinacja terapeutyczna i zastosowanie przeciwciał antagonistycznych względem DLL4 i środków antyhipertensyjnych
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
TW201134488A (en) * 2010-03-11 2011-10-16 Ucb Pharma Sa PD-1 antibodies
JP5920929B2 (ja) 2010-03-11 2016-05-18 ユセベ ファルマ ソシエテ アノニム Pd−1抗体
US20110288545A1 (en) * 2010-04-22 2011-11-24 Old Dominion University Research Foundation Method and Device for Ablation of Cancer and Resistance to New Cancer Growth
ES2564841T3 (es) 2010-05-14 2016-03-29 The General Hospital Corporation Composiciones y métodos para identificar neoantígenos específicos de un tumor
WO2011146382A1 (en) * 2010-05-17 2011-11-24 Bristol-Myers Squibb Company Improved immunotherapeutic dosing regimens and combinations thereof
US10010439B2 (en) 2010-06-13 2018-07-03 Synerz Medical, Inc. Intragastric device for treating obesity
US8628554B2 (en) 2010-06-13 2014-01-14 Virender K. Sharma Intragastric device for treating obesity
US10420665B2 (en) 2010-06-13 2019-09-24 W. L. Gore & Associates, Inc. Intragastric device for treating obesity
US9526648B2 (en) 2010-06-13 2016-12-27 Synerz Medical, Inc. Intragastric device for treating obesity
JP2013532153A (ja) * 2010-06-18 2013-08-15 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド 慢性免疫病に対する免疫治療のためのtim−3およびpd−1に対する二重特異性抗体
CN103154036B (zh) 2010-07-28 2016-05-11 格利克尼克股份有限公司 天然人蛋白片段的融合蛋白以产生有序多聚化免疫球蛋白fc组合物
EP3578205A1 (en) 2010-08-06 2019-12-11 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
WO2012138377A2 (en) 2010-10-01 2012-10-11 Trustees Of The University Of Pennsylvania The use of listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
US20120237975A1 (en) 2010-10-01 2012-09-20 Jason Schrum Engineered nucleic acids and methods of use thereof
US20140031250A1 (en) 2010-10-07 2014-01-30 David Tsai Ting Biomarkers of Cancer
CN103687611A (zh) 2011-03-11 2014-03-26 阿德瓦希斯公司 基于李斯特菌属的佐剂
EP2691101A2 (en) 2011-03-31 2014-02-05 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
CN103429264A (zh) 2011-03-31 2013-12-04 默沙东公司 针对人程序性死亡受体pd-1的抗体的稳定制剂和有关的治疗
HRP20211595T1 (hr) 2011-05-24 2022-01-21 BioNTech SE Individualizirana cjepiva protiv raka
US8852599B2 (en) 2011-05-26 2014-10-07 Bristol-Myers Squibb Company Immunoconjugates, compositions for making them, and methods of making and use
ES2705950T3 (es) 2011-06-03 2019-03-27 Eisai R&D Man Co Ltd Biomarcadores para predecir y valorar la capacidad de respuesta de sujetos con cáncer de tiroides y de riñón a compuestos de lenvatinib
ES2671748T3 (es) 2011-07-21 2018-06-08 Tolero Pharmaceuticals, Inc. Inhibidores heterocíclicos de proteína quinasas
TW201840336A (zh) 2011-08-01 2018-11-16 美商建南德克公司 利用pd-1軸結合拮抗劑及mek抑制劑治療癌症之方法
ES2893855T3 (es) 2011-08-11 2022-02-10 Ono Pharmaceutical Co Agente terapéutico para enfermedades autoinmunes que comprende agonista de PD-1
AU2012302051B2 (en) 2011-08-30 2017-04-27 Astex Pharmaceuticals, Inc. Decitabine derivative formulations
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
LT3485903T (lt) 2011-09-23 2023-02-27 Mereo Biopharma 5, Inc. Vegf/ dll4 surišantys agentai ir jų panaudojimas
CA2850624A1 (en) 2011-10-03 2013-04-11 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
GB201117313D0 (en) 2011-10-07 2011-11-16 Gt Biolog Ltd Bacterium for use in medicine
WO2013053775A1 (en) 2011-10-11 2013-04-18 Universität Zürich Prorektorat Mnw Combination medicament comprising il-12 and an agent for blockade of t-cell inhibitory molecules for tumour therapy
US11951157B2 (en) 2011-10-11 2024-04-09 Universitat Zurich Methods of treating malignant tumour with IL-12 and anti-PD-1 antibody
BR112014012727B1 (pt) 2011-11-29 2022-10-25 Ono Pharmaceutical Co., Ltd Cloridrato de 6-amino-9-[(3r)-1-(2-butinoil)-3-pirrolidinil]-7-(4-fenoxifenil)-7,9-di-hidro-8h-puri- 8-ona e composição farmacêutica
KR20140102759A (ko) 2011-12-16 2014-08-22 모더나 세라퓨틱스, 인코포레이티드 변형된 뉴클레오사이드, 뉴클레오타이드 및 핵산 조성물
EP2797942B1 (en) 2011-12-28 2018-10-31 Galectin Therapeutics Inc. Composition of novel carbohydrate drug for treatment of human diseases
CA2899433A1 (en) * 2012-01-27 2013-08-01 Gliknik Inc. Fusion proteins comprising igg2 hinge domains
CA2863658C (en) * 2012-02-03 2023-03-14 Emory University Immunostimulatory compositions, particles, and uses related thereto
MX350539B (es) 2012-02-13 2017-09-08 Bristol Myers Squibb Co Compuestos de enediino, conjugados de los mismos y sus usos y metodos.
JP6152120B2 (ja) 2012-02-15 2017-06-21 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Fc受容体に基づくアフィニティークロマトグラフィー
SG10201700392UA (en) 2012-03-12 2017-03-30 Advaxis Inc Suppressor cell function inhibition following listeria vaccine treatment
WO2013143555A1 (en) 2012-03-26 2013-10-03 Biontech Ag Rna formulation for immunotherapy
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
CA2868398A1 (en) 2012-04-02 2013-10-10 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
JP6378170B2 (ja) 2012-04-12 2018-08-22 イェール ユニバーシティーYale University 異なる医薬品の制御送達のためのビヒクル
WO2013169693A1 (en) 2012-05-09 2013-11-14 Bristol-Myers Squibb Company Methods of treating cancer using an il-21 polypeptide and an anti-pd-1 antibody
US9856320B2 (en) 2012-05-15 2018-01-02 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
EP3556776A1 (en) 2012-05-31 2019-10-23 F. Hoffmann-La Roche AG Methods of treating cancer using pd-1 axis binding antagonists and vegf antagonists
PT3176170T (pt) 2012-06-13 2019-02-05 Incyte Holdings Corp Compostos tricíclicos substituídos como inibidores de fgfr
AR091649A1 (es) 2012-07-02 2015-02-18 Bristol Myers Squibb Co Optimizacion de anticuerpos que se fijan al gen de activacion de linfocitos 3 (lag-3) y sus usos
EP2872646B1 (en) * 2012-07-12 2017-08-30 Institut National de la Sante et de la Recherche Medicale (INSERM) Methods for predicting the survival time and treatment responsiveness of a patient suffering from a solid cancer with a signature of at least 7 genes
CN112587658A (zh) 2012-07-18 2021-04-02 博笛生物科技有限公司 癌症的靶向免疫治疗
CN111499755A (zh) * 2012-08-03 2020-08-07 丹娜法伯癌症研究院 抗-pd-l1和pd-l2双结合抗体单一试剂及其使用方法
US9682143B2 (en) 2012-08-14 2017-06-20 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease
US10131712B2 (en) * 2012-08-14 2018-11-20 Ibc Pharmaceuticals, Inc. Combination therapy with T-cell redirecting bispecific antibodies and checkpoint inhibitors
US20150231241A1 (en) 2012-08-14 2015-08-20 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease
US9315567B2 (en) * 2012-08-14 2016-04-19 Ibc Pharmaceuticals, Inc. T-cell redirecting bispecific antibodies for treatment of disease
CA2882296A1 (en) 2012-08-20 2014-02-27 Gliknik Inc. Molecules with antigen binding and polyvalent fc gamma receptor binding activity
EP3981791A1 (en) 2012-08-30 2022-04-13 Amgen Inc. A method for treating melanoma using a herpes simplex virus and an immune checkpoint inhibitor
US9872909B2 (en) * 2012-09-17 2018-01-23 Galeotin Therapeutics, Inc. Method for enhancing specific immunotherapies in cancer treatment
WO2014047085A2 (en) * 2012-09-20 2014-03-27 Rongfu Wang Prostate-specific tumor antigen and uses thereof
EA038920B1 (ru) * 2012-10-02 2021-11-10 Бристол-Майерс Сквибб Компани Комбинация антител к kir и антител к pd-1 для лечения злокачественной опухоли
US10047164B2 (en) * 2012-10-19 2018-08-14 Opsona Therapeutics Limited Methods and compositions for the treatment of pancreatic cancer
CA2889181C (en) 2012-10-22 2021-12-07 Fountain Biopharma Inc. Antibodies to interleukin-6 and uses thereof
JP6144355B2 (ja) 2012-11-26 2017-06-07 モデルナティエックス インコーポレイテッドModernaTX,Inc. 化学修飾mRNA
CA2892391C (en) 2012-11-28 2023-10-17 Biontech Rna Pharmaceuticals Gmbh Individualized vaccines for cancer
RS58528B1 (sr) 2012-12-03 2019-04-30 Bristol Myers Squibb Co Poboljšanje anti-kancerske aktivnosti imunomodulatornih fc fuzionih proteina
CA3150658A1 (en) 2013-01-18 2014-07-24 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
CN103965363B (zh) * 2013-02-06 2021-01-15 上海白泽生物科技有限公司 与pd-1和vegf高效结合的融合蛋白、其编码序列及用途
WO2014122271A1 (en) 2013-02-07 2014-08-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from diffuse large b-cell lymphomas
RS56169B1 (sr) 2013-02-14 2017-11-30 Bristol Myers Squibb Co Jedinjenja tubulisina, metode pripreme i primena
US9573988B2 (en) 2013-02-20 2017-02-21 Novartis Ag Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells
PT2958943T (pt) 2013-02-20 2019-12-17 Novartis Ag Tratamento do cancro usando recetor de antigénios quiméricos anti-egfrviii humanizados
EP2958588B1 (en) 2013-02-22 2017-08-23 CureVac AG Combination of vaccination and inhibition of the pd-1 pathway
CN109045289A (zh) 2013-02-22 2018-12-21 库瑞瓦格股份公司 疫苗接种和抑制pd-1途径的组合
KR102363191B1 (ko) 2013-02-26 2022-02-17 메모리얼 슬로안 케터링 캔서 센터 면역치료용 조성물 및 방법
SG10201707135RA (en) 2013-03-01 2017-10-30 Astex Pharmaceuticals Inc Drug combinations
BR112015020787B1 (pt) 2013-03-06 2022-12-06 Astrazeneca Ab Compostos 4-(substituído-anilino)-6-o-(substituídopiperizina-carbonil)quinazolínicos, seus sais, composição farmacêutica, uso e combinação
PL2970473T3 (pl) 2013-03-14 2018-01-31 Bristol Myers Squibb Co Kombinacja agonisty dr5 i antagonisty anty-pd-1 oraz metody stosowania
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
EP2972373B1 (en) * 2013-03-15 2019-10-09 F.Hoffmann-La Roche Ag Biomarkers and methods of treating pd-1 and pd-l1 related conditions
US9308236B2 (en) 2013-03-15 2016-04-12 Bristol-Myers Squibb Company Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions
TWI654206B (zh) 2013-03-16 2019-03-21 諾華公司 使用人類化抗-cd19嵌合抗原受體治療癌症
US20160084839A1 (en) 2013-04-02 2016-03-24 Marisa Dolled-Filhart Immunohistochemical assay for detecting expression of programmed death ligand 1 (pd-l1) in tumor tissue
WO2014163684A1 (en) * 2013-04-03 2014-10-09 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease
BR112015025347A2 (pt) 2013-04-09 2017-07-18 Boston Biomedical Inc 2-acetil-nafto [2-3-b] furan-4,9-diona para uso no tratamento do câncer
CA2909160C (en) 2013-04-09 2021-05-25 Lixte Biotechnology, Inc. Formulations of oxabicycloheptanes and oxabicycloheptenes
GB201306536D0 (en) 2013-04-10 2013-05-22 Gt Biolog Ltd Polypeptide and immune modulation
PE20152033A1 (es) 2013-04-19 2016-01-21 Incyte Holdings Corp Heterociclos bicicliclos como inhibidores de fgfr
RS61400B1 (sr) * 2013-05-02 2021-02-26 Anaptysbio Inc Antitela usmerena protiv programirane smrti-1 (pd-1)
WO2014180490A1 (en) 2013-05-10 2014-11-13 Biontech Ag Predicting immunogenicity of t cell epitopes
CN103242448B (zh) * 2013-05-27 2015-01-14 郑州大学 一种全人源化抗pd-1单克隆抗体及其制备方法和应用
WO2014194293A1 (en) 2013-05-30 2014-12-04 Amplimmune, Inc. Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof
CN105683217B (zh) * 2013-05-31 2019-12-10 索伦托治疗有限公司 与pd-1结合的抗原结合蛋白
JP6720075B2 (ja) * 2013-05-31 2020-07-08 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 癌のための併用療法
WO2014209804A1 (en) * 2013-06-24 2014-12-31 Biomed Valley Discoveries, Inc. Bispecific antibodies
CN104250302B (zh) * 2013-06-26 2017-11-14 上海君实生物医药科技股份有限公司 抗pd‑1抗体及其应用
KR20160030936A (ko) * 2013-07-16 2016-03-21 제넨테크, 인크. Pd-1 축 결합 길항제 및 tigit 억제제를 사용한 암을 치료하는 방법
WO2017123981A1 (en) * 2016-01-15 2017-07-20 Rfemb Holdings, Llc Immunologic treatment of cancer
JP2016531907A (ja) 2013-08-02 2016-10-13 アデュロ・バイオテック・ホールディングス・ヨーロッパ・ベスローテン・フエンノートシャップAduro Biotech Holdings, Europe B.V. 免疫刺激のためのcd27アゴニストと免疫チェックポイント阻害との組み合わせ
WO2015018529A1 (en) 2013-08-08 2015-02-12 Cytune Pharma Combined pharmaceutical composition
JP6649254B2 (ja) 2013-08-08 2020-02-19 サイチューン ファーマ IL−15及びIL−15Rαスシドメインに基づくモジュロカイン
JP6474404B2 (ja) 2013-08-14 2019-02-27 ウィリアム マーシュ ライス ユニバーシティWilliam Marsh Rice University ウンシアラマイシン誘導体、合成方法、および抗腫瘍薬としてのそれらの使用
AR097306A1 (es) 2013-08-20 2016-03-02 Merck Sharp & Dohme Modulación de la inmunidad tumoral
JP6586087B2 (ja) 2013-08-20 2019-10-02 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Pd−1アンタゴニストとジナシクリブとの組合せでの癌治療
CN105813640A (zh) 2013-09-06 2016-07-27 奥瑞基尼探索技术有限公司 作为免疫调节剂的环肽类化合物
PL3041828T3 (pl) 2013-09-06 2018-10-31 Aurigene Discovery Technologies Limited Pochodne 1,3,4-oksadiazolu i 1,3,4-tiadiazolu jako immunomodulatory
PL3041827T3 (pl) 2013-09-06 2018-09-28 Aurigene Discovery Tech Limited Pochodne 1,2,4-oksadiazolu jako immunomodulatory
WO2015036394A1 (en) * 2013-09-10 2015-03-19 Medimmune Limited Antibodies against pd-1 and uses thereof
JP6623353B2 (ja) 2013-09-13 2019-12-25 ベイジーン スウィッツァーランド ゲーエムベーハー 抗pd−1抗体並びにその治療及び診断のための使用
EP3178849B1 (en) 2013-09-20 2019-03-20 Bristol-Myers Squibb Company Combination of anti-lag-3 antibodies and anti-pd-1 antibodies to treat tumors
CA2925421C (en) 2013-09-24 2023-08-29 Medicenna Therapeutics, Inc. Interleukin-2 fusion proteins and uses thereof
EP3049442A4 (en) * 2013-09-26 2017-06-28 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
EP3052106A4 (en) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynucleotides encoding immune modulating polypeptides
JP2016538829A (ja) 2013-10-03 2016-12-15 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. 低密度リポタンパク質受容体をコードするポリヌクレオチド
CN104560884A (zh) * 2013-10-25 2015-04-29 苏州思坦维生物技术有限责任公司 拮抗抑制程序性死亡受体pd-1与其配体结合的单克隆抗体及分泌它的杂交瘤细胞系与用途
CN104558177B (zh) * 2013-10-25 2020-02-18 苏州思坦维生物技术股份有限公司 拮抗抑制程序性死亡受体pd-1与其配体结合的单克隆抗体及其编码序列与用途
CA2987519A1 (en) 2013-11-01 2015-05-07 Yale University Delivery vehicles
WO2015066413A1 (en) 2013-11-01 2015-05-07 Novartis Ag Oxazolidinone hydroxamic acid compounds for the treatment of bacterial infections
JP6660297B2 (ja) * 2013-11-11 2020-03-11 アルモ・バイオサイエンシーズ・インコーポレイテッド 疾患及び障害を処置するためのインターロイキン−10の使用方法
AU2014348657A1 (en) 2013-11-13 2016-05-19 Novartis Ag mTOR inhibitors for enhancing the immune response
EP3653714A1 (en) 2013-11-22 2020-05-20 DNAtrix, Inc. Adenovirus expressing immune cell stimulatory receptor agonist(s)
US10801070B2 (en) 2013-11-25 2020-10-13 The Broad Institute, Inc. Compositions and methods for diagnosing, evaluating and treating cancer
KR102362803B1 (ko) * 2013-11-25 2022-02-14 페임웨이브 리미티드 암 치료를 위한 항-ceacam1 및 항-pd 항체를 포함하는 조성물
WO2015085147A1 (en) 2013-12-05 2015-06-11 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
JP6723153B2 (ja) 2013-12-05 2020-07-15 アールエフイーエムビー ホールディングス リミテッド ライアビリティ カンパニー 生体内の望ましくない軟部組織を切除するシステム
US10241115B2 (en) 2013-12-10 2019-03-26 Merck Sharp & Dohme Corp. Immunohistochemical proximity assay for PD-1 positive cells and PD-ligand positive cells in tumor tissue
RS59480B1 (sr) * 2013-12-12 2019-12-31 Shanghai hengrui pharmaceutical co ltd Pd-1 antitelo, njegov fragment koji se vezuje na antigen, i njegova medicinska primena
EP3083692B1 (en) 2013-12-17 2020-02-19 F.Hoffmann-La Roche Ag Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
CA2934028A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2015095410A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
US9067998B1 (en) * 2014-07-15 2015-06-30 Kymab Limited Targeting PD-1 variants for treatment of cancer
EP3084003A4 (en) 2013-12-17 2017-07-19 Merck Sharp & Dohme Corp. Ifn-gamma gene signature biomarkers of tumor response to pd-1 antagonists
CA3225453A1 (en) 2013-12-19 2015-06-25 Novartis Ag Human mesothelin chimeric antigen receptors and uses thereof
WO2015095811A2 (en) * 2013-12-20 2015-06-25 The Board Institute Inc. Combination therapy with neoantigen vaccine
CN113402609B (zh) 2013-12-20 2023-12-05 英特维特国际股份有限公司 具有经修饰的ch2-ch3序列的犬抗体
US10835595B2 (en) * 2014-01-06 2020-11-17 The Trustees Of The University Of Pennsylvania PD1 and PDL1 antibodies and vaccine combinations and use of same for immunotherapy
US10548985B2 (en) 2014-01-10 2020-02-04 Birdie Biopharmaceuticals, Inc. Compounds and compositions for treating EGFR expressing tumors
JO3517B1 (ar) 2014-01-17 2020-07-05 Novartis Ag ان-ازاسبيرو الكان حلقي كبديل مركبات اريل-ان مغايرة وتركيبات لتثبيط نشاط shp2
WO2015112534A2 (en) * 2014-01-21 2015-07-30 Medimmune, Llc Compositions and methods for modulating and redirecting immune responses
TWI681969B (zh) 2014-01-23 2020-01-11 美商再生元醫藥公司 針對pd-1的人類抗體
TWI680138B (zh) 2014-01-23 2019-12-21 美商再生元醫藥公司 抗pd-l1之人類抗體
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
JOP20200096A1 (ar) 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
EP3102604B1 (en) 2014-02-04 2020-01-15 Pfizer Inc Combination of a pd-1 antagonist and a 4-1bb agonist for treating cancer
EP3971209A1 (en) 2014-02-04 2022-03-23 Pfizer Inc. Combination of a pd-1 antagonist and a vegfr inhibitor for treating cancer
KR20220153677A (ko) 2014-02-04 2022-11-18 인사이트 코포레이션 암을 치료하기 위한 pd-1 길항제 및 ido1 억제제의 조합
IL247320B (en) 2014-02-21 2022-09-01 Nektar Therapeutics Use of selective il-2r beta agonists in combination with antibodies against ctla-4 or pd-1 for cancer treatment
EP3338800A1 (en) * 2014-02-21 2018-06-27 IDAC Theranostics, Inc. Therapeutic agent for solid cancer
US9732154B2 (en) 2014-02-28 2017-08-15 Janssen Biotech, Inc. Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
US20170088626A1 (en) 2014-03-05 2017-03-30 Bristol-Myers Squibb Company Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
JP6903432B2 (ja) 2014-03-12 2021-07-14 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド Cnsの疾患および傷害を処置するために全身性調節性t細胞のレベルまたは活性を低下させること
US10519237B2 (en) 2014-03-12 2019-12-31 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
US9394365B1 (en) 2014-03-12 2016-07-19 Yeda Research And Development Co., Ltd Reducing systemic regulatory T cell levels or activity for treatment of alzheimer's disease
CA2935878C (en) 2014-03-12 2023-05-02 Curevac Ag Combination of vaccination and ox40 agonists
US10618963B2 (en) 2014-03-12 2020-04-14 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
CN106103484B (zh) 2014-03-14 2021-08-20 诺华股份有限公司 针对lag-3的抗体分子及其用途
EP3593812A3 (en) 2014-03-15 2020-05-27 Novartis AG Treatment of cancer using chimeric antigen receptor
ES2719136T3 (es) 2014-03-24 2019-07-08 Novartis Ag Compuestos orgánicos de monobactam para el tratamiento de infecciones bacterianas
CA2944456C (en) * 2014-03-31 2023-10-31 The Johns Hopkins University Use of bacteria, bacterial products, and other immunoregulatory entities in combination with anti-ctla-4 and/or anti-pd-1 antibodies to treat solid tumor malignancies
EP3632934A1 (en) 2014-03-31 2020-04-08 F. Hoffmann-La Roche AG Anti-ox40 antibodies and methods of use
WO2015153514A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
CN104974253A (zh) * 2014-04-01 2015-10-14 上海中信国健药业股份有限公司 抗ctla-4/pd-1双特异性抗体、其制备方法及应用
US9987258B2 (en) 2014-04-06 2018-06-05 H. Lee Moffitt Cancer Center And Research Institute, Inc. Histone deacetylase as a modulator of PDL1 expression and activity
IL293603B2 (en) 2014-04-07 2024-03-01 Novartis Ag Cancer treatment using chimeric antigen receptor (CAR) against CD19
WO2015157636A1 (en) 2014-04-10 2015-10-15 H. Lee Moffitt Cancer Center And Research Institute, Inc. Enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy
US10150802B2 (en) 2014-04-24 2018-12-11 The Board Of Trustees Of The Leland Stanford Junior University Superagonists, partial agonists and antagonists of interleukin-2
CN105031630A (zh) * 2014-04-28 2015-11-11 四川大学 同时分泌pd-1中和抗体和gm-csf因子的肿瘤细胞疫苗及其制备方法
RS61273B1 (sr) 2014-04-30 2021-01-29 Fujifilm Corp Lipozomska kompozicija i postupak za njeno dobijanje
CA2946606C (en) * 2014-05-13 2023-06-06 Bavarian Nordic A/S Combination therapy for treating cancer with a poxvirus expressing a tumor antigen and an antagonist of tim-3
US20170266270A1 (en) * 2014-05-13 2017-09-21 Bavarian Nordic A/S Combination Therapy for Treating Cancer with a Poxvirus Expressing a Tumor Antigen and an Antagonist and/or Agonist of an Immune Checkpoint Inhibitor
CN106572993B (zh) 2014-05-23 2019-07-16 卫材R&D管理有限公司 Ep4拮抗剂在制备治疗癌症的药物中的应用
MA47849A (fr) 2014-05-28 2020-01-29 Agenus Inc Anticorps anti-gitr et leurs procédés d'utilisation
JP2017516779A (ja) 2014-05-28 2017-06-22 アイデニクス・ファーマシューティカルズ・エルエルシー 癌治療のためのヌクレオシド誘導体
EA037006B1 (ru) 2014-06-06 2021-01-26 Бристол-Майерс Сквибб Компани Антитела к индуцируемому глюкокортикоидами рецептору фактора некроза опухолей (gitr) и их применения
BR112016029650A2 (pt) 2014-06-19 2017-10-24 Regeneron Pharma roedor, polipeptídeo pd-1, célula isolada ou tecido de roedor, célula-tronco embrionária de roedor, métodos de produzir um roedor, de reduzir o crescimento de tumor em um roedor, de matar células tumorais em um roedor e de avaliar as propriedades farmacocinéticas de uma droga que direciona pd-1 humano, e, modelo de tumor de roedor?
TWI693232B (zh) 2014-06-26 2020-05-11 美商宏觀基因股份有限公司 與pd-1和lag-3具有免疫反應性的共價結合的雙抗體和其使用方法
JP6789124B2 (ja) * 2014-07-03 2020-11-25 イエール ユニバーシティ 腫瘍形成を抑制するディコップ2(Dickkopf2)(Dkk2)阻害
JP6526189B2 (ja) 2014-07-03 2019-06-05 ベイジーン リミテッド 抗pd−l1抗体並びにその治療及び診断のための使用
DK3166976T3 (da) 2014-07-09 2022-04-11 Birdie Biopharmaceuticals Inc Anti-pd-l1-kombinationer til behandling af tumorer
EP3851111A1 (en) * 2014-07-10 2021-07-21 Biothera, Inc. Beta-glucan in combination with anti-cancer agents affecting the tumor microenvironment
EP3166974A1 (en) 2014-07-11 2017-05-17 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
AU2015289672A1 (en) 2014-07-15 2017-03-02 Genentech, Inc. Compositions for treating cancer using PD-1 axis binding antagonists and MEK inhibitors
AU2015289922A1 (en) 2014-07-15 2017-02-16 The Johns Hopkins University Suppression of myeloid derived suppressor cells and immune checkpoint blockade
JP6895374B2 (ja) 2014-07-16 2021-06-30 トランジェーヌTransgene 免疫チェックポイントモジュレーターの発現用腫瘍溶解性ウイルス
WO2016009017A1 (en) 2014-07-16 2016-01-21 Institut Gustave-Roussy Combination of oncolytic virus with immune checkpoint modulators
AU2015289533B2 (en) 2014-07-18 2021-04-01 Advaxis, Inc. Combination of a PD-1 antagonist and a Listeria-based vaccine for treating prostate cancer
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
CN112481283A (zh) 2014-07-21 2021-03-12 诺华股份有限公司 使用cd33嵌合抗原受体治疗癌症
JP2017528433A (ja) 2014-07-21 2017-09-28 ノバルティス アーゲー 低い免疫増強用量のmTOR阻害剤とCARの組み合わせ
BR112017001385B1 (pt) 2014-07-22 2023-12-05 Cb Therapeutics, Inc. Anticorpo isolado ou fragmento do mesmo que liga a pd-1, uso deste, composição, polinucleotídeo isolado e vetor de expressão
CN105330740B (zh) * 2014-07-30 2018-08-17 珠海市丽珠单抗生物技术有限公司 抗pd-1抗体及其应用
US20170209492A1 (en) 2014-07-31 2017-07-27 Novartis Ag Subset-optimized chimeric antigen receptor-containing t-cells
CN105296433B (zh) 2014-08-01 2018-02-09 中山康方生物医药有限公司 一种ctla4抗体、其药物组合物及其用途
KR102476226B1 (ko) 2014-08-05 2022-12-12 아폴로믹스 인코포레이티드 항-pd-l1 항체
PT3177644T (pt) * 2014-08-05 2021-01-13 MabQuest SA Reagentes imunológicos que se ligam a pd-1
US9982052B2 (en) 2014-08-05 2018-05-29 MabQuest, SA Immunological reagents
EP3177593A1 (en) 2014-08-06 2017-06-14 Novartis AG Quinolone derivatives as antibacterials
ES2921875T3 (es) 2014-08-11 2022-09-01 Acerta Pharma Bv Combinaciones terapéuticas de un inhibidor BTK, un inhibidor PD-1 y/o un inhibidor PD-L1
US20170216403A1 (en) 2014-08-12 2017-08-03 Massachusetts Institute Of Technology Synergistic tumor treatment with il-2, a therapeutic antibody, and an immune checkpoint blocker
MX2017001864A (es) 2014-08-12 2017-08-02 Alligator Bioscience Ab Tratamientos conjuntos con anticuerpos anti cd40.
DK3180018T3 (da) 2014-08-12 2019-10-28 Massachusetts Inst Technology Synergistisk tumorbehandling med IL-2 og integrinbindende Fc-fusionsprotein
WO2016025880A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using gfr alpha-4 chimeric antigen receptor
MY189028A (en) 2014-08-19 2022-01-20 Novartis Ag Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment
MX2017002134A (es) 2014-08-19 2017-09-13 Nat Univ Corporation Okayama Univ Agente para el tratamiento y/o prevencion de enfermedades asociadas con anormalidades inmunes.
US10695426B2 (en) 2014-08-25 2020-06-30 Pfizer Inc. Combination of a PD-1 antagonist and an ALK inhibitor for treating cancer
EP3186281B1 (en) 2014-08-28 2019-04-10 Halozyme, Inc. Combination therapy with a hyaluronan-degrading enzyme and an immune checkpoint inhibitor
JO3783B1 (ar) 2014-08-28 2021-01-31 Eisai R&D Man Co Ltd مشتق كوينولين عالي النقاء وطريقة لإنتاجه
WO2016030455A1 (en) * 2014-08-28 2016-03-03 Medimmune Limited Anti-b7-h1 and anti-ctla-4 antibodies for treating non-small lung cancer
CN112587672A (zh) 2014-09-01 2021-04-02 博笛生物科技有限公司 用于治疗肿瘤的抗-pd-l1结合物
US9535074B2 (en) 2014-09-08 2017-01-03 Merck Sharp & Dohme Corp. Immunoassay for soluble PD-L1
WO2016040313A2 (en) * 2014-09-08 2016-03-17 Dana-Farber Cancer Institute, Inc. Methods of treating cancer
US9993551B2 (en) 2014-09-13 2018-06-12 Novartis Ag Combination therapies of EGFR inhibitors
DK3194443T3 (da) 2014-09-17 2021-09-27 Novartis Ag Målretning af cytotoksiske celler med kimære receptorer i forbindelse med adoptiv immunterapi
PL3262071T3 (pl) 2014-09-23 2020-08-10 F. Hoffmann-La Roche Ag Sposób stosowania immunokoniugatów anty-CD79b
WO2016045732A1 (en) 2014-09-25 2016-03-31 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
WO2016050721A1 (en) 2014-09-30 2016-04-07 Intervet International B.V. Pd-l1 antibodies binding canine pd-l1
KR20170066546A (ko) 2014-10-03 2017-06-14 노파르티스 아게 조합 요법
SG11201702895SA (en) 2014-10-08 2017-05-30 Novartis Ag Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof
MA41044A (fr) 2014-10-08 2017-08-15 Novartis Ag Compositions et procédés d'utilisation pour une réponse immunitaire accrue et traitement contre le cancer
US9732119B2 (en) 2014-10-10 2017-08-15 Bristol-Myers Squibb Company Immunomodulators
WO2016057898A1 (en) 2014-10-10 2016-04-14 Idera Pharmaceuticals, Inc. Treatment of cancer using tlr9 agonist with checkpoint inhibitors
US10766966B2 (en) 2014-10-10 2020-09-08 Innate Pharma CD73 blockade
CU20170052A7 (es) 2014-10-14 2017-11-07 Dana Farber Cancer Inst Inc Moléculas de anticuerpo que se unen a pd-l1
NZ730563A (en) 2014-10-14 2019-05-31 Halozyme Inc Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
MX2017004969A (es) * 2014-10-16 2017-07-19 Epizyme Inc Metodo para tratar el cancer.
WO2016059602A2 (en) * 2014-10-16 2016-04-21 Glaxo Group Limited Methods of treating cancer and related compositions
CN113855806A (zh) 2014-10-21 2021-12-31 赛生药品股份国际有限公司 用免疫刺激剂治疗癌症
GB201419084D0 (en) 2014-10-27 2014-12-10 Agency Science Tech & Res Anti-PD-1 antibodies
KR102636539B1 (ko) 2014-10-29 2024-02-13 파이브 프라임 테라퓨틱스, 인크. 암에 대한 조합 요법
AU2015338974B2 (en) * 2014-10-31 2021-08-26 Oncomed Pharmaceuticals, Inc. Combination therapy for treatment of disease
CA2966523A1 (en) 2014-11-03 2016-05-12 Genentech, Inc. Assays for detecting t cell immune subsets and methods of use thereof
CN114381521A (zh) 2014-11-03 2022-04-22 豪夫迈·罗氏有限公司 用于ox40激动剂治疗的功效预测和评估的方法和生物标志物
JP7305300B2 (ja) 2014-11-05 2023-07-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 併用免疫療法
JP6887378B2 (ja) * 2014-11-06 2021-06-16 バイオセラ,インク. 腫瘍内微小環境に影響を与えるベータ−グルカン方法と組成物
CA2960797A1 (en) 2014-11-06 2016-05-12 F. Hoffmann-La Roche Ag Fc-region variants with modified fcrn-binding and methods of use
US10077287B2 (en) 2014-11-10 2018-09-18 Bristol-Myers Squibb Company Tubulysin analogs and methods of making and use
WO2016077397A2 (en) * 2014-11-11 2016-05-19 Sutro Biopharma, Inc. Anti-pd-1 antibodies, compositions comprising anti-pd-1 antibodies and methods of using anti-pd-1 antibodies
KR20210069124A (ko) 2014-11-13 2021-06-10 더 존스 홉킨스 유니버시티 관문 차단 및 미소부수체 불안정성
JP6831783B2 (ja) 2014-11-14 2021-02-17 ノバルティス アーゲー 抗体薬物コンジュゲート
US9856292B2 (en) 2014-11-14 2018-01-02 Bristol-Myers Squibb Company Immunomodulators
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
BR112017010324A2 (pt) * 2014-11-20 2018-05-15 F. Hoffmann-La Roche Ag método para tratar ou retardar a progressão de um câncer em um indivíduo, moléculas, métodos para aumentar a função imune em um indivíduo e para selecionar um paciente para tratamento, kits, composição farmacêutica e usos de uma combinação de uma molécula
PT3220927T (pt) 2014-11-20 2022-02-07 Promega Corp Sistemas e métodos para avaliar moduladores de pontos de verificação imunitária
RS60631B1 (sr) 2014-11-21 2020-09-30 Bristol Myers Squibb Co Antitela protiv cd73 i njihova upotreba
EP3221346B1 (en) 2014-11-21 2020-09-02 Bristol-Myers Squibb Company Antibodies comprising modified heavy constant regions
EP3224277B1 (en) 2014-11-25 2020-08-26 Bristol-Myers Squibb Company Novel pd-l1 binding polypeptides for imaging
EP3223866B1 (en) 2014-11-25 2023-03-08 Bristol-Myers Squibb Company Methods and compositions for 18f-radiolabeling of the fibronectin type (iii) domain
EP3224258B1 (en) 2014-11-27 2019-08-14 Genentech, Inc. 4,5,6,7-tetrahydro-1h-pyrazolo[4,3-c]pyridin-3-amine compounds as cbp and/or ep300 inhibitors
WO2016090034A2 (en) 2014-12-03 2016-06-09 Novartis Ag Methods for b cell preconditioning in car therapy
CN107249632A (zh) 2014-12-04 2017-10-13 百时美施贵宝公司 用于治疗癌症(骨髓瘤)的抗cs1与抗pd‑1抗体的组合
EP3226690B1 (en) 2014-12-05 2020-05-20 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
US10442819B2 (en) 2014-12-05 2019-10-15 Merck Sharp & Dohme Corp. Tricyclic compounds as inhibitors of mutant IDH enzymes
WO2016089830A1 (en) 2014-12-05 2016-06-09 Merck Sharp & Dohme Corp. Novel tricyclic compounds as inhibitors of mutant idh enzymes
EP3227337A1 (en) 2014-12-05 2017-10-11 F. Hoffmann-La Roche AG Methods and compositions for treating cancer using pd-1 axis antagonists and hpk1 antagonists
WO2016089610A1 (en) 2014-12-06 2016-06-09 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bispecific antibody for cancer immunotherapy
CA2968352A1 (en) * 2014-12-08 2016-06-16 Dana-Farber Cancer Institute, Inc. Methods for upregulating immune responses using combinations of anti-rgmb and anti-pd-1 agents
TWI595006B (zh) 2014-12-09 2017-08-11 禮納特神經系統科學公司 抗pd-1抗體類和使用彼等之方法
JP2018505658A (ja) 2014-12-09 2018-03-01 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Pd−1アンタゴニストに対する応答の遺伝子シグネチャーバイオマーカーを得るための系および方法
US9549916B2 (en) 2014-12-16 2017-01-24 Novartis Ag Isoxazole hydroxamic acid compounds as LpxC inhibitors
US9861680B2 (en) 2014-12-18 2018-01-09 Bristol-Myers Squibb Company Immunomodulators
WO2016100364A1 (en) 2014-12-18 2016-06-23 Amgen Inc. Stable frozen herpes simplex virus formulation
US9944678B2 (en) 2014-12-19 2018-04-17 Bristol-Myers Squibb Company Immunomodulators
WO2016100977A1 (en) 2014-12-19 2016-06-23 The Broad Institute Inc. Methods for profiling the t-cel- receptor repertoire
EP3233918A1 (en) 2014-12-19 2017-10-25 Novartis AG Combination therapies
WO2016100975A1 (en) 2014-12-19 2016-06-23 Massachsetts Institute Ot Technology Molecular biomarkers for cancer immunotherapy
US11639385B2 (en) 2014-12-22 2023-05-02 Pd-1 Acquisition Group, Llc Anti-PD-1 antibodies
US10239942B2 (en) 2014-12-22 2019-03-26 Pd-1 Acquisition Group, Llc Anti-PD-1 antibodies
WO2016106160A1 (en) * 2014-12-22 2016-06-30 Enumeral Biomedical Holdings, Inc. Methods for screening therapeutic compounds
JP6427278B2 (ja) 2014-12-23 2018-11-21 フォーディー ファーマ リサーチ リミテッド4D Pharma Research Limited pirinポリペプチド及び免疫モジュレーション
TWI708786B (zh) 2014-12-23 2020-11-01 美商必治妥美雅史谷比公司 針對tigit之抗體
CN104479020B (zh) * 2014-12-26 2019-08-02 上海复宏汉霖生物技术股份有限公司 一种抗pd-1人源抗体
GB201500319D0 (en) 2015-01-09 2015-02-25 Agency Science Tech & Res Anti-PD-L1 antibodies
WO2016115201A1 (en) 2015-01-14 2016-07-21 Bristol-Myers Squibb Company Heteroarylene-bridged benzodiazepine dimers, conjugates thereof, and methods of making and using
EP3247408A4 (en) * 2015-01-20 2018-08-22 Immunexcite, Inc. Compositions and methods for cancer immunotherapy
MA41414A (fr) 2015-01-28 2017-12-05 Centre Nat Rech Scient Protéines de liaison agonistes d' icos
WO2016123608A2 (en) 2015-01-30 2016-08-04 Rfemb Holdings, Llc Radio-frequency electrical membrane breakdown for the treatment of high risk and recurrent prostate cancer, unresectable pancreatic cancer, tumors of the breast, melanoma or other skin malignancies, sarcoma, soft tissue tumors, ductal carcinoma, neoplasia, and intra and extra luminal abnormal tissue
WO2016126608A1 (en) 2015-02-02 2016-08-11 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
US20160222060A1 (en) 2015-02-04 2016-08-04 Bristol-Myers Squibb Company Immunomodulators
WO2016127052A1 (en) 2015-02-05 2016-08-11 Bristol-Myers Squibb Company Cxcl11 and smica as predictive biomarkers for efficacy of anti-ctla4 immunotherapy
JP2018506280A (ja) * 2015-02-06 2018-03-08 カドモン コーポレイション,リミティド ライアビリティ カンパニー 免疫調節薬
WO2016128912A1 (en) 2015-02-12 2016-08-18 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor, and/or a pd-l1 inhibitor
NZ734256A (en) * 2015-02-12 2019-02-22 Beyondspring Pharmaceuticals Inc Use of plinabulin in combination with immune checkpoint inhibitors
WO2016128060A1 (en) 2015-02-12 2016-08-18 Biontech Ag Predicting t cell epitopes useful for vaccination
EP3256156A1 (en) * 2015-02-13 2017-12-20 Transgene SA Immunotherapeutic vaccine and antibody combination therapy
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
EP3617205B1 (en) 2015-02-20 2021-08-04 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
DK3263106T3 (da) 2015-02-25 2024-01-08 Eisai R&D Man Co Ltd Fremgangsmåde til undertrykkelse af bitterhed af quinolinderivat
WO2016137985A1 (en) 2015-02-26 2016-09-01 Merck Patent Gmbh Pd-1 / pd-l1 inhibitors for the treatment of cancer
AR103726A1 (es) * 2015-02-27 2017-05-31 Merck Sharp & Dohme Cristales de anticuerpos monoclonales anti-pd-1 humanos
US10945990B2 (en) 2015-03-04 2021-03-16 Eisai R&D Management Co., Ltd. Combination of a PD-1 antagonist and eribulin for treating cancer
CA2978226A1 (en) 2015-03-04 2016-09-09 Merck Sharpe & Dohme Corp. Combination of a pd-1 antagonist and a vegfr/fgfr/ret tyrosine kinase inhibitor for treating cancer
SG11201707127VA (en) 2015-03-06 2017-09-28 Beyondspring Pharmaceuticals Inc Method of treating cancer associated with a ras mutation
JP6904570B2 (ja) 2015-03-06 2021-07-21 ビヨンドスプリング ファーマシューティカルズ,インコーポレイテッド 脳腫瘍の治療方法
AU2016230793B2 (en) 2015-03-10 2021-03-25 Aurigene Discovery Technologies Limited 1,2,4-oxadiazole and thiadiazole compounds as immunomodulators
MY190404A (en) 2015-03-10 2022-04-21 Aduro Biotech Inc Compositions and methods for activating "stimulator of interferon gene"-dependent signalling
EP3067062A1 (en) * 2015-03-13 2016-09-14 Ipsen Pharma S.A.S. Combination of tasquinimod or a pharmaceutically acceptable salt thereof and a pd1 and/or pdl1 inhibitor, for use as a medicament
SG11201707383PA (en) 2015-03-13 2017-10-30 Cytomx Therapeutics Inc Anti-pdl1 antibodies, activatable anti-pdl1 antibodies, and methods of use thereof
US9809625B2 (en) 2015-03-18 2017-11-07 Bristol-Myers Squibb Company Immunomodulators
LT3274370T (lt) 2015-03-23 2020-02-10 Bayer Pharma Aktiengesellschaft Antikūnai prieš ceacam6 ir jų panaudojimas
DK3286311T3 (da) * 2015-03-26 2021-05-17 Oncosec Medical Inc Fremgangsmåde til behandling af maligniteter
CN114380909A (zh) 2015-03-30 2022-04-22 斯特库比股份有限公司 特异性针对糖基化的pd-l1的抗体及其使用方法
US11933786B2 (en) 2015-03-30 2024-03-19 Stcube, Inc. Antibodies specific to glycosylated PD-L1 and methods of use thereof
MA41866A (fr) 2015-03-31 2018-02-06 Massachusetts Gen Hospital Molécules à auto-assemblage pour l'administration ciblée de médicaments
MA41867A (fr) 2015-04-01 2018-02-06 Anaptysbio Inc Anticorps dirigés contre l'immunoglobuline de cellule t et protéine 3 de mucine (tim-3)
US10478494B2 (en) 2015-04-03 2019-11-19 Astex Therapeutics Ltd FGFR/PD-1 combination therapy for the treatment of cancer
WO2016161410A2 (en) 2015-04-03 2016-10-06 Xoma Technology Ltd. Treatment of cancer using inhibitors of tgf-beta and pd-1
US11071775B2 (en) 2015-04-03 2021-07-27 H. Lee Moffitt Cancer Center And Research Institute, Inc. Combination immunotherapy for treating cancer
EP3280795B1 (en) 2015-04-07 2021-03-24 Novartis AG Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives
CN107709364A (zh) 2015-04-07 2018-02-16 豪夫迈·罗氏有限公司 具有激动剂活性的抗原结合复合体及使用方法
AU2016244570B2 (en) 2015-04-07 2020-08-27 Nec Corporation Medicine
SI3280729T1 (sl) 2015-04-08 2022-09-30 Novartis Ag Terapije CD20, terapije CD22 in kombinacija terapij s celico, ki izraža himerni antigenski receptor CD19 (CAR)
BR112017020952A2 (pt) 2015-04-13 2018-07-10 Five Prime Therapeutics Inc método de tratamento de câncer, composição e uso da composição
JP7114457B2 (ja) 2015-04-17 2022-08-08 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア キメラ抗原受容体発現細胞の有効性および増殖を改善するための方法
TN2017000440A1 (en) 2015-04-17 2019-04-12 Bristol Myers Squibb Co Compositions comprising a combination of an anti-pd-1 antibody and another antibody
ES2844799T3 (es) 2015-04-17 2021-07-22 Merck Sharp & Dohme Biomarcadores sanguíneos de sensibilidad tumoral a antagonistas de PD-1
US20180298068A1 (en) 2015-04-23 2018-10-18 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
WO2016176504A1 (en) 2015-04-28 2016-11-03 Bristol-Myers Squibb Company Treatment of pd-l1-positive melanoma using an anti-pd-1 antibody
WO2016176503A1 (en) 2015-04-28 2016-11-03 Bristol-Myers Squibb Company Treatment of pd-l1-negative melanoma using an anti-pd-1 antibody and an anti-ctla-4 antibody
WO2016175275A1 (ja) 2015-04-30 2016-11-03 国立大学法人京都大学 Pd-l1(cd274)の異常を指標としたpd-1/pd-l1阻害剤の治療効果予測方法
EP3563684A1 (en) 2015-05-06 2019-11-06 Snipr Technologies Limited Altering microbial populations & modifying microbiota
ES2835866T3 (es) 2015-05-12 2021-06-23 Hoffmann La Roche Procedimientos terapéuticos y de diagnóstico para el cáncer
CN104987421A (zh) * 2015-05-13 2015-10-21 北京比洋生物技术有限公司 抗ctla-4和pd-1的双重可变结构域免疫球蛋白
MX2017014700A (es) 2015-05-20 2018-08-15 Broad Inst Inc Neoantigenos compartidos.
EP3718569B1 (en) * 2015-05-22 2023-05-03 Translational Drug Development, LLC Benzamide and active compound compositions and methods of use
CN104931690A (zh) * 2015-05-22 2015-09-23 华中科技大学同济医学院附属协和医院 一种pd-1抗体检测试剂盒及其应用
WO2016189055A1 (en) 2015-05-27 2016-12-01 Idenix Pharmaceuticals Llc Nucleotides for the treatment of cancer
US20160347836A1 (en) * 2015-05-28 2016-12-01 Bristol-Myers Squibb Company Treatment of hodgkin's lymphoma using an anti-pd-1 antibody
US20180155429A1 (en) 2015-05-28 2018-06-07 Bristol-Myers Squibb Company Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody
EP3302501B1 (en) 2015-05-29 2021-09-22 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and cpg-c type oligonucleotide for treating cancer
SG10201913500TA (en) 2015-05-29 2020-03-30 Agenus Inc Anti-ctla-4 antibodies and methods of use thereof
KR20180012753A (ko) 2015-05-29 2018-02-06 제넨테크, 인크. 암에 대한 치료 및 진단 방법
CA2987410A1 (en) 2015-05-29 2016-12-08 Bristol-Myers Squibb Company Antibodies against ox40 and uses thereof
US11078278B2 (en) 2015-05-29 2021-08-03 Bristol-Myers Squibb Company Treatment of renal cell carcinoma
CN107613980A (zh) 2015-05-31 2018-01-19 源生公司 用于免疫疗法的组合组合物
CA2987129A1 (en) * 2015-06-01 2016-12-08 The University Of Chicago Treatment of cancer by manipulation of commensal microflora
TW201717935A (zh) 2015-06-03 2017-06-01 波士頓生醫公司 用於治療癌症的組成物和方法
WO2016197067A1 (en) 2015-06-05 2016-12-08 H. Lee Moffitt Cancer Center And Research Institute, Inc. Gm-csf/cd40l vaccine and checkpoint inhibitor combination therapy
EP3303399A1 (en) 2015-06-08 2018-04-11 H. Hoffnabb-La Roche Ag Methods of treating cancer using anti-ox40 antibodies
TWI773646B (zh) 2015-06-08 2022-08-11 美商宏觀基因股份有限公司 結合lag-3的分子和其使用方法
CN105061597B (zh) * 2015-06-09 2016-04-27 北京东方百泰生物科技有限公司 一种抗pd-1的单克隆抗体及其获得方法
JP7284557B2 (ja) 2015-06-12 2023-05-31 マッカイ メディカル ファンデーション ザ プレスビュテロス チャーチ イン タイワン マッカイ メモリアル ホスピタル 医薬組成物
TW201709929A (zh) 2015-06-12 2017-03-16 宏觀基因股份有限公司 治療癌症的聯合療法
EP3307778A1 (en) 2015-06-12 2018-04-18 Bristol-Myers Squibb Company Treatment of cancer by combined blockade of the pd-1 and cxcr4 signaling pathways
HUE045413T2 (hu) 2015-06-15 2019-12-30 4D Pharma Res Ltd Baktériumtörzseket tartalmazó készítmények
SG10201912319SA (en) 2015-06-15 2020-02-27 4D Pharma Res Ltd Compositions comprising bacterial strains
DK3240554T3 (da) 2015-06-15 2019-10-28 4D Pharma Res Ltd Blautia stercosis og wexlerae til anvendelse til behandling af inflammatoriske og autoimmune sygdomme
MA41010B1 (fr) 2015-06-15 2020-01-31 4D Pharma Res Ltd Compositions comprenant des souches bactériennes
MX2017016324A (es) 2015-06-16 2018-03-02 Merck Patent Gmbh Tratamientos de combinacion de antagonista de ligando 1 de muerte programada (pd-l1).
CN107801379B (zh) 2015-06-16 2021-05-25 卫材R&D管理有限公司 抗癌剂
MX2017016353A (es) 2015-06-17 2018-05-02 Genentech Inc Metodos para tratar canceres de mama metastasicos o localmente avanzados con antagonistas de union al eje de pd-1 y taxanos.
WO2016203432A1 (en) 2015-06-17 2016-12-22 Novartis Ag Antibody drug conjugates
TWI773647B (zh) * 2015-06-23 2022-08-11 史隆凱特林紀念癌症中心 新穎pd-1免疫調控劑
UA124799C2 (uk) 2015-06-24 2021-11-24 Янссен Байотек, Інк. Спосіб пригнічення імунної відповіді з використанням антитіла, що специфічно зв’язує cd38
AU2016285920A1 (en) 2015-06-29 2018-02-01 Bristol-Myers Squibb Company Antibodies to CD40 with enhanced agonist activity
EA035888B1 (ru) 2015-06-29 2020-08-27 Бристол-Майерс Сквибб Компани Режимы дозирования иммунотерапевтических средств и их комбинаций
EP3316874A4 (en) * 2015-06-30 2019-03-06 The Trustees Of The University Of Pennsylvania TOPICAL AND INJECTABLE REYQUIMOD COMPOSITIONS FOR THE TREATMENT OF NEOPLASTIC SKIN DISEASES
EP3316685A4 (en) 2015-07-02 2019-03-13 Otsuka Pharmaceutical Co., Ltd. Lyophilized Pharmaceutical Compositions
EP3316888A1 (en) 2015-07-02 2018-05-09 Celgene Corporation Combination therapy for treatment of hematological cancers and solid tumors
GB201511790D0 (en) 2015-07-06 2015-08-19 Iomet Pharma Ltd Pharmaceutical compound
KR20180040138A (ko) * 2015-07-13 2018-04-19 싸이톰스 테라퓨틱스, 인크. 항pd-1 항체, 활성화 가능한 항pd-1 항체, 및 이들의 사용 방법
CN109516981B (zh) 2015-07-13 2019-10-22 大连万春布林医药有限公司 普那布林组合物
US10544224B2 (en) 2015-07-14 2020-01-28 Bristol-Myers Squibb Company Method of treating cancer using immune checkpoint inhibitor
EP3322448A4 (en) 2015-07-16 2019-03-06 Bioxcel Therapeutics, Inc. NOVEL METHOD FOR THE TREATMENT OF CANCER WITH IMMUNOMODULATION
EP3322431A2 (en) 2015-07-16 2018-05-23 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
AR105433A1 (es) 2015-07-21 2017-10-04 Novartis Ag Métodos para mejorar la eficacia y expansión de las células inmunes
CN106699888B (zh) * 2015-07-28 2020-11-06 上海昀怡健康科技发展有限公司 一种pd-1抗体及其制备方法和应用
JP6840127B2 (ja) 2015-07-29 2021-03-10 ノバルティス アーゲー がんの治療における抗pd−1抗体および抗m−csf抗体の併用
EP3316902A1 (en) 2015-07-29 2018-05-09 Novartis AG Combination therapies comprising antibody molecules to tim-3
SI3317301T1 (sl) 2015-07-29 2021-10-29 Novartis Ag Kombinirane terapije, ki obsegajo molekule protitelesa na LAG-3
CN108235685A (zh) 2015-07-29 2018-06-29 诺华股份有限公司 Pd-1拮抗剂与egfr抑制剂的组合
KR20180034588A (ko) 2015-07-30 2018-04-04 마크로제닉스, 인크. Pd-1-결합 분자 및 그것의 사용 방법
WO2017021911A1 (en) 2015-08-04 2017-02-09 Glaxosmithkline Intellectual Property Development Limited Combination treatments and uses and methods thereof
JP2018522044A (ja) 2015-08-04 2018-08-09 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited 併用治療ならびにその使用およびその方法
WO2017021913A1 (en) 2015-08-04 2017-02-09 Glaxosmithkline Intellectual Property Development Limited Combination treatments and uses and methods thereof
US20190010231A1 (en) 2015-08-07 2019-01-10 Pieris Pharmaceuticals Gmbh Novel fusion polypeptide specific for lag-3 and pd-1
EP3331919A1 (en) 2015-08-07 2018-06-13 GlaxoSmithKline Intellectual Property Development Limited Combination therapy comprising anti ctla-4 antibodies
WO2017024465A1 (en) * 2015-08-10 2017-02-16 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
CA2993276A1 (en) 2015-08-11 2017-02-16 Yong Zheng Novel anti-pd-1 antibodies
WO2017024515A1 (en) * 2015-08-11 2017-02-16 Wuxi Biologics (Cayman) Inc. Novel anti-pd-1 antibodies
BR112018002757A8 (pt) 2015-08-13 2023-04-11 Merck Sharp & Dohme Composto, composição farmacêutica, e, métodos para induzir uma resposta imune, para induzir uma produção de interferon tipo i e para tratamento de um distúrbio
US11453697B1 (en) 2015-08-13 2022-09-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
ES2955775T3 (es) 2015-08-27 2023-12-07 Inst Nat Sante Rech Med Métodos para predecir el tiempo de supervivencia de pacientes que padecen cáncer de pulmón
EA201890630A1 (ru) 2015-09-01 2018-10-31 Эйдженус Инк. Антитела против pd-1 и способы их применения
US11638744B2 (en) 2015-09-03 2023-05-02 Ono Pharmaceutical Co., Ltd. Immunity enhancing agent for cancer by Allergin-1 antagonist
MX2018002723A (es) 2015-09-03 2018-08-15 Aileron Therapeutics Inc Macrociclicos peptidomimeticos y usos de los mismos.
JP6905163B2 (ja) 2015-09-03 2021-07-21 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア サイトカイン放出症候群を予測するバイオマーカー
MA44909A (fr) 2015-09-15 2018-07-25 Acerta Pharma Bv Association thérapeutique d'un inhibiteur du cd19 et d'un inhibiteur de la btk
WO2017049143A1 (en) * 2015-09-18 2017-03-23 Dana-Farber Cancer Institute, Inc. Methods of reducing liver pd-1-expressing cd8+t cells using pd-1 fc fusion proteins that bind fc receptors
EP3353204B1 (en) 2015-09-23 2023-10-18 Mereo BioPharma 5, Inc. Bi-specific anti-vegf/dll4 antibody for use in treating platinum-resistant ovarian cancer
CR20220186A (es) 2015-09-25 2022-07-07 Genentech Inc ANTICUERPOS ANTI-TIGIT Y MÉTODOS DE USO (divisional 2018-0225)
US10954300B2 (en) * 2015-09-28 2021-03-23 The Trustees Of Columbia University In The City Of New York Use of pentoxifylline with immune checkpoint-blockade therapies for the treatment of melanoma
EP3356416B1 (en) * 2015-09-29 2021-03-24 Shanghai Zhangjiang Biotechnology Co., Ltd Pd-1 antibodies and uses thereof
WO2017055322A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of neutrophils in a tissue sample
WO2017055320A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of cytotoxic lymphocytes in a tissue sample
WO2017055324A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of cells of monocytic origin in a tissue sample
WO2017055325A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of nk cells in a tissue sample
WO2017055319A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of b cells in a tissue sample
EA201890790A1 (ru) * 2015-09-29 2018-10-31 Селджин Корпорейшн Связывающие pd-1 белки и способы их применения
WO2017055321A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of fibroblasts in a tissue sample
WO2017055326A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of myeloid dendritic cells in a tissue sample
WO2017055327A1 (en) 2015-09-29 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of endothelial cells in a tissue sample
ES2839212T3 (es) 2015-09-29 2021-07-05 Inst Nat Sante Rech Med Métodos para determinar el estado metabólico de linfomas B
CN109069622A (zh) 2015-09-30 2018-12-21 詹森生物科技公司 特异性结合人cd40的拮抗性抗体和使用方法
US20180282415A1 (en) 2015-09-30 2018-10-04 Merck Patent Gmbh Combination of a PD-1 Axis Binding Antagonist and an ALK Inhibitor for Treating ALK-Negative Cancer
WO2017059224A2 (en) 2015-10-01 2017-04-06 Gilead Sciences, Inc. Combination of a btk inhibitor and a checkpoint inhibitor for treating cancers
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
HUE059788T2 (hu) * 2015-10-02 2022-12-28 Symphogen As PD-1 elleni antitestek és készítmények
WO2017059902A1 (en) 2015-10-07 2017-04-13 Biontech Rna Pharmaceuticals Gmbh 3' utr sequences for stabilization of rna
WO2017062619A2 (en) 2015-10-08 2017-04-13 Macrogenics, Inc. Combination therapy for the treatment of cancer
WO2017060397A1 (en) 2015-10-09 2017-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of subjects suffering from melanoma metastases
US20180280435A1 (en) * 2015-10-09 2018-10-04 Virginia Commonwealth University T cell delivery of mda-7/il-24 to improve therapeutic eradication of cancer and generate protective antitumor immunity
EP3362475B1 (en) 2015-10-12 2023-08-30 Innate Pharma Cd73 blocking agents
WO2017066414A1 (en) * 2015-10-14 2017-04-20 Endocyte, Inc. Drug delivery conjugates for use in combination therapy
US11207393B2 (en) 2015-10-16 2021-12-28 President And Fellows Of Harvard College Regulatory T cell PD-1 modulation for regulating T cell effector immune responses
JP6954648B2 (ja) 2015-10-19 2021-10-27 シージー オンコロジー, インコーポレイテッド 併用療法による固形腫瘍又はリンパ系腫瘍の治療方法
US10149887B2 (en) * 2015-10-23 2018-12-11 Canbas Co., Ltd. Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment
CN105238762A (zh) * 2015-10-26 2016-01-13 无锡傲锐东源生物科技有限公司 抗pd-1蛋白单克隆抗体杂交瘤细胞及其产生的抗pd-1单克隆抗体和应用
MA44334A (fr) 2015-10-29 2018-09-05 Novartis Ag Conjugués d'anticorps comprenant un agoniste du récepteur de type toll
CN106632674B (zh) * 2015-10-30 2018-11-16 泽达生物医药有限公司 一种抗pd-1单克隆抗体、其药物组合物及其用途
TW201722985A (zh) 2015-11-02 2017-07-01 戊瑞治療有限公司 Cd80胞外域多肽及其用於癌症治療
US11594135B2 (en) 2015-11-02 2023-02-28 Memgen, Inc. Methods of CD40 activation and immune checkpoint blockade
TWI800341B (zh) 2015-11-03 2023-04-21 美商健生生物科技公司 抗cd38抗體之皮下調配物及其用途
BR112018008904A2 (pt) * 2015-11-03 2018-11-27 Janssen Biotech Inc anticorpos que se ligam especificamente a tim-3 e seus usos
WO2017076360A1 (en) * 2015-11-04 2017-05-11 Taipei Veterans General Hospital Title of the invention combination therapy for malignant diseases
US11020430B2 (en) * 2015-11-04 2021-06-01 Emory University Immune cells with DNMT3A gene modifications and methods related thereto
EP3371311B1 (en) 2015-11-06 2021-07-21 Orionis Biosciences BV Bi-functional chimeric proteins and uses thereof
US20190038713A1 (en) 2015-11-07 2019-02-07 Multivir Inc. Compositions comprising tumor suppressor gene therapy and immune checkpoint blockade for the treatment of cancer
HUE059589T2 (hu) * 2015-11-12 2022-12-28 Hookipa Biotech Gmbh Arenavírus részecskék, mint rák elleni vakcinák
CN106699889A (zh) * 2015-11-18 2017-05-24 礼进生物医药科技(上海)有限公司 抗pd-1抗体及其治疗用途
US11072657B2 (en) 2015-11-18 2021-07-27 Bristol-Myers Squibb Company Treatment of lung cancer using a combination of an anti-PD-1 antibody and an anti-CTLA-4 antibody
AU2016356780A1 (en) 2015-11-19 2018-06-28 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (GITR) and uses thereof
PL3377107T3 (pl) 2015-11-19 2020-12-14 F. Hoffmann-La Roche Ag Sposoby leczenia nowotworu przy użyciu inhibitorów b-raf i inhibitorów immunologicznego punktu kontrolnego
NZ742787A (en) 2015-11-20 2020-02-28 4D Pharma Res Ltd Compositions comprising bacterial strains
RU2021107536A (ru) 2015-11-23 2021-07-02 Файв Прайм Терапьютикс, Инк. Ингибиторы fgfr2 отдельно или в комбинации с иммуностимулирующими агентами в лечении рака
BR112018011228A2 (pt) 2015-12-01 2019-01-15 Glaxosmithkline Ip Dev Ltd tratamentos de combinação e seus usos e métodos
CN108883173B (zh) 2015-12-02 2022-09-06 阿吉纳斯公司 抗体和其使用方法
KR20180085793A (ko) * 2015-12-02 2018-07-27 주식회사 에스티큐브 글리코실화된 pd-1에 대해 특이적인 항체 및 이의 사용 방법
MX363780B (es) 2015-12-03 2019-04-03 Glaxosmithkline Ip Dev Ltd Dinucleótidos de purina cíclica como moduladores del estimulador de los genes de interferón.
WO2017098421A1 (en) 2015-12-08 2017-06-15 Glaxosmithkline Intellectual Property Development Limited Benzothiadiazine compounds
JP7325186B2 (ja) 2015-12-09 2023-08-14 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 抗薬物抗体の形成を減少させるためのii型抗cd20抗体
US10590169B2 (en) * 2015-12-09 2020-03-17 Virogin Biotech Canada Ltd Compositions and methods for inhibiting CD279 interactions
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
WO2017106372A1 (en) * 2015-12-15 2017-06-22 Oncoimmune, Inc. Chimeric and humanized anti-human ctla4 monoclonal antibodies and uses thereof
EP3389783A4 (en) 2015-12-15 2019-05-15 Merck Sharp & Dohme Corp. NOVEL COMPOUNDS THAN INDOLAMINE-2,3-DIOXYGENASE INHIBITORS
GB201522309D0 (en) 2015-12-17 2016-02-03 Photocure Asa Use
CA3007671A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
US10392442B2 (en) 2015-12-17 2019-08-27 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
US11091556B2 (en) 2015-12-18 2021-08-17 Intervet Inc. Caninized human antibodies to human IL-4R alpha
US11433136B2 (en) 2015-12-18 2022-09-06 The General Hospital Corporation Polyacetal polymers, conjugates, particles and uses thereof
CA3008102A1 (en) 2015-12-18 2017-06-22 Novartis Ag Antibodies targeting cd32b and methods of use thereof
EP3394096A1 (en) 2015-12-21 2018-10-31 Bristol-Myers Squibb Company Variant antibodies for site-specific conjugation
ES2954153T3 (es) * 2015-12-22 2023-11-20 Regeneron Pharma Combinación de anticuerpos anti-PD-1 y anticuerpos biespecíficos anti-CD20/anti-CD3 para tratar el cáncer
JP7082055B2 (ja) 2015-12-22 2022-06-07 ノバルティス アーゲー 抗癌治療における組み合わせ使用のためのメソテリンキメラ抗原受容体(car)およびpd-l1阻害剤に対する抗体
PL3394033T3 (pl) 2015-12-22 2021-05-31 Incyte Corporation Związki heterocykliczne jako immunomodulatory
DK3394093T3 (da) 2015-12-23 2022-04-19 Modernatx Inc Fremgangsmåder til anvendelse af ox40-ligand-kodende polynukleotider
CN105669864B (zh) * 2015-12-23 2018-10-16 杭州尚健生物技术有限公司 抗人程序性死亡受体1抗体及其制备方法和用途
EP3405478A4 (en) * 2015-12-23 2019-10-30 Moonshot Pharma LLC METHOD FOR INDUCING AN IMMUNE RESPONSE BY INHIBITING NONSENSE-MEDIATED CRASH
US20200264165A1 (en) 2016-01-04 2020-08-20 Inserm (Institut National De La Sante Et De Larecherche Medicale) Use of pd-1 and tim-3 as a measure for cd8+ cells in predicting and treating renal cell carcinoma
CN115554406A (zh) 2016-01-07 2023-01-03 博笛生物科技有限公司 用于治疗肿瘤的抗-cd20组合
CN115350279A (zh) 2016-01-07 2022-11-18 博笛生物科技有限公司 用于治疗肿瘤的抗-her2组合
CN106943597A (zh) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 用于治疗肿瘤的抗-egfr组合
AR107320A1 (es) 2016-01-08 2018-04-18 Celgene Corp Formas sólidas de 2-(4-clorofenil)-n-((2-(2,6-dioxopiperidin-3-il)-1-oxoindolin-5-il)metil)-2,2-difluoroacetamida y sus composiciones farmacéuticas y usos
WO2017120422A1 (en) 2016-01-08 2017-07-13 Celgene Corporation Antiproliferative compounds, and their pharmaceutical compositions and uses
MX2018008347A (es) 2016-01-08 2018-12-06 Hoffmann La Roche Metodos de tratamiento de canceres positivos para ace utilizando antagonistas de union a eje pd-1 y anticuerpos biespecificos anti-ace/anti-cd3.
SG10202007913WA (en) 2016-01-08 2020-10-29 Celgene Corp Formulations of 2-(4-chlorophenyl)-n-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide
KR20180100224A (ko) 2016-01-11 2018-09-07 노바르티스 아게 인간 인터루킨-2에 대한 면역-자극 인간화 단일클론 항체, 및 이의 융합 단백질
DK3402503T3 (da) 2016-01-13 2020-12-21 Acerta Pharma Bv Terapeutiske kombinationer af et antifolat og en btk-hæmmer
WO2017124050A1 (en) 2016-01-14 2017-07-20 Bps Bioscience, Inc. Anti-pd-1 antibodies and uses thereof
HUE054356T2 (hu) 2016-01-21 2021-09-28 Innate Pharma Gátlási reakcióutak semlegesítése limfocitákban
CN108884169B (zh) 2016-01-22 2022-03-22 默沙东公司 抗凝血因子xi抗体
AU2017208819B2 (en) * 2016-01-22 2023-10-19 MabQuest SA PD1 specific antibodies
US11214617B2 (en) 2016-01-22 2022-01-04 MabQuest SA Immunological reagents
WO2017129763A1 (en) 2016-01-28 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of signet ring cell gastric cancer
EP4035681A1 (en) 2016-01-28 2022-08-03 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods and pharmaceutical composition for the treatment of cancer
EP3407912B1 (en) 2016-01-28 2022-05-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for enhancing the potency of the immune checkpoint inhibitors
JP7166923B2 (ja) 2016-02-05 2022-11-08 オリオニス バイオサイエンシズ ビーブイ 標的療法剤およびその使用
RU2753543C1 (ru) 2016-02-08 2021-08-17 Бейондспринг Фармасьютикалс, Инк. Композиции, содержащие тукаресол или его аналоги
RU2018131123A (ru) 2016-02-17 2020-03-17 Новартис Аг Антитела к tgf-бета2
CN109312347A (zh) 2016-02-19 2019-02-05 希望之城 双特异性适配子
US20200270265A1 (en) 2016-02-19 2020-08-27 Novartis Ag Tetracyclic pyridone compounds as antivirals
EP3419999B1 (en) 2016-02-26 2021-08-04 (INSERM) Institut National de la Santé et de la Recherche Médicale Antibodies having specificity for btla and uses thereof
CN109476731A (zh) 2016-02-29 2019-03-15 基础医药有限公司 治疗癌症的方法
CN109196121B (zh) 2016-02-29 2022-01-04 基因泰克公司 用于癌症的治疗和诊断方法
EP3423482A1 (en) 2016-03-04 2019-01-09 Novartis AG Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
SG10201601719RA (en) 2016-03-04 2017-10-30 Agency Science Tech & Res Anti-LAG-3 Antibodies
EA201891983A8 (ru) 2016-03-04 2020-05-28 Бристол-Майерс Сквибб Компани Комбинированная терапия антителами к cd73
ES2731579T3 (es) 2016-03-04 2019-11-18 4D Pharma Plc Composiciones que comprenden cepas de blautia bacteriana para tratar hipersensibilidad visceral
US10143746B2 (en) 2016-03-04 2018-12-04 Bristol-Myers Squibb Company Immunomodulators
GB201612191D0 (en) 2016-07-13 2016-08-24 4D Pharma Plc Compositions comprising bacterial strains
WO2017155981A1 (en) 2016-03-07 2017-09-14 Massachusetts Institute Of Technology Protein-chaperoned t-cell vaccines
EP3426688A1 (en) 2016-03-08 2019-01-16 Innate Pharma Siglec neutralizing antibodies
WO2017153952A1 (en) 2016-03-10 2017-09-14 Glaxosmithkline Intellectual Property Development Limited 5-sulfamoyl-2-hydroxybenzamide derivatives
WO2017156349A1 (en) 2016-03-10 2017-09-14 Cold Genesys, Inc. Methods of treating solid or lymphatic tumors by combination therapy
EP3426299A4 (en) * 2016-03-11 2019-10-16 University of Louisville Research Foundation, Inc. METHOD AND COMPOSITIONS FOR TREATMENT OF TUMORS
WO2017160599A1 (en) 2016-03-14 2017-09-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Use of cd300b antagonists to treat sepsis and septic shock
US10947317B2 (en) 2016-03-15 2021-03-16 Mersana Therapeutics, Inc. NaPi2b-targeted antibody-drug conjugates and methods of use thereof
TW202248213A (zh) 2016-03-15 2022-12-16 日商中外製藥股份有限公司 使用pd-1軸結合拮抗劑和抗gpc3抗體治療癌症的方法
JP2019512271A (ja) 2016-03-21 2019-05-16 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド T細胞疲弊状態特異的遺伝子発現調節因子およびその使用
PT3433257T (pt) 2016-03-24 2023-11-29 Novartis Ag Análogos nucleosídeos de alquinil como inibidores do rinovírus humano
WO2017165681A1 (en) * 2016-03-24 2017-09-28 Gensun Biopharma Inc. Trispecific inhibitors for cancer treatment
US11760803B2 (en) 2016-03-24 2023-09-19 Takeda Pharmaceutical Company Limited Methods of treating gastrointestinal immune-related adverse events in immune oncology treatments
TW201735949A (zh) 2016-03-24 2017-10-16 千禧製藥公司 治療抗ctla4及抗pd-1組合治療中的胃腸道免疫相關不良事件之方法
EP3943508B1 (en) 2016-03-29 2024-01-10 Board Of Regents, The University Of Texas System Dual function antibodies specific to glycosylated pd-l1 and methods of use thereof
CA3018382A1 (en) 2016-03-29 2017-10-05 University Of Southern California Chimeric antigen receptors targeting cancer
WO2017167921A1 (en) 2016-03-30 2017-10-05 Centre Léon-Bérard Lymphocytes expressing cd73 in cancerous patient dictates therapy
EP3436480A4 (en) 2016-03-30 2019-11-27 Musc Foundation for Research Development METHOD FOR THE TREATMENT AND DIAGNOSIS OF CANCER BY TARGETING GLYCOPROTEIN A REPETITION PREDOMINANT (GARP) AND FOR EFFECTIVE IMMUNOTHERAPY ALONE OR IN COMBINATION
JP6869324B2 (ja) * 2016-03-31 2021-05-12 チャンスー ヤホン メディテック カンパニー リミテッド ニトロキソリンおよびその類似体と、化学療法剤および免疫療法剤との、がんの治療における、組合せの使用
EP3225253A1 (en) 2016-04-01 2017-10-04 Deutsches Krebsforschungszentrum Stiftung des Öffentlichen Rechts Cancer therapy with an oncolytic virus combined with a checkpoint inhibitor
CN107286242B (zh) 2016-04-01 2019-03-22 中山康方生物医药有限公司 抗pd-1的单克隆抗体
US11209441B2 (en) 2016-04-05 2021-12-28 Bristol-Myers Squibb Company Cytokine profiling analysis
US10358463B2 (en) 2016-04-05 2019-07-23 Bristol-Myers Squibb Company Immunomodulators
US10981901B1 (en) 2016-04-07 2021-04-20 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
EP3440072B1 (en) 2016-04-07 2020-01-29 GlaxoSmithKline Intellectual Property Development Ltd Heterocyclic amides useful as protein modulators
US20170306050A1 (en) 2016-04-08 2017-10-26 Gilead Sciences, Inc. Compositions and methods for treating cancer, inflammatory diseases and autoimmune diseases
CN117327650A (zh) 2016-04-13 2024-01-02 维维雅生物技术公司 离体bite激活的t细胞
JP2019515670A (ja) 2016-04-15 2019-06-13 ジェネンテック, インコーポレイテッド がんをモニタリングし治療するための方法
ES2850428T3 (es) * 2016-04-15 2021-08-30 Hoffmann La Roche Procedimientos de monitorización y tratamiento del cáncer
MA44723A (fr) 2016-04-18 2019-02-27 Celldex Therapeutics Inc Anticorps agonistes se liant au cd40 humain et leurs utilisations
US10779980B2 (en) 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
IL262643B2 (en) 2016-04-29 2023-09-01 Univ Texas Targeted measurement of hormone receptor-associated transcriptional activity
US20190298824A1 (en) 2016-05-04 2019-10-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Albumin-binding immunomodulatory compositions and methods of use thereof
US10604531B2 (en) 2016-05-05 2020-03-31 Glaxosmithkline Intellectual Property (No.2) Limited Enhancer of zeste homolog 2 inhibitors
CN109789225A (zh) * 2016-05-05 2019-05-21 宾夕法尼亚大学理事会 靶向检查点分子的dna单克隆抗体
AR108377A1 (es) 2016-05-06 2018-08-15 Medimmune Llc Proteínas de unión biespecíficas y sus usos
SG10201603721TA (en) 2016-05-10 2017-12-28 Agency Science Tech & Res Anti-CTLA-4 Antibodies
KR20190005924A (ko) 2016-05-10 2019-01-16 브리스톨-마이어스 스큅 컴퍼니 향상된 안정성을 갖는 튜부리신 유사체의 항체-약물 접합체
TWI794171B (zh) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Hdac抑制劑與pd-l1抑制劑之組合治療
US11236141B2 (en) 2016-05-13 2022-02-01 Orionis Biosciences BV Targeted mutant interferon-beta and uses thereof
EP3243832A1 (en) * 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
TWI822521B (zh) 2016-05-13 2023-11-11 美商再生元醫藥公司 藉由投予pd-1抑制劑治療皮膚癌之方法
CN109563141A (zh) 2016-05-13 2019-04-02 奥里尼斯生物科学公司 对非细胞结构的治疗性靶向
KR102469450B1 (ko) 2016-05-18 2022-11-22 모더나티엑스, 인크. 인터류킨-12 (il12)를 코딩하는 폴리뉴클레오티드 및 그의 용도
MA45037A (fr) 2016-05-18 2019-03-27 Modernatx Inc Polythérapie à base d'arnm pour le traitement du cancer
EP4137509A1 (en) 2016-05-18 2023-02-22 ModernaTX, Inc. Combinations of mrnas encoding immune modulating polypeptides and uses thereof
EP3458053B1 (en) 2016-05-20 2021-12-08 Biohaven Pharmaceutical Holding Company Ltd. Use of riluzole, riluzole prodrugs or riluzole analogs with immunotherapies to treat cancers
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
ES2904880T3 (es) 2016-05-20 2022-04-06 Lilly Co Eli Terapia combinada con inhibidores de Notch y de PD-1 o PD-L1
CN105968200B (zh) 2016-05-20 2019-03-15 瑞阳(苏州)生物科技有限公司 抗人pd-l1人源化单克隆抗体及其应用
US20190292259A1 (en) 2016-05-24 2019-09-26 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd)
CN109476663B (zh) 2016-05-24 2021-11-09 基因泰克公司 用于治疗癌症的吡唑并吡啶衍生物
CN106008714B (zh) * 2016-05-24 2019-03-15 瑞阳(苏州)生物科技有限公司 抗人pd-1人源化单克隆抗体及其应用
CN109476641B (zh) 2016-05-24 2022-07-05 基因泰克公司 Cbp/ep300的杂环抑制剂及其在治疗癌症中的用途
IL263224B2 (en) 2016-05-25 2024-03-01 Inst Nat Sante Rech Med Use of a HISTONE DEACETYLASE inhibitor and a population of activation-free pluripotent cells for cancer treatment
MX2018014387A (es) 2016-05-27 2019-03-14 Agenus Inc Anticuerpos anti proteina inmunoglobulina de linfocitos t y dominio de mucina 3 (tim-3) y métodos para usarlos.
US10994033B2 (en) 2016-06-01 2021-05-04 Bristol-Myers Squibb Company Imaging methods using 18F-radiolabeled biologics
CN109562195A (zh) 2016-06-01 2019-04-02 百时美施贵宝公司 用pd-l1结合多肽进行pet成像
PT3463457T (pt) 2016-06-02 2023-09-07 Bristol Myers Squibb Co Bloqueio de pd-1 com nivolumab em linfoma de hodgkin refratário
ES2965957T3 (es) 2016-06-02 2024-04-17 Ultimovacs Asa Una vacuna junto con un inhibidor del punto de control inmunitario para usar en el tratamiento del cáncer
EP3464368B1 (en) 2016-06-02 2023-06-28 Bristol-Myers Squibb Company Use of an anti-pd-1 antibody in combination with an anti-cd30 antibody in lymphoma treatment
EP3463454A1 (en) 2016-06-03 2019-04-10 Bristol-Myers Squibb Company Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer
US11332529B2 (en) 2016-06-03 2022-05-17 Bristol-Myers Squibb Company Methods of treating colorectal cancer
EP3464369A1 (en) 2016-06-03 2019-04-10 Bristol-Myers Squibb Company Anti-pd-1 antibody for use in a method of treating a tumor
GB201609811D0 (en) 2016-06-05 2016-07-20 Snipr Technologies Ltd Methods, cells, systems, arrays, RNA and kits
SG11201810872UA (en) 2016-06-06 2019-01-30 Beyondspring Pharmaceuticals Inc Composition and method for reducing neutropenia
WO2017214182A1 (en) * 2016-06-07 2017-12-14 The United States Of America. As Represented By The Secretary, Department Of Health & Human Services Fully human antibody targeting pdi for cancer immunotherapy
WO2017214321A1 (en) 2016-06-07 2017-12-14 Gliknik Inc. Cysteine-optimized stradomers
KR20190015748A (ko) 2016-06-08 2019-02-14 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 Atf4 경로 억제제로서의 화학적 화합물
AU2017279027A1 (en) 2016-06-08 2018-12-20 Glaxosmithkline Intellectual Property Development Limited Chemical Compounds
WO2017218435A1 (en) * 2016-06-13 2017-12-21 Askgene Pharma Inc. PD-L1 Specific Monoclonal Antibodies for Disease Treatment and Diagnosis
AU2017286432B2 (en) 2016-06-14 2020-09-24 Adimab, Llc Anti-coagulation factor XI antibodies
US10071973B2 (en) 2016-06-14 2018-09-11 Novartis Ag Crystalline isoxazole hydroxamic acid compounds
RU2019100102A (ru) * 2016-06-16 2020-07-16 Дзе Борд Оф Трастиз Оф Дзе Лелэнд Стэнфорд Джуниор Юниверсити Гуманизированные и химерные моноклональные антитела против cd81
WO2017216686A1 (en) 2016-06-16 2017-12-21 Novartis Ag 8,9-fused 2-oxo-6,7-dihydropyrido-isoquinoline compounds as antivirals
WO2017216685A1 (en) 2016-06-16 2017-12-21 Novartis Ag Pentacyclic pyridone compounds as antivirals
MX2018016273A (es) 2016-06-20 2019-07-04 Incyte Corp Compuestos heterociclicos como inmunomoduladores.
TWI784957B (zh) 2016-06-20 2022-12-01 英商克馬伯有限公司 免疫細胞介素
CN109640999A (zh) 2016-06-24 2019-04-16 无限药品股份有限公司 组合疗法
EP3507367A4 (en) 2016-07-05 2020-03-25 Aduro BioTech, Inc. CYCLIC DINUCLEOTID COMPOUNDS WITH INCLUDED NUCLEIC ACIDS AND USES THEREOF
CN109475536B (zh) 2016-07-05 2022-05-27 百济神州有限公司 用于治疗癌症的PD-l拮抗剂和RAF抑制剂的组合
US11306143B2 (en) 2016-07-06 2022-04-19 Bristol-Myers Squibb Company Combination of TIM-4 antagonist and PD-1 antagonist and methods of use
US11141434B2 (en) 2016-07-07 2021-10-12 Iovance Biotherapeutics, Inc. Programmed death 1 ligand 1 (PD-L1) binding proteins and methods of use thereof
WO2018011166A2 (en) 2016-07-12 2018-01-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for quantifying the population of myeloid dendritic cells in a tissue sample
TW201821093A (zh) 2016-07-13 2018-06-16 英商4D製藥有限公司 包含細菌菌株之組合物
RU2656181C1 (ru) * 2016-07-13 2018-05-31 Закрытое Акционерное Общество "Биокад" Анти-pd-1-антитела, способ их получения и способ применения
JP7027401B2 (ja) 2016-07-14 2022-03-01 ブリストル-マイヤーズ スクイブ カンパニー Tim3に対する抗体およびその使用
CA3030841A1 (en) 2016-07-14 2018-01-18 Fred Hutchinson Cancer Research Center Multiple bi-specific binding domain constructs with different epitope binding to treat cancer
KR102565885B1 (ko) 2016-07-20 2023-08-09 유니버시티 오브 유타 리서치 파운데이션 Cd229 car t 세포 및 이의 사용 방법
EP3487503A1 (en) 2016-07-20 2019-05-29 GlaxoSmithKline Intellectual Property Development Limited Isoquinoline derivatives as perk inhibitors
JP2019528251A (ja) 2016-07-20 2019-10-10 エスティーキューブ,インコーポレイテッド グリコシル化pd−l1に結合する抗体の組合せを使用するがんの処置および治療の方法
NL2017267B1 (en) 2016-07-29 2018-02-01 Aduro Biotech Holdings Europe B V Anti-pd-1 antibodies
JP2019525934A (ja) 2016-07-29 2019-09-12 イーライ リリー アンド カンパニー 癌の治療に使用するためのメレスチニブおよび抗pd−l1または抗pd−1阻害剤を用いた組み合わせ治療
WO2018025221A1 (en) 2016-08-04 2018-02-08 Glaxosmithkline Intellectual Property Development Limited Anti-icos and anti-pd-1 antibody combination therapy
EP3494139B1 (en) 2016-08-05 2022-01-12 F. Hoffmann-La Roche AG Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
RU2725950C1 (ru) * 2016-08-05 2020-07-07 И-Байолоджикс Инк. Антитела против белка-1 запрограммированной клеточной смерти (pd-1) и их применение
WO2018026248A1 (ko) * 2016-08-05 2018-02-08 주식회사 와이바이오로직스 프로그램화된 세포 사멸 단백질(pd-1)에 대한 신규 항체 및 이의 용도
JP7250674B2 (ja) 2016-08-08 2023-04-03 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト がんの治療及び診断方法
WO2018027524A1 (en) 2016-08-09 2018-02-15 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibody formulation
WO2018029336A1 (en) 2016-08-12 2018-02-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for determining whether a subject was administered with an activator of the ppar beta/delta pathway.
WO2018031865A1 (en) 2016-08-12 2018-02-15 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a vegf inhibitor
AU2017313085A1 (en) 2016-08-19 2019-03-14 Beigene Switzerland Gmbh Use of a combination comprising a Btk inhibitor for treating cancers
KR102493853B1 (ko) 2016-08-19 2023-01-30 브리스톨-마이어스 스큅 컴퍼니 세코-시클로프로파피롤로인돌 화합물, 그의 항체-약물 접합체, 및 제조 및 사용 방법
WO2018035710A1 (en) 2016-08-23 2018-03-01 Akeso Biopharma, Inc. Anti-ctla4 antibodies
CN106977602B (zh) 2016-08-23 2018-09-25 中山康方生物医药有限公司 一种抗pd1单克隆抗体、其药物组合物及其用途
EP4342978A2 (en) 2016-09-01 2024-03-27 Chimera Bioengineering Inc. Gold optimized car t-cells
TW201811788A (zh) 2016-09-09 2018-04-01 瑞士商諾華公司 作為抗病毒劑之多環吡啶酮化合物
WO2018048975A1 (en) 2016-09-09 2018-03-15 Bristol-Myers Squibb Company Use of an anti-pd-1 antibody in combination with an anti-mesothelin antibody in cancer treatment
CA3035976A1 (en) 2016-09-09 2018-03-15 Tg Therapeutics, Inc. Combination of an anti-cd20 antibody, pi3 kinase-delta inhibitor, and anti-pd-1 or anti-pd-l1 antibody for treating hematological cancers
WO2018046736A1 (en) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from cancer
WO2018046738A1 (en) 2016-09-12 2018-03-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from cancer
WO2018053010A1 (en) * 2016-09-13 2018-03-22 North Carolina State University Platelet compositions and methods for the delivery of therapeutic agents
HUE051700T2 (hu) 2016-09-14 2021-03-29 Abbvie Biotherapeutics Inc Anti-PD-1 antitestek
EP3512885B1 (en) 2016-09-16 2024-02-21 Shanghai Henlius Biotech, Inc. Anti-pd-1 antibodies
US11090391B2 (en) 2016-09-16 2021-08-17 The Johns Hopkins University Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery
WO2018053405A1 (en) 2016-09-19 2018-03-22 Celgene Corporation Methods of treating immune disorders using pd-1 binding proteins
US10766958B2 (en) 2016-09-19 2020-09-08 Celgene Corporation Methods of treating vitiligo using PD-1 binding antibodies
WO2018053463A1 (en) 2016-09-19 2018-03-22 H. Lee Moffitt Cancer Center And Research Institute, Inc. Artificial antigen presenting cells for genetic engineering of immune cells
RU2759334C2 (ru) 2016-09-21 2021-11-12 Нексткьюр, Инк. Антитела против siglec-15 и способы их применения
CN107840887B (zh) * 2016-09-21 2022-03-25 基石药业(苏州)有限公司 一种新的pd-1单克隆抗体
US11077178B2 (en) 2016-09-21 2021-08-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chimeric antigen receptor (CAR) that targets chemokine receptor CCR4 and its use
WO2018055080A1 (en) 2016-09-22 2018-03-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for reprograming immune environment in a subject in need thereof
WO2018057955A1 (en) 2016-09-23 2018-03-29 Elstar Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains
EP3516396A1 (en) 2016-09-26 2019-07-31 H. Hoffnabb-La Roche Ag Predicting response to pd-1 axis inhibitors
MX2019003569A (es) 2016-09-27 2020-07-22 Oncologie Inc Metodos para tratar el cancer con bavituximab en funcion de niveles de b2 glucoproteina 1 y ensayos de estos.
MX2019003447A (es) 2016-09-27 2019-08-29 Univ Texas Metodos para mejorar la terapia de bloqueo del punto de control inmune mediante la modulacion del microbioma.
JOP20190061A1 (ar) 2016-09-28 2019-03-26 Novartis Ag مثبطات بيتا-لاكتاماز
MX2019003603A (es) 2016-09-29 2019-08-01 Genentech Inc Terapia de combinacion con un inhibidor de mek, un inhibidor del eje pd-1 y un taxano.
TN2020000159A1 (en) 2016-10-04 2022-04-04 Merck Sharp & Dohme BENZO[b]THIOPHENE COMPOUNDS AS STING AGONISTS
AU2017339856A1 (en) 2016-10-06 2019-05-23 Merck Patent Gmbh Dosing regimen of avelumab for the treatment of cancer
AU2017339517B2 (en) 2016-10-06 2024-03-14 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
AR110676A1 (es) 2016-10-07 2019-04-24 Novartis Ag Tratamiento del cáncer utilizando receptores de antígenos quiméricos
TWI764943B (zh) * 2016-10-10 2022-05-21 大陸商蘇州盛迪亞生物醫藥有限公司 一種抗pd-1抗體和vegfr抑制劑聯合在製備治療癌症的藥物中的用途
TW202246349A (zh) 2016-10-11 2022-12-01 美商艾吉納斯公司 抗lag-3抗體及其使用方法
US11291718B2 (en) 2016-10-11 2022-04-05 Cytlimic Inc. Method for treating cancer by administering a toll-like receptor agonist and LAG-3 IgG fusion protein
MA46542A (fr) 2016-10-12 2021-03-31 Univ Texas Procédés et compositions pour une immunothérapie par tusc2
WO2018071576A1 (en) 2016-10-14 2018-04-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Treatment of tumors by inhibition of cd300f
US20190263927A1 (en) 2016-10-14 2019-08-29 Merck Sharp & Dohme Corp. Combination of a pd-1 antagonist and eribulin for treating urothelial cancer
WO2018073753A1 (en) 2016-10-18 2018-04-26 Novartis Ag Fused tetracyclic pyridone compounds as antivirals
WO2018075447A1 (en) 2016-10-19 2018-04-26 The Trustees Of Columbia University In The City Of New York Combination of braf inhibitor, talimogene laherparepvec, and immune checkpoint inhibitor for use in the treatment cancer (melanoma)
WO2018075842A1 (en) 2016-10-20 2018-04-26 Bristol-Myers Squibb Company Condensed benzodiazepine derivatives and conjugates made therefrom
ES2917000T3 (es) 2016-10-24 2022-07-06 Orionis Biosciences BV Interferón-gamma mutante diana y usos del mismo
MA46669A (fr) 2016-10-26 2019-09-04 Iovance Biotherapeutics Inc Re-stimulation de lymphocytes infiltrant les tumeurs cryoconservés
US20190315865A1 (en) * 2016-10-28 2019-10-17 Bristol-Myers Squibb Company Methods of treating urothelial carcinoma using an anti-pd-1 antibody
EP3532091A2 (en) 2016-10-29 2019-09-04 H. Hoffnabb-La Roche Ag Anti-mic antibidies and methods of use
TWI788307B (zh) 2016-10-31 2023-01-01 美商艾歐凡斯生物治療公司 用於擴增腫瘤浸潤性淋巴細胞之工程化人造抗原呈現細胞
CA3041684C (en) 2016-11-01 2023-09-26 Anaptysbio, Inc. Antibodies directed against programmed death- 1 (pd-1)
MA50677A (fr) 2016-11-01 2021-07-14 Anaptysbio Inc Anticorps dirigés contre la protéine d'immunoglobuline de lymphocytes t et mucine 3 (tim-3)
TW201829462A (zh) 2016-11-02 2018-08-16 英商葛蘭素史克智慧財產(第二)有限公司 結合蛋白
AU2017355401A1 (en) * 2016-11-02 2019-05-02 Jounce Therapeutics, Inc. Antibodies to PD-1 and uses thereof
BR112019008426A2 (pt) 2016-11-02 2019-09-03 Engmab Sarl anticorpo biespecífico contra bcma e cd3 e um fármaco imunológico para uso combinado no tratamento de mieloma múltiplo
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
PE20191131A1 (es) 2016-11-03 2019-09-02 Bristol Myers Squibb Co Anticuerpos anti antigeno 4 del linfocito t citotoxico (ctla-4) activables y sus usos
US10342785B2 (en) 2016-11-04 2019-07-09 Askat Inc. Use of EP4 receptor antagonists for the treatment of NASH-associated liver cancer
CN110267971B (zh) 2016-11-07 2023-12-19 百时美施贵宝公司 免疫调节剂
WO2018089293A2 (en) 2016-11-08 2018-05-17 Qilu Puget Sound Biotherapeutics Corporation Anti-pd1 and anti-ctla4 antibodies
US11883430B2 (en) 2016-11-09 2024-01-30 Musc Foundation For Research Development CD38-NAD+ regulated metabolic axis in anti-tumor immunotherapy
WO2018089688A1 (en) 2016-11-09 2018-05-17 Jinjun Shi Restoration of tumor suppression using mrna-based delivery system
US20190345500A1 (en) 2016-11-14 2019-11-14 |Nserm (Institut National De La Santé Et De La Recherche Médicale) Methods and pharmaceutical compositions for modulating stem cells proliferation or differentiation
AU2017361081A1 (en) 2016-11-15 2019-05-23 Genentech, Inc. Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies
CN110199016A (zh) 2016-11-17 2019-09-03 艾欧凡斯生物治疗公司 残余肿瘤浸润淋巴细胞及其制备和使用方法
EP3541423A4 (en) * 2016-11-18 2020-10-07 The Regents of The University of California MODIFIED ANTIBODIES AND THEIR USES
US11359018B2 (en) 2016-11-18 2022-06-14 Symphogen A/S Anti-PD-1 antibodies and compositions
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
US20190365788A1 (en) 2016-11-21 2019-12-05 Idenix Pharmaceuticals Llc Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
CA3045306A1 (en) 2016-11-29 2018-06-07 Boston Biomedical, Inc. Naphthofuran derivatives, preparation, and methods of use thereof
EP3548071A4 (en) 2016-11-30 2020-07-15 OncoMed Pharmaceuticals, Inc. METHOD FOR TREATING CANCER WITH TIGIT-BINDING ACTIVE SUBSTANCES
TW201825119A (zh) 2016-11-30 2018-07-16 日商協和醱酵麒麟有限公司 使用抗ccr4抗體及抗pd-1抗體治療癌症之方法
CN110248676A (zh) 2016-12-01 2019-09-17 葛兰素史密斯克莱知识产权发展有限公司 组合疗法
EP3548068A1 (en) 2016-12-01 2019-10-09 GlaxoSmithKline Intellectual Property Development Limited Combination therapy
MX2019006448A (es) * 2016-12-01 2020-02-05 Regeneron Pharma Anticuerpos anti-pd-l1 radiomarcados para imagenes de inmuno-pet.
CA3045508A1 (en) 2016-12-03 2018-06-07 Juno Therapeutics, Inc. Methods for modulation of car-t cells
WO2018106738A1 (en) 2016-12-05 2018-06-14 Massachusetts Institute Of Technology Brush-arm star polymers, conjugates and particles, and uses thereof
MX2019006340A (es) 2016-12-07 2019-11-07 Agenus Inc Anticuerpos anti antígeno 4 del linfocito t citotóxico (ctla-4) y métodos de uso de los mismos.
CA3046082A1 (en) * 2016-12-07 2018-06-14 Agenus Inc. Antibodies and methods of use thereof
KR20190095929A (ko) 2016-12-09 2019-08-16 글리크닉 인코포레이티드 다합체화 스트라도머인 gl-2045의 제조 최적화
WO2018111902A1 (en) 2016-12-12 2018-06-21 Multivir Inc. Methods and compositions comprising viral gene therapy and an immune checkpoint inhibitor for treatment and prevention of cancer and infectious diseases
WO2018110515A1 (ja) 2016-12-12 2018-06-21 第一三共株式会社 抗体-薬物コンジュゲートと免疫チェックポイント阻害剤の組み合わせ
EP3551663A1 (en) 2016-12-12 2019-10-16 H. Hoffnabb-La Roche Ag Methods of treating cancer using anti-pd-l1 antibodies and antiandrogens
US20200095301A1 (en) 2016-12-14 2020-03-26 The Board Of Trustees Of The Leland Stanford Junior University Il-13 superkine: immune cell targeting constructs and methods of use thereof
WO2018112364A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating melanoma
WO2018112360A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating cancer
US11267883B2 (en) * 2016-12-21 2022-03-08 Cephalon, Inc. Antibodies that specifically bind to human IL-15 and uses thereof
CN110582493B (zh) 2016-12-22 2024-03-08 因赛特公司 作为免疫调节剂的苯并噁唑衍生物
RS62456B1 (sr) 2016-12-22 2021-11-30 Amgen Inc Derivati benzizotiazola, izotiazolo[3,4-b]piridina, hinazolina, ftalazina, pirido[2,3-d]piridazina i pirido[2,3-d]pirimidina kao kras g12c inhibitori za tretman raka pluća, pankreasa ili debelog creva
CN106519034B (zh) 2016-12-22 2020-09-18 鲁南制药集团股份有限公司 抗pd-1抗体及其用途
JP7122758B2 (ja) * 2016-12-23 2022-08-22 アールイーエムディー バイオセラピューティクス,インコーポレイテッド プログラム死-1(pd-1)に結合する抗体を使用する免疫療法
EP3559209A4 (en) 2016-12-23 2021-03-10 Keio University COMPOSITION AND METHOD OF INDUCTION OF CD8 + CELLS
CN110869052A (zh) 2016-12-23 2020-03-06 维图生物制剂公司 癌症的治疗
WO2018122249A1 (en) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the survival time of patients suffering from a microsatellite stable colorectal cancer
WO2018122245A1 (en) 2016-12-28 2018-07-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting the survival time of patients suffering from cms3 colorectal cancer
EA039433B1 (ru) 2017-01-05 2022-01-27 Нетрис Фарма Комбинированное лечение лекарственными средствами, интерферирующими с нетрином-1, и лекарственными средствами, ингибиторами контрольных точек иммуного ответа
US11357841B2 (en) 2017-01-06 2022-06-14 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes with potassium channel agonists and therapeutic uses thereof
US11633393B2 (en) 2017-01-06 2023-04-25 Beyondspring Pharmaceuticals, Inc. Tubulin binding compounds and therapeutic use thereof
US11584733B2 (en) 2017-01-09 2023-02-21 Shuttle Pharmaceuticals, Inc. Selective histone deacetylase inhibitors for the treatment of human disease
US11613785B2 (en) 2017-01-09 2023-03-28 Onkosxcel Therapeutics, Llc Predictive and diagnostic methods for prostate cancer
EP3565549B1 (en) 2017-01-09 2022-03-09 Shuttle Pharmaceuticals, Inc. Selective histone deacetylase inhibitors for the treatment of human disease
EP4219563A3 (en) 2017-01-09 2023-10-04 Tesaro, Inc. Methods of treating cancer with anti-pd-1 antibodies
MA47206A (fr) 2017-01-09 2019-11-13 Tesaro Inc Méthodes de traitement du cancer au moyen d'anticorps anti-tim-3
KR20190103226A (ko) 2017-01-13 2019-09-04 아게누스 인코포레이티드 Ny-eso-1에 결합하는 t 세포 수용체 및 이의 사용 방법
WO2018134279A1 (en) 2017-01-18 2018-07-26 Pieris Pharmaceuticals Gmbh Novel fusion polypeptides specific for lag-3 and pd-1
EP3570870A1 (en) 2017-01-20 2019-11-27 Novartis AG Combination therapy for the treatment of cancer
CN108341871A (zh) * 2017-01-24 2018-07-31 三生国健药业(上海)股份有限公司 抗pd-1单克隆抗体及其制备方法和应用
US11549149B2 (en) 2017-01-24 2023-01-10 The Broad Institute, Inc. Compositions and methods for detecting a mutant variant of a polynucleotide
CN110461847B (zh) 2017-01-25 2022-06-07 百济神州有限公司 (S)-7-(1-(丁-2-炔酰基)哌啶-4-基)-2-(4-苯氧基苯基)-4,5,6,7-四氢吡唑并[1,5-a]嘧啶-3-甲酰胺的结晶形式、其制备及用途
WO2018140671A1 (en) 2017-01-27 2018-08-02 Celgene Corporation 3-(1-oxo-4-((4-((3-oxomorpholino) methyl)benzyl)oxy)isoindolin-2-yl)piperidine-2,6-dione and isotopologues thereof
KR20190109479A (ko) 2017-02-01 2019-09-25 비욘드스프링 파마수티컬스, 인코포레이티드. 호중구감소증의 감소 방법
JOP20190187A1 (ar) 2017-02-03 2019-08-01 Novartis Ag مترافقات عقار جسم مضاد لـ ccr7
US20200023071A1 (en) 2017-02-06 2020-01-23 Innate Pharma Immunomodulatory antibody drug conjugates binding to a human mica polypeptide
WO2018141964A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences Nv Targeted chimeric proteins and uses thereof
WO2018144999A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences, Inc. Targeted engineered interferon and uses thereof
WO2018146128A1 (en) 2017-02-07 2018-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Detection of kit polymorphism for predicting the response to checkpoint blockade cancer immunotherapy
WO2018146148A1 (en) 2017-02-07 2018-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) A method for predicting the response to checkpoint blockade cancer immunotherapy
JP7161481B2 (ja) 2017-02-10 2022-10-26 ノバルティス アーゲー 1-(4-アミノ-5-ブロモ-6-(1h-ピラゾール-1-イル)ピリミジン-2-イル)-1h-ピラゾール-4-オール及びがんの治療におけるその使用
WO2018150326A1 (en) 2017-02-15 2018-08-23 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer
US20200291089A1 (en) 2017-02-16 2020-09-17 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
CN110536905B (zh) 2017-02-21 2023-10-27 瑞泽恩制药公司 用于治疗肺癌的抗pd-1抗体
WO2018156434A1 (en) 2017-02-22 2018-08-30 H. Lee Moffitt Cancer Center And Research Institute Inc. Tim3-binding chimeric antigen receptors
JP7162398B2 (ja) 2017-02-24 2022-10-28 ボード オブ リージェンツ ザ ユニヴァーシティ オブ テキサス システム 早期膵がん検出アッセイ
US11459394B2 (en) 2017-02-24 2022-10-04 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
WO2018156888A1 (en) 2017-02-24 2018-08-30 Biothera Pharmaceuticals, Inc. Beta glucan immunopharmacodynamics
EP3585437B1 (en) 2017-02-24 2022-12-21 Bayer Pharma Aktiengesellschaft Combinations of copanlisib with anti-pd-1 antibody
JP2020509009A (ja) 2017-02-27 2020-03-26 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited キナーゼ阻害剤としての複素環式アミド
MX2019010086A (es) 2017-02-27 2020-02-12 Novartis Ag Esquema de dosificacion para una combinacion de ceritinib y una molecula de anticuerpo anti-pd-1.
WO2018160536A1 (en) 2017-02-28 2018-09-07 Bristol-Myers Squibb Company Use of anti-ctla-4 antibodies with enhanced adcc to enhance immune response to a vaccine
TW201834697A (zh) 2017-02-28 2018-10-01 美商梅爾莎納醫療公司 Her2標靶抗體-藥物結合物之組合療法
UY37621A (es) 2017-02-28 2018-09-28 Sanofi Sa Arn terapéutico que codifica citoquinas
EP3366703B1 (en) 2017-02-28 2019-04-03 Ralf Kleef Immune checkpoint therapy with hyperthermia
TW201837467A (zh) 2017-03-01 2018-10-16 美商建南德克公司 用於癌症之診斷及治療方法
WO2018162944A1 (en) * 2017-03-04 2018-09-13 Shenzhen Runshin Bioscience Recombinant antibodies to programmed death 1 (pd-1) and uses therefor
EP3592868B1 (en) 2017-03-06 2022-11-23 Novartis AG Methods of treatment of cancer with reduced ubb expression
US20200150125A1 (en) 2017-03-12 2020-05-14 Yeda Research And Development Co., Ltd. Methods of diagnosing and prognosing cancer
WO2018167780A1 (en) 2017-03-12 2018-09-20 Yeda Research And Development Co. Ltd. Methods of prognosing and treating cancer
WO2018170133A1 (en) 2017-03-15 2018-09-20 Amgen Inc. Use of oncolytic viruses, alone or in combination with a checkpoint inhibitor, for the treatment of cancer
CN111010875B (zh) 2017-03-15 2024-04-05 库尔生物制药有限公司 用于调节免疫应答的方法
WO2018170288A1 (en) 2017-03-15 2018-09-20 Pandion Therapeutics, Inc. Targeted immunotolerance
CN110382544B (zh) 2017-03-16 2023-12-22 先天制药公司 用于治疗癌症的组合物和方法
EP3600427A1 (en) 2017-03-24 2020-02-05 INSERM - Institut National de la Santé et de la Recherche Médicale Methods and compositions for treating melanoma
CN108623686A (zh) 2017-03-25 2018-10-09 信达生物制药(苏州)有限公司 抗ox40抗体及其用途
KR102653567B1 (ko) 2017-03-28 2024-04-02 오하이오 스테이트 이노베이션 파운데이션 인간 pd1 펩티드 백신 및 이의 용도
SG11201907948TA (en) * 2017-03-29 2019-09-27 Celgene Corp Formulations comprising pd-1 binding proteins and methods of making thereof
JOP20190224A1 (ar) 2017-03-29 2019-09-26 Iovance Biotherapeutics Inc عمليات من أجل إنتاج الخلايا اللمفاوية المرتشحة للأورام واستخداماتها في العلاج المناعي
US11254913B1 (en) 2017-03-29 2022-02-22 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
JP2020512357A (ja) 2017-03-31 2020-04-23 ファイブ プライム セラピューティクス, インコーポレイテッド 抗gitr抗体を使用した癌の併用療法
CN110475567A (zh) 2017-03-31 2019-11-19 勃林格殷格翰国际有限公司 抗癌组合疗法
MA50056A (fr) 2017-03-31 2020-02-05 Bristol Myers Squibb Co Procédés de traitement de tumeur
CN116763733A (zh) 2017-03-31 2023-09-19 富士胶片株式会社 脂质体组合物及医药组合物
CN110914300A (zh) 2017-04-03 2020-03-24 安康乐济股份有限公司 使用ps靶向抗体与免疫肿瘤学药剂治疗癌症的方法
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
JP2020513009A (ja) 2017-04-05 2020-04-30 シムフォゲン・アクティーゼルスカブSymphogen A/S Pd−1、tim−3、およびlag−3を標的とする併用治療
MX2019011945A (es) 2017-04-05 2019-11-28 Boehringer Ingelheim Int Terapia de combinacion contra cancer.
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
TWI788340B (zh) 2017-04-07 2023-01-01 美商必治妥美雅史谷比公司 抗icos促效劑抗體及其用途
BR112019017241A2 (pt) 2017-04-13 2020-04-14 Agenus Inc anticorpos anti-cd137 e métodos de uso dos mesmos
AU2018250875A1 (en) 2017-04-13 2019-10-03 F. Hoffmann-La Roche Ag An interleukin-2 immunoconjugate, a CD40 agonist, and optionally a PD-1 axis binding antagonist for use in methods of treating cancer
MX2019012192A (es) 2017-04-14 2020-01-21 Genentech Inc Métodos de diagnóstico y terapéuticos para el cáncer.
CA3060554A1 (en) 2017-04-18 2018-10-25 Tempest Therapeutics, Inc. Bicyclic compounds and their use in the treatment of cancer
CN108728444A (zh) 2017-04-18 2018-11-02 长春华普生物技术股份有限公司 免疫调节性多核苷酸及其应用
JP2020517256A (ja) 2017-04-19 2020-06-18 エルスター セラピューティクス, インコーポレイテッド 多重特異性分子およびその使用
JOP20180040A1 (ar) 2017-04-20 2019-01-30 Gilead Sciences Inc مثبطات pd-1/pd-l1
CN106939049B (zh) 2017-04-20 2019-10-01 苏州思坦维生物技术股份有限公司 拮抗抑制人pd-1抗原与其配体结合的单克隆抗体及其制备方法与应用
EP4286009A3 (en) 2017-04-21 2024-04-03 Sillajen, Inc. Oncolytic vaccinia virus and checkpoint inhibitor combination therapy
KR20190141223A (ko) 2017-04-26 2019-12-23 브리스톨-마이어스 스큅 컴퍼니 디술피드 결합 환원을 최소화하는 항체 생산 방법
AR111419A1 (es) 2017-04-27 2019-07-10 Novartis Ag Compuestos fusionados de indazol piridona como antivirales
CN108794467A (zh) 2017-04-27 2018-11-13 博笛生物科技有限公司 2-氨基-喹啉衍生物
WO2018201014A1 (en) 2017-04-28 2018-11-01 Five Prime Therapeutics, Inc. Methods of treatment with cd80 extracellular domain polypeptides
UY37695A (es) 2017-04-28 2018-11-30 Novartis Ag Compuesto dinucleótido cíclico bis 2’-5’-rr-(3’f-a)(3’f-a) y usos del mismo
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
EP4328241A2 (en) 2017-04-28 2024-02-28 Marengo Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
AR111651A1 (es) 2017-04-28 2019-08-07 Novartis Ag Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación
WO2018201056A1 (en) 2017-04-28 2018-11-01 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
CN110809582B (zh) * 2017-05-01 2023-12-22 儿童医疗中心有限公司 涉及抗pd1抗体试剂的方法以及组合物
EP3618863B1 (en) 2017-05-01 2023-07-26 Agenus Inc. Anti-tigit antibodies and methods of use thereof
CA3060581A1 (en) 2017-05-02 2018-11-08 Merck Sharp & Dohme Corp. Formulations of anti-lag3 antibodies and co-formulations of anti-lag3 antibodies and anti-pd-1 antibodies
JOP20190260A1 (ar) 2017-05-02 2019-10-31 Merck Sharp & Dohme صيغ ثابتة لأجسام مضادة لمستقبل الموت المبرمج 1 (pd-1) وطرق استخدامها
AU2018263837A1 (en) * 2017-05-02 2019-12-05 Merck Sharp & Dohme Llc Stable formulations of anti-CTLA4 antibodies alone and in combination with programmed death receptor 1 (PD-1) antibodies and methods of use thereof
AR111658A1 (es) 2017-05-05 2019-08-07 Novartis Ag 2-quinolinonas tricíclicas como agentes antibacteriales
WO2018209270A1 (en) 2017-05-11 2018-11-15 Northwestern University Adoptive cell therapy using spherical nucleic acids (snas)
KR102376863B1 (ko) 2017-05-12 2022-03-21 하푼 테라퓨틱스, 인크. 메소텔린 결합 단백질
EP3621624B1 (en) 2017-05-12 2023-08-30 Merck Sharp & Dohme LLC Cyclic di-nucleotide compounds as sting agonists
CN110869392A (zh) 2017-05-16 2020-03-06 百时美施贵宝公司 用抗gitr激动性抗体治疗癌症
JP2020520923A (ja) 2017-05-17 2020-07-16 ボストン バイオメディカル, インコーポレイテッド がんを処置するための方法
WO2018213731A1 (en) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof
CN108948194B (zh) * 2017-05-19 2023-02-17 上海药明生物技术有限公司 一种新的ctla-4单克隆抗体
AR111760A1 (es) 2017-05-19 2019-08-14 Novartis Ag Compuestos y composiciones para el tratamiento de tumores sólidos mediante administración intratumoral
RS61872B1 (sr) 2017-05-22 2021-06-30 4D Pharma Res Ltd Kompozicije koje sadrže bakterijske sojeve
JOP20190272A1 (ar) 2017-05-22 2019-11-21 Amgen Inc مثبطات kras g12c وطرق لاستخدامها
CN108948206B (zh) * 2017-05-23 2022-08-23 赵磊 一种抗egfr/pd-1双靶向抗体、其制备方法及用途
BR112019024127A2 (pt) 2017-05-24 2020-06-23 Pandion Therapeutics, Inc. Imunotolerância alvejada
WO2018215937A1 (en) 2017-05-24 2018-11-29 Novartis Ag Interleukin-7 antibody cytokine engrafted proteins and methods of use in the treatment of cancer
JP6978514B2 (ja) 2017-05-24 2021-12-08 フォーディー ファーマ リサーチ リミテッド4D Pharma Research Limited 細菌株を含む組成物
US20200270334A1 (en) 2017-05-24 2020-08-27 Novartis Ag Antibody-cytokine engrafted proteins and methods of use in the treatment of cancer
US20200362058A1 (en) 2017-05-24 2020-11-19 Novartis Ag Antibody-cytokine engrafted proteins and methods of use
KR20220167342A (ko) 2017-05-25 2022-12-20 브리스톨-마이어스 스큅 컴퍼니 변형된 중쇄 불변 영역을 포함하는 항체
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
JP2020521780A (ja) 2017-05-29 2020-07-27 ガママブス ファルマ 癌関連免疫抑制阻害剤
JP2020522691A (ja) 2017-05-30 2020-07-30 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lag−3陽性腫瘍の処置
KR20200010500A (ko) 2017-05-30 2020-01-30 브리스톨-마이어스 스큅 컴퍼니 항-lag-3 항체, pd-1 경로 억제제, 및 면역요법제의 조합을 포함하는 조성물
CA3065304A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
EP3630834A1 (en) 2017-05-31 2020-04-08 STCube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1
JOP20190279A1 (ar) 2017-05-31 2019-11-28 Novartis Ag الصور البلورية من 5-برومو -2، 6-داي (1h-بيرازول -1-يل) بيريميدين -4- أمين وأملاح جديدة
WO2018222901A1 (en) 2017-05-31 2018-12-06 Elstar Therapeutics, Inc. Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof
BR112019025188A2 (pt) 2017-06-01 2020-06-23 Cytomx Therapeutics, Inc. Anticorpos anti-pdl1 ativáveis e métodos de uso dos mesmos
CA3065929A1 (en) 2017-06-01 2018-12-06 Michael Wayne SAVILLE Bispecific antibodies that bind cd123 and cd3
WO2018223004A1 (en) 2017-06-01 2018-12-06 Xencor, Inc. Bispecific antibodies that bind cd20 and cd3
KR20200014363A (ko) 2017-06-01 2020-02-10 브리스톨-마이어스 스큅 컴퍼니 항-pd-1 항체를 사용하여 종양을 치료하는 방법
EP3630126A4 (en) 2017-06-02 2021-03-17 The Penn State Research Foundation CERAMIDE NANOLIPOSOMES, COMPOSITIONS AND METHODS OF USE FOR IMMUNOTHERAPY
CA3061053A1 (en) 2017-06-02 2018-12-06 Boehringer Ingelheim International Gmbh Anti-cancer combination therapy
WO2018223101A1 (en) 2017-06-02 2018-12-06 Juno Therapeutics, Inc. Articles of manufacture and methods for treatment using adoptive cell therapy
TW201919662A (zh) 2017-06-05 2019-06-01 美商艾歐凡斯生物治療公司 對雙重難治性黑色素瘤使用腫瘤浸潤性淋巴細胞之方法
CN110997724A (zh) 2017-06-06 2020-04-10 斯特库伯株式会社 使用结合btn1a1或btn1a1-配体的抗体和分子治疗癌症的方法
WO2018225093A1 (en) 2017-06-07 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds as atf4 pathway inhibitors
JP2020522555A (ja) 2017-06-09 2020-07-30 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited 組み合わせ療法
BR112019024291A2 (pt) 2017-06-09 2020-07-28 Providence Health & Services-Oregon utilização de cd39 e de cd103 para a identificação de células t tumorais humanas reativas para o tratamento do câncer
HRP20220747T1 (hr) 2017-06-14 2022-10-14 4D Pharma Research Limited Pripravci koji sadrže bakterijske sojeve
PT3638271T (pt) 2017-06-14 2021-01-05 4D Pharma Res Ltd Composições contendo estirpes bacterianas
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
EP3641814A4 (en) 2017-06-19 2021-06-23 Medicenna Therapeutics Inc. USES AND METHODS FOR IL-2 SUPERAGONISTS, AGONISTS, AND FUSIONS THEREOF
EP3641739A1 (en) 2017-06-20 2020-04-29 Institut Curie Inhibitor of suv39h1 histone methyltransferase for use in cancer combination therapy
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag ANTIBODY MOLECULES DIRECTED AGAINST CD73 AND CORRESPONDING USES
JP2020525434A (ja) 2017-06-22 2020-08-27 ムーンショット ファーマ エルエルシー アンレキサノクス及び免疫調節剤を含む組成物で癌を治療する方法
BR112019027402A2 (pt) 2017-06-22 2020-07-07 Celgene Corporation tratamento de carcinoma hepatocelular caracterizado por infecção pelo vírus da hepatite b
JP7433910B2 (ja) 2017-06-22 2024-02-20 ノバルティス アーゲー Cd73に対する抗体分子及びその使用
KR20200020858A (ko) 2017-06-23 2020-02-26 브리스톨-마이어스 스큅 컴퍼니 Pd-1의 길항제로서 작용하는 면역조정제
BR112019027025A2 (pt) 2017-06-23 2020-06-30 Birdie Biopharmaceuticals, Inc. composições farmacêuticas
CN110831972B (zh) * 2017-06-25 2023-05-12 西雅图免疫公司 抗pd-l1抗体及其制备和使用方法
JP2020529862A (ja) * 2017-06-25 2020-10-15 システィミューン, インク.Systimmune, Inc. 抗pd−1抗体とその作製及び使用方法
CA3066518A1 (en) 2017-06-26 2019-01-03 Beigene, Ltd. Immunotherapy for hepatocellular carcinoma
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag POSOLOGICAL REGIMES FOR ANTI-TIM3 ANTIBODIES AND USES THEREOF
WO2019003164A1 (en) 2017-06-27 2019-01-03 Neuracle Science Co., Ltd. USE OF ANTI-FAM19A5 ANTIBODIES FOR THE TREATMENT OF CANCERS
JP2020526194A (ja) 2017-06-29 2020-08-31 ジュノー セラピューティクス インコーポレイテッド 免疫療法薬と関連する毒性を評価するためのマウスモデル
EP3644999B1 (en) 2017-06-30 2022-12-14 Celgene Corporation Compositions and methods of use of 2-(4-chlorophenyl)-n-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl) methyl) -2,2-difluoroacetamide
TWI828626B (zh) * 2017-06-30 2024-01-11 日商小野藥品工業股份有限公司 併用包含溶血性鏈球菌之菌體的製劑的療法
CN111164069A (zh) 2017-07-03 2020-05-15 葛兰素史密斯克莱知识产权发展有限公司 作为atf4抑制剂用于治疗癌症和其它疾病的n-(3-(2-(4-氯苯氧基)乙酰胺基)双环[1.1.1]戊-1-基)-2-环丁烷-1-甲酰胺衍生物以及相关化合物
WO2019008507A1 (en) 2017-07-03 2019-01-10 Glaxosmithkline Intellectual Property Development Limited 2- (4-CHLOROPHENOXY) -N - ((1- (2- (4-CHLOROPHENOXY) ETHYNAZETIDIN-3-YL) METHYL) ACETAMIDE DERIVATIVES AND RELATED COMPOUNDS AS INHIBITORS OF ATF4 FOR THE TREATMENT OF CANCER AND D OTHER DISEASES
EA202090003A1 (ru) * 2017-07-06 2020-06-18 Мерус Н.В. Связывающие молекулы, модулирующие биологическую активность, которую проявляет клетка
EP3649155A1 (en) 2017-07-06 2020-05-13 Merus N.V. Bispecific anti pd1-anti tim3 antibodies
TW201920275A (zh) 2017-07-06 2019-06-01 荷蘭商米樂斯股份有限公司 藉由細胞表現之調控生物活性的抗體
AU2018298676A1 (en) 2017-07-10 2019-12-19 Innate Pharma Siglec-9-neutralizing antibodies
IL271889B2 (en) 2017-07-10 2023-03-01 Celgene Corp Antisplit compounds and methods of their use
WO2019016174A1 (en) 2017-07-18 2019-01-24 Institut Gustave Roussy METHOD FOR ASSESSING RESPONSE TO TARGETING DRUG PD-1 / PDL-1 MEDICINES
JP2020527572A (ja) 2017-07-20 2020-09-10 ノバルティス アーゲー 抗lag−3抗体の投薬量レジメンおよびその使用
JP2020527351A (ja) 2017-07-21 2020-09-10 ジェネンテック, インコーポレイテッド がんの治療法及び診断法
WO2019020593A1 (en) 2017-07-25 2019-01-31 INSERM (Institut National de la Santé et de la Recherche Médicale) METHODS AND PHARMACEUTICAL COMPOSITIONS FOR MODULATION OF MONOCYTOPOISIS
WO2019021208A1 (en) 2017-07-27 2019-01-31 Glaxosmithkline Intellectual Property Development Limited USEFUL INDAZOLE DERIVATIVES AS PERK INHIBITORS
WO2019023624A1 (en) 2017-07-28 2019-01-31 Bristol-Myers Squibb Company PREDICTIVE PERIPHERAL BLOOD BIOMARKER FOR INHIBITORS OF CONTROL POINTS
CR20200099A (es) 2017-08-03 2020-07-24 Amgen Inc Muteínas de interleucina 21 y métodos de tratamiento
WO2019025863A2 (en) 2017-08-03 2019-02-07 Otsuka Pharmaceutical Co., Ltd. MEDICAMENT COMPOUND AND METHODS OF PURIFICATION
JP2020530838A (ja) 2017-08-04 2020-10-29 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. がん治療のためのベンゾ[b]チオフェンSTINGアゴニスト
AU2018311965A1 (en) 2017-08-04 2020-02-13 Merck Sharp & Dohme Llc Combinations of PD-1 antagonists and benzo[b]thiophene sting antagonists for cancer treatment
US10508115B2 (en) 2017-08-16 2019-12-17 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having heteroatom-linked aromatic moieties, conjugates thereof, and methods and uses therefor
US10457681B2 (en) 2017-08-16 2019-10-29 Bristol_Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a tricyclic moiety, conjugates thereof, and methods and uses therefor
US10494370B2 (en) 2017-08-16 2019-12-03 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a pyridine or pyrazine moiety, conjugates thereof, and methods and uses therefor
US10472361B2 (en) 2017-08-16 2019-11-12 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a benzotriazole moiety, conjugates thereof, and methods and uses therefor
US10487084B2 (en) 2017-08-16 2019-11-26 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a heterobiaryl moiety, conjugates thereof, and methods and uses therefor
SG11202001441WA (en) 2017-08-18 2020-03-30 Tragara Pharmaceuticals Inc Polymorphic form of tg02
CN111511762A (zh) 2017-08-21 2020-08-07 天演药业公司 抗cd137分子及其用途
CN107383174B (zh) * 2017-08-21 2019-01-18 生工生物工程(上海)股份有限公司 一种能与pd-1特异性结合的肿瘤抑制肽及其用途
IL310079A (en) 2017-08-28 2024-03-01 Bristol Myers Squibb Co TIM-3 antagonists for the treatment and diagnosis of cancer
JP7387585B2 (ja) 2017-09-04 2023-11-28 アジェナス インコーポレイテッド 混合系統白血病(mll)特異的ホスホペプチドに結合するt細胞受容体およびその使用方法
UY37866A (es) 2017-09-07 2019-03-29 Glaxosmithkline Ip Dev Ltd Nuevos compuestos derivados de benzoimidazol sustituidos que reducen la proteína myc (c-myc) en las células e inhiben la histona acetiltransferasa de p300/cbp.
EP3679070A1 (en) * 2017-09-07 2020-07-15 Augusta University Research Institute, Inc. Antibodies to programmed cell death protein 1
SG11202001499WA (en) 2017-09-08 2020-03-30 Amgen Inc Inhibitors of kras g12c and methods of using the same
WO2019055579A1 (en) 2017-09-12 2019-03-21 Tolero Pharmaceuticals, Inc. TREATMENT REGIME FOR CANCERS THAT ARE INSENSITIVE TO BCL-2 INHIBITORS USING THE MCL-1 ALVOCIDIB INHIBITOR
WO2019053617A1 (en) 2017-09-12 2019-03-21 Glaxosmithkline Intellectual Property Development Limited CHEMICAL COMPOUNDS
SG11202001606XA (en) 2017-09-13 2020-03-30 Five Prime Therapeutics Inc Combination anti-csf1r and anti-pd-1 antibody combination therapy for pancreatic cancer
EP3684410A1 (en) 2017-09-19 2020-07-29 Institut Curie Agonist of aryl hydrocarbon receptor for use in cancer combination therapy
EP3684413A1 (en) 2017-09-20 2020-07-29 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
US20200239559A1 (en) 2017-09-29 2020-07-30 Boehringer Ingelheim International Gmbh Anti igf, anti pd-1, anti-cancer combination therapy
WO2019061324A1 (en) 2017-09-29 2019-04-04 Curis Inc. CRYSTALLINE FORMS OF IMMUNOMODULATORS
US11492375B2 (en) 2017-10-03 2022-11-08 Bristol-Myers Squibb Company Cyclic peptide immunomodulators
TW201927771A (zh) 2017-10-05 2019-07-16 英商葛蘭素史密斯克藍智慧財產發展有限公司 可作為蛋白質調節劑之雜環醯胺及其使用方法
JP7291130B2 (ja) 2017-10-05 2023-06-14 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド インターフェロン遺伝子の刺激物質(sting)の調節物質
SG11202002192QA (en) 2017-10-06 2020-04-29 Innate Pharma Restoration of t cell activity via the cd39/cd73 axis
WO2019072566A1 (en) 2017-10-10 2019-04-18 Biotest Ag COMBINATION OF ANTI-IL10 AND ANTI-PD1 ANTIBODIES FOR THE TREATMENT OF CANCER
SG11202003081WA (en) 2017-10-11 2020-05-28 Aurigene Discovery Tech Ltd Crystalline forms of 3-substituted 1,2,4-oxadiazole
CN111247169A (zh) 2017-10-15 2020-06-05 百时美施贵宝公司 治疗肿瘤的方法
WO2019077062A1 (en) 2017-10-18 2019-04-25 Vivia Biotech, S.L. C-CELLS ACTIVATED BY BIT
US11685782B2 (en) 2017-10-23 2023-06-27 Children's Medical Center Corporation Methods of treating cancer using LSD1 inhibitors in combination with immunotherapy
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag CD32B TARGETING ANTIBODIES AND METHODS OF USE
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
KR20200079293A (ko) 2017-10-31 2020-07-02 얀센 바이오테크 인코포레이티드 고위험 다발성 골수종을 치료하는 방법
CA3080904A1 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Antibodies and chimeric antigen receptors specific for b-cell maturation antigen
WO2019089921A1 (en) 2017-11-01 2019-05-09 Bristol-Myers Squibb Company Immunostimulatory agonistic antibodies for use in treating cancer
US10617667B2 (en) 2017-11-01 2020-04-14 Ono Pharmaceutical Co., Ltd. Method for treating brain tumors
KR20200116077A (ko) 2017-11-01 2020-10-08 주노 쎄러퓨티크스 인코퍼레이티드 B 세포 성숙 항원에 특이적인 키메라 항원 수용체 및 암호화 폴리뉴클레오타이드
WO2019089858A2 (en) 2017-11-01 2019-05-09 Juno Therapeutics, Inc. Methods of assessing or monitoring a response to a cell therapy
US20210179607A1 (en) 2017-11-01 2021-06-17 Merck Sharp & Dohme Corp. Novel substituted tetrahydroquinolin compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2019087087A1 (en) 2017-11-03 2019-05-09 Aurigene Discovery Technologies Limited Dual inhibitors of tim-3 and pd-1 pathways
CN111386128A (zh) 2017-11-06 2020-07-07 奥瑞基尼探索技术有限公司 用于免疫调节的联合疗法
JP2021502066A (ja) 2017-11-06 2021-01-28 ジェネンテック, インコーポレイテッド がんの診断及び療法
EP3706778A1 (en) 2017-11-06 2020-09-16 Bristol-Myers Squibb Company Methods of treating a tumor
EP3706803A4 (en) 2017-11-08 2021-08-04 Yafei Shanghai Biolog Medicine Science & Technology Co., Ltd. CONJUGATES OF BIOMOLECULES AND THEIR USES
WO2019094268A1 (en) 2017-11-10 2019-05-16 Armo Biosciences, Inc. Compositions and methods of use of interleukin-10 in combination with immune checkpoint pathway inhibitors
US11529344B2 (en) 2017-11-14 2022-12-20 Pfizer Inc. EZH2 inhibitor combination therapies
WO2019099314A1 (en) 2017-11-14 2019-05-23 Merck Sharp & Dohme Corp. Novel substituted biaryl compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2019099294A1 (en) 2017-11-14 2019-05-23 Merck Sharp & Dohme Corp. Novel substituted biaryl compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
CN109467603B (zh) * 2017-11-14 2020-02-21 拜西欧斯(北京)生物技术有限公司 抗pd-1抗体及其制备方法和应用
JP2021503478A (ja) 2017-11-16 2021-02-12 ノバルティス アーゲー 組み合わせ治療
JP2021503458A (ja) 2017-11-17 2021-02-12 ノバルティス アーゲー 新規のジヒドロイソキサゾール化合物及びb型肝炎治療のためのそれらの使用
KR102478433B1 (ko) 2017-11-17 2022-12-15 머크 샤프 앤드 돔 엘엘씨 이뮤노글로불린-유사 전사체 3 (ilt3)에 대해 특이적인 항체 및 그의 용도
EP3710576A1 (en) 2017-11-17 2020-09-23 Iovance Biotherapeutics, Inc. Til expansion from fine needle aspirates and small biopsies
WO2019101956A1 (en) 2017-11-24 2019-05-31 Institut National De La Santé Et De La Recherche Médicale (Inserm) Methods and compositions for treating cancers
US11638760B2 (en) 2017-11-27 2023-05-02 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
WO2019108795A1 (en) * 2017-11-29 2019-06-06 Beigene Switzerland Gmbh Treatment of indolent or aggressive b-cell lymphomas using a combination comprising btk inhibitors
KR20200096253A (ko) 2017-11-30 2020-08-11 노파르티스 아게 Bcma-표적화 키메라 항원 수용체, 및 이의 용도
WO2019104716A1 (en) * 2017-12-01 2019-06-06 Adagene Inc. Methods for using cd137 ligand as biomarker for treatment with anti-cd137 antibody
US10946068B2 (en) 2017-12-06 2021-03-16 Pandion Operations, Inc. IL-2 muteins and uses thereof
US10174091B1 (en) 2017-12-06 2019-01-08 Pandion Therapeutics, Inc. IL-2 muteins
WO2019113464A1 (en) 2017-12-08 2019-06-13 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
US11946094B2 (en) 2017-12-10 2024-04-02 Augusta University Research Institute, Inc. Combination therapies and methods of use thereof
EP3724225A1 (en) 2017-12-15 2020-10-21 Juno Therapeutics, Inc. Anti-cct5 binding molecules and methods of use thereof
TW201930340A (zh) 2017-12-18 2019-08-01 美商尼恩醫療公司 新抗原及其用途
CR20200313A (es) 2017-12-19 2020-12-01 Univ Rockefeller VARIANTES DE DOMINIO DE Fc DE IgG HUMANA CON FUNCIÓN EFECTIVA MEJORADA
US11685761B2 (en) 2017-12-20 2023-06-27 Merck Sharp & Dohme Llc Cyclic di-nucleotide compounds as sting agonists
WO2019123285A1 (en) 2017-12-20 2019-06-27 Novartis Ag Fused tricyclic pyrazolo-dihydropyrazinyl-pyridone compounds as antivirals
CN111757757A (zh) 2017-12-21 2020-10-09 梅尔莎纳医疗公司 吡咯并苯并二氮呯抗体共轭物
CN115925943A (zh) * 2017-12-27 2023-04-07 信达生物制药(苏州)有限公司 抗pd-l1抗体及其用途
EP3732198A1 (en) 2017-12-27 2020-11-04 Bristol-Myers Squibb Company Anti-cd40 antibodies and uses thereof
CN109970856B (zh) 2017-12-27 2022-08-23 信达生物制药(苏州)有限公司 抗lag-3抗体及其用途
WO2019129137A1 (zh) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 抗lag-3抗体及其用途
WO2019133847A1 (en) 2017-12-29 2019-07-04 Oncorus, Inc. Oncolytic viral delivery of therapeutic polypeptides
EP3735590A1 (en) 2018-01-04 2020-11-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma resistant
US11324774B2 (en) 2018-01-05 2022-05-10 Augusta University Research Institute, Inc. Compositions of oral alkaline salts and metabolic acid inducers and uses thereof
WO2019136459A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
BR112020013848A2 (pt) 2018-01-08 2020-12-01 Iovance Biotherapeutics, Inc. métodos para expandir linfócitos infiltrantes de tumor e para tratar um indivíduo com câncer, população de linfócitos infiltrantes de tumor, e, método para avaliar fatores de transcrição
CN112218651A (zh) 2018-01-08 2021-01-12 诺华公司 用于与嵌合抗原受体疗法组合的免疫增强rna
US11713446B2 (en) 2018-01-08 2023-08-01 Iovance Biotherapeutics, Inc. Processes for generating TIL products enriched for tumor antigen-specific T-cells
EP3737376B1 (en) 2018-01-09 2024-04-17 Shuttle Pharmaceuticals, Inc. Selective histone deacetylase inhibitors for the treatment of human diseases
BR112020013954A2 (pt) 2018-01-09 2020-12-01 H. Lee Moffitt Cancer Center And Research Institute Inc. composições e métodos para alvejamento de cânceres que expressam clec12a
CR20200330A (es) 2018-01-12 2020-12-23 Amgen Inc Anticuerpos anti-pd-1 y métodos de tratamiento
CA3084370A1 (en) * 2018-01-12 2019-07-18 Bristol-Myers Squibb Company Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer
JP7358361B2 (ja) 2018-01-12 2023-10-10 ブリストル-マイヤーズ スクイブ カンパニー Tim3に対する抗体およびその使用
EP3740506A1 (en) 2018-01-16 2020-11-25 Bristol-Myers Squibb Company Methods of treating cancer with antibodies against tim3
CA3096287A1 (en) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells
EA202091751A1 (ru) 2018-01-22 2020-11-06 Бристол-Маерс Сквибб Компани Композиции и способы лечения рака
WO2019147670A1 (en) 2018-01-23 2019-08-01 Nextcure, Inc. B7-h4 antibodies and methods of use thereof
CA3089226A1 (en) 2018-01-24 2019-08-01 Beyondspring Pharmaceuticals, Inc. Composition and method for reducing thrombocytopenia via the administration of plinabulin
MA51679A (fr) 2018-01-26 2020-12-02 Exelixis Inc Composés destinés au traitement de troubles dépendant de la kinase
SG11202006945PA (en) 2018-01-26 2020-08-28 Exelixis Inc Compounds for the treatment of kinase-dependent disorders
CA3088200A1 (en) 2018-01-26 2019-08-01 Exelixis, Inc. Compounds for the treatment of kinase-dependent disorders
CN108314734B (zh) * 2018-01-31 2021-11-05 中国药科大学 抗pd-1单克隆抗体及其应用
WO2019149716A1 (en) 2018-01-31 2019-08-08 F. Hoffmann-La Roche Ag Bispecific antibodies comprising an antigen-binding site binding to lag3
JP7383620B2 (ja) 2018-01-31 2023-11-20 セルジーン コーポレイション 養子細胞療法およびチェックポイント阻害剤を使用する併用療法
US20210038659A1 (en) 2018-01-31 2021-02-11 Novartis Ag Combination therapy using a chimeric antigen receptor
WO2019148445A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Precision/context-dependent activatable antibodies, and methods of making and using the same
MX2020008208A (es) 2018-02-05 2020-11-09 Orionis Biosciences Inc Agentes de unión a fibroblastos y uso de estos.
CA3090652A1 (en) 2018-02-06 2019-08-15 The General Hospital Corporation Repeat rna as biomarkers of tumor immune response
US20200405806A1 (en) 2018-02-08 2020-12-31 Bristol-Myers Squibb Company Combination of a tetanus toxoid, anti-ox40 antibody and/or anti-pd-1 antibody to treat tumors
TWI804572B (zh) * 2018-02-09 2023-06-11 日商小野藥品工業股份有限公司 雙特異性抗體
US11723934B2 (en) 2018-02-09 2023-08-15 Keio University Compositions and methods for the induction of CD8+ T-cells
NL2020422B1 (en) 2018-02-12 2019-08-19 Stichting Het Nederlands Kanker Inst Antoni Van Leeuwenhoek Ziekenhuis Methods for Predicting Treatment Outcome and/or for Selecting a Subject Suitable for Immune Checkpoint Therapy.
UA126458C2 (uk) 2018-02-13 2022-10-05 Гіліад Сайєнсіз, Інк. Інгібітори pd-1/pd-l1
WO2019160956A1 (en) 2018-02-13 2019-08-22 Novartis Ag Chimeric antigen receptor therapy in combination with il-15r and il15
MX2020008446A (es) * 2018-02-13 2020-09-28 Merck Sharp & Dohme Metodos para el tratamiento contra el cancer mediante anticuerpos anti-pd-1 y anticuerpos anti-ctla4.
CN111757894A (zh) 2018-02-14 2020-10-09 Abba 疗法股份公司 抗人类pd-l2抗体
WO2019162325A1 (en) 2018-02-21 2019-08-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sk1 as biomarker for predicting response to immunecheckpoint inhibitors
PE20211001A1 (es) 2018-02-27 2021-06-01 Incyte Corp Imidazopirimidinas y triazolopirimidinas como inhibidores de a2a / a2b
US20200407365A1 (en) 2018-02-28 2020-12-31 Novartis Ag Indole-2-carbonyl compounds and their use for the treatment of hepatitis b
US20210002373A1 (en) 2018-03-01 2021-01-07 Nextcure, Inc. KLRG1 Binding Compositions and Methods of Use Thereof
AR114127A1 (es) 2018-03-02 2020-07-22 Lilly Co Eli Anticuerpos agonistas contra pd-1 y usos de estos
CA3090620A1 (en) 2018-03-06 2019-09-12 Institut Curie Inhibitor of setdb1 histone methyltransferase for use in cancer combination therapy
AU2019232625A1 (en) 2018-03-07 2020-09-17 Pfizer Inc. Anti-PD-1 antibody compositions
GB201803746D0 (en) 2018-03-08 2018-04-25 Ultrahuman Eight Ltd PD1 binding agents
GB201803745D0 (en) 2018-03-08 2018-04-25 Ultrahuman Eight Ltd PD1 binding agents
JP2021517589A (ja) 2018-03-12 2021-07-26 アンセルム(アンスティチュート・ナシオナル・ドゥ・ラ・サンテ・エ・ドゥ・ラ・ルシェルシュ・メディカル) 癌の治療のための化学免疫療法を増強するためのカロリー制限模倣物の使用
CN108434452A (zh) * 2018-03-13 2018-08-24 安徽瀚海博兴生物技术有限公司 一种将pd-1抗体和jmjd6联合用于制备抗癌药物的应用
WO2019177011A1 (ja) * 2018-03-13 2019-09-19 国立大学法人大阪大学 腫瘍免疫賦活剤
CN110272490B (zh) * 2018-03-14 2021-05-14 上海开拓者生物医药有限公司 靶向ctla-4抗体、其制备方法和用途
US20210009711A1 (en) 2018-03-14 2021-01-14 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
EP3765517A1 (en) 2018-03-14 2021-01-20 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
KR102411489B1 (ko) 2018-03-14 2022-06-23 서피스 온콜로지, 인크. Cd39에 결합하는 항체 및 이의 용도
EP3768698A4 (en) 2018-03-19 2022-03-30 MultiVir Inc. METHODS AND COMPOSITIONS COMPRISING TUMOR SUPPRESSIVE GENE THERAPY AND CD122/CD132 AGONISTS FOR THE TREATMENT OF CANCER
JP2021518380A (ja) * 2018-03-19 2021-08-02 アベオメ コーポレーション プログラム細胞死リガンド1(pd−l1)に対する高親和性中和モノクローナル抗体、及びその使用
US20210061912A1 (en) * 2018-03-20 2021-03-04 WuXi Biologics Ireland Limited Novel anti-pd-1 antibodies
TW201945393A (zh) 2018-03-21 2019-12-01 美商戊瑞治療有限公司 在酸性pH結合至VISTA之抗體
US11332524B2 (en) 2018-03-22 2022-05-17 Surface Oncology, Inc. Anti-IL-27 antibodies and uses thereof
TW202003565A (zh) 2018-03-23 2020-01-16 美商必治妥美雅史谷比公司 抗mica及/或micb抗體及其用途
US10760075B2 (en) 2018-04-30 2020-09-01 Snipr Biome Aps Treating and preventing microbial infections
CN112292145A (zh) 2018-03-25 2021-01-29 斯尼普生物群系有限公司 治疗和预防微生物感染
WO2019185792A1 (en) 2018-03-29 2019-10-03 Philogen S.P.A Cancer treatment using immunoconjugates and immune check-point inhibitors
MX2020010264A (es) 2018-03-29 2020-11-06 Iovance Biotherapeutics Inc Procesos para la produccion de linfocitos infiltrantes en tumor y usos de los mismos en inmunoterapia.
US11220546B2 (en) * 2018-03-29 2022-01-11 I-Mab Biopharma Us Limited Anti-PD-L1 antibodies and uses thereof
CN108588030B (zh) * 2018-03-30 2020-07-14 四川迈克生物新材料技术有限公司 抗人IgM单克隆抗体、其杂交瘤细胞株及应用
CN111971306A (zh) 2018-03-30 2020-11-20 百时美施贵宝公司 治疗肿瘤的方法
WO2019195063A1 (en) 2018-04-03 2019-10-10 Merck Sharp & Dohme Corp. Aza-benzothiophene compounds as sting agonists
CN111971277B (zh) 2018-04-03 2023-06-06 默沙东有限责任公司 作为sting激动剂的苯并噻吩及相关化合物
CN112292399A (zh) 2018-04-04 2021-01-29 百时美施贵宝公司 抗cd27抗体及其用途
WO2019193540A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Heteroaryl derivatives of formula (i) as atf4 inhibitors
WO2019193541A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Bicyclic aromatic ring derivatives of formula (i) as atf4 inhibitors
CA3096674A1 (en) 2018-04-12 2019-10-17 Bristol-Myers Squibb Company Anticancer combination therapy with cd73 antagonist antibody and pd-1/pd-l1 axis antagonist antibody
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
AU2019255515B2 (en) * 2018-04-15 2023-04-06 Immvira Co., Limited Antibodies binding PD-1 and uses thereof
US20210095032A1 (en) * 2018-04-15 2021-04-01 Salubris (Chengdu) Biotech Co., Ltd. Antibodies binding pd-1 and uses thereof
EP3782618A4 (en) 2018-04-16 2022-01-26 OnQuality Pharmaceuticals China Ltd. METHOD OF PREVENTING OR TREATING SIDE EFFECTS OF CANCER THERAPY
US10968201B2 (en) 2018-04-17 2021-04-06 Tempest Therapeutics, Inc. Bicyclic carboxamides and methods of use thereof
IL278090B1 (en) 2018-04-18 2024-03-01 Xencor Inc Proteins from heterodimeric il-15/il-15rα ohi-fc and their uses
CA3097593A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof
US10907161B2 (en) 2018-04-19 2021-02-02 Checkmate Pharmaceuticals, Inc. Synthetic RIG-I-like receptor agonists
JP7242702B2 (ja) 2018-04-19 2023-03-20 ギリアード サイエンシーズ, インコーポレイテッド Pd-1/pd-l1阻害剤
US11542505B1 (en) 2018-04-20 2023-01-03 Merck Sharp & Dohme Llc Substituted RIG-I agonists: compositions and methods thereof
US11485741B2 (en) 2018-04-24 2022-11-01 Bristol-Myers Squibb Company Macrocyclic toll-like receptor 7 (TLR7) agonists
WO2019207030A1 (en) 2018-04-26 2019-10-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer
MA52363A (fr) 2018-04-26 2021-03-03 Agenus Inc Compositions peptidiques de liaison à une protéine de choc thermique (hsp) et leurs méthodes d'utilisation
US20210047405A1 (en) 2018-04-27 2021-02-18 Novartis Ag Car t cell therapies with enhanced efficacy
KR20210005138A (ko) 2018-04-27 2021-01-13 이오반스 바이오테라퓨틱스, 인크. 종양 침윤 림프구의 확장 및 유전자 편집을 위한 폐쇄 방법 및 면역요법에서의 그의 용도
WO2019207942A1 (ja) * 2018-04-27 2019-10-31 OTA Takayo 免疫チェックポイント阻害剤によるがん治療の効果を評価するためのバイオマーカー
WO2019213282A1 (en) 2018-05-01 2019-11-07 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
US11045484B2 (en) 2018-05-04 2021-06-29 Amgen Inc. KRAS G12C inhibitors and methods of using the same
BR112020022145A2 (pt) 2018-05-04 2021-01-26 Merck Patent Gmbh inibição combinada de pd-1/pd-l1, tgfbeta e dna-pk para o tratamento de câncer
CA3099116A1 (en) 2018-05-04 2019-11-07 Incyte Corporation Salts of an fgfr inhibitor
EP3788038B1 (en) 2018-05-04 2023-10-11 Amgen Inc. Kras g12c inhibitors and methods of using the same
CN112867716A (zh) 2018-05-04 2021-05-28 因赛特公司 Fgfr抑制剂的固体形式和其制备方法
AU2019264232A1 (en) 2018-05-04 2020-11-12 Tollys TLR3 ligands that activate both epithelial and myeloid cells
CN112368020A (zh) * 2018-05-07 2021-02-12 展马博联合股份有限公司 抗pd-1抗体和抗组织因子抗体-药物偶联物组合治疗癌症的方法
WO2019217691A1 (en) 2018-05-10 2019-11-14 Amgen Inc. Kras g12c inhibitors for the treatment of cancer
WO2019217753A1 (en) 2018-05-10 2019-11-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
HUE057852T2 (hu) 2018-05-14 2022-06-28 Gilead Sciences Inc MCL-1 inhibítorok
WO2019222359A1 (en) 2018-05-15 2019-11-21 Duke University Systems and methods for genetic manipulation of akkermansia species
JP2021523170A (ja) 2018-05-15 2021-09-02 メディミューン リミテッド 癌の処置
GB201807924D0 (en) 2018-05-16 2018-06-27 Ctxt Pty Ltd Compounds
EP3794039A4 (en) * 2018-05-17 2022-05-04 Nanjing Leads Biolabs Co., Ltd. PD-1 BINDING ANTIBODIES AND USES THEREOF
JP7391046B2 (ja) 2018-05-18 2023-12-04 インサイト・コーポレイション A2a/a2b阻害剤としての縮合ピリミジン誘導体
EP3569618A1 (en) 2018-05-19 2019-11-20 Boehringer Ingelheim International GmbH Antagonizing cd73 antibody
EP4218762A3 (en) 2018-05-23 2023-08-16 Celgene Corporation Antiproliferative compounds and bispecific antibody against bcma and cd3 for combined use
BR112020023756A2 (pt) 2018-05-23 2021-02-09 Celgene Corporation tratamento de mieloma múltiplo e uso de biomarcadores para 4-(4-(4-(((2-(2,6-dioxopiperidin-3-il)-1-oxoisoindolin-4-il)oxi)metil)benzil)piperazin-1-il)-3-fluorobenzonitrila
EA202092747A1 (ru) 2018-05-29 2021-03-16 Бристол-Маерс Сквибб Компани Модифицированные саморазрушающиеся фрагменты для применения в пролекарствах и конъюгатах и способы применения и изготовления
TW202015726A (zh) 2018-05-30 2020-05-01 瑞士商諾華公司 Entpd2抗體、組合療法、及使用該等抗體和組合療法之方法
WO2019232319A1 (en) 2018-05-31 2019-12-05 Peloton Therapeutics, Inc. Compositions and methods for inhibiting cd73
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
US11352320B2 (en) 2018-05-31 2022-06-07 Merck Sharp & Dohme Corp. Substituted [1.1.1] bicyclo compounds as indoleamine 2,3-dioxygenase inhibitors
EP3801766A1 (en) 2018-05-31 2021-04-14 Novartis AG Hepatitis b antibodies
US11096939B2 (en) 2018-06-01 2021-08-24 Amgen Inc. KRAS G12C inhibitors and methods of using the same
KR20210016426A (ko) 2018-06-01 2021-02-15 노파르티스 아게 Cd123 및 cd3에 결합하는 이중특이적 항체의 투약
EP3802579A1 (en) 2018-06-01 2021-04-14 The Board of Trustees of the Leland Stanford Junior University Il-13/il-4 superkines: immune cell targeting constructs and methods of use thereof
EP3801523A2 (en) * 2018-06-01 2021-04-14 Eisai R&D Management Co., Ltd. Methods of using splicing modulators
WO2019227490A1 (en) * 2018-06-01 2019-12-05 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and methods for imaging
AU2019277029C1 (en) 2018-06-01 2024-01-04 Novartis Ag Binding molecules against BCMA and uses thereof
US20210221908A1 (en) 2018-06-03 2021-07-22 Lamkap Bio Beta Ltd. Bispecific antibodies against ceacam5 and cd47
EP3802537A1 (en) 2018-06-11 2021-04-14 Amgen Inc. Kras g12c inhibitors for treating cancer
MX2020012261A (es) 2018-06-12 2021-03-31 Amgen Inc Inhibidores de kras g12c que comprenden un anillo de piperazina y uso de estos en el tratamiento del cancer.
WO2019241426A1 (en) 2018-06-13 2019-12-19 Novartis Ag Bcma chimeric antigen receptors and uses thereof
EP3806848A2 (en) 2018-06-15 2021-04-21 Flagship Pioneering Innovations V, Inc. Increasing immune activity through modulation of postcellular signaling factors
EA202092518A1 (ru) 2018-06-18 2021-08-23 Иннейт Фарма Композиции и способы лечения рака
CN112533629A (zh) 2018-06-19 2021-03-19 阿尔莫生物科技股份有限公司 结合使用il-10药剂与嵌合抗原受体细胞疗法的组合物和方法
AU2019288048B2 (en) 2018-06-20 2022-08-11 Fujifilm Corporation Combined medicine comprising gemcitabine-encapsulated liposome composition and immune checkpoint blockade
WO2019244979A1 (ja) 2018-06-20 2019-12-26 富士フイルム株式会社 薬物を内包するリポソーム組成物および免疫チェックポイント阻害剤を含む組合せ医薬
TW202005985A (zh) 2018-06-21 2020-02-01 美商再生元醫藥公司 用雙特異性抗CD3xMUC16抗體及抗PD-1抗體治療癌症的方法
WO2019246557A1 (en) 2018-06-23 2019-12-26 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
WO2020005068A2 (en) 2018-06-29 2020-01-02 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Gene signatures and method for predicting response to pd-1 antagonists and ctla-4 antagonists, and combination thereof
AU2019297451A1 (en) 2018-07-03 2021-01-28 Marengo Therapeutics, Inc. Anti-TCR antibody molecules and uses thereof
PE20211604A1 (es) 2018-07-09 2021-08-23 Five Prime Therapeutics Inc Anticuerpos de union a ilt4
CA3105750A1 (en) * 2018-07-09 2020-01-16 Precigen, Inc. Fusion constructs and methods of using thereof
US20210253528A1 (en) 2018-07-09 2021-08-19 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
RS64759B1 (sr) 2018-07-10 2023-11-30 Novartis Ag 3-(5-hidroksi-1-oksoizoindolin-2-il)piperidin-2,6-dion derivati i njihova primena u lečenju bolesti zavisnih od cink prsta 2 (ikzf2) iz porodice ikaros
TW202028235A (zh) 2018-07-11 2020-08-01 美商戊瑞治療有限公司 於酸性ph結合至含免疫球蛋白v域之t細胞活化抑制子(vista)之抗體
AU2019301699B2 (en) 2018-07-11 2023-11-02 Actym Therapeutics, Inc. Engineered immunostimulatory bacterial strains and uses thereof
KR20210031479A (ko) 2018-07-12 2021-03-19 에프-스타 베타 리미티드 Cd137 및 ox40에 결합하는 항체 분자
GB201811410D0 (en) 2018-07-12 2018-08-29 F Star Beta Ltd OX40 Binding molecules
US20210277135A1 (en) 2018-07-13 2021-09-09 Bristol-Myers Squibb Company Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a method of treating a cancer or a solid tumor
TWI732245B (zh) 2018-07-13 2021-07-01 美商基利科學股份有限公司 Pd‐1/pd‐l1抑制劑
CA3104147A1 (en) 2018-07-18 2020-01-23 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
CN110734493B (zh) * 2018-07-20 2021-12-17 厦门大学 抗pd-1抗体及其用途
MA53381A (fr) 2018-07-24 2021-06-02 Amgen Inc Association d'inhibiteurs de la voie lilrb1/2 et d'inhibiteurs de la voie pd-1
BR112021000511A2 (pt) 2018-07-26 2021-04-06 Bristol-Myers Squibb Company Terapia de combinação de lag-3 para o tratamento de câncer
WO2020021061A1 (en) 2018-07-26 2020-01-30 Pieris Pharmaceuticals Gmbh Humanized anti-pd-1 antibodies and uses thereof
US11554120B2 (en) 2018-08-03 2023-01-17 Bristol-Myers Squibb Company 1H-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (TLR7) agonists and methods and uses therefor
CN112703011A (zh) 2018-08-06 2021-04-23 国家医疗保健研究所 用于治疗癌症的方法和组合物
WO2020030571A1 (en) 2018-08-06 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Combinations of a pd-1 antibody and a tlr4 modulator and uses thereof
WO2020031107A1 (en) 2018-08-08 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
JP2021534101A (ja) 2018-08-09 2021-12-09 ヴェルソー セラピューティクス, インコーポレイテッド Ccr2及びcsf1rを標的とするためのオリゴヌクレオチド組成物ならびにその使用
CN110423757B (zh) * 2018-08-11 2021-03-30 广东天科雅生物医药科技有限公司 一种工程化核酸、t细胞及其应用和产生方法
CA3109999A1 (en) * 2018-08-21 2020-02-27 Abl Bio Inc. Anti-pd-l1/anti-lag3 bispecific antibodies and uses thereof
AU2019328632A1 (en) 2018-08-27 2021-03-25 Pieris Pharmaceuticals Gmbh Combination therapies comprising CD137/HER2 bispecific agents and PD-1 axis inhibitors and uses thereof
WO2020047004A2 (en) * 2018-08-28 2020-03-05 10X Genomics, Inc. Methods of generating an array
WO2020044206A1 (en) 2018-08-29 2020-03-05 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors for use in the treatment cancer
TW202031273A (zh) 2018-08-31 2020-09-01 美商艾歐凡斯生物治療公司 抗pd-1抗體難治療性之非小細胞肺癌(nsclc)病患的治療
US20210340279A1 (en) 2018-08-31 2021-11-04 Yale University Compositions and methods of using cell-penetrating antibodies in combination with immune checkpoint modulators
WO2020044252A1 (en) 2018-08-31 2020-03-05 Novartis Ag Dosage regimes for anti-m-csf antibodies and uses thereof
JP2021535169A (ja) 2018-09-03 2021-12-16 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Teadモジュレーターとして有用なカルボキサミドおよびスルホンアミド誘導体
WO2020048942A1 (en) 2018-09-04 2020-03-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses
WO2020049534A1 (en) 2018-09-07 2020-03-12 Novartis Ag Sting agonist and combination therapy thereof for the treatment of cancer
CN112823167A (zh) 2018-09-07 2021-05-18 辉瑞大药厂 抗-αvβ8抗体和组合物及其用途
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
AU2019339777B2 (en) 2018-09-12 2022-09-01 Novartis Ag Antiviral pyridopyrazinedione compounds
AU2019342099A1 (en) 2018-09-19 2021-04-08 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2020058372A1 (en) 2018-09-19 2020-03-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of cancers resistant to immune checkpoint therapy
WO2020061376A2 (en) 2018-09-19 2020-03-26 Alpine Immune Sciences, Inc. Methods and uses of variant cd80 fusion proteins and related constructs
SG11202101787XA (en) 2018-09-20 2021-04-29 Iovance Biotherapeutics Inc Expansion of tils from cryopreserved tumor samples
EP4249917A3 (en) 2018-09-21 2023-11-08 F. Hoffmann-La Roche AG Diagnostic methods for triple-negative breast cancer
JP7425049B2 (ja) 2018-09-25 2024-01-30 ハープーン セラピューティクス,インク. Dll3結合タンパク質および使用方法
AU2019346645A1 (en) 2018-09-27 2021-04-29 Marengo Therapeutics, Inc. CSF1R/CCR2 multispecific antibodies
US20220047633A1 (en) 2018-09-28 2022-02-17 Novartis Ag Cd22 chimeric antigen receptor (car) therapies
US20210347851A1 (en) 2018-09-28 2021-11-11 Novartis Ag Cd19 chimeric antigen receptor (car) and cd22 car combination therapies
JP2022502037A (ja) 2018-09-28 2022-01-11 マサチューセッツ インスティテュート オブ テクノロジー コラーゲンに局在化される免疫調節分子およびその方法
CA3113379A1 (en) 2018-09-29 2020-04-02 Novartis Ag Process of manufacture of a compound for inhibiting the activity of shp2
WO2020070053A1 (en) 2018-10-01 2020-04-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of inhibitors of stress granule formation for targeting the regulation of immune responses
JP2022503959A (ja) 2018-10-03 2022-01-12 ゼンコア インコーポレイテッド Il-12ヘテロ二量体fc-融合タンパク質
WO2020076799A1 (en) 2018-10-09 2020-04-16 Bristol-Myers Squibb Company Anti-mertk antibodies for treating cancer
US11066404B2 (en) 2018-10-11 2021-07-20 Incyte Corporation Dihydropyrido[2,3-d]pyrimidinone compounds as CDK2 inhibitors
TW202028212A (zh) 2018-10-11 2020-08-01 日商小野藥品工業股份有限公司 Sting促效化合物
BR112021006783A2 (pt) 2018-10-12 2021-07-13 Xencor, Inc. proteína de fusão fc heterodimérica de il-15/r¿ direcionada, composição de ácido nucleico, composição de vetor de expressão, célula hospedeira, e, métodos de produção da proteína de fusão fc heterodimérica de il-15/r¿ direcionada e de tratamento de um câncer.
WO2020080715A1 (ko) 2018-10-15 2020-04-23 연세대학교 산학협력단 생산성이 향상된 항체 및 이의 제조방법
EP3867409A1 (en) 2018-10-16 2021-08-25 Novartis AG Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy
AU2019360044A1 (en) 2018-10-17 2021-05-27 Biolinerx Ltd. Treatment of metastatic pancreatic adenocarcinoma
EP3867269A1 (en) 2018-10-18 2021-08-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Combination of a big-h3 antagonist and an immune checkpoint inhibitor for the treatment of solid tumor
MX2021004348A (es) 2018-10-18 2021-05-28 Genentech Inc Procedimientos de diagnóstico y terapéuticos para el cáncer de riñón sarcomatoide.
AU2019361124A1 (en) 2018-10-19 2021-06-03 Bristol-Myers Squibb Company Combination therapy for melanoma
JP2022505524A (ja) 2018-10-22 2022-01-14 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド 投薬
JP2022505647A (ja) 2018-10-23 2022-01-14 ブリストル-マイヤーズ スクイブ カンパニー 腫瘍の処置方法
WO2020086556A1 (en) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
CN113365664A (zh) 2018-10-29 2021-09-07 梅尔莎纳医疗公司 具有含肽接头的半胱氨酸工程化的抗体-药物缀合物
US11564995B2 (en) 2018-10-29 2023-01-31 Wisconsin Alumni Research Foundation Peptide-nanoparticle conjugates
KR20210084552A (ko) 2018-10-29 2021-07-07 위스콘신 얼럼나이 리서어치 화운데이션 향상된 암 면역요법을 위한 면역관문 억제제와 복합체화된 덴드리틱 폴리머
EP3873532A1 (en) 2018-10-31 2021-09-08 Novartis AG Dc-sign antibody drug conjugates
WO2020092848A2 (en) 2018-11-01 2020-05-07 Juno Therapeutics, Inc. Methods for treatment using chimeric antigen receptors specific for b-cell maturation antigen
US20210395240A1 (en) 2018-11-01 2021-12-23 Merck Sharp & Dohme Corp. Novel substituted pyrazole compounds as indoleamine 2,3-dioxygenase inhibitors
WO2020092854A2 (en) 2018-11-01 2020-05-07 Juno Therapeutics, Inc. Chimeric antigen receptors specific for g protein-coupled receptor class c group 5 member d (gprc5d)
KR20210099573A (ko) 2018-11-05 2021-08-12 이오반스 바이오테라퓨틱스, 인크. 개선된 종양 반응성 t-세포의 선택
KR20210091212A (ko) 2018-11-05 2021-07-21 이오반스 바이오테라퓨틱스, 인크. 항-pd-1 항체에 불응성인 nsclc 환자의 치료
US20210403469A1 (en) 2018-11-06 2021-12-30 Merck Sharp & Dohme Corp. Novel substituted tricyclic compounds as indoleamine 2,3-dioxygenase inhibitors
US20220001026A1 (en) 2018-11-08 2022-01-06 Modernatx, Inc. Use of mrna encoding ox40l to treat cancer in human patients
CA3119563A1 (en) 2018-11-14 2020-05-22 Bayer Aktiengesellschaft Pharmaceutical combination of anti-ceacam6 and either anti-pd-1 or anti-pd-l1 antibodies for the treatment of cancer
US20210388091A1 (en) 2018-11-14 2021-12-16 Regeneron Pharmaceuticals, Inc. Intralesional administration of pd-1 inhibitors for treating skin cancer
TW202028222A (zh) 2018-11-14 2020-08-01 美商Ionis製藥公司 Foxp3表現之調節劑
CA3119341A1 (en) 2018-11-16 2020-05-22 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor
JP2022513062A (ja) 2018-11-16 2022-02-07 ジュノー セラピューティクス インコーポレイテッド B細胞悪性腫瘍を処置するために、操作されたt細胞を投薬する方法
JP2020090482A (ja) 2018-11-16 2020-06-11 アムジエン・インコーポレーテツド Kras g12c阻害剤化合物の重要な中間体の改良合成法
KR20210093946A (ko) 2018-11-16 2021-07-28 아르퀼 인코포레이티드 암의 치료를 위한 제약 조합물
PE20211284A1 (es) 2018-11-16 2021-07-19 Bristol Myers Squibb Co Anticuerpos anti-nkg2a y usos de los mismos
WO2020106621A1 (en) 2018-11-19 2020-05-28 Board Of Regents, The University Of Texas System A modular, polycistronic vector for car and tcr transduction
CA3117222A1 (en) 2018-11-19 2020-05-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
JP7377679B2 (ja) 2018-11-19 2023-11-10 アムジエン・インコーポレーテツド がん治療のためのkrasg12c阻害剤及び1種以上の薬学的に活性な追加の薬剤を含む併用療法
WO2020104479A1 (en) 2018-11-20 2020-05-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies
WO2020104496A1 (en) 2018-11-20 2020-05-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Bispecific antibody targeting transferrin receptor 1 and soluble antigen
US20220040184A1 (en) 2018-11-20 2022-02-10 Merck Sharp Dohme Corp. Substituted amino triazolopyrimidine and amino triazolopyrazine adenosine receptor antagonists, pharmaceutical compositions and their use
EP3883610A4 (en) 2018-11-20 2022-11-02 Cornell University MACROCYCLIC COMPLEXES OF RADIONUCLIDES AND THEIR USE IN CANCER RADIATION THERAPY
MA55142A (fr) 2018-11-20 2022-02-23 Merck Sharp & Dohme Amino-triazolopyrimidine et amino-triazolopyrazine substitués antagoniste du récepteur de l'adénosine, compositions pharmaceutiques et leur utilisation
EP3886842A1 (en) 2018-11-26 2021-10-06 Debiopharm International SA Combination treatment of hiv infections
TWI818120B (zh) 2018-11-27 2023-10-11 日商小野藥品工業股份有限公司 藉由免疫檢查點阻礙藥與folfirinox療法之併用的癌症治療
JP2022513653A (ja) 2018-11-28 2022-02-09 ブリストル-マイヤーズ スクイブ カンパニー 修飾された重鎖定常領域を含む抗体
EA202191463A1 (ru) 2018-11-28 2021-10-13 Борд Оф Риджентс, Дзе Юниверсити Оф Техас Систем Мультиплексное редактирование генома иммунных клеток для повышения функциональности и устойчивости к подавляющей среде
US20230008022A1 (en) 2018-11-28 2023-01-12 Merck Sharp & Dohme Corp. Novel substituted piperazine amide compounds as indoleamine 2,3-dioxygenase (ido) inhibitors
WO2020109355A1 (en) 2018-11-28 2020-06-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kit for assaying lytic potential of immune effector cells
EP3886874A1 (en) 2018-11-29 2021-10-06 Board of Regents, The University of Texas System Methods for ex vivo expansion of natural killer cells and use thereof
MX2021006329A (es) 2018-11-30 2021-08-11 Merck Sharp & Dohme Llc Derivados de amino triazolo quinazolina 9-sustituidos como antagonistas del receptor de adenosina, composiciones farmaceuticas y su uso.
JP2022513685A (ja) 2018-11-30 2022-02-09 ジュノー セラピューティクス インコーポレイテッド 養子細胞療法を用いた処置のための方法
MX2021006156A (es) 2018-11-30 2021-09-08 Glaxosmithkline Ip Dev Ltd Compuestos utiles en la terapia para el vih.
WO2020109570A1 (en) 2018-11-30 2020-06-04 Gbg Forschungs Gmbh Method for predicting the response to cancer immunotherapy in cancer patients
SI3886914T1 (sl) 2018-11-30 2023-06-30 Bristol-Myers Squibb Company Protitelo, ki vsebuje C-terminalni podaljšek lahke verige, ki vsebuje glutamin, njegove konjugate ter metode in uporabe
MX2021006544A (es) 2018-12-04 2021-07-07 Sumitomo Pharma Oncology Inc Inhibidores de cinasa dependiente de ciclina 9 (cdk9) y polimorfos de los mismos para uso como agentes para el tratamiento de cancer.
KR20210100656A (ko) 2018-12-05 2021-08-17 제넨테크, 인크. 암 면역요법을 위한 진단 방법 및 조성물
EP3891270A1 (en) 2018-12-07 2021-10-13 Institut National de la Santé et de la Recherche Médicale (INSERM) Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes
WO2020115261A1 (en) 2018-12-07 2020-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
MX2021006831A (es) 2018-12-11 2021-07-02 Theravance Biopharma R&D Ip Llc Inhibidores de alk5.
WO2020120592A1 (en) 2018-12-12 2020-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating melanoma
US20220031860A1 (en) 2018-12-12 2022-02-03 Bristol-Myers Squibb Company Antibodies modified for transglutaminase conjugation, conjugates thereof, and methods and uses
WO2020127059A1 (en) 2018-12-17 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sulconazole as a furin inhibitor
WO2020131885A1 (en) * 2018-12-17 2020-06-25 Eamonn Hobbs In situ therapeutic cancer vaccine creation system and method
GB201820547D0 (en) 2018-12-17 2019-01-30 Oxford Univ Innovation Modified antibodies
EP3898699A1 (en) 2018-12-19 2021-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers by immuno-modulation using antibodies against cathespin-d
AU2019402189B2 (en) 2018-12-20 2023-04-13 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
MA54547A (fr) 2018-12-20 2022-03-30 Amgen Inc Amides d'hétéroaryle utiles en tant qu'inhibiteurs de kif18a
ES2953821T3 (es) 2018-12-20 2023-11-16 Amgen Inc Inhibidores de KIF18A
WO2020132646A1 (en) 2018-12-20 2020-06-25 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and nkg2d antigen binding domains
MA54546A (fr) 2018-12-20 2022-03-30 Amgen Inc Amides d'hétéroaryle utiles en tant qu'inhibiteurs de kif18a
PE20211475A1 (es) 2018-12-20 2021-08-05 Amgen Inc Inhibidores de kif18a
US20220056135A1 (en) 2018-12-21 2022-02-24 Ose Immunotherapeutics Bifunctional anti-pd-1/sirpa molecule
CN113614109A (zh) 2018-12-21 2021-11-05 Ose免疫疗法公司 双功能抗pd-1/il-7分子
CN111349162A (zh) * 2018-12-21 2020-06-30 神州细胞工程有限公司 人源化抗pd-1抗体及其用途
CN113474048A (zh) 2018-12-21 2021-10-01 Aim免疫科技有限公司 用于癌症治疗的组合物和方法
BR112021011900A2 (pt) 2018-12-21 2021-09-08 Novartis Ag Anticorpos para pmel17 e conjugados dos mesmos
US20220054524A1 (en) 2018-12-21 2022-02-24 Onxeo New conjugated nucleic acid molecules and their uses
WO2020127885A1 (en) 2018-12-21 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Compositions for treating cancers and resistant cancers
WO2020136147A1 (en) 2018-12-26 2020-07-02 Innate Pharma Compounds and methods for treatment of head and neck cancer
WO2020140012A1 (en) 2018-12-27 2020-07-02 Amgen Inc. Lyophilized virus formulations
CN113544146A (zh) * 2018-12-27 2021-10-22 吉加根公司 抗pd-1结合蛋白及其使用方法
KR20220008253A (ko) 2019-01-03 2022-01-20 엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔 (인쎄름) 암을 앓는 대상에서 cd8+ t 세포 의존성 면역 반응을 향상시키기 위한 방법 및 약학적 조성물
AU2020205643A1 (en) 2019-01-09 2021-08-19 Celgene Corporation Antiproliferative compounds and second active agents for use in treating multiple myeloma
SG11202107438WA (en) 2019-01-09 2021-08-30 Celgene Corp Pharmaceutical compositions comprising (s)-4-(4-(4-(((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)oxy)methyl) benzyl)piperazin-1-yl)-3-fluorobenzonitrile and methods of using the same
CA3125756A1 (en) 2019-01-09 2020-07-16 Celgene Corporation Solid forms comprising (s)-4-(4-(4-(((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)oxy)methyl) benzyl)piperazin-1-yl)-3-fluorobenzonitrile and salts thereof, and compositions comprising and methods of using the same
CN111423510B (zh) 2019-01-10 2024-02-06 迈威(上海)生物科技股份有限公司 重组抗人pd-1抗体及其应用
AU2020208193A1 (en) 2019-01-14 2021-07-29 BioNTech SE Methods of treating cancer with a PD-1 axis binding antagonist and an RNA vaccine
CA3126741A1 (en) 2019-01-15 2020-07-23 Inserm (Institut National De La Sante Et De La Recherche Medicale) Mutated interleukin-34 (il-34) polypeptides and uses thereof in therapy
KR20210143718A (ko) 2019-01-17 2021-11-29 조지아 테크 리서치 코포레이션 산화된 콜레스테롤을 함유하는 약물 전달 시스템
BR112021013965A2 (pt) 2019-01-21 2021-09-21 Sanofi Rna terapêutico e anticorpos anti-pd1 para cânceres de tumor sólido em estágio avançado
WO2020154032A1 (en) 2019-01-23 2020-07-30 Massachusetts Institute Of Technology Combination immunotherapy dosing regimen for immune checkpoint blockade
TW202043466A (zh) 2019-01-25 2020-12-01 德商百靈佳殷格翰國際股份有限公司 編碼ccl21之重組棒狀病毒
TWI829857B (zh) 2019-01-29 2024-01-21 美商英塞特公司 作為a2a / a2b抑制劑之吡唑并吡啶及三唑并吡啶
PE20212198A1 (es) 2019-01-29 2021-11-16 Juno Therapeutics Inc Anticuerpos y receptores quimericos de antigenos especificos para receptor 1 huerfano tipo receptor tirosina-cinasa (ror1)
EP3918323A4 (en) 2019-01-30 2022-12-28 TrueBinding, Inc. ANTI-GAL3 ANTIBODIES AND THEIR USES
US20220107323A1 (en) 2019-01-30 2022-04-07 Inserm(Institut National De La Santé Et De La Recherche Médicale) Methods and compositions for identifying whether a subject suffering from a cancer will achieve a response with an immune-checkpoint inhibitor
JP2022523100A (ja) 2019-02-01 2022-04-21 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド ベランタマブマフォドチンおよび抗ox40抗体を含むがんの併用治療ならびにその使用および方法
BR112021015168A2 (pt) 2019-02-03 2021-09-28 Jiangsu Hengrui Medicine Co., Ltd. Anticorpo anti-pd-1, fragmento de ligação ao antígeno do mesmo e uso farmacêutico do mesmo
US20220117911A1 (en) 2019-02-04 2022-04-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating blood-brain barrier
CN113396230A (zh) 2019-02-08 2021-09-14 豪夫迈·罗氏有限公司 癌症的诊断和治疗方法
EP3924351A4 (en) 2019-02-12 2022-12-21 Sumitomo Pharma Oncology, Inc. FORMULATIONS COMPRISING HETEROCYCLIC PROTEIN KINASE INHIBITORS
MX2021009562A (es) 2019-02-12 2021-09-08 Novartis Ag Combinacion farmaceutica que comprende tno155 y un inhibidor de pd-1.
EP3924520A1 (en) 2019-02-13 2021-12-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for selecting a cancer treatment in a subject suffering from cancer
WO2020165374A1 (en) 2019-02-14 2020-08-20 Ose Immunotherapeutics Bifunctional molecule comprising il-15ra
WO2020168197A1 (en) 2019-02-15 2020-08-20 Incyte Corporation Pyrrolo[2,3-d]pyrimidinone compounds as cdk2 inhibitors
AU2020222346B2 (en) 2019-02-15 2021-12-09 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
US20220107320A1 (en) 2019-02-15 2022-04-07 Incelldx, Inc. Assaying Bladder-Associated Samples, Identifying and Treating Bladder-Associated Neoplasia, and Kits for Use Therein
EA202192019A1 (ru) 2019-02-15 2021-11-02 Новартис Аг Производные 3-(1-оксо-5-(пиперидин-4-ил)изоиндолин-2-ил)пиперидин-2,6-диона и пути их применения
KR20210139269A (ko) 2019-02-15 2021-11-22 인사이트 코포레이션 사이클린-의존성 키나아제 2 바이오마커 및 이들의 용도
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
WO2020172202A1 (en) 2019-02-19 2020-08-27 Myst Therapeutics, Inc. Methods for producing autologous t cells useful to treat cancers and compositions thereof
WO2020176699A1 (en) 2019-02-28 2020-09-03 Regeneron Pharmaceuticals, Inc. Administration of pd-1 inhibitors for treating skin cancer
JP2022522777A (ja) 2019-03-01 2022-04-20 レボリューション メディシンズ インコーポレイテッド 二環式ヘテロアリール化合物及びその使用
US20230096028A1 (en) 2019-03-01 2023-03-30 Revolution Medicines, Inc. Bicyclic heterocyclyl compounds and uses thereof
MX2021010458A (es) 2019-03-05 2021-09-21 Amgen Inc Uso de virus oncoliticos para el tratamiento del cancer.
WO2020180959A1 (en) 2019-03-05 2020-09-10 Incyte Corporation Pyrazolyl pyrimidinylamine compounds as cdk2 inhibitors
AU2020231343A1 (en) 2019-03-06 2021-10-21 Regeneron Pharmaceuticals, Inc. IL-4/IL-13 pathway inhibitors for enhanced efficacy in treating cancer
WO2020185532A1 (en) 2019-03-08 2020-09-17 Incyte Corporation Methods of treating cancer with an fgfr inhibitor
MA55296A (fr) 2019-03-14 2022-03-23 Hoffmann La Roche Traitement du cancer avec des anticorps bispécifiques de her2xcd3 en combinaison avec un mab anti-her2
WO2020183011A1 (en) 2019-03-14 2020-09-17 Institut Curie Htr1d inhibitors and uses thereof in the treatment of cancer
CA3133155A1 (en) 2019-03-19 2020-09-24 Fundacio Privada Institut D'investigacio Oncologica De Vall Hebron Combination therapy for the treatment for cancer
WO2020191326A1 (en) 2019-03-20 2020-09-24 Sumitomo Dainippon Pharma Oncology, Inc. Treatment of acute myeloid leukemia (aml) with venetoclax failure
AU2020245437A1 (en) 2019-03-22 2021-09-30 Sumitomo Pharma Oncology, Inc. Compositions comprising PKM2 modulators and methods of treatment using the same
SG11202110449YA (en) 2019-03-26 2021-10-28 Univ Michigan Regents Small molecule degraders of stat3
US20220041733A1 (en) 2019-03-28 2022-02-10 Bristol-Myers Squibb Company Methods of treating tumor
KR20210146349A (ko) 2019-03-28 2021-12-03 브리스톨-마이어스 스큅 컴퍼니 종양을 치료하는 방법
KR20220002336A (ko) 2019-03-29 2022-01-06 미스트 쎄라퓨틱스, 엘엘씨 T 세포 치료제를 제조하기 위한 생체외 방법 및 관련 조성물 및 방법
TW202102543A (zh) 2019-03-29 2021-01-16 美商安進公司 溶瘤病毒在癌症新輔助療法中之用途
US11919904B2 (en) 2019-03-29 2024-03-05 Incyte Corporation Sulfonylamide compounds as CDK2 inhibitors
EP3947403A1 (en) 2019-03-29 2022-02-09 The Regents Of The University Of Michigan Stat3 protein degraders
SG11202109510YA (en) 2019-03-29 2021-10-28 Genentech Inc Modulators of cell surface protein interactions and methods and compositions related to same
WO2020201095A1 (en) 2019-03-29 2020-10-08 Institut Curie Interleukin-2 variants with modified biological activity
US20220177978A1 (en) 2019-04-02 2022-06-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
AU2020253955A1 (en) 2019-04-03 2021-09-09 Targimmune Therapeutics Ag Immunotherapy for the treatment of cancer
WO2020205688A1 (en) 2019-04-04 2020-10-08 Merck Sharp & Dohme Corp. Inhibitors of histone deacetylase-3 useful for the treatment of cancer, inflammation, neurodegeneration diseases and diabetes
US20220160692A1 (en) 2019-04-09 2022-05-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sk2 inhibitors in combination with immune checkpoint blockade therapy for the treatment of cancer
JP2022528472A (ja) 2019-04-11 2022-06-10 バイエル アクチェンゲゼルシャフト 抗ildr2抗体とpd-1アンタゴニストの組み合わせ
CN110095612B (zh) * 2019-04-12 2022-05-10 河北仁博科技有限公司 一种基于spr快速筛选单克隆抗体的方法
WO2020208612A1 (en) 2019-04-12 2020-10-15 Vascular Biogenics Ltd. Methods of anti-tumor therapy
EP3956446A1 (en) 2019-04-17 2022-02-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treatment of nlrp3 inflammasome mediated il-1beta dependent disorders
WO2020215037A1 (en) 2019-04-18 2020-10-22 The Regents Of The University Of Michigan Combination with checkpoint inhibitors to treat cancer
EP3725370A1 (en) 2019-04-19 2020-10-21 ImmunoBrain Checkpoint, Inc. Modified anti-pd-l1 antibodies and methods and uses for treating a neurodegenerative disease
CN114364703A (zh) 2019-04-19 2022-04-15 豪夫迈·罗氏有限公司 抗mertk抗体及它们的使用方法
WO2020216697A1 (en) 2019-04-23 2020-10-29 Innate Pharma Cd73 blocking antibodies
EP3963109A1 (en) 2019-04-30 2022-03-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
CN110402892A (zh) * 2019-04-30 2019-11-05 梁廷波 选择性敲除胰腺上皮细胞程序性死亡配体1分子的自发胰腺癌小鼠模型的建立方法
WO2020223233A1 (en) 2019-04-30 2020-11-05 Genentech, Inc. Prognostic and therapeutic methods for colorectal cancer
US11447494B2 (en) 2019-05-01 2022-09-20 Incyte Corporation Tricyclic amine compounds as CDK2 inhibitors
WO2020223469A1 (en) 2019-05-01 2020-11-05 Incyte Corporation N-(1-(methylsulfonyl)piperidin-4-yl)-4,5-di hydro-1h-imidazo[4,5-h]quinazolin-8-amine derivatives and related compounds as cyclin-dependent kinase 2 (cdk2) inhibitors for treating cancer
WO2020223639A1 (en) 2019-05-01 2020-11-05 Sensei Biotherapeutics, Inc. Combination therapies for cancer
MA55805A (fr) 2019-05-03 2022-03-09 Flagship Pioneering Innovations V Inc Métodes de modulation de l'activité immunitaire
EP3965816A1 (en) 2019-05-06 2022-03-16 MedImmune Limited Combination of monalizumab, durvalumab, chemotherapy and bevacizumab or cetuximab for the treatment of colorectal cancer
CA3139410A1 (en) 2019-05-07 2020-11-12 Immunicom, Inc. Increasing responses to checkpoint inhibitors by extracorporeal apheresis
AU2020268199A1 (en) 2019-05-09 2021-11-18 FUJIFILM Cellular Dynamics, Inc. Methods for the production of hepatocytes
JP2022532490A (ja) 2019-05-13 2022-07-15 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 癌の治療における有効性の増強のためのpd-1阻害剤とlag-3阻害剤の組み合わせ
EP3738593A1 (en) 2019-05-14 2020-11-18 Amgen, Inc Dosing of kras inhibitor for treatment of cancers
EP3969452A1 (en) 2019-05-16 2022-03-23 Stingthera, Inc. Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use
WO2020232375A1 (en) 2019-05-16 2020-11-19 Silicon Swat, Inc. Oxoacridinyl acetic acid derivatives and methods of use
EP3968971A1 (en) 2019-05-17 2022-03-23 Cancer Prevention Pharmaceuticals, Inc. Methods for treating familial adenomatous polyposis
IL266728B (en) 2019-05-19 2020-11-30 Yeda Res & Dev Identification of recurrent mutant neopeptides
KR20220035333A (ko) 2019-05-20 2022-03-22 팬디온 오퍼레이션스, 인코포레이티드 Madcam 표적 면역관용
EP3972973A1 (en) 2019-05-21 2022-03-30 Amgen Inc. Solid state forms
EP3976090A1 (en) 2019-05-24 2022-04-06 Pfizer Inc. Combination therapies using cdk inhibitors
US20220363760A1 (en) 2019-05-30 2022-11-17 Bristol-Myers Squibb Company Multi-tumor gene signature for suitability to immuno-oncology therapy
WO2020243568A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
KR20220016157A (ko) 2019-05-30 2022-02-08 브리스톨-마이어스 스큅 컴퍼니 세포 국재화 시그너쳐 및 조합 요법
CA3144535A1 (en) 2019-06-03 2020-12-10 The University Of Chicago Methods and compositions for treating cancer with collagen binding drug carriers
EP3976061A4 (en) 2019-06-03 2023-07-12 The University of Chicago METHODS AND COMPOSITIONS FOR THE TREATMENT OF CANCER WITH CANCER-TARGETING ADJUVANTS
US11246906B2 (en) 2019-06-11 2022-02-15 Alkermes Pharma Ireland Limited Compositions and methods for subcutaneous administration of cancer immunotherapy
CA3141414A1 (en) 2019-06-12 2020-12-17 Vanderbilt University Dibenzylamines as amino acid transport inhibitors
CN114222729A (zh) 2019-06-12 2022-03-22 范德比尔特大学 氨基酸转运抑制剂及其用途
KR20220020879A (ko) 2019-06-12 2022-02-21 에스크진 파마, 아이엔씨. 새로운 il-15 프로드럭 및 이를 사용하는 방법
CN113924117A (zh) 2019-06-14 2022-01-11 蒂尔坦生物制药有限公司 溶瘤腺病毒和检查点抑制剂联合疗法
CN114630675A (zh) 2019-06-18 2022-06-14 爱尔兰詹森科学公司 乙型肝炎病毒(hbv)疫苗和抗pd-1或抗pd-l1抗体的组合
WO2020255009A2 (en) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combination of hepatitis b virus (hbv) vaccines and anti-pd-1 antibody
EP3990491A1 (en) 2019-06-26 2022-05-04 Massachusetts Institute of Technology Immunomodulatory fusion protein-metal hydroxide complexes and methods thereof
CN114222760A (zh) 2019-06-26 2022-03-22 葛兰素史密斯克莱知识产权发展有限公司 Il1rap结合蛋白
WO2020260547A1 (en) 2019-06-27 2020-12-30 Rigontec Gmbh Design method for optimized rig-i ligands
SG11202111943UA (en) 2019-07-02 2021-11-29 Hutchinson Fred Cancer Res Recombinant ad35 vectors and related gene therapy improvements
WO2021003417A1 (en) 2019-07-03 2021-01-07 Sumitomo Dainippon Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof
KR20220030956A (ko) 2019-07-05 2022-03-11 오노 야꾸힝 고교 가부시키가이샤 Pd-1/cd3 이중 특이성 단백질에 의한 혈액암 치료
WO2021007269A1 (en) 2019-07-09 2021-01-14 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
MX2022000550A (es) 2019-07-16 2022-02-10 Univ Michigan Regents Imidazopirimidinas como inhibidores de eed y uso de estas.
GB201910304D0 (en) 2019-07-18 2019-09-04 Ctxt Pty Ltd Compounds
GB201910305D0 (en) 2019-07-18 2019-09-04 Ctxt Pty Ltd Compounds
US11083705B2 (en) 2019-07-26 2021-08-10 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
WO2021019526A1 (en) 2019-07-29 2021-02-04 Yeda Research And Development Co. Ltd. Methods of treating and diagnosing lung cancer
EP4007592A1 (en) 2019-08-02 2022-06-08 LanthioPep B.V. Angiotensin type 2 (at2) receptor agonists for use in the treatment of cancer
CN114401953A (zh) 2019-08-02 2022-04-26 美国安进公司 Kif18a抑制剂
AU2020324963A1 (en) 2019-08-02 2022-02-24 Amgen Inc. KIF18A inhibitors
US20220372018A1 (en) 2019-08-02 2022-11-24 Amgen Inc. Kif18a inhibitors
US11155567B2 (en) 2019-08-02 2021-10-26 Mersana Therapeutics, Inc. Sting agonist compounds and methods of use
WO2021026098A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
AU2020327251A1 (en) 2019-08-05 2022-03-03 National Cancer Center Japan Biomarker for accessing efficacy of immune checkpoint inhibitor
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021025140A1 (ja) 2019-08-08 2021-02-11 小野薬品工業株式会社 二重特異性タンパク質
EP4013788A1 (en) 2019-08-12 2022-06-22 Purinomia Biotech, Inc. Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells
CN116348458A (zh) 2019-08-14 2023-06-27 因赛特公司 作为cdk2抑制剂的咪唑基嘧啶基胺化合物
GB201912107D0 (en) 2019-08-22 2019-10-09 Amazentis Sa Combination
WO2021041664A1 (en) 2019-08-27 2021-03-04 The Regents Of The University Of Michigan Cereblon e3 ligase inhibitors
US11680098B2 (en) 2019-08-30 2023-06-20 Agenus Inc. Antibodies that specifically bind human CD96
WO2021043961A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and chemotherapy
WO2021048292A1 (en) 2019-09-11 2021-03-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2021055329A1 (en) 2019-09-16 2021-03-25 Surface Oncology, Inc. Anti-cd39 antibody compositions and methods
WO2021055306A1 (en) 2019-09-16 2021-03-25 Bristol-Myers Squibb Company Dual capture method for analysis of antibody-drug conjugates
EP4031540A1 (en) 2019-09-17 2022-07-27 Bial-R&D Investments, S.A. Substituted, saturated and unsaturated n-heterocyclic carboxamides and related compounds for their use in the treatment of medical disorders
CN114761386A (zh) 2019-09-17 2022-07-15 比亚尔R&D投资股份公司 作为酸性神经酰胺酶抑制剂的经取代n-杂环甲酰胺及其作为药物的用途
WO2021055612A1 (en) 2019-09-17 2021-03-25 BIAL-BioTech Investments, Inc. Substituted imidazole carboxamides and their use in the treatment of medical disorders
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
MX2022003192A (es) 2019-09-18 2022-04-11 Novartis Ag Proteinas de fusion nkg2d y sus usos.
JP2022548881A (ja) 2019-09-18 2022-11-22 ノバルティス アーゲー Entpd2抗体、組合せ療法並びに抗体及び組合せ療法を使用する方法
CN114786776A (zh) 2019-09-18 2022-07-22 拉姆卡普生物阿尔法股份公司 针对ceacam5和cd3的双特异性抗体
CN115023267A (zh) 2019-09-19 2022-09-06 密歇根大学董事会 螺环雄激素受体蛋白质降解剂
CN110467675B (zh) * 2019-09-19 2020-08-14 合源生物科技(天津)有限公司 一种ctla-4单克隆抗体6f1及其用于抗肿瘤的用途
CA3149719A1 (en) 2019-09-19 2021-03-25 Bristol-Myers Squibb Company Antibodies binding to vista at acidic ph
WO2021055994A1 (en) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Quantitative spatial profiling for lag-3 antagonist therapy
KR20220091480A (ko) * 2019-09-24 2022-06-30 미라티 테라퓨틱스, 인크. 병용 요법
AU2020353672A1 (en) 2019-09-25 2022-03-31 Surface Oncology, LLC Anti-IL-27 antibodies and uses thereof
JP2022549337A (ja) 2019-09-25 2022-11-24 ブリストル-マイヤーズ スクイブ カンパニー がん療法のための複合バイオマーカー
MX2022003357A (es) 2019-09-25 2022-05-03 Seagen Inc Combinación de anticuerpo anti-cd30 conjugado con un farmaco, anti-pd-1 y quimioterapia para el tratamiento de cánceres hematopoyéticos.
TW202126649A (zh) 2019-09-26 2021-07-16 瑞士商諾華公司 抗病毒吡唑并吡啶酮化合物
TW202128755A (zh) 2019-09-27 2021-08-01 英商葛蘭素史密斯克藍智慧財產發展有限公司 抗原結合蛋白
EP4034551A1 (en) 2019-09-28 2022-08-03 AskGene Pharma, Inc. Cytokine prodrugs and dual-prodrugs
AU2020358726A1 (en) 2019-10-01 2022-04-07 Silverback Therapeutics, Inc. Combination therapy with immune stimulatory conjugates
EP3800201A1 (en) 2019-10-01 2021-04-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd28h stimulation enhances nk cell killing activities
US11851466B2 (en) 2019-10-03 2023-12-26 Xencor, Inc. Targeted IL-12 heterodimeric Fc-fusion proteins
EP4037714A1 (en) 2019-10-03 2022-08-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating macrophages polarization
EP4037710A1 (en) 2019-10-04 2022-08-10 Institut National de la Santé et de la Recherche Médicale (INSERM) Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer
US11851426B2 (en) 2019-10-11 2023-12-26 Incyte Corporation Bicyclic amines as CDK2 inhibitors
TW202128757A (zh) 2019-10-11 2021-08-01 美商建南德克公司 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白
JOP20220083A1 (ar) 2019-10-14 2023-01-30 Incyte Corp حلقات غير متجانسة ثنائية الحلقة كمثبطات لـ fgfr
EP4045047A1 (en) 2019-10-15 2022-08-24 Amgen Inc. Combination therapy of kras inhibitor and shp2 inhibitor for treatment of cancers
WO2021074683A1 (en) 2019-10-16 2021-04-22 Avacta Life Sciences Limited Bispecific anti-pd-l1 and anti-fcrn polypeptides
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
WO2021074391A1 (en) 2019-10-17 2021-04-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing nasal intestinal type adenocarcinomas
MX2022004769A (es) 2019-10-21 2022-05-16 Novartis Ag Inhibidores de tim-3 y sus usos.
CN114786679A (zh) 2019-10-21 2022-07-22 诺华股份有限公司 具有维奈托克和tim-3抑制剂的组合疗法
US20220401539A1 (en) 2019-10-22 2022-12-22 Institut Curie Immunotherapy Targeting Tumor Neoantigenic Peptides
US20220378817A1 (en) 2019-10-23 2022-12-01 Checkmate Pharmaceuticals, Inc. Synthetic rig-i-like receptor agonists
WO2021081212A1 (en) 2019-10-24 2021-04-29 Amgen Inc. Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer
US11459389B2 (en) 2019-10-24 2022-10-04 Massachusetts Institute Of Technology Monoclonal antibodies that bind human CD161
EP4049675A4 (en) 2019-10-25 2023-11-22 Daiichi Sankyo Company, Limited COMBINATION OF ANTI-GARP ANTIBODY AND IMMUNOREGULATOR
EP4048295A1 (en) 2019-10-25 2022-08-31 Iovance Biotherapeutics, Inc. Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
NL2024108B1 (en) 2019-10-26 2021-07-19 Vitroscan B V Methods and apparatus for measuring immune-cell mediated anti-tumoroid responses
WO2021083060A1 (zh) 2019-10-28 2021-05-06 中国科学院上海药物研究所 五元杂环氧代羧酸类化合物及其医药用途
US20240122938A1 (en) 2019-10-29 2024-04-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating uveal melanoma
KR20220092540A (ko) 2019-10-29 2022-07-01 에자이 알앤드디 매니지먼트 가부시키가이샤 암을 치료하기 위한 pd-1 길항제, vegfr/fgfr/ret 티로신 키나제 억제제 및 cbp/베타-카테닌 억제제의 조합물
US20220380765A1 (en) 2019-11-02 2022-12-01 Board Of Regents, The University Of Texas System Targeting nonsense-mediated decay to activate p53 pathway for the treatment of cancer
EP4054719A1 (en) 2019-11-04 2022-09-14 Revolution Medicines, Inc. Ras inhibitors
CA3159559A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
CN114599372A (zh) 2019-11-04 2022-06-07 阿斯利康(瑞典)有限公司 用于治疗癌症的组合疗法
TW202132314A (zh) 2019-11-04 2021-09-01 美商銳新醫藥公司 Ras抑制劑
EP4055392A1 (en) 2019-11-05 2022-09-14 Bristol-Myers Squibb Company M-protein assays and uses thereof
WO2021092221A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092220A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
US20220389103A1 (en) 2019-11-06 2022-12-08 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
CA3151629A1 (en) 2019-11-07 2021-05-14 Laura E. BENJAMIN Classification of tumor microenvironments
JP2022553851A (ja) 2019-11-08 2022-12-26 ブリストル-マイヤーズ スクイブ カンパニー 黒色腫の処置のためのlag-3アンタゴニスト
PE20230249A1 (es) 2019-11-08 2023-02-07 Revolution Medicines Inc Compuestos de heteroarilo biciclicos y usos de estos
TW202120504A (zh) 2019-11-11 2021-06-01 美商英塞特公司 Pd-1/pd-l1 抑制劑之鹽及結晶型
CA3155989A1 (en) 2019-11-13 2021-05-20 Jason Robert ZBIEG Therapeutic compounds and methods of use
US20220395553A1 (en) 2019-11-14 2022-12-15 Cohbar, Inc. Cxcr4 antagonist peptides
WO2021097212A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
AR120456A1 (es) 2019-11-14 2022-02-16 Amgen Inc Síntesis mejorada del compuesto inhibidor de g12c de kras
EP3824954A1 (en) 2019-11-22 2021-05-26 Centre National de la Recherche Scientifique Device, apparatus and method for minibeam radiation therapy
US11590116B2 (en) 2019-11-22 2023-02-28 Theravance Biopharma R&D Ip, Llc Substituted pyridines and methods of use
US20230000864A1 (en) 2019-11-22 2023-01-05 Sumitomo Pharma Oncology, Inc. Solid dose pharmaceutical composition
JP2023503161A (ja) 2019-11-26 2023-01-26 ノバルティス アーゲー Cd19及びcd22キメラ抗原受容体及びその使用
WO2021108025A1 (en) 2019-11-26 2021-06-03 Massachusetts Institute Of Technology Cell-based cancer vaccines and cancer therapies
JP2023505100A (ja) 2019-11-27 2023-02-08 レボリューション メディシンズ インコーポレイテッド 共有ras阻害剤及びその使用
JPWO2021106978A1 (ru) 2019-11-27 2021-06-03
IL293350A (en) 2019-11-27 2022-07-01 Myst Therapeutics Llc A method for producing tumor-reactive t cells using modulatory substances
CN110927389B (zh) * 2019-11-29 2021-07-16 中国科学院苏州生物医学工程技术研究所 一种癌症生物标志物、用途
EP3831849A1 (en) 2019-12-02 2021-06-09 LamKap Bio beta AG Bispecific antibodies against ceacam5 and cd47
CA3163875A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
EP3920976B1 (en) 2019-12-04 2023-07-19 Orna Therapeutics, Inc. Circular rna compositions and methods
CA3162010A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Derivatives of an fgfr inhibitor
WO2021113644A1 (en) 2019-12-05 2021-06-10 Multivir Inc. Combinations comprising a cd8+ t cell enhancer, an immune checkpoint inhibitor and radiotherapy for targeted and abscopal effects for the treatment of cancer
EP4069683A1 (en) 2019-12-06 2022-10-12 Mersana Therapeutics, Inc. Dimeric compounds as sting agonists
US11897950B2 (en) 2019-12-06 2024-02-13 Augusta University Research Institute, Inc. Osteopontin monoclonal antibodies
MX2022006891A (es) 2019-12-09 2022-09-09 Seagen Inc Terapia combinada con liv1-adc y antagonista de pd-1.
JP2023506734A (ja) 2019-12-11 2023-02-20 アイオバンス バイオセラピューティクス,インコーポレイテッド 腫瘍浸潤リンパ球(til)の産生のためのプロセス及びそれを使用する方法
GB201918230D0 (en) 2019-12-11 2020-01-22 Prec Therapeutics Ltd Antibodies and their uses
US20230028414A1 (en) 2019-12-16 2023-01-26 Amgen Inc. Dosing regimen of kras g12c inhibitor
KR20220128622A (ko) 2019-12-16 2022-09-21 바이엘 악티엔게젤샤프트 Ahr-억제제 및 pd1-억제제 항체의 조합물 및 암 치료에서의 그의 용도
JP2023509359A (ja) 2019-12-17 2023-03-08 フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド 鉄依存性細胞分解の誘導物質との併用抗癌療法
TW202136287A (zh) 2019-12-17 2021-10-01 法商Ose免疫治療公司 包含il-7變體之雙官能分子
US20230089255A1 (en) 2019-12-19 2023-03-23 Bristol-Myers Squibb Company Combinations of dgk inhibitors and checkpoint antagonists
US20230346901A1 (en) 2019-12-19 2023-11-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and vaccine compositions to treat cancers
EP4079763A4 (en) * 2019-12-20 2023-10-11 Guangdong Feipeng Pharmaceutical Co., Ltd MONOCLONAL ANTIBODY AGAINST HUMAN PROGRAMMED DEATH-1 (PD-1)
WO2021123996A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
CN113045655A (zh) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 抗ox40抗体及其用途
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
EP4085060A1 (en) 2020-01-03 2022-11-09 Incyte Corporation Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors
BR112022012918A2 (pt) 2020-01-07 2022-09-06 Univ Texas Variantes de enzima de exaustão de metiltioadenosina/adenosina humana melhorada para terapia do câncer
BR112022010086A2 (pt) 2020-01-07 2022-09-06 Revolution Medicines Inc Dosagem do inibidor de shp2 e métodos de tratamento de câncer
WO2021142237A1 (en) 2020-01-10 2021-07-15 Clovis Oncology, Inc. Methods for administering lucitanib and combinations thereof
CN114980902A (zh) 2020-01-17 2022-08-30 诺华股份有限公司 用于治疗骨髓增生异常综合征或慢性粒单核细胞白血病的包含tim-3抑制剂和低甲基化药物的组合
US20230076415A1 (en) 2020-01-17 2023-03-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
CA3165460A1 (en) 2020-01-28 2021-08-05 Genentech, Inc. Il15/il15r alpha heterodimeric fc-fusion proteins for the treatment of cancer
WO2021152005A1 (en) 2020-01-28 2021-08-05 Universite De Strasbourg Antisense oligonucleotide targeting linc00518 for treating melanoma
WO2021152495A1 (en) 2020-01-28 2021-08-05 Glaxosmithkline Intellectual Property Development Limited Combination treatments and uses and methods thereof
EP4097126A1 (en) 2020-01-30 2022-12-07 Gnubiotics Sciences SA Compositions comprising pig stomach mucins and uses thereof
WO2021152548A1 (en) 2020-01-30 2021-08-05 Benitah Salvador Aznar Combination therapy for treatment of cancer and cancer metastasis
TW202142257A (zh) 2020-01-31 2021-11-16 美商建南德克公司 用pd-1軸結合拮抗劑及rna疫苗誘導新抗原決定基特異性t細胞之方法
US20230072528A1 (en) 2020-02-05 2023-03-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for discontinuing a treatment with a tyrosine kinase inhibitor (tki)
CN115362167A (zh) 2020-02-06 2022-11-18 百时美施贵宝公司 Il-10及其用途
CN113244385A (zh) * 2020-02-07 2021-08-13 上海君实生物医药科技股份有限公司 抗pd-1抗体在治疗恶性肿瘤中的用途
WO2021167908A1 (en) 2020-02-17 2021-08-26 Board Of Regents, The University Of Texas System Methods for expansion of tumor infiltrating lymphocytes and use thereof
JP2023516195A (ja) 2020-02-26 2023-04-18 バイオグラフ 55,インク. C19 c38二特異性抗体
WO2021174208A1 (en) 2020-02-27 2021-09-02 Myst Therapeutics, Llc Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof
KR20220148846A (ko) 2020-02-28 2022-11-07 노파르티스 아게 다브라페닙, erk 억제제, 및 raf 억제제를 포함하는 삼중 약학적 조합물
US20230113705A1 (en) 2020-02-28 2023-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing, prognosing and managing treatment of breast cancer
WO2021171264A1 (en) 2020-02-28 2021-09-02 Novartis Ag Dosing of a bispecific antibody that binds cd123 and cd3
AU2021357520A1 (en) 2020-03-05 2022-09-29 Neotx Therapeutics Ltd. Methods and compositions for treating cancer with immune cells
IL295979A (en) 2020-03-06 2022-10-01 Ona Therapeutics S L Anti-cd36 antibodies and their use for cancer treatment
IL296065A (en) 2020-03-06 2022-10-01 Incyte Corp Combined treatment including axl/mer and pd-1/pd-l1 inhibitors
AU2021230575A1 (en) 2020-03-06 2022-10-20 Celgene Quanticel Research, Inc. Combination of an LSD-1 inhibitor and nivolumab for use in treating SCLC or sqNSCLC
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
WO2021177822A1 (en) 2020-03-06 2021-09-10 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Modulating anti-tumor immunity
EP3878446A1 (en) 2020-03-09 2021-09-15 Universite De Geneve Hsd11b1 inhibitors for use in immunotherapy and uses thereof
US20230140384A1 (en) 2020-03-09 2023-05-04 Bristol-Myers Squibb Company Antibodies to cd40 with enhanced agonist activity
US20230093147A1 (en) 2020-03-09 2023-03-23 President And Fellows Of Harvard College Methods and compositions relating to improved combination therapies
CN116034114A (zh) 2020-03-20 2023-04-28 奥纳治疗公司 环状rna组合物和方法
AU2021244200A1 (en) 2020-03-23 2022-11-24 Bristol-Myers Squibb Company Anti-CCR8 antibodies for treating cancer
US20230159573A1 (en) 2020-03-26 2023-05-25 The Regents Of The University Of Michigan Small molecule stat protein degraders
AU2021242305A1 (en) * 2020-03-26 2022-10-20 Cureimmune Therapeutics Inc. Anti-PD-1 antibodies and methods of use
CN115443269A (zh) 2020-03-31 2022-12-06 施万生物制药研发Ip有限责任公司 经取代的嘧啶和使用方法
CN115698717A (zh) 2020-04-03 2023-02-03 基因泰克公司 癌症的治疗和诊断方法
EP4133107A1 (en) 2020-04-06 2023-02-15 Yeda Research and Development Co. Ltd Methods of diagnosing cancer and predicting responsiveness to therapy
WO2021206158A1 (ja) 2020-04-10 2021-10-14 小野薬品工業株式会社 がん治療方法
US20230151024A1 (en) 2020-04-10 2023-05-18 Ono Pharmaceutical Co., Ltd. Sting agonistic compound
KR20230009386A (ko) 2020-04-10 2023-01-17 주노 쎄러퓨티크스 인코퍼레이티드 B-세포 성숙 항원을 표적화하는 키메라 항원 수용체로 조작된 세포 요법 관련 방법 및 용도
CA3171597A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer
WO2021209357A1 (en) 2020-04-14 2021-10-21 Glaxosmithkline Intellectual Property Development Limited Combination treatment for cancer involving anti-icos and anti-pd1 antibodies, optionally further involving anti-tim3 antibodies
EP4135844A1 (en) 2020-04-16 2023-02-22 Incyte Corporation Fused tricyclic kras inhibitors
WO2021216572A1 (en) 2020-04-20 2021-10-28 Massachusetts Institute Of Technology Lipid compositions for delivery of sting agonist compounds and uses thereof
CA3168737A1 (en) 2020-04-21 2021-10-28 Jiaxi WU Il-2 variants with reduced binding to il-2 receptor alpha and uses thereof
EP4138819A1 (en) 2020-04-21 2023-03-01 Novartis AG Dosing regimen for treating a disease modulated by csf-1r
KR20230004682A (ko) 2020-04-22 2023-01-06 머크 샤프 앤드 돔 엘엘씨 인터류킨-2 수용체 베타 감마c 이량체에 대해 편향되고 비펩티드성 수용성 중합체에 접합된 인간 인터류킨-2 접합체
CN115997008A (zh) 2020-04-22 2023-04-21 艾欧凡斯生物治疗公司 协调用于患者特异性免疫疗法的细胞的制造的系统和方法
TW202206100A (zh) 2020-04-27 2022-02-16 美商西健公司 癌症之治療
EP4143345A1 (en) 2020-04-28 2023-03-08 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
US20230181756A1 (en) 2020-04-30 2023-06-15 Novartis Ag Ccr7 antibody drug conjugates for treating cancer
TW202208616A (zh) 2020-05-04 2022-03-01 美商艾歐凡斯生物治療公司 改良之腫瘤反應性t細胞的選擇
WO2021224186A1 (en) 2020-05-04 2021-11-11 Institut Curie New pyridine derivatives as radiosensitizers
KR20230006568A (ko) * 2020-05-04 2023-01-10 비욘드스프링 파마수티컬스, 인코포레이티드. 낮은 면역원성을 갖는 암에서 암세포 사멸을 강화하기 위한 삼중 병용 요법
EP4146345A2 (en) 2020-05-05 2023-03-15 Teon Therapeutics, Inc. Cannabinoid receptor type 2 (cb2) modulators and uses thereof
CN115485561A (zh) 2020-05-05 2022-12-16 豪夫迈·罗氏有限公司 预测对pd-1轴抑制剂的反应
US11826386B2 (en) 2020-05-05 2023-11-28 Regeneron Pharmaceuticals, Inc. Compositions and methods for treating cancer
TW202202493A (zh) 2020-05-06 2022-01-16 美商默沙東藥廠 Il4i1抑制劑及使用方法
CN115943312A (zh) 2020-05-07 2023-04-07 法国居里学院 免疫抑制性成纤维细胞群体的生物标志物antxr1及其在预测对免疫疗法的反应中的用途
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
AU2021270750A1 (en) 2020-05-13 2022-12-08 Massachusetts Institute Of Technology Compositions of polymeric microdevices and their use in cancer immunotherapy
WO2021231732A1 (en) 2020-05-15 2021-11-18 Bristol-Myers Squibb Company Antibodies to garp
BR112022021447A2 (pt) 2020-05-19 2022-12-13 Boehringer Ingelheim Int Moléculas de ligação para o tratamento de câncer
CA3182333A1 (en) 2020-05-20 2021-11-25 Institut Curie Single domain antibodies and their use in cancer therapies
AU2021275239A1 (en) 2020-05-21 2022-12-15 Board Of Regents, The University Of Texas System T cell receptors with VGLL1 specificity and uses thereof
JP2023528017A (ja) 2020-05-26 2023-07-03 アンセルム(アンスティチュート・ナシオナル・ドゥ・ラ・サンテ・エ・ドゥ・ラ・ルシェルシュ・メディカル) 重症急性呼吸器症候群コロナウイルス2(sars-cov-2)ポリペプチドおよびワクチン目的でのその使用
CN115666724A (zh) 2020-05-26 2023-01-31 瑞泽恩制药公司 通过施用pd-1抑制剂抗体西米普利单抗来治疗宫颈癌的方法
WO2021243207A1 (en) 2020-05-28 2021-12-02 Modernatx, Inc. Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer
EP4157923A2 (en) 2020-05-29 2023-04-05 President And Fellows Of Harvard College Living cells engineered with polyphenol-functionalized biologically active nanocomplexes
CN115916231A (zh) 2020-06-03 2023-04-04 勃林格殷格翰国际有限公司 编码CD80胞外域Fc融合蛋白的重组弹状病毒
WO2021247836A1 (en) 2020-06-03 2021-12-09 Board Of Regents, The University Of Texas System Methods for targeting shp-2 to overcome resistance
US11767353B2 (en) 2020-06-05 2023-09-26 Theraly Fibrosis, Inc. Trail compositions with reduced immunogenicity
WO2021253041A1 (en) 2020-06-10 2021-12-16 Theravance Biopharma R&D Ip, Llc Naphthyridine derivatives useful as alk5 inhibitors
EP4165169A1 (en) 2020-06-11 2023-04-19 Novartis AG Zbtb32 inhibitors and uses thereof
EP4165415A1 (en) 2020-06-12 2023-04-19 Genentech, Inc. Methods and compositions for cancer immunotherapy
KR20230025691A (ko) 2020-06-16 2023-02-22 제넨테크, 인크. 삼중 음성 유방암을 치료하기 위한 방법과 조성물
CN115916194A (zh) 2020-06-18 2023-04-04 锐新医药公司 用于延迟、预防和治疗针对ras抑制剂的获得性抗性的方法
TW202214857A (zh) 2020-06-19 2022-04-16 法商昂席歐公司 新型結合核酸分子及其用途
AU2021291011A1 (en) 2020-06-19 2023-01-05 F. Hoffmann-La Roche Ag Antibodies binding to CD3 and CD19
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2021260443A1 (en) 2020-06-24 2021-12-30 Bayer Aktiengesellschaft Combinations of 2,3-dihydroimidazo[1,2-c]quinazolines
WO2021262969A1 (en) 2020-06-24 2021-12-30 The General Hospital Corporation Materials and methods of treating cancer
US20230293530A1 (en) 2020-06-24 2023-09-21 Yeda Research And Development Co. Ltd. Agents for sensitizing solid tumors to treatment
KR20230027082A (ko) 2020-06-25 2023-02-27 셀진 코포레이션 조합 요법을 사용한 암의 치료 방법
IL299149A (en) 2020-06-26 2023-02-01 Amgen Inc IL-10 mutants and their related proteins
CN116209677A (zh) * 2020-06-26 2023-06-02 索伦托药业有限公司 抗pd1抗体及其用途
JP2023532339A (ja) 2020-06-29 2023-07-27 フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド サノトランスミッションを促進するためにエンジニアリングされたウイルス及び癌の処置におけるそれらの使用
EP4172621A1 (en) 2020-06-30 2023-05-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapies
CN115843335A (zh) 2020-06-30 2023-03-24 国家医疗保健研究所 用于预测患有实体癌的患者在术前辅助治疗和根治性手术后复发和/或死亡风险的方法
KR20230033647A (ko) 2020-06-30 2023-03-08 멘두스 비.브이. 난소암 백신에서 백혈병 유래 세포의 용도
KR20230035598A (ko) 2020-07-07 2023-03-14 셀진 코포레이션 (s)-4-(4-(4-(((2-(2,6-디옥소피페리딘-3-일)-1-옥소이소인돌린-4-일)옥시)메틸)벤질)피페라진-1-일)-3-플루오로벤조니트릴을 포함하는 약제학적 조성물 및 이를 사용하는 방법
CA3182579A1 (en) 2020-07-07 2022-01-13 Ugur Sahin Therapeutic rna for hpv-positive cancer
WO2022009157A1 (en) 2020-07-10 2022-01-13 Novartis Ag Lhc165 and spartalizumab combinations for treating solid tumors
US20230233690A1 (en) 2020-07-10 2023-07-27 The Regents Of The University Of Michigan Androgen receptor protein degraders
WO2022011204A1 (en) 2020-07-10 2022-01-13 The Regents Of The University Of Michigan Small molecule androgen receptor protein degraders
WO2022015716A2 (en) * 2020-07-13 2022-01-20 The Children's Medical Center Corporation Novel anti-pd1 antibodies for inhibiting t-cell activity
TW202216778A (zh) 2020-07-15 2022-05-01 美商安進公司 Tigit及cd112r阻斷
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
BR112023001487A2 (pt) * 2020-07-27 2023-02-14 Macrogenics Inc Método para tratar um câncer, método para estimular células imunes, kit farmacêutico e uso do kit farmacêutico
US20230266332A1 (en) 2020-07-28 2023-08-24 Inserm (Institut National De La Santè Et De La Recherch Médicale) Methods and compositions for preventing and treating a cancer
TW202221031A (zh) 2020-07-30 2022-06-01 英商阿法克塔生命科學有限公司 血清半衰期延長之pd-l1抑制多肽
CN116134027A (zh) 2020-08-03 2023-05-16 诺华股份有限公司 杂芳基取代的3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途
WO2022031884A2 (en) 2020-08-05 2022-02-10 Synthekine, Inc. Il2rg binding molecules and methods of use
EP4192490A1 (en) 2020-08-05 2023-06-14 Synthekine, Inc. IL27Ra BINDING MOLECULES AND METHODS OF USE
KR20230065259A (ko) 2020-08-05 2023-05-11 신테카인, 인크. Il10 수용체 결합 분자 및 사용 방법
EP4196612A1 (en) 2020-08-12 2023-06-21 Genentech, Inc. Diagnostic and therapeutic methods for cancer
CN116194480A (zh) 2020-08-13 2023-05-30 百时美施贵宝公司 将il-2重定向到目的靶细胞的方法
CN116761818A (zh) 2020-08-26 2023-09-15 马伦戈治疗公司 检测trbc1或trbc2的方法
KR20230056761A (ko) 2020-08-26 2023-04-27 리제너론 파마슈티칼스 인코포레이티드 Pd-1 저해제의 투여에 의한 암 치료 방법
CN111944052B (zh) * 2020-08-26 2022-02-11 中国药科大学 抗TNF-α/PD-1双特异性抗体及其应用
BR112023003427A2 (pt) 2020-08-28 2023-03-21 Bristol Myers Squibb Co Terapia com antagonista de lag-3 para carcinoma hepatocelular
WO2022047093A1 (en) 2020-08-28 2022-03-03 Incyte Corporation Vinyl imidazole compounds as inhibitors of kras
AU2021334361A1 (en) 2020-08-31 2023-05-11 Bristol-Myers Squibb Company Cell localization signature and immunotherapy
CN111808196B (zh) * 2020-08-31 2020-12-29 北京百奥赛图基因生物技术有限公司 抗pd-1抗体及其用途
WO2022049526A1 (en) 2020-09-02 2022-03-10 Pharmabcine Inc. Combination therapy of a pd-1 antagonist and an antagonist for vegfr-2 for treating patients with cancer
AU2021344830A1 (en) 2020-09-03 2023-04-06 Revolution Medicines, Inc. Use of SOS1 inhibitors to treat malignancies with SHP2 mutations
IL300975A (en) 2020-09-03 2023-04-01 Regeneron Pharma Methods for treating cancer pain by administering a PD-1 inhibitor
EP4210734A1 (en) 2020-09-14 2023-07-19 Boehringer Ingelheim International GmbH Heterologous prime boost vaccine
KR20230067635A (ko) 2020-09-15 2023-05-16 레볼루션 메디슨즈, 인크. 암의 치료에서 ras 억제제로서 인돌 유도체
EP4222171A1 (en) 2020-10-02 2023-08-09 Regeneron Pharmaceuticals, Inc. Combination of antibodies for treating cancer with reduced cytokine release syndrome
WO2022072783A1 (en) 2020-10-02 2022-04-07 Incyte Corporation Bicyclic dione compounds as inhibitors of kras
CN116406369A (zh) 2020-10-05 2023-07-07 百时美施贵宝公司 用于浓缩蛋白质的方法
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
US20230364127A1 (en) 2020-10-06 2023-11-16 Codiak Biosciences, Inc. Extracellular vesicle-aso constructs targeting stat6
EP4225330A1 (en) 2020-10-06 2023-08-16 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
CA3192963A1 (en) 2020-10-08 2022-04-14 Esteban Pombo-Villar Immunotherapy for the treatment of cancer
WO2022074107A1 (en) 2020-10-09 2022-04-14 Worldwide Innovative Network Novel prediction method and gene signatures for the treatment of cancer
WO2022079270A1 (en) 2020-10-16 2022-04-21 Université D'aix-Marseille Anti-gpc4 single domain antibodies
WO2022084325A1 (en) 2020-10-20 2022-04-28 Institut Curie Metallic trans-(n-heterocyclic carbene)-amine-platinum complexes and uses thereof for treating cancer
JP2023545566A (ja) 2020-10-20 2023-10-30 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Pd-1軸結合アンタゴニストとlrrk2阻害剤との併用療法
TW202233671A (zh) 2020-10-20 2022-09-01 美商建南德克公司 Peg結合抗mertk抗體及其使用方法
WO2022084531A1 (en) 2020-10-23 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating glioma
EP4232019A1 (en) 2020-10-23 2023-08-30 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022092085A1 (ja) 2020-10-28 2022-05-05 エーザイ・アール・アンド・ディー・マネジメント株式会社 腫瘍治療用医薬組成物
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
MX2023004847A (es) 2020-10-28 2023-07-11 Ikena Oncology Inc Combinación de un inhibidor del receptor de hidrocarburos de arilo (ahr) con un inhibidor de pdx o doxorrubicina.
JP2023548064A (ja) 2020-11-04 2023-11-15 ジェネンテック, インコーポレイテッド 抗cd20/抗cd3二重特異性抗体及び抗cd79b抗体薬物コンジュゲートによる処置のための投与
US20220162329A1 (en) 2020-11-04 2022-05-26 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
EP4240766A2 (en) 2020-11-04 2023-09-13 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
EP4240424A1 (en) 2020-11-04 2023-09-13 Heidelberg Pharma Research GmbH Composition comprising a combination of immune checkpoint inhibitor and antibody-amatoxin conjugate for use in cancer therapy
TW202233615A (zh) 2020-11-06 2022-09-01 美商英塞特公司 Pd—1/pd—l1抑制劑之結晶形式
AU2021373044A1 (en) 2020-11-06 2023-06-08 Incyte Corporation Process for making a pd-1/pd-l1 inhibitor and salts and crystalline forms thereof
WO2022097060A1 (en) 2020-11-06 2022-05-12 Novartis Ag Cd19 binding molecules and uses thereof
WO2022099018A1 (en) 2020-11-06 2022-05-12 Incyte Corporation Process of preparing a pd-1/pd-l1 inhibitor
TW202233248A (zh) 2020-11-08 2022-09-01 美商西健公司 組合療法
EP4244253A1 (en) 2020-11-12 2023-09-20 Inserm (Institut National De La Sante Et De La Recherche Medicale) Antibodies conjugated or fused to the receptor-binding domain of the sars-cov-2 spike protein and uses thereof for vaccine purposes
IL302728A (en) 2020-11-13 2023-07-01 Catamaran Bio Inc Genetically modified natural killer cells and methods of using them
JPWO2022102731A1 (ru) 2020-11-13 2022-05-19
WO2022101463A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of the last c-terminal residues m31/41 of zikv m ectodomain for triggering apoptotic cell death
WO2022101484A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating uveal melanoma
WO2022101481A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating uveal melanoma
CA3200671A1 (en) 2020-11-17 2022-05-27 Seagen Inc. Methods of treating cancer with a combination of tucatinib and an anti-pd-1/anti-pd-l1 antibody
EP4247352A1 (en) 2020-11-18 2023-09-27 Institut Curie Dimers of biguanidines and their therapeutic uses
WO2022112198A1 (en) 2020-11-24 2022-06-02 Worldwide Innovative Network Method to select the optimal immune checkpoint therapies
EP4251645A1 (en) 2020-11-25 2023-10-04 Catamaran Bio, Inc. Cellular therapeutics engineered with signal modulators and methods of use thereof
TW202227089A (zh) 2020-11-30 2022-07-16 大陸商杭州阿諾生物醫藥科技有限公司 用於治療pik3ca突變癌症的組合療法
MX2023006488A (es) 2020-12-02 2023-06-20 Genentech Inc Procedimientos y composiciones para el tratamiento neoadyuvante y adyuvante del carcinoma urotelial.
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
CA3201219A1 (en) 2020-12-04 2022-06-09 Mir Ali Ionizable cationic lipids and lipid nanoparticles, and methods of synthesis and use thereof
US20240050432A1 (en) 2020-12-08 2024-02-15 Infinity Pharmaceuticals, Inc. Eganelisib for use in the treatment of pd-l1 negative cancer
TW202237119A (zh) 2020-12-10 2022-10-01 美商住友製藥腫瘤公司 Alk﹘5抑制劑和彼之用途
WO2022130206A1 (en) 2020-12-16 2022-06-23 Pfizer Inc. TGFβr1 INHIBITOR COMBINATION THERAPIES
WO2022129512A1 (en) 2020-12-17 2022-06-23 Ose Immunotherapeutics Bifunctional anti-pd1/il-7 molecules
EP4055055B1 (en) 2020-12-18 2023-11-22 LamKap Bio beta AG Bispecific antibodies against ceacam5 and cd47
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
TW202245808A (zh) 2020-12-21 2022-12-01 德商拜恩迪克公司 用於治療癌症之治療性rna
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
CN117396472A (zh) 2020-12-22 2024-01-12 上海齐鲁锐格医药研发有限公司 Sos1抑制剂及其用途
JP2024501029A (ja) 2020-12-28 2024-01-10 ブリストル-マイヤーズ スクイブ カンパニー Pd1/pd-l1抗体の皮下投与
AU2021411486A1 (en) 2020-12-28 2023-06-29 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
CA3207066A1 (en) 2020-12-29 2022-07-07 Incyte Corporation Combination therapy comprising a2a/a2b inhibitors, pd-1/pd-l1 inhibitors, and anti-cd73 antibodies
JP2024501845A (ja) 2020-12-31 2024-01-16 アイオバンス バイオセラピューティクス,インコーポレイテッド 腫瘍浸潤リンパ球の自動化された産生のためのデバイス及びプロセス
WO2022148781A1 (en) 2021-01-05 2022-07-14 Institut Curie Combination of mcoln activators and immune checkpoint inhibitors
MX2023007846A (es) 2021-01-06 2023-07-07 F Hoffmann La Roche Ag Tratamiento conjunto que usa un anticuerpo biespecifico contra pd1-lag3 y un anticuerpo biespecifico de linfocitos t cd20.
KR20230129467A (ko) 2021-01-08 2023-09-08 브리스톨-마이어스 스큅 컴퍼니 항-푸코실-gm1 항체를 사용하는 조합 요법
EP4274616A2 (en) 2021-01-11 2023-11-15 Synthekine, Inc. Compositions and methods related to receptor pairing
IL304031A (en) 2021-01-14 2023-08-01 Inst Curie Variants of single-domain HER2 antibodies and their chimeric antigenic receptors
WO2022155541A1 (en) 2021-01-14 2022-07-21 AskGene Pharma, Inc. Interferon prodrugs and methods of making and using the same
JP2024503480A (ja) 2021-01-19 2024-01-25 ウィリアム マーシュ ライス ユニバーシティ ポリペプチドの骨特異的送達法
CA3203705A1 (en) 2021-01-22 2022-07-28 Erik Hans MANTING Methods of tumor vaccination
JP2024505049A (ja) 2021-01-29 2024-02-02 ノバルティス アーゲー 抗cd73及び抗entpd2抗体のための投与方式並びにその使用
WO2022165403A1 (en) 2021-02-01 2022-08-04 Yale University Chemotherapeutic bioadhesive particles with immunostimulatory molecules for cancer treatment
CN115105600A (zh) 2021-02-10 2022-09-27 同润生物医药(上海)有限公司 一种PI3Kδ/γ的药物组合及其治疗肿瘤的方法
WO2022174102A1 (en) 2021-02-12 2022-08-18 Synthorx, Inc. Lung cancer combination therapy with il-2 conjugates and an anti-pd-1 antibody or antigen-binding fragment thereof
US20220267446A1 (en) * 2021-02-18 2022-08-25 Qilu Puget Sound Biotherapeutics Corporation Combinations of anti-pd1 and anti-ctla4 antibodies
KR20220118963A (ko) 2021-02-19 2022-08-26 (주)샤페론 Pd-l1 및 cd47에 대한 이중특이적 단일 도메인 항체 및 이의 용도
WO2022177393A1 (ko) 2021-02-19 2022-08-25 (주)샤페론 Pd-l1에 대한 단일 도메인 항체 및 이의 용도
CA3212345A1 (en) 2021-03-02 2022-09-09 Glaxosmithkline Intellectual Property Development Limited Substituted pyridines as dnmt1 inhibitors
WO2022187423A1 (en) 2021-03-03 2022-09-09 The Regents Of The University Of Michigan Cereblon ligands
WO2022187419A1 (en) 2021-03-03 2022-09-09 The Regents Of The University Of Michigan Small molecule degraders of androgen receptor
EP4301138A2 (en) 2021-03-05 2024-01-10 Iovance Biotherapeutics, Inc. Tumor storage and cell culture compositions
CN117677634A (zh) 2021-03-05 2024-03-08 利达提斯有限公司 三聚体多肽及其在治疗癌症中的用途
WO2022189618A1 (en) 2021-03-12 2022-09-15 Institut Curie Nitrogen-containing heterocycles as radiosensitizers
US20220305100A1 (en) 2021-03-12 2022-09-29 Dcprime B.V. Methods of vaccination and use of cd47 blockade
WO2022194908A1 (en) 2021-03-17 2022-09-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
CN117321418A (zh) 2021-03-18 2023-12-29 诺华股份有限公司 癌症生物标志物及其使用方法
JP2024512478A (ja) 2021-03-19 2024-03-19 ハイデルベルク ファルマ リサーチ ゲゼルシャフト ミット ベシュレンクテル ハフツング Bリンパ球特異的アマトキシン抗体コンジュゲート
WO2022198101A1 (en) 2021-03-19 2022-09-22 Trained Therapeutix Discovery, Inc. Compounds for regulating trained immunity, and their methods of use
WO2022204672A1 (en) 2021-03-23 2022-09-29 Regeneron Pharmaceuticals, Inc. Methods of treating cancer in immunosuppressed or immunocompromised patients by administering a pd-1 inhibitor
TW202304506A (zh) 2021-03-25 2023-02-01 日商安斯泰來製藥公司 涉及抗claudin 18.2抗體的組合治療以治療癌症
EP4314348A1 (en) 2021-03-25 2024-02-07 Oncxerna Therapeutics, Inc. Targeted therapies in cancer
WO2022212400A1 (en) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy
JP2024512669A (ja) 2021-03-31 2024-03-19 フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド タノトランスミッションポリペプチド及び癌の処置におけるそれらの使用
TW202304995A (zh) * 2021-03-31 2023-02-01 荷蘭商美勒斯公司 新穎pd-1結合域
WO2022208353A1 (en) 2021-03-31 2022-10-06 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins and combinations thereof
EP4314068A1 (en) 2021-04-02 2024-02-07 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
US20220339152A1 (en) 2021-04-08 2022-10-27 Nurix Therapeutics, Inc. Combination therapies with cbl-b inhibitor compounds
BR112023020832A2 (pt) 2021-04-08 2023-12-19 Marengo Therapeutics Inc Moléculas multifuncionais ligadas a tcr e seus usos
WO2022217026A1 (en) 2021-04-09 2022-10-13 Seagen Inc. Methods of treating cancer with anti-tigit antibodies
WO2022214652A1 (en) 2021-04-09 2022-10-13 Ose Immunotherapeutics Scaffold for bifunctioanl molecules comprising pd-1 or cd28 and sirp binding domains
EP4319728A1 (en) 2021-04-09 2024-02-14 Genentech, Inc. Combination therapy with a raf inhibitor and a pd-1 axis inhibitor
BR112023020303A2 (pt) 2021-04-09 2023-11-14 Celldex Therapeutics Inc Anticorpos contra ilt4, anticorpo anti-ilt4/pd-l1 bispecífico e seus usos
IL307419A (en) 2021-04-09 2023-12-01 Ose Immunotherapeutics A new scaffold for bifunctional molecules with improved properties
JP2024513575A (ja) 2021-04-12 2024-03-26 インサイト・コーポレイション Fgfr阻害剤及びネクチン-4標的化剤を含む併用療法
TW202309022A (zh) 2021-04-13 2023-03-01 美商努法倫特公司 用於治療具egfr突變之癌症之胺基取代雜環
WO2022219080A1 (en) 2021-04-14 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to improve nk cells cytotoxicity
WO2022221720A1 (en) 2021-04-16 2022-10-20 Novartis Ag Antibody drug conjugates and methods for making thereof
KR20230171980A (ko) 2021-04-20 2023-12-21 씨젠 인크. 항체 의존성 세포 독성의 조절
WO2022223791A1 (en) 2021-04-23 2022-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cell senescence accumulation related disease
CA3216276A1 (en) 2021-04-29 2022-11-03 Yardena Samuels T cell receptors directed against ras-derived recurrent neoantigens and methods of identifying same
JP2024516230A (ja) 2021-04-30 2024-04-12 ジェネンテック, インコーポレイテッド がんのための治療及び診断方法並びに組成物
EP4330282A1 (en) 2021-04-30 2024-03-06 F. Hoffmann-La Roche AG Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
WO2022227015A1 (en) 2021-04-30 2022-11-03 Merck Sharp & Dohme Corp. Il4i1 inhibitors and methods of use
WO2022235870A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors for the treatment of cancer
CN117500811A (zh) 2021-05-05 2024-02-02 锐新医药公司 共价ras抑制剂及其用途
CR20230570A (es) 2021-05-05 2024-01-22 Revolution Medicines Inc Inhibidores de ras
JP2024516970A (ja) 2021-05-07 2024-04-18 サーフィス オンコロジー, エルエルシー 抗il-27抗体及びその使用
EP4337763A1 (en) 2021-05-10 2024-03-20 Institut Curie Methods for the treatment of cancer, inflammatory diseases and autoimmune diseases
EP4340850A1 (en) 2021-05-17 2024-03-27 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
EP4342492A1 (en) 2021-05-21 2024-03-27 Tianjin Lipogen Technology Co., Ltd Pharmaceutical combination and use thereof
CN113030475B (zh) * 2021-05-25 2021-08-10 泛肽生物科技(浙江)有限公司 一种基于细胞线粒体质量评估的t细胞pd-1检测方法
AU2022280921A1 (en) 2021-05-26 2023-12-07 Centro De Inmunologia Molecular Use of therapeutic compositions for the treatment of patients with tumours of epithelial origin
WO2022251359A1 (en) 2021-05-26 2022-12-01 Theravance Biopharma R&D Ip, Llc Bicyclic inhibitors of alk5 and methods of use
AU2022280511A1 (en) 2021-05-28 2023-12-14 Nippon Kayaku Kabushiki Kaisha Combined use of ubenimex and immune checkpoint inhibitor
TW202307210A (zh) 2021-06-01 2023-02-16 瑞士商諾華公司 Cd19和cd22嵌合抗原受體及其用途
WO2022256538A1 (en) 2021-06-03 2022-12-08 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and cetuximab
GB202107994D0 (en) 2021-06-04 2021-07-21 Kymab Ltd Treatment of cancer
BR112023022097A2 (pt) 2021-06-07 2023-12-19 Agonox Inc Cxcr5, pd-1 e icos expressando células t cd4 reativas de tumor e seu uso
AR126101A1 (es) 2021-06-09 2023-09-13 Incyte Corp Heterociclos tricíclicos como inhibidores de fgfr
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
KR20240019111A (ko) 2021-06-10 2024-02-14 오노 야꾸힝 고교 가부시키가이샤 Cd47 저해 물질, 면역 체크포인트 저해 물질 및 표준 요법의 병용에 의한 암 치료법
TW202317623A (zh) 2021-06-14 2023-05-01 美商再生元醫藥公司 基於il2之治療劑及其使用方法
EP4355780A1 (en) 2021-06-18 2024-04-24 Alligator Bioscience AB Novel combination therapies and uses thereof
WO2023278641A1 (en) 2021-06-29 2023-01-05 Flagship Pioneering Innovations V, Inc. Immune cells engineered to promote thanotransmission and uses thereof
BR112023026966A2 (pt) 2021-07-02 2024-03-12 Hoffmann La Roche Métodos para tratar um indivíduo com melanoma, para alcançar uma resposta clínica, para tratar um indivíduo com linfoma não hodgkin, para tratar uma população de indivíduos com linfoma não hodgkin e para tratar um indivíduo com câncer colorretal metastático
WO2023280790A1 (en) 2021-07-05 2023-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Gene signatures for predicting survival time in patients suffering from renal cell carcinoma
US20230056631A1 (en) 2021-07-07 2023-02-23 Incyte Corporation Tricyclic compounds as inhibitors of kras
AU2022312698A1 (en) 2021-07-13 2024-01-25 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
US20230114765A1 (en) 2021-07-14 2023-04-13 Incyte Corporation Tricyclic compounds as inhibitors of kras
AU2022314735A1 (en) 2021-07-19 2024-02-22 Regeneron Pharmaceuticals, Inc. Combination of checkpoint inhibitors and an oncolytic virus for treating cancer
WO2023010094A2 (en) 2021-07-28 2023-02-02 Genentech, Inc. Methods and compositions for treating cancer
AU2022317820A1 (en) 2021-07-28 2023-12-14 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
WO2023010080A1 (en) 2021-07-30 2023-02-02 Seagen Inc. Treatment for cancer
WO2023007472A1 (en) 2021-07-30 2023-02-02 ONA Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
WO2023015198A1 (en) 2021-08-04 2023-02-09 Genentech, Inc. Il15/il15r alpha heterodimeric fc-fusion proteins for the expansion of nk cells in the treatment of solid tumours
CA3228262A1 (en) 2021-08-04 2023-02-09 The Regents Of The University Of Colorado, A Body Corporate Lat activating chimeric antigen receptor t cells and methods of use thereof
WO2023011879A1 (en) 2021-08-05 2023-02-09 Institut Curie Scanning dynamic device for minibeams production
AU2022332285A1 (en) 2021-08-23 2024-02-15 Immunitas Therapeutics, Inc. Anti-cd161 antibodies and uses thereof
CA3229855A1 (en) 2021-08-31 2023-03-09 Incyte Corporation Naphthyridine compounds as inhibitors of kras
TW202325306A (zh) 2021-09-02 2023-07-01 美商天恩治療有限公司 改良免疫細胞之生長及功能的方法
AU2022340907A1 (en) 2021-09-02 2024-03-07 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Anti-cecam6 antibodies with reduced side-effects
AU2022341239A1 (en) 2021-09-08 2024-03-21 Redona Therapeutics, Inc. Papd5 and/or papd7 inhibiting 4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives
WO2023039583A1 (en) * 2021-09-10 2023-03-16 Trustees Of Tufts College Anti-pd-1 immunoglobulin polypeptides and uses thereof
WO2023036984A1 (en) 2021-09-13 2023-03-16 Plantibodies Genetically modified organism for recombinant protein production
WO2023041744A1 (en) 2021-09-17 2023-03-23 Institut Curie Bet inhibitors for treating pab1 deficient cancer
US20230151005A1 (en) 2021-09-21 2023-05-18 Incyte Corporation Hetero-tricyclic compounds as inhibitors of kras
TW202321308A (zh) 2021-09-30 2023-06-01 美商建南德克公司 使用抗tigit抗體、抗cd38抗體及pd—1軸結合拮抗劑治療血液癌症的方法
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023056421A1 (en) 2021-10-01 2023-04-06 Incyte Corporation Pyrazoloquinoline kras inhibitors
WO2023060136A1 (en) 2021-10-05 2023-04-13 Cytovia Therapeutics, Llc Natural killer cells and methods of use thereof
TW202327595A (zh) 2021-10-05 2023-07-16 美商輝瑞大藥廠 用於治療癌症之氮雜內醯胺化合物的組合
WO2023057534A1 (en) 2021-10-06 2023-04-13 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination
AR127308A1 (es) 2021-10-08 2024-01-10 Revolution Medicines Inc Inhibidores ras
TW202333802A (zh) 2021-10-11 2023-09-01 德商拜恩迪克公司 用於肺癌之治療性rna(二)
CA3235146A1 (en) 2021-10-14 2023-04-20 Incyte Corporation Quinoline compounds as inhibitors of kras
AU2022372894A1 (en) 2021-10-20 2024-04-18 Takeda Pharmaceutical Company Limited Compositions targeting bcma and methods of use thereof
WO2023076880A1 (en) 2021-10-25 2023-05-04 Board Of Regents, The University Of Texas System Foxo1-targeted therapy for the treatment of cancer
CA3234821A1 (en) 2021-10-28 2023-05-04 Suman Kumar VODNALA Methods for culturing immune cells
WO2023077090A1 (en) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hematological cancer
WO2023078900A1 (en) 2021-11-03 2023-05-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating triple negative breast cancer (tnbc)
WO2023081730A1 (en) 2021-11-03 2023-05-11 Teon Therapeutics, Inc. 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer
WO2023079428A1 (en) 2021-11-03 2023-05-11 Pfizer Inc. Combination therapies using tlr7/8 agonist
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023086835A1 (en) 2021-11-09 2023-05-19 Sensei Biotherapeutics, Inc. Anti-vista antibodies and uses thereof
TW202319073A (zh) 2021-11-12 2023-05-16 瑞士商諾華公司 用於治療肺癌的組合療法
WO2023088968A1 (en) 2021-11-17 2023-05-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Universal sarbecovirus vaccines
WO2023089032A1 (en) 2021-11-19 2023-05-25 Institut Curie Methods for the treatment of hrd cancer and brca-associated cancer
US20230226040A1 (en) 2021-11-22 2023-07-20 Incyte Corporation Combination therapy comprising an fgfr inhibitor and a kras inhibitor
WO2023097211A1 (en) 2021-11-24 2023-06-01 The University Of Southern California Methods for enhancing immune checkpoint inhibitor therapy
WO2023097195A1 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic indazole compounds and methods of use in the treatment of cancer
US20230203062A1 (en) 2021-11-24 2023-06-29 Genentech, Inc. Therapeutic compounds and methods of use
WO2023102184A1 (en) 2021-12-03 2023-06-08 Incyte Corporation Bicyclic amine compounds as cdk12 inhibitors
WO2023099763A1 (en) 2021-12-03 2023-06-08 Institut Curie Sirt6 inhibitors for use in treating resistant hrd cancer
WO2023104910A1 (en) 2021-12-08 2023-06-15 Tessa Therapeutics Ltd. Treatment of lymphoma
US20230183251A1 (en) 2021-12-10 2023-06-15 Incyte Corporation Bicyclic amines as cdk12 inhibitors
WO2023111203A1 (en) 2021-12-16 2023-06-22 Onxeo New conjugated nucleic acid molecules and their uses
TW202340214A (zh) 2021-12-17 2023-10-16 美商健臻公司 做為shp2抑制劑之吡唑并吡𠯤化合物
WO2023122573A1 (en) 2021-12-20 2023-06-29 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
WO2023118165A1 (en) 2021-12-21 2023-06-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
US20230192722A1 (en) 2021-12-22 2023-06-22 Incyte Corporation Salts and solid forms of an fgfr inhibitor and processes of preparing thereof
WO2023129438A1 (en) 2021-12-28 2023-07-06 Wisconsin Alumni Research Foundation Hydrogel compositions for use for depletion of tumor associated macrophages
WO2023130081A1 (en) 2021-12-30 2023-07-06 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and vegf antagonist
WO2023133280A1 (en) 2022-01-07 2023-07-13 Regeneron Pharmaceuticals, Inc. Methods of treating recurrent ovarian cancer with bispecific anti-muc16 x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023154905A1 (en) 2022-02-14 2023-08-17 Gilead Sciences, Inc. Antiviral pyrazolopyridinone compounds
WO2023154799A1 (en) 2022-02-14 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination immunotherapy for treating cancer
WO2023159102A1 (en) 2022-02-17 2023-08-24 Regeneron Pharmaceuticals, Inc. Combinations of checkpoint inhibitors and oncolytic virus for treating cancer
US20230277669A1 (en) 2022-02-24 2023-09-07 Amazentis Sa Uses of urolithins
WO2023164638A1 (en) 2022-02-25 2023-08-31 Bristol-Myers Squibb Company Combination therapy for colorectal carcinoma
WO2023168404A1 (en) 2022-03-04 2023-09-07 Bristol-Myers Squibb Company Methods of treating a tumor
US20230279004A1 (en) 2022-03-07 2023-09-07 Incyte Corporation Solid forms, salts, and processes of preparation of a cdk2 inhibitor
WO2023169986A1 (en) 2022-03-07 2023-09-14 Mabxience Research, S.L. Stable formulations for antibodies
WO2023170606A1 (en) 2022-03-08 2023-09-14 Alentis Therapeutics Ag Use of anti-claudin-1 antibodies to increase t cell availability
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023177772A1 (en) 2022-03-17 2023-09-21 Regeneron Pharmaceuticals, Inc. Methods of treating recurrent epithelioid sarcoma with bispecific anti-muc16 x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies
WO2023178329A1 (en) 2022-03-18 2023-09-21 Bristol-Myers Squibb Company Methods of isolating polypeptides
WO2023180552A1 (en) 2022-03-24 2023-09-28 Institut Curie Immunotherapy targeting tumor transposable element derived neoantigenic peptides in glioblastoma
CN114835810B (zh) * 2022-03-31 2024-01-05 浙江特瑞思药业股份有限公司 一种抗pd-1纳米抗体及其应用
WO2023187024A1 (en) 2022-03-31 2023-10-05 Institut Curie Modified rela protein for inducing interferon expression and engineered immune cells with improved interferon expression
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023192478A1 (en) 2022-04-01 2023-10-05 Bristol-Myers Squibb Company Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer
WO2023196877A1 (en) 2022-04-06 2023-10-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2023196988A1 (en) 2022-04-07 2023-10-12 Modernatx, Inc. Methods of use of mrnas encoding il-12
WO2023194607A1 (en) 2022-04-07 2023-10-12 Institut Curie Myeloid cells modified by chimeric antigen receptor with cd40 and uses thereof for anti-cancer therapy
WO2023194608A1 (en) 2022-04-07 2023-10-12 Institut Curie Myeloid cells modified by chimeric antigen receptor and uses thereof for anti-cancer therapy
WO2023196987A1 (en) 2022-04-07 2023-10-12 Bristol-Myers Squibb Company Methods of treating tumor
WO2023196964A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine learning identification, classification, and quantification of tertiary lymphoid structures
US11958906B2 (en) 2022-04-13 2024-04-16 Genentech, Inc. Pharmaceutical compositions of mosunetuzumab and methods of use
US20230406930A1 (en) 2022-04-13 2023-12-21 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
WO2023211972A1 (en) 2022-04-28 2023-11-02 Medical University Of South Carolina Chimeric antigen receptor modified regulatory t cells for treating cancer
WO2023213763A1 (en) 2022-05-02 2023-11-09 Transgene Poxvirus encoding a binding agent comprising an anti- pd-l1 sdab
WO2023213764A1 (en) 2022-05-02 2023-11-09 Transgene Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023224912A1 (en) 2022-05-16 2023-11-23 Regeneron Pharmaceuticals, Inc. Methods of treating metastatic castration-resistant prostate cancer with bispecific anti-psma x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies
KR20230163305A (ko) 2022-05-19 2023-11-30 (주)샤페론 Pd-l1 및 cd47에 대한 이중특이적 인간화 단일 도메인 항체 및 이의 용도
WO2023228095A1 (en) 2022-05-24 2023-11-30 Daiichi Sankyo Company, Limited Dosage regimen of an anti-cdh6 antibody-drug conjugate
WO2023230554A1 (en) 2022-05-25 2023-11-30 Pfizer Inc. Combination of a braf inhibitor, an egfr inhibitor, and a pd-1 antagonist for the treatment of braf v600e-mutant, msi-h/dmmr colorectal cancer
WO2023230541A1 (en) 2022-05-27 2023-11-30 Viiv Healthcare Company Piperazine derivatives useful in hiv therapy
WO2023227949A1 (en) 2022-05-27 2023-11-30 Takeda Pharmaceutical Company Limited Dosing of cd38-binding fusion protein
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
US20240002331A1 (en) 2022-06-08 2024-01-04 Tidal Therapeutics, Inc. Ionizable cationic lipids and lipid nanoparticles, and methods of synthesis and use thereof
TW202402279A (zh) 2022-06-08 2024-01-16 美商英塞特公司 作為dgk抑制劑之三環三唑并化合物
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors
WO2023245097A2 (en) 2022-06-16 2023-12-21 Cephalon Llc Anti-pd-1 antibody-attenuated il-2 immunoconjugates and uses thereof
WO2023242351A1 (en) 2022-06-16 2023-12-21 Lamkap Bio Beta Ag Combination therapy of bispecific antibodies against ceacam5 and cd47 and bispecific antibodies against ceacam5 and cd3
WO2023250430A1 (en) 2022-06-22 2023-12-28 Incyte Corporation Bicyclic amine cdk12 inhibitors
WO2023250400A1 (en) 2022-06-22 2023-12-28 Juno Therapeutics, Inc. Treatment methods for second line therapy of cd19-targeted car t cells
WO2024003353A1 (en) 2022-07-01 2024-01-04 Transgene Fusion protein comprising a surfactant-protein-d and a member of the tnfsf
WO2024003360A1 (en) 2022-07-01 2024-01-04 Institut Curie Biomarkers and uses thereof for the treatment of neuroblastoma
WO2024011114A1 (en) 2022-07-06 2024-01-11 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
WO2024015731A1 (en) 2022-07-11 2024-01-18 Incyte Corporation Fused tricyclic compounds as inhibitors of kras g12v mutants
WO2024015864A1 (en) 2022-07-12 2024-01-18 Hotspot Therapeutics, Inc. Cbl-b inhibitors and anti-pd1/anti-pd-l1 for use in the treatment of cancer
WO2024015372A1 (en) 2022-07-14 2024-01-18 Teon Therapeutics, Inc. Adenosine receptor antagonists and uses thereof
WO2024013723A1 (en) 2022-07-15 2024-01-18 Pheon Therapeutics Ltd Antibody drug conjugates that bind cdcp1 and uses thereof
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
EP4310197A1 (en) 2022-07-21 2024-01-24 Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
WO2024023740A1 (en) 2022-07-27 2024-02-01 Astrazeneca Ab Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors
WO2024023750A1 (en) 2022-07-28 2024-02-01 Astrazeneca Uk Limited Combination of antibody-drug conjugate and bispecific checkpoint inhibitor
WO2024028386A1 (en) 2022-08-02 2024-02-08 Ose Immunotherapeutics Multifunctional molecule directed against cd28
US20240043560A1 (en) 2022-08-02 2024-02-08 Regeneron Pharmaceuticals, Inc. Methods of Treating Metastatic Castration-Resistant Prostate Cancer with Bispecific Anti-PSMA x Anti-CD28 Antibodies in Combination with Anti-PD-1 Antibodies
WO2024028794A1 (en) 2022-08-02 2024-02-08 Temple Therapeutics BV Methods for treating endometrial and ovarian hyperproliferative disorders
WO2024031091A2 (en) 2022-08-05 2024-02-08 Juno Therapeutics, Inc. Chimeric antigen receptors specific for gprc5d and bcma
WO2024033400A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sk2 inhibitor for the treatment of pancreatic cancer
WO2024033399A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sigmar1 ligand for the treatment of pancreatic cancer
WO2024040175A1 (en) 2022-08-18 2024-02-22 Pulmatrix Operating Company, Inc. Methods for treating cancer using inhaled angiogenesis inhibitor
WO2024040264A1 (en) 2022-08-19 2024-02-22 Massachusetts Institute Of Technology Compositions and methods for targeting dendritic cell lectins
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024052356A1 (en) 2022-09-06 2024-03-14 Institut National de la Santé et de la Recherche Médicale Inhibitors of the ceramide metabolic pathway for overcoming immunotherapy resistance in cancer
WO2024056716A1 (en) 2022-09-14 2024-03-21 Institut National de la Santé et de la Recherche Médicale Methods and pharmaceutical compositions for the treatment of dilated cardiomyopathy
WO2024068617A1 (en) 2022-09-26 2024-04-04 Institut Curie Myeloid cells expressing il-2 and uses thereof for quick anticancer therapy
WO2024069009A1 (en) 2022-09-30 2024-04-04 Alentis Therapeutics Ag Treatment of drug-resistant hepatocellular carcinoma
WO2024076926A1 (en) 2022-10-03 2024-04-11 Regeneron Pharmaceuticals, Inc. Methods of treating cancer with bispecific egfr x cd28 antibodies alone or in combination with anti-pd-1 antibodies
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer
WO2024077191A1 (en) 2022-10-05 2024-04-11 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer
WO2024081736A2 (en) 2022-10-11 2024-04-18 Yale University Compositions and methods of using cell-penetrating antibodies
WO2024081916A1 (en) 2022-10-14 2024-04-18 Black Diamond Therapeutics, Inc. Methods of treating cancers using isoquinoline or 6-aza-quinoline derivatives
CN116218786B (zh) * 2023-03-09 2024-01-23 山东大学齐鲁医院 一种多重基因编辑的通用型巨噬细胞及在制备抗肿瘤药物中的应用

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4634665A (en) 1980-02-25 1987-01-06 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5179017A (en) 1980-02-25 1993-01-12 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4475196A (en) 1981-03-06 1984-10-02 Zor Clair G Instrument for locating faults in aircraft passenger reading light and attendant call control system
US4447233A (en) 1981-04-10 1984-05-08 Parker-Hannifin Corporation Medication infusion pump
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4486194A (en) 1983-06-08 1984-12-04 James Ferrara Therapeutic device for administering medicaments through the skin
EP0154316B1 (en) 1984-03-06 1989-09-13 Takeda Chemical Industries, Ltd. Chemically modified lymphokine and production thereof
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
US5374548A (en) 1986-05-02 1994-12-20 Genentech, Inc. Methods and compositions for the attachment of proteins to liposomes using a glycophospholipid anchor
MX9203291A (es) 1985-06-26 1992-08-01 Liposome Co Inc Metodo para acoplamiento de liposomas.
GB8601597D0 (en) 1986-01-23 1986-02-26 Wilson R H Nucleotide sequences
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4954617A (en) 1986-07-07 1990-09-04 Trustees Of Dartmouth College Monoclonal antibodies to FC receptors for immunoglobulin G on human mononuclear phagocytes
US4881175A (en) 1986-09-02 1989-11-14 Genex Corporation Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
EP0307434B2 (en) 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
US5013653A (en) 1987-03-20 1991-05-07 Creative Biomolecules, Inc. Product and process for introduction of a hinge region into a fusion protein to facilitate cleavage
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
ATE120761T1 (de) 1987-05-21 1995-04-15 Creative Biomolecules Inc Multifunktionelle proteine mit vorbestimmter zielsetzung.
US5258498A (en) 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
US5132405A (en) 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
GB8809129D0 (en) 1988-04-18 1988-05-18 Celltech Ltd Recombinant dna methods vectors and host cells
US5476996A (en) 1988-06-14 1995-12-19 Lidak Pharmaceuticals Human immune system in non-human animal
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
DE68925966T2 (de) 1988-12-22 1996-08-29 Kirin Amgen Inc Chemisch modifizierte granulocytenkolonie erregender faktor
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5108921A (en) 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
DE69120146T2 (de) 1990-01-12 1996-12-12 Cell Genesys Inc Erzeugung xenogener antikörper
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
ES2246502T3 (es) 1990-08-29 2006-02-16 Genpharm International, Inc. Animales no humanos transgenicos capaces de producir anticuerpos heterologos.
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
DK1024191T3 (da) 1991-12-02 2008-12-08 Medical Res Council Fremstilling af autoantistoffer fremvist på fag-overflader ud fra antistofsegmentbiblioteker
US5714350A (en) 1992-03-09 1998-02-03 Protein Design Labs, Inc. Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region
WO1993022332A2 (en) 1992-04-24 1993-11-11 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
US5260074A (en) 1992-06-22 1993-11-09 Digestive Care Inc. Compositions of digestive enzymes and salts of bile acids and process for preparation thereof
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
GB9223377D0 (en) 1992-11-04 1992-12-23 Medarex Inc Humanized antibodies to fc receptors for immunoglobulin on human mononuclear phagocytes
CA2161351C (en) 1993-04-26 2010-12-21 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
JPH08511420A (ja) 1993-06-16 1996-12-03 セルテック・セラピューテイクス・リミテッド 抗 体
US5625825A (en) 1993-10-21 1997-04-29 Lsi Logic Corporation Random number generating apparatus for an interface unit of a carrier sense with multiple access and collision detect (CSMA/CD) ethernet data network
IL108501A (en) 1994-01-31 1998-10-30 Mor Research Applic Ltd Antibodies and pharmaceutical compositions containing them
CA2143491C (en) 1994-03-01 2011-02-22 Yasumasa Ishida A novel peptide related to human programmed cell death and dna encoding it
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
US6410690B1 (en) 1995-06-07 2002-06-25 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US5811097A (en) * 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US6051227A (en) 1995-07-25 2000-04-18 The Regents Of The University Of California, Office Of Technology Transfer Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US5855887A (en) 1995-07-25 1999-01-05 The Regents Of The University Of California Blockade of lymphocyte down-regulation associated with CTLA-4 signaling
AU718138B2 (en) 1995-08-29 2000-04-06 Kyowa Hakko Kirin Co., Ltd. Chimeric animal and method for constructing the same
US6632976B1 (en) 1995-08-29 2003-10-14 Kirin Beer Kabushiki Kaisha Chimeric mice that are produced by microcell mediated chromosome transfer and that retain a human antibody gene
US5922845A (en) 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
EP1007090B1 (en) * 1996-11-08 2009-12-30 Biogen Idec Inc. Identification of unique binding interactions between certain antibodies and the human b7.1 (cd80) and b7.2 (cd28) co-stimulatory antigens
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
JP2001523958A (ja) 1997-03-21 2001-11-27 ブライハム アンド ウィミンズ ホスピタル,インコーポレイテッド 免疫療法のctla−4結合ペプチド
JPH10291996A (ja) 1997-04-22 1998-11-04 Mitsubishi Chem Corp ロジウム錯体溶液の調製方法
EP1724282B1 (en) 1997-05-21 2013-05-15 Merck Patent GmbH Method for the production of non-immunogenic proteins
WO2004087163A2 (ja) * 1998-12-02 2004-10-14 Masato Kusunoki 薬物動態修飾化学療法
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
AU3657899A (en) 1998-04-20 1999-11-08 James E. Bailey Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
JP5341287B2 (ja) 1998-12-03 2013-11-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Ctla−4遮断薬を用いる自己抗原に対するt細胞の刺激
KR100856446B1 (ko) 1998-12-23 2008-09-04 화이자 인크. Ctla-4에 대한 인간 단일클론 항체
US7041474B2 (en) 1998-12-30 2006-05-09 Millennium Pharmaceuticals, Inc. Nucleic acid encoding human tango 509
HUP0104865A3 (en) 1999-01-15 2004-07-28 Genentech Inc Polypeptide variants with altered effector function
EP2275540B1 (en) 1999-04-09 2016-03-23 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
US6316462B1 (en) * 1999-04-09 2001-11-13 Schering Corporation Methods of inducing cancer cell death and tumor regression
FR2794025A1 (fr) 1999-05-25 2000-12-01 Transgene Sa Composition destinee a la mise en oeuvre d'un traitement antitumoral ou antiviral chez un mammifere
AU5286999A (en) 1999-07-23 2001-02-13 Glaxo Group Limited Combination of an anti-ep-cam antibody with a chemotherapeutic agent
MXPA02000962A (es) 1999-07-29 2002-07-02 Medarex Inc Anticuerpos monoclonales humanos para her2/neu.
US6808710B1 (en) 1999-08-23 2004-10-26 Genetics Institute, Inc. Downmodulating an immune response with multivalent antibodies to PD-1
CA2383424C (en) 1999-08-23 2011-02-15 Gordon Freeman Novel b7-4 molecules and uses therefor
EP2829609A1 (en) * 1999-08-24 2015-01-28 E. R. Squibb & Sons, L.L.C. Human CTLA-4 antibodies and their uses
PT1234031T (pt) 1999-11-30 2017-06-26 Mayo Foundation B7-h1, uma nova molécula imunoregulatória
US6803192B1 (en) 1999-11-30 2004-10-12 Mayo Foundation For Medical Education And Research B7-H1, a novel immunoregulatory molecule
AU2001233027A1 (en) 2000-01-27 2001-08-07 Genetics Institute, Llc Antibodies against ctla4 (cd152), conjugates comprising same, and uses thereof
JP2003527441A (ja) 2000-03-22 2003-09-16 グラクソ グループ リミテッド 細胞周期を阻止する薬剤及び抗体を含む医薬
US7030219B2 (en) 2000-04-28 2006-04-18 Johns Hopkins University B7-DC, Dendritic cell co-stimulatory molecules
WO2002000730A2 (en) 2000-06-28 2002-01-03 Genetics Institute, Llc. Pd-l2 molecules: novel pd-1 ligands and uses therefor
AU2002224595A1 (en) * 2000-07-31 2002-02-13 The Nisshin Oil Mills, Ltd. Antitumor agents
EP1368061B1 (en) 2000-10-20 2008-12-24 Tsuneya Ohno Fusion cells and cytokine compositions for treatment of disease
US7132109B1 (en) 2000-10-20 2006-11-07 University Of Connecticut Health Center Using heat shock proteins to increase immune response
JP3523245B1 (ja) 2000-11-30 2004-04-26 メダレックス,インコーポレーテッド ヒト抗体作製用トランスジェニック染色体導入齧歯動物
JP2002194491A (ja) 2000-12-27 2002-07-10 Daido Steel Co Ltd ばね用鋼材
AR036993A1 (es) * 2001-04-02 2004-10-20 Wyeth Corp Uso de agentes que modulan la interaccion entre pd-1 y sus ligandos en la submodulacion de respuestas inmunologicas
WO2002079499A1 (en) 2001-04-02 2002-10-10 Wyeth Pd-1, a receptor for b7-4, and uses therefor
AU2002258941A1 (en) 2001-04-20 2002-11-05 Mayo Foundation For Medical Education And Research Methods of enhancing cell responsiveness
US6727072B2 (en) 2001-05-01 2004-04-27 Dako Corporation EGF-r detection kit
WO2002092780A2 (en) 2001-05-17 2002-11-21 Diversa Corporation Novel antigen binding molecules for therapeutic, diagnostic, prophylactic, enzymatic, industrial, and agricultural applications, and methods for generating and screening thereof
IL149701A0 (en) * 2001-05-23 2002-11-10 Pfizer Prod Inc Use of anti-ctla-4 antibodies
US6592849B2 (en) 2001-06-21 2003-07-15 Colgate Palmolive Company Chewing gum to control malodorous breath
JP2003029846A (ja) 2001-07-11 2003-01-31 Sanyo Electric Co Ltd 流量調整器および流量調整器を備えた飲料供給装置
WO2003006636A1 (de) 2001-07-12 2003-01-23 Genethor Gmbh Reduktion der stimulationsfähigkeit von antigen präsentierenden zellen
ATE524495T1 (de) * 2001-07-31 2011-09-15 Ono Pharmaceutical Co Pd-1-spezifische substanz
IL145926A0 (en) 2001-10-15 2002-07-25 Mor Research Applic Ltd Peptide epitopes of mimotopes useful in immunomodulation
ES2326964T3 (es) 2001-10-25 2009-10-22 Genentech, Inc. Composiciones de glicoproteina.
WO2003042402A2 (en) * 2001-11-13 2003-05-22 Dana-Farber Cancer Institute, Inc. Agents that modulate immune cell activation and methods of use thereof
AU2003224604B2 (en) * 2002-01-28 2007-06-14 Medarex, Inc. Human monoclonal antibodies to prostate specific membrane antigen (PSMA)
WO2003074679A2 (en) 2002-03-01 2003-09-12 Xencor Antibody optimization
US20040110704A1 (en) 2002-04-09 2004-06-10 Kyowa Hakko Kogyo Co., Ltd. Cells of which genome is modified
IL149820A0 (en) 2002-05-23 2002-11-10 Curetech Ltd Humanized immunomodulatory monoclonal antibodies for the treatment of neoplastic disease or immunodeficiency
AU2003245615A1 (en) * 2002-06-20 2004-01-06 The Regents Of The University Of California Compositions and methods for modulating lymphocyte activity
FI2206517T3 (fi) 2002-07-03 2023-10-19 Ono Pharmaceutical Co Immuunopotentioivia koostumuksia käsittäen anti-PD-L1 -vasta-aineita
TWI323265B (en) 2002-08-06 2010-04-11 Glaxo Group Ltd Antibodies
JP4511943B2 (ja) 2002-12-23 2010-07-28 ワイス エルエルシー Pd−1に対する抗体およびその使用
ES2729974T3 (es) 2003-01-23 2019-11-07 Ono Pharmaceutical Co Anticuerpo específico de PD-1 y CD3 humanas
US7465446B2 (en) * 2003-05-30 2008-12-16 Medarex, Inc. Surrogate therapeutic endpoint for anti-CTLA4-based immunotherapy of disease
EP1661574B1 (en) * 2003-09-01 2017-04-19 Earthus, Inc. Beta-hydroxy short to medium chain fatty acid polymer
JP4905957B2 (ja) * 2003-10-16 2012-03-28 インスティトゥート オブ ヴァイロロジー Mn/ca ixおよび癌予後診断
WO2006021955A2 (en) 2004-08-23 2006-03-02 Mor Research Applications Ltd. Use of bat monoclonal antibody for immunotherapy
MX2007004176A (es) 2004-10-06 2007-06-15 Mayo Foundation B7-h1 y metodos de diagnosis, prognosis, y tratamiento de cancer.
US7423128B2 (en) 2004-11-03 2008-09-09 Amgen Fremont Inc. Anti-properdin antibodies, and methods for making and using same
JP4005080B2 (ja) * 2004-11-25 2007-11-07 オリンパス株式会社 内視鏡装置
LT2439273T (lt) 2005-05-09 2019-05-10 Ono Pharmaceutical Co., Ltd. Žmogaus monokloniniai antikūnai prieš programuotos mirties 1(pd-1) baltymą, ir vėžio gydymo būdai, naudojant vien tik anti-pd-1 antikūnus arba derinyje su kitais imunoterapiniais vaistais
WO2006124269A2 (en) * 2005-05-16 2006-11-23 Amgen Fremont Inc. Human monoclonal antibodies that bind to very late antigen-1 for the treatment of inflammation and other disorders
CN105330741B (zh) 2005-07-01 2023-01-31 E.R.施贵宝&圣斯有限责任公司 抗程序性死亡配体1(pd-l1)的人单克隆抗体
NZ591130A (en) * 2008-08-25 2012-09-28 Amplimmune Inc Compositions comprising a PD-1 antagonists and cyclophosphamide and methods of use thereof
US9856320B2 (en) 2012-05-15 2018-01-02 Bristol-Myers Squibb Company Cancer immunotherapy by disrupting PD-1/PD-L1 signaling
AR091649A1 (es) * 2012-07-02 2015-02-18 Bristol Myers Squibb Co Optimizacion de anticuerpos que se fijan al gen de activacion de linfocitos 3 (lag-3) y sus usos
MX2017002134A (es) * 2014-08-19 2017-09-13 Nat Univ Corporation Okayama Univ Agente para el tratamiento y/o prevencion de enfermedades asociadas con anormalidades inmunes.
US11638744B2 (en) * 2015-09-03 2023-05-02 Ono Pharmaceutical Co., Ltd. Immunity enhancing agent for cancer by Allergin-1 antagonist
WO2017059224A2 (en) * 2015-10-01 2017-04-06 Gilead Sciences, Inc. Combination of a btk inhibitor and a checkpoint inhibitor for treating cancers
US10617667B2 (en) * 2017-11-01 2020-04-14 Ono Pharmaceutical Co., Ltd. Method for treating brain tumors
EP3740506A1 (en) * 2018-01-16 2020-11-25 Bristol-Myers Squibb Company Methods of treating cancer with antibodies against tim3
JP6719117B2 (ja) * 2018-03-27 2020-07-08 国立大学法人京都大学 免疫チェックポイント阻害剤の奏効性の判定を補助する方法、試薬キット、装置及びコンピュータプログラム
CN112292399A (zh) * 2018-04-04 2021-01-29 百时美施贵宝公司 抗cd27抗体及其用途
KR20210018253A (ko) * 2018-05-31 2021-02-17 오노 야꾸힝 고교 가부시키가이샤 면역 체크포인트 저해약의 유효성 판정 바이오마커
PE20211284A1 (es) * 2018-11-16 2021-07-19 Bristol Myers Squibb Co Anticuerpos anti-nkg2a y usos de los mismos
TWI818120B (zh) * 2018-11-27 2023-10-11 日商小野藥品工業股份有限公司 藉由免疫檢查點阻礙藥與folfirinox療法之併用的癌症治療
US20220117933A1 (en) * 2019-07-26 2022-04-21 Eisai R&D Management Co., Ltd. Pharmaceutical Composition for Treating Tumor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Iwai Y., Microanatomical localization of PD-1 in human tonsils. Immunol. Lett., 01.10.2002, 83(3); 215-220. Lonberg N., Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature, 28.04.1994, 368(6474):856-859. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625034C2 (ru) * 2011-04-20 2017-07-11 МЕДИММЬЮН, ЭлЭлСи Антитела и другие молекулы, которые связывают в7-н1 и pd-1
RU2815059C2 (ru) * 2013-12-20 2024-03-11 Интервет Интернэшнл Б.В. Собачьи антитела с модифицированными последовательностями ch2-ch3
RU2695332C2 (ru) * 2014-05-15 2019-07-23 Бристол-Маерс Сквибб Компани Лечение рака легкого с помощью комбинации антитела против pd-1 и другого противоракового средства
RU2734771C2 (ru) * 2014-09-16 2020-10-23 Иннейт Фарма Нейтрализация ингибиторных путей в лимфоцитах
RU2737637C2 (ru) * 2015-07-22 2020-12-01 Инатерис Антитела против tfr и их применение при лечении пролиферативных и воспалительных расстройств
RU2731418C2 (ru) * 2015-09-28 2020-09-02 Сучжоу Санкадия Биофармасьютикалз Ко., Лтд. Стабильный фармацевтический препарат на основе антитела к pd-1 и его применение в медицине
US11130810B2 (en) 2015-10-02 2021-09-28 Hoffmann-La Roche Inc. Bispecific antibodies specific for PD1 and TIM3
RU2746409C1 (ru) * 2015-10-02 2021-04-13 Ф. Хоффманн-Ля Рош Аг Антитела к pd1 и способы их применения
US10954301B2 (en) 2015-12-14 2021-03-23 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
US11840571B2 (en) 2015-12-14 2023-12-12 Macrogenics, Inc. Methods of using bispecific molecules having immunoreactivity with PD-1 and CTLA-4
RU2764548C2 (ru) * 2016-08-09 2022-01-18 Кимаб Лимитед Анти-icos антитела
RU2744911C2 (ru) * 2016-08-15 2021-03-17 Нэшнл Юниверсити Корпорейшн Хоккайдо Юниверсити Антитело против pd-l1
RU2757316C2 (ru) * 2016-09-21 2021-10-13 СиСТОНЕ ФАРМАСЬЮТИКАЛС Новые моноклональные антитела к белку программируемой смерти 1(pd-1)
RU2770590C2 (ru) * 2016-10-30 2022-04-18 Шанхай Хенлиус Байотек, Инк. Антитела против pd-l1 и их варианты
US11413331B2 (en) 2017-04-03 2022-08-16 Hoffmann-La Roche Inc. Immunoconjugates
US11285207B2 (en) 2017-04-05 2022-03-29 Hoffmann-La Roche Inc. Bispecific antibodies specifically binding to PD1 and LAG3
RU2795232C2 (ru) * 2017-04-05 2023-05-02 Симфоген А/С Комбинированные лекарственные средства, нацеленные на pd-1, tim-3 и lag-3
RU2778669C1 (ru) * 2021-08-31 2022-08-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" ФГБОУВО "ЯГТУ" Способ выбора препарата для лечения немелкоклеточного рака легкого

Also Published As

Publication number Publication date
RU2007145419A (ru) 2009-06-20
US8008449B2 (en) 2011-08-30
IL187108A0 (en) 2008-02-09
EP2439273B1 (en) 2019-02-27
FR15C0087I2 (fr) 2017-01-06
CA2970873A1 (en) 2006-11-16
CN101213297B (zh) 2013-02-13
EP2418278A2 (en) 2012-02-15
US20140212422A1 (en) 2014-07-31
CN103059138B (zh) 2015-10-28
NZ563193A (en) 2010-05-28
NO341219B1 (no) 2017-09-18
EP2161336A1 (en) 2010-03-10
EP2439273A2 (en) 2012-04-11
JP2019103504A (ja) 2019-06-27
EP2161336B2 (en) 2017-03-29
EP1896582A4 (en) 2009-04-08
RU2016133899A (ru) 2018-02-22
KR20080011428A (ko) 2008-02-04
JP7443302B2 (ja) 2024-03-05
KR101498834B1 (ko) 2015-03-05
US9358289B2 (en) 2016-06-07
JP2024023539A (ja) 2024-02-21
EP2439272A2 (en) 2012-04-11
NO2018008I2 (no) 2018-02-14
HUS1500067I1 (hu) 2016-02-29
NO2018008I1 (no) 2018-02-14
RU2406760C3 (ru) 2017-11-28
CY2015057I2 (el) 2016-06-22
MX2007013978A (es) 2008-02-22
CA2607147C (en) 2018-07-17
JP2012158605A (ja) 2012-08-23
CN105315373A (zh) 2016-02-10
JP6975733B2 (ja) 2021-12-01
US20230272079A1 (en) 2023-08-31
WO2006121168A1 (en) 2006-11-16
PL2161336T5 (pl) 2017-10-31
CN101213297A (zh) 2008-07-02
RU2732924C2 (ru) 2020-09-24
US10441655B2 (en) 2019-10-15
US9084776B2 (en) 2015-07-21
SI2439273T1 (sl) 2019-05-31
LT2439273T (lt) 2019-05-10
CN103059138A (zh) 2013-04-24
KR20130114226A (ko) 2013-10-16
CN109485727A (zh) 2019-03-19
IL187108A (en) 2011-06-30
NL300782I2 (ru) 2016-05-18
CN117534755A (zh) 2024-02-09
DK2161336T3 (da) 2013-10-28
TWI379898B (en) 2012-12-21
AU2006244885B2 (en) 2011-03-31
RU2010135087A (ru) 2012-02-27
US20090217401A1 (en) 2009-08-27
DK2161336T4 (en) 2017-04-24
PT2439273T (pt) 2019-05-13
EP2439272A3 (en) 2013-07-31
US8779105B2 (en) 2014-07-15
US9492540B2 (en) 2016-11-15
CA2607147A1 (en) 2006-11-16
JP2017052784A (ja) 2017-03-16
JP2014077015A (ja) 2014-05-01
DK2439273T3 (da) 2019-06-03
JP5028700B2 (ja) 2012-09-19
RU2013133714A (ru) 2015-01-27
US20150165025A1 (en) 2015-06-18
EP2161336B1 (en) 2013-07-31
AU2006244885A1 (en) 2006-11-16
US9387247B2 (en) 2016-07-12
RU2599417C3 (ru) 2017-11-28
CY2015057I1 (el) 2016-06-22
NO344818B1 (no) 2020-05-04
EP1896582A1 (en) 2008-03-12
NO20170138A1 (no) 2008-02-11
PL2439273T3 (pl) 2019-08-30
ES2427646T5 (es) 2017-08-22
JP2016033135A (ja) 2016-03-10
US20140348743A1 (en) 2014-11-27
CY1121648T1 (el) 2020-07-31
US20130133091A1 (en) 2013-05-23
LTC2161336I2 (lt) 2017-07-10
EP3530736A3 (en) 2019-11-06
HK1140793A1 (en) 2010-10-22
US20140328833A1 (en) 2014-11-06
IL208642A (en) 2012-08-30
JP6185971B2 (ja) 2017-08-23
PL2161336T3 (pl) 2014-01-31
KR20130032908A (ko) 2013-04-02
JP2021191793A (ja) 2021-12-16
NO20200470A1 (no) 2008-02-11
JP4361545B2 (ja) 2009-11-11
NO20075697L (no) 2008-02-11
LU92904I2 (fr) 2016-02-10
NO2023031I1 (no) 2023-08-23
EP3530736A2 (en) 2019-08-28
CA2970873C (en) 2022-05-17
ES2720160T3 (es) 2019-07-18
JP2009155338A (ja) 2009-07-16
BRPI0610235A2 (pt) 2010-06-08
CN105315373B (zh) 2018-11-09
FR15C0087I1 (ru) 2016-01-22
BRPI0610235B8 (pt) 2021-05-25
JP2006340714A (ja) 2006-12-21
RU2494107C2 (ru) 2013-09-27
CA3151350A1 (en) 2006-11-16
EP2439273A3 (en) 2012-10-03
PT2161336E (pt) 2013-10-03
US20200138945A1 (en) 2020-05-07
ES2427646T3 (es) 2013-10-31
HUE044719T2 (hu) 2019-11-28
US20170088615A1 (en) 2017-03-30
SI2161336T1 (sl) 2013-11-29
TW200716743A (en) 2007-05-01
BRPI0610235B1 (pt) 2020-05-05
EP2418278A3 (en) 2012-07-04
KR101339628B1 (ko) 2013-12-09
US20140294852A1 (en) 2014-10-02
IL208642A0 (en) 2010-12-30
RU2599417C2 (ru) 2016-10-10
KR101318469B1 (ko) 2013-10-23
JP5872377B2 (ja) 2016-03-01
RU2016133899A3 (ru) 2020-01-17
US9492539B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
JP7443302B2 (ja) Programmed Death 1(PD-1)に対するヒトモノクローナル抗体および抗PD-1抗体単独または他の免疫療法と併用した癌治療方法

Legal Events

Date Code Title Description
TC4A Change in inventorship

Effective date: 20130326

PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20140411

PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20150416

PD4A Correction of name of patent owner
HE4A Change of address of a patent owner